JP2019113251A - Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger - Google Patents

Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger Download PDF

Info

Publication number
JP2019113251A
JP2019113251A JP2017246956A JP2017246956A JP2019113251A JP 2019113251 A JP2019113251 A JP 2019113251A JP 2017246956 A JP2017246956 A JP 2017246956A JP 2017246956 A JP2017246956 A JP 2017246956A JP 2019113251 A JP2019113251 A JP 2019113251A
Authority
JP
Japan
Prior art keywords
hydrophilic
film
water
baked
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017246956A
Other languages
Japanese (ja)
Inventor
直人 碓井
Naoto Usui
直人 碓井
慎也 川上
Shinya Kawakami
慎也 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2017246956A priority Critical patent/JP2019113251A/en
Publication of JP2019113251A publication Critical patent/JP2019113251A/en
Pending legal-status Critical Current

Links

Abstract

To provide a hydrophilic baked coat, a fin material including the same, and a heat exchanger free from corrosion of a copper pipe even in being stored while kept into contact with the copper pipe.SOLUTION: A hydrophilic baked coat includes a plate material composed of aluminum or aluminum alloy, a baked corrosion-resisting layer formed on the plate material and composed of water-based paint including polyvinyl alcohol, and a hydrophilic baked coat formed on the baked corrosion-resisting layer. The hydrophilic baked coat includes alumina sol, water-soluble acryl resin including sulfonic acid, and polyethylene glycol, a content of sulfur soluble in water is 0.5 mg/mor less, a coating amount of the hydrophilic backed coat is 0.3-0.8 g/m, and a coating amount of the backed corrosion-resisting layer is 0.2 g/mor more.SELECTED DRAWING: Figure 1

Description

本発明は、親水性焼付塗膜および前記塗膜を備えた熱交換器用アルミニウムフィン材と熱交換器に関する。   The present invention relates to a hydrophilic baked film, an aluminum fin material for a heat exchanger provided with the film, and a heat exchanger.

エアーコンディショナー用の熱交換器には、埃などの親水性の汚れや油分等の疎水性の汚れがフィン表面に付着することによって、フィン表面が撥水化し、結露水が送風によって飛散すること、いわゆる露飛びが発生する問題がある。
この露飛びを解決するためには、親水性汚れをフィンに付着し難くする必要がある。
In the heat exchanger for air conditioner, when the hydrophilic dirt such as dust or the hydrophobic dirt such as oil adheres to the fin surface, the fin surface becomes water repellent and the condensation water is scattered by the air, There is a problem that so-called dew skipping occurs.
In order to solve this fly-off, it is necessary to make it difficult for hydrophilic stains to adhere to the fins.

熱交換器用フィンの表面に親水性を付与する技術として、フィン材表面にシリカ粒子を含有する有機高分子樹脂溶液で表面処理する技術や、アクリル系樹脂などからなる有機高分子物質とSiO又はTiOを含む水性組成物を混合して塗布し、乾燥することによって形成される皮膜によりアルミニウムフィン材を被覆する技術が知られている。 As a technique for imparting hydrophilicity to the surface of fins for heat exchangers, a technique of surface treatment with an organic polymer resin solution containing silica particles on the surface of fin material, an organic polymer substance made of an acrylic resin, etc. and SiO 2 or There is known a technique for coating an aluminum fin material with a film formed by mixing, applying and drying an aqueous composition containing TiO 2 .

以下の特許文献1には、Zr化合物を用いて金属架橋させたポリアクリル酸等の有機樹脂に、シリカ粒子、ポリエチレングリコールを含有した親水性塗膜をアルミニウム合金基材の表面に形成する技術について開示されている。
以下の特許文献2には、アルミニウム板に、樹脂とジルコニウムを含有する下地皮膜層を形成し、その上に、樹脂、コロイダルシリカ、ジルコニウム化合物を含有する親水性被膜層を形成することが開示されている。
Patent Document 1 below describes a technique for forming a hydrophilic coating film containing silica particles and polyethylene glycol in an organic resin such as polyacrylic acid metal-crosslinked using a Zr compound on the surface of an aluminum alloy substrate It is disclosed.
The following Patent Document 2 discloses that an undercoat film layer containing a resin and zirconium is formed on an aluminum plate, and a hydrophilic film layer containing a resin, colloidal silica, and a zirconium compound is formed thereon. ing.

上述の露飛びを解決するための手法の一例として、親水性粒子と疎水性粒子の混合膜をアルミニウムフィンの表面に塗布することが有効であるが、親水性粒子として知られているコロイダルシリカを用いると、粒子硬度が高いため、アルミニウム板材からフィン材をプレス加工で作製する場合、金型摩耗を生じ易い問題がある。
そこで本願発明者らは先に親水性粒子としてモース硬度がコロイダルシリカより低いアルミナゾルを用い、親水性汚れと疎水性汚れの双方を付着し難くした塗膜構造について以下の特許文献3により提案している。
It is effective to apply a mixed film of hydrophilic particles and hydrophobic particles to the surface of aluminum fin as an example of a method for solving the above-mentioned fly-over, but colloidal silica known as hydrophilic particles is used. When used, since the particle hardness is high, there is a problem that mold wear is apt to occur when producing a fin material from an aluminum plate material by press working.
Therefore, the inventors of the present invention have previously proposed a coating film structure using an alumina sol having a Mohs hardness lower than that of colloidal silica as hydrophilic particles and making it difficult to adhere both hydrophilic stains and hydrophobic stains according to Patent Document 3 below. There is.

特開2010−96416号公報Unexamined-Japanese-Patent No. 2010-96416 特許第4667978号公報Patent No. 4667978 特開2016−90105号公報JP, 2016-90105, A

特許文献3に記載の塗膜をアルミニウムフィン材の表面に形成することにより、親水性汚れと疎水性汚れの双方に有効であるとともに、金型摩耗の少ないフィン材を提供することができる。
そこで、上述の塗膜を備えたアルミニウムフィン材を用いて熱交換器を製造するため、複数のアルミニウムフィン材を用意し、これらフィン材を並列配置し、これらを貫通するように銅合金からなる伝熱管を設けて熱交換器コアを組み立て、環境試験を行った。
ところが、この環境試験を行うために作成した複数の熱交換器コアを数ヶ月保管したところ、保管環境によっては熱交換器コアの伝熱管の外周に緑色の変色部分を生じることが判明した。伝熱管の緑色の変色部分について本発明者らがEPMA(電子線マイクロアナライザー)およびESCA(X線光電子分光分析)により分析を行った結果、変色部分に正常部では存在しないClが存在し、正常部よりNa、Sが増加していることが判明した。また、この変色部分をFT−IR分析(フーリエ変換赤外分光分析)した結果、緑青とほぼ同等のピークが得られた。このことは変色部分に緑青を生じていると判断でき、伝熱管表層部に腐食を生じていることがわかった。
By forming the coating film described in Patent Document 3 on the surface of the aluminum fin material, it is possible to provide a fin material which is effective for both hydrophilic stains and hydrophobic stains and which causes less mold wear.
Then, in order to manufacture a heat exchanger using the aluminum fin material provided with the above-mentioned coating film, a plurality of aluminum fin materials are prepared, these fin materials are arranged in parallel, and it consists of copper alloys so as to penetrate these. A heat transfer tube was provided, the heat exchanger core was assembled, and an environmental test was conducted.
However, when several heat exchanger cores created for conducting this environmental test were stored for several months, it turned out that a green discoloration part is produced in the perimeter of a heat exchanger tube of a heat exchanger core depending on storage environment. The inventors of the present invention analyzed the green discolored portion of the heat transfer tube by EPMA (electron beam microanalyzer) and ESCA (X-ray photoelectron spectroscopy). As a result, Cl which is not present in the normal portion is present in the discolored portion. It turned out that Na and S increase from the part. Moreover, as a result of FT-IR analysis (Fourier transform infrared spectroscopy analysis) of this color-changed part, a peak almost equivalent to greenish blue was obtained. It can be judged that this has produced patina in the discolored portion, and it has been found that corrosion has occurred in the surface portion of the heat transfer tube.

また、エアーコンディショナーの室内機にあっては、室内に浮遊するシリコンや硫黄を含む成分(ヘアースプレーや芳香剤の成分等)がフィンに付着し、その付着点を起点としてフィンが腐食し、通風時に室内機から異臭が発生するなどの市場クレームを引き起こす問題がある。この問題を解決するためには、フィンの耐食性を向上させる必要がある。
更に近年では、エアーコンディショナーの室内機に意匠性が重視され、室内機の熱交換器に着色が施される場合があるが、着色を施した熱交換器を備えた室内機では内部洗浄などの際に色落ちが発生する問題がある。
Further, in the air conditioner indoor unit, components floating in the room, such as silicon and sulfur (such as hair spray and components of a fragrance) adhere to the fins, and the fins are corroded starting from the attachment points, causing ventilation. Sometimes there is a problem that causes market complaints such as the generation of an offensive odor from the indoor unit. In order to solve this problem, it is necessary to improve the corrosion resistance of the fins.
Furthermore, in recent years, the design of the indoor unit of the air conditioner is emphasized, and the heat exchanger of the indoor unit may be colored. However, in the indoor unit equipped with the colored heat exchanger, internal cleaning etc. There is a problem that discoloration occurs when.

本願発明は、これらの事情に鑑み、親水性汚れ防止に有効であり、金型摩耗の面でも問題を生じない親水性焼付塗膜であり、銅からなる伝熱管に接合して長期保存しても伝熱管に腐食などの問題を生じない塗膜とそれを備えたアルミニウムフィン材および熱交換器の提供を目的とする。   In view of these circumstances, the present invention is a hydrophilic baked film which is effective for preventing hydrophilic stains and causes no problem in terms of die wear, and is joined to a heat transfer tube made of copper for long-term storage. Another object of the present invention is to provide a coating film which does not cause problems such as corrosion in a heat transfer tube, and an aluminum fin material and a heat exchanger provided with the coating film.

本発明に係る親水性焼付塗膜は、アルミニウム又はアルミニウム合金からなる板材と、該板材上に形成されたポリビニルアルコールを含む水系塗料からなる焼付耐食層と、該焼付耐食層上に形成された親水性焼付塗膜とを具備し、該親水性焼付塗膜が、アルミナゾルに含まれるアルミナ粒子とスルホン酸を含む水溶性アクリル樹脂とポリエチレングリコールを含み、水に可溶な硫黄成分が0.5mg/m以下であり、塗膜量が0.3〜0.8g/mであり、前記焼付耐食層の塗膜量が0.2g/m以上であり、前記焼付耐食層に着色用の顔料が含まれていることを特徴とする。 The hydrophilic baked film according to the present invention comprises a plate material made of aluminum or an aluminum alloy, a baked corrosion-resistant layer made of a water-based paint containing polyvinyl alcohol formed on the plate material, and a hydrophilic layer formed on the baked corrosion-resistant layer. Hydrophilic baked film, which contains alumina particles contained in alumina sol, a water-soluble acrylic resin containing sulfonic acid and polyethylene glycol, and has a water-soluble sulfur component of 0.5 mg / hour m 2 or less, the coating film weight of 0.3 to 0.8 g / m 2, coating amount of the baking corrosion resistant layer has a 0.2 g / m 2 or more, the coloring on the baking corrosion resistant layer It is characterized in that it contains a pigment.

本発明の親水性焼付塗膜において、前記アルミナ粒子の平均粒子径が0.02〜20μmであり、前記焼付塗膜固形分100質量%中にアルミナ粒子が5〜45重量%含まれたことが好ましい。
本発明の親水性焼付塗膜において、表面の動摩擦係数が0.2以下であることが好ましい。
本発明の親水性焼付塗膜において、平均粒子径0.1〜0.5μmのフッ素樹脂粒子が焼付塗膜固形分100質量%中に0.05〜3質量%含まれたことが好ましい。
In the hydrophilic baked film of the present invention, the average particle diameter of the alumina particles is 0.02 to 20 μm, and 5 to 45% by weight of the alumina particles are contained in 100% by mass of the baked film solid content. preferable.
In the hydrophilic baked film of the present invention, the dynamic friction coefficient of the surface is preferably 0.2 or less.
In the hydrophilic baked film of the present invention, it is preferable that 0.05 to 3% by mass of fluororesin particles having an average particle diameter of 0.1 to 0.5 μm be contained in 100% by mass of the baked film solid content.

本発明の親水性焼付塗膜において、前記防汚性及び親水性焼付塗膜表面において前記アルミナ粒子の面積率が90%以上であることが好ましい。
本発明の親水性焼付塗膜において、前記親水性焼付塗膜の最表面に水溶性潤滑剤層が塗布量0.05〜0.2g/mmの割合で設けられたことが好ましい。
本発明の親水性焼付塗膜において、前記耐食層に着色用の顔料が含まれていることが好ましい。
In the hydrophilic baked film of the present invention, the area ratio of the alumina particles is preferably 90% or more on the surface of the antifouling property and the hydrophilic baked film.
In the hydrophilic baked film of the present invention, it is preferable that a water-soluble lubricant layer is provided on the outermost surface of the hydrophilic baked film at a coating amount of 0.05 to 0.2 g / mm 2 .
In the hydrophilic baked film of the present invention, the corrosion resistant layer preferably contains a pigment for coloring.

本発明のアルミニウムフィン材は、アルミニウム又はアルミニウム合金からなる板材上に、先のいずれかに記載の親水性焼付塗膜が形成されたことを特徴とする。
本発明の熱交換器は、先に記載のアルミニウムフィン材が複数並列配置され、前記各アルミニウムフィン材に透孔が形成され、該透孔を挿通して前記アルミニウムフィン材と一体化される銅または銅合金からなる伝熱管が設けられたことを特徴とする。
The aluminum fin material of the present invention is characterized in that the above-described hydrophilic baked film is formed on a plate material made of aluminum or an aluminum alloy.
In the heat exchanger according to the present invention, a plurality of the aluminum fin materials described above are arranged in parallel, a through hole is formed in each of the aluminum fin members, and copper is inserted through the through hole to be integrated with the aluminum fin material Alternatively, a heat transfer tube made of a copper alloy is provided.

本発明に係る親水性焼付塗膜であるならば、親水性汚れと疎水性汚れの両方に有効であり、露飛びの発生を防止できるとともに、フィン材として加工する場合に金型摩耗の面でも問題を生じない焼付塗膜を提供できる。更に、親水性焼付塗膜ではなく、焼付耐食層に顔料を添加することで色落ちを生じ難い構造にすることが可能となる。
また、本発明の親水性焼付塗膜であれば、フィン材表面に設け、熱交換器を組み立てるために銅または銅合金からなる伝熱管と組み合わせて長期保存した場合であっても、伝熱管に腐食発生などの問題を生じることがない。
The hydrophilic baked film according to the present invention is effective for both hydrophilic stains and hydrophobic stains, and can prevent the occurrence of fly-off and can be processed as a fin material in terms of mold wear as well. It is possible to provide a baked coating that does not cause problems. Furthermore, it becomes possible to make it the structure which is hard to produce discoloration by adding a pigment not to a hydrophilic baking film but to a baking corrosion-resistant layer.
In the case of the hydrophilic baked film according to the present invention, the heat transfer pipe may be provided on the fin material surface and stored for a long time in combination with a heat transfer pipe made of copper or copper alloy to assemble a heat exchanger. There is no problem such as corrosion occurrence.

本発明に係る親水性焼付塗膜を備えたアルミニウムフィン材の部分断面図。The fragmentary sectional view of the aluminum fin material provided with the hydrophilic baking film concerning the present invention. 本発明に係る親水性焼付塗膜を備えたアルミニウムフィンと伝熱管を組み立てた熱交換器コアの一例を示す斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The perspective view which shows an example of the heat exchanger core which assembled the aluminum fin and the heat exchanger tube provided with the hydrophilic baking film which concerns on this invention. 実施例において得られた塗膜の表面状態を示す顕微鏡写真。The microscope picture which shows the surface state of the coating film obtained in the Example.

以下、添付図面に示す実施の形態に基づいて本発明を詳細に説明する。
図1は本発明に係る親水性焼付塗膜を熱交換器用フィン材に適用した一実施形態を示すもので、この実施形態の熱交換器用フィン材1は、図1に断面構造を示すように、アルミニウムまたはアルミニウム合金からなる基材2と、該基材2の表面に被覆された化成皮膜2aと、化成皮膜2aの上にこれを覆うように順次被覆形成された耐食層3と親水性焼付塗膜5から構成されている。なお、図1の構造において親水性焼付塗膜5の表面側には水溶性潤滑剤層9が形成されているが、この水溶性潤滑剤相9は必須ではなく省略しても差し支えない。
Hereinafter, the present invention will be described in detail based on the embodiments shown in the attached drawings.
FIG. 1 shows an embodiment in which the hydrophilic baked film according to the present invention is applied to a fin material for a heat exchanger, and the fin material 1 for a heat exchanger of this embodiment has a cross-sectional structure as shown in FIG. A base material 2 made of aluminum or an aluminum alloy, a chemical conversion film 2a coated on the surface of the base material 2, and a corrosion resistant layer 3 and a hydrophilic bake which are sequentially coated on the chemical conversion film 2a so as to cover it. It comprises a coating 5. Although the water-soluble lubricant layer 9 is formed on the surface side of the hydrophilic baked film 5 in the structure of FIG. 1, the water-soluble lubricant phase 9 is not essential and may be omitted.

基材2を構成するアルミニウム又はアルミニウム合金としては、特に限定されず、一般的に熱交換器用の基材に適用されている組成のアルミニウム材を適宜用いることができる。なお、例示するならばJIS規定A1050、A1100、A1200、A3003等のアルミニウム合金を例示できる。
また、この基材2の表面にはクロメート処理された薄いクロメート皮膜などの化成皮膜2aが形成されている。なお、化成皮膜2aは基材2の耐食性をより高めるために設けられているが、必須ではなく、省略しても差し支えない。
It does not specifically limit as aluminum or aluminum alloy which comprises the base material 2, The aluminum material of the composition generally applied to the base material for heat exchangers can be used suitably. In addition, if it illustrates, aluminum alloys, such as JIS specification A1050, A1100, A1200, A3003, etc. can be illustrated.
Further, on the surface of the base material 2, a conversion film 2a such as a thin chromate film treated with chromate is formed. In addition, although the chemical conversion film 2a is provided in order to raise the corrosion resistance of the base material 2 more, it is not essential and it may be omitted.

耐食層3は、基材2の耐食性を更に高めるために設けられ、例えば、結晶性を有するポリビニルアルコール(PVA)などの結晶性樹脂材料からなることが好ましい。
例えば、フィン材1を設ける熱交換器において着色がなされることがある。この場合、着色塗料を親水性焼付塗膜5の焼付前の塗料中に添加することとなるが、親水性焼付塗膜5を形成するための塗料に着色のための顔料を添加すると焼付け後の塗膜において色落ちが容易に発生する。また、耐食層3を設けると耐食層3に使用する塗料の種類によっては親水性焼付塗膜5に使用する塗料が耐食層3側に拡散し、親水性を阻害する問題がある。この問題を回避するため、前述の結晶性を有するポリビニルアルコールを用いることが好ましい。ポリビニルアルコールからなる耐食層3であるならば、後述する親水性焼付塗膜5に含まれているカルボキシル基の拡散が低減され、親水性焼付塗膜5の良好な親水性が保持される。
The corrosion resistant layer 3 is provided to further enhance the corrosion resistance of the base material 2 and is preferably made of a crystalline resin material such as polyvinyl alcohol (PVA) having crystallinity.
For example, coloring may be performed in the heat exchanger provided with the fin material 1. In this case, the colored paint is added to the paint before the baking of the hydrophilic baked coating 5, but when a pigment for coloring is added to the paint for forming the hydrophilic baked coating 5, the baked paint is used. Decoloration easily occurs in the coating film. Further, when the corrosion resistant layer 3 is provided, the paint used for the hydrophilic baked film 5 diffuses to the corrosion resistant layer 3 side depending on the type of paint used for the corrosion resistant layer 3 and there is a problem of inhibiting the hydrophilicity. In order to avoid this problem, it is preferable to use the above-mentioned crystalline polyvinyl alcohol. In the case of the corrosion resistant layer 3 made of polyvinyl alcohol, the diffusion of carboxyl groups contained in the hydrophilic baked film 5 described later is reduced, and the good hydrophilicity of the hydrophilic baked film 5 is maintained.

耐食層3の塗膜量は焼成時に消失する水分を除いた塗膜量(固形分の塗膜量に相当)として0.2g/m以上とする必要があり、0.2〜1.5g/mの範囲が好ましく、良好な密着性を勘案すると0.2〜1.3g/mの範囲がより好ましい。なお、以下の説明において、「〜」を用いて範囲の上限と下限を表記した場合、特に説明のない限り、下限と上限を含むものとする。よって、0.2〜1.5g/mの範囲は0.2g/m以上1.5g/m以下を意味する。
耐食層3の塗膜量が0.2g/m未満では耐食性が不足となり、室内に浮遊するシリコンや硫黄を含む成分(ヘアースプレーや芳香剤等の成分)がフィン表面に付着し易くなり、そこを起点としてフィンが腐食すると室内機の運転により通風した場合に異臭が発生する問題を生じる。また、1.3g/mを超えて耐食層3を厚くし過ぎると、その上に形成する親水性焼付塗膜5の密着性に問題を生じるおそれがあり、また、コストの面でも不利となる。
耐食層3の焼付温度は180〜220℃での範囲が好ましく、180℃以下では密着不良が発生し、220℃を超える温度では塗膜成分の分解が発生する。焼付時間は数秒〜数分程度焼成してなる焼付塗膜である。
The coating amount of the corrosion resistant layer 3 needs to be 0.2 g / m 2 or more as the coating amount (corresponding to the solid coating amount) excluding water which disappears at the time of firing, 0.2 to 1.5 g It ranges preferably / m 2, in consideration of good adhesion 0.2~1.3g / m 2 more preferably in the range of. In the following description, when the upper limit and the lower limit of the range are described using “to”, the lower limit and the upper limit are included unless particularly described. Therefore, the range of 0.2 to 1.5 g / m 2 refers to 0.2 g / m 2 or more 1.5 g / m 2 or less.
If the coating amount of the corrosion resistant layer 3 is less than 0.2 g / m 2 , the corrosion resistance is insufficient, and components floating in the room, such as silicon and sulfur (components such as hair spray and fragrance) easily adhere to the fin surface, If the fins are corroded from there as a starting point, there is a problem that an offensive odor is generated when ventilation is performed by the operation of the indoor unit. If the thickness of the corrosion resistant layer 3 is too large to exceed 1.3 g / m 2 , problems may occur in the adhesion of the hydrophilic baked film 5 formed thereon, and it is disadvantageous in cost. Become.
The baking temperature of the corrosion resistant layer 3 is preferably in the range of 180 to 220 ° C. Adhesion failure occurs at 180 ° C. or less, and decomposition of the coating film occurs at temperatures exceeding 220 ° C. The baking time is a baking film formed by baking for several seconds to several minutes.

親水性焼付塗膜5は、アルミナゾルと、スルホン酸を含む水溶性アクリル樹脂と、ポリエチレングリコールもしくはポリエチレングリコールの変性物を含む水系塗料を塗膜として耐食層3上に塗布後に150〜300℃で所定時間、例えば、数秒〜数分程度焼成してなる焼付塗膜である。
アルミナゾルは、アルミナ粒子を液体の分散媒に分散させた状態のものを意味する。
従って、水系塗料を焼成した後の親水性焼付塗膜5は、図1に示すように水溶性アクリル樹脂とポリエチレングリコールもしくはポリエチレングリコールの変性物の混合物の焼成体からなる樹脂層6中にアルミナ粒子7が分散された構造となっている。
The hydrophilic baked film 5 is applied at a temperature of 150 to 300 ° C. after being coated on the corrosion resistant layer 3 as an aqueous coating containing an alumina sol, a water-soluble acrylic resin containing sulfonic acid, and polyethylene glycol or a modified product of polyethylene glycol. It is a baked coating film formed by baking for, for example, several seconds to several minutes.
Alumina sol means that alumina particles are dispersed in a liquid dispersion medium.
Therefore, as shown in FIG. 1, the hydrophilic baked film 5 after baking the water-based paint is an alumina particle in the resin layer 6 comprising a baked body of a mixture of water-soluble acrylic resin and polyethylene glycol or a modified product of polyethylene glycol. 7 has a distributed structure.

また、親水性焼付塗膜5に対し、フッ素樹脂粒子8を添加した構造を採用してもよい。親水性焼付塗膜5にフッ素樹脂粒子8を添加するには、フッ素樹脂粒子8を水に分散させたPTFEディスパージョン、FEPディスパージョンなどを水系塗料に必要量混合しておけばよい。
水系塗料にPTFEディスパージョン、FEPディスパージョンなどの状態でフッ素樹脂粒子8を混合しておき、水系塗料を焼成することで、必要量のフッ素樹脂粒子8を添加した親水性焼付塗膜5を得ることができる。
In addition, a structure in which the fluorine resin particles 8 are added to the hydrophilic baked film 5 may be adopted. In order to add the fluorocarbon resin particles 8 to the hydrophilic baked film 5, it is sufficient to mix a necessary amount of PTFE dispersion, FEP dispersion or the like in which the fluorocarbon resin particles 8 are dispersed in water into the water-based paint.
The fluorine resin particles 8 are mixed with the water based paint in the state of PTFE dispersion, FEP dispersion, etc., and the water based paint is fired to obtain the hydrophilic baked film 5 to which the required amount of the fluorine resin particles 8 is added. be able to.

水系塗料を焼成することによって塗料中の水分は蒸発して消失し、塗料中に含まれていた固形分が残留して親水性焼付塗膜5となる。
なお、この例では焼成後の焼付塗膜に対し水洗または湯洗(60℃〜80℃の湯、例えば60℃の湯を使用)を行うことにより親水性焼付塗膜5の樹脂層6に含まれている硫黄成分の溶出を行い、樹脂層6に含まれている硫黄成分の大部分を除去する必要がある。
By baking the water-based paint, the water in the paint evaporates and disappears, and the solid content contained in the paint remains to form the hydrophilic baked film 5.
In this example, the baked paint film after firing is included in the resin layer 6 of the hydrophilic baked film 5 by washing with water or washing with water (using water at 60 ° C. to 80 ° C., for example, water at 60 ° C.). It is necessary to elute the sulfur components that are present, and to remove most of the sulfur components contained in the resin layer 6.

アルミナゾルは、その分散粒子(アルミナ粒子)が不定型ゲルからベーマイト(水和物)に移行する途中の段階にあり、この状態は凝集過程や通常の塗膜の焼付け条件程度では変化しない。この不定型ゲルからベーマイトに移行する途中の段階のアルミナゾルのアルミナ粒子は、コロイダルシリカと比較して軟らかい。例えば、モース硬度が低い。
従って、このアルミナゾルに由来するアルミナ粒子を含有する親水性焼付塗膜5を備えたフィン材1をプレス加工する時の加工性は良好であり、かつ、金型の耐久性も高くすることができる。
Alumina sol is at a stage during the transition of dispersed particles (alumina particles) from amorphous gel to boehmite (hydrate), and this state does not change in the aggregation process or the baking condition of a normal coating film. The alumina particles of the alumina sol during the transition from this amorphous gel to boehmite are soft as compared to colloidal silica. For example, the Mohs hardness is low.
Therefore, the processability at the time of pressing the fin material 1 provided with the hydrophilic baked film 5 containing alumina particles derived from the alumina sol is good, and the durability of the mold can also be enhanced. .

水溶性アクリル樹脂としては、スルホン酸基、又はその塩を有するα,β不飽和単量体Aと、カルボン酸基を有するα,β不飽和単量体Bと、アルコール性水酸基を有するα,β不飽和単量体Cとを(割合:A;1〜80wt%(好ましくは30〜50wt%),B;1〜50wt%(好ましくは20〜50wt%),C;1〜50wt%(好ましくは20〜40wt%)が望ましい。A+B+C=100wt%)共重合したものが好ましい。   As a water-soluble acrylic resin, an α, β-unsaturated monomer A having a sulfonic acid group or a salt thereof, an α, β-unsaturated monomer B having a carboxylic acid group, and an α, α having an alcoholic hydroxyl group β unsaturated monomer C (proportion: A; 1 to 80 wt% (preferably 30 to 50 wt%), B: 1 to 50 wt% (preferably 20 to 50 wt%), C: 1 to 50 wt% (preferably) 20 to 40 wt%) is preferable, and those obtained by copolymerizing A + B + C = 100 wt%) are preferable.

スルホン酸基、又はその塩を有するα,β不飽和単量体Aとしては、例えばビニルスルホン酸、アリールスルホン酸、2−アクリルアミド−2−メチルスルホン酸、スチレンスルホン酸、メタクリロイルオキシエチルスルホン酸、又は前記のナトリウム塩、カリウム塩、リチウム塩などの塩が好ましい。この単量体Aは、アニオン性の親水性を示し、塗膜の水濡れ性を向上させる。
カルボン酸基を有するα,β不飽和単量体Bとしては、例えばアクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸などが好ましい。この単量体Bは、塗膜の水濡れ性と密着性を向上させる。アルコール性水酸基を有するα,β不飽和単量体Cとしては、例えば2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド等が好ましい。この単量体Cは、塗膜の水濡れ性を向上させると共に、アルミナゾルに由来の粒子を固定する役割を奏する。
Examples of the α, β-unsaturated monomer A having a sulfonic acid group or a salt thereof include vinylsulfonic acid, arylsulfonic acid, 2-acrylamido-2-methylsulfonic acid, styrenesulfonic acid, methacryloyloxyethylsulfonic acid, Or salts of the above-mentioned sodium salts, potassium salts, lithium salts and the like are preferred. This monomer A shows anionic hydrophilicity and improves the water wettability of a coating film.
As the α, β unsaturated monomer B having a carboxylic acid group, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid and the like are preferable. The monomer B improves the water wettability and adhesion of the coating film. As the α, β unsaturated monomer C having an alcoholic hydroxyl group, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, N-methylol (meth) acrylamide and the like are preferable. The monomer C plays the role of fixing particles derived from the alumina sol as well as improving the water wettability of the coating film.

水系塗料の塗膜量は、水系塗料から焼成時に消失する水分を除いた塗膜量(固形分の塗膜量に相当)として0.3〜0.8g/mの範囲であることが好ましい。
水系塗料の塗膜量を上述の0.3〜0.8g/mの範囲とすることで、塗膜密着性、親水性、耐汚染性、防汚性に優れる親水性焼付塗膜5となる。0.3g/m未満の塗膜量では親水性焼付塗膜5の親水性不良、耐汚染性不良、防汚性不良となるおそれがある。また、0.8g/mを超える塗膜量では、親水性焼付塗膜5の密着性不良、コストの上昇になるおそれがある。
The coating amount of the aqueous coating is preferably in the range of 0.3 to 0.8 g / m 2 as the coating amount (corresponding to the coating amount of the solid content) excluding the water which disappears from the aqueous coating at the time of firing. .
By setting the coating amount of the water-based paint in the range of 0.3 to 0.8 g / m 2 as described above, the hydrophilic baked film 5 excellent in coating film adhesion, hydrophilicity, stain resistance and antifouling properties Become. If the amount of the coating is less than 0.3 g / m 2 , there is a possibility that the hydrophilicity, the stain resistance and the stain resistance of the hydrophilic baked film 5 will be poor. If the coating amount exceeds 0.8 g / m 2 , the adhesion of the hydrophilic baked film 5 may be poor, and the cost may be increased.

アルミナゾルに含まれているアルミナ粒子の平均粒子径は0.02〜20μmの範囲が好ましい。アルミナ粒子の平均粒子径が0.02μm未満では、比表面積が増大することによって吸着臭が発生するおそれがあり、アルミナ粒子の平均粒子径が20μmを超えるようであると、プレス加工時の金型摩耗性が悪化する問題がある。
アルミナ粒子の添加量は塗料中の固形分100質量%中、5〜45質量%の範囲であることが望ましい。アルミナ粒子をこの範囲添加することで、塗膜密着性、親水性、耐汚染性、防汚性に優れる親水性焼付塗膜5となる。アルミナ粒子の添加量を5質量%未満とすると、親水性不良、耐汚染性不良、防汚性不良となるおそれがある。アルミナ粒子の添加量について45質量%を超える量とすると、親水性焼付塗膜5の密着性不良、コストの上昇になり易い。
なお、前記水系塗料中には、アルミナ粒子、フッ素樹脂などの固形分の他に、固形分としてスルホン酸を含む水溶性アクリル樹脂40〜60%とポリエチレングリコール20〜40%程度が含まれる。
The average particle diameter of the alumina particles contained in the alumina sol is preferably in the range of 0.02 to 20 μm. If the average particle size of the alumina particles is less than 0.02 μm, there is a possibility that the adsorption odor may be generated due to the increase of the specific surface area, and if the average particle size of the alumina particles is more than 20 μm, the mold at the time of press working There is a problem that the abradability deteriorates.
The amount of alumina particles added is preferably in the range of 5 to 45% by mass in 100% by mass of the solid content in the paint. By adding alumina particles in this range, it becomes a hydrophilic baked film 5 which is excellent in coating film adhesion, hydrophilicity, stain resistance and stain resistance. When the addition amount of alumina particles is less than 5% by mass, there is a possibility that the hydrophilicity failure, the contamination resistance failure, and the antifouling property failure may occur. If the addition amount of alumina particles is more than 45% by mass, adhesion failure of the hydrophilic baked film 5 and cost increase tend to occur.
In addition to solid content such as alumina particles and fluorine resin, the water-based paint contains 40 to 60% of water-soluble acrylic resin containing sulfonic acid as solid content and about 20 to 40% of polyethylene glycol.

フッ素樹脂粒子8の平均粒子径は、0.1〜0.5μmの範囲であることが好ましく、添加量は塗料中の固形分の100質量%に対し0.05〜3質量%の範囲であることが望ましい。フッ素樹脂粒子8として、PTFEディスパージョン、FEPディスパージョンなどに含まれている粒子を用いることができる。
フッ素樹脂粒子8の添加量が0.05〜3質量%の範囲であるならば、良好な防汚性を発揮する。添加量が0.05質量%未満では親水性焼付塗膜5の防汚性に劣るようになり、添加量が3質量%を超えるようでは親水性焼付塗膜5が親水性不良となり易い。
フッ素樹脂粒子8の平均粒子径が0.1μm未満では、所定の防汚性を発揮出来ない問題があり、フッ素樹脂粒子8の平均粒子径が0.5μmを超えると塗料中に均一に分散され難い問題がある。
The average particle size of the fluorine resin particles 8 is preferably in the range of 0.1 to 0.5 μm, and the amount of addition is in the range of 0.05 to 3% by mass with respect to 100% by mass of the solid content in the paint. Is desirable. As the fluorocarbon resin particles 8, particles contained in PTFE dispersion, FEP dispersion or the like can be used.
If the addition amount of the fluorine resin particles 8 is in the range of 0.05 to 3% by mass, good antifouling property is exhibited. If the addition amount is less than 0.05% by mass, the antifouling property of the hydrophilic baked film 5 will be inferior, and if the addition amount exceeds 3% by mass, the hydrophilic baked film 5 tends to have a hydrophilic defect.
If the average particle size of the fluorocarbon resin particles 8 is less than 0.1 μm, there is a problem that the predetermined antifouling property can not be exhibited, and if the average particle size of the fluorocarbon resin particles 8 exceeds 0.5 μm, they are uniformly dispersed in the paint There is a difficult problem.

親水性焼付塗膜5の表面の動摩擦係数は0.20以下であることが望ましい。親水性焼付塗膜5の動摩擦係数が0.20を超える値では金型摩耗不良となり易い。親水性焼付塗膜5の動摩擦係数が0.20以下であるならば、プレス加工性に優れ、金型摩耗不良を生じ難い。
親水性焼付塗膜5の表面に占めるアルミナ粒子の面積率は、90%以上であることが望ましい。アルミナ粒子は、親水性焼付塗膜5に分散した状態にする必要があり、分散させるためには、アルミナ粒子添加量を塗料固形分100質量%中40質量%以下にする必要がある。40質量%以下にすることによって、塗料表面アルミナ粒子の面積率を90%以上にすることが可能で、これにより動摩擦係数を低減でき、かつ、金型摩耗を低減することが可能となる。親水性焼付塗膜5の表面に存在するアルミナ粒子の面積率が90%未満では親水性焼付塗膜5の表面においてアルミナ粒子が凝集状態となり易く、凝集により動摩擦係数が増大し、0.2を超えるようになり、金型摩耗性が悪化する。
The dynamic friction coefficient of the surface of the hydrophilic baked film 5 is preferably 0.20 or less. If the dynamic friction coefficient of the hydrophilic baked film 5 exceeds 0.20, the mold is likely to be worn out. If the dynamic friction coefficient of the hydrophilic baked film 5 is 0.20 or less, the press processability is excellent, and it is difficult to cause mold wear failure.
The area ratio of the alumina particles to the surface of the hydrophilic baked film 5 is preferably 90% or more. The alumina particles need to be in a state of being dispersed in the hydrophilic baked film 5, and in order to be dispersed, the amount of alumina particles added needs to be 40% by mass or less in 100% by mass of the coating solid content. By setting the content to 40% by mass or less, the area ratio of the paint surface alumina particles can be made 90% or more, whereby the dynamic friction coefficient can be reduced and the mold wear can be reduced. If the area ratio of the alumina particles present on the surface of the hydrophilic baked film 5 is less than 90%, the alumina particles tend to be in a state of aggregation on the surface of the hydrophilic baked film 5 and the dynamic friction coefficient is increased by the aggregation. It will be exceeded, and the mold abrasivity will deteriorate.

親水性焼付塗膜5の樹脂層6に含まれている硫黄成分は0.5mg/m以下であることが望ましい。上述の如く水洗浄あるいは湯洗浄を1秒〜10分程度行うことにより樹脂層6に含まれている硫黄成分を水中又は湯中に溶出させることによって樹脂層6中の硫黄成分を0.5mg/m以下に減少させることができる。
樹脂層6中に含まれる硫黄成分が0.5mg/mを超えるようであると、後述するように熱交換器を構成するために銅または銅合金からなる伝熱管と組み合わせた場合、結露水や湿気などにより樹脂層6中に含まれている硫黄成分が伝熱管の表面に到達し、銅と反応して緑青を生じる。一例として、後述する実施例に示す如く0.05〜0.48mg/mの範囲の硫黄成分を有する程度であれば、伝熱管の腐食を防止できる。
湯洗浄の場合60〜80℃程度の湯を用いて1秒〜60秒程度洗浄することが好ましい。水洗浄の場合、10秒〜60分程度洗浄することが好ましい。
The sulfur component contained in the resin layer 6 of the hydrophilic baked film 5 is preferably 0.5 mg / m 2 or less. As described above, the sulfur component contained in the resin layer 6 is eluted in water or hot water by performing water washing or hot water washing for about 1 second to 10 minutes, so that 0.5 mg of the sulfur component in the resin layer 6 is obtained. It can be reduced to m 2 or less.
If the sulfur component contained in the resin layer 6 seems to exceed 0.5 mg / m 2 , condensation water will occur when combined with a heat transfer tube made of copper or a copper alloy to form a heat exchanger as described later. The sulfur component contained in the resin layer 6 reaches the surface of the heat transfer tube due to moisture or the like, and reacts with copper to produce patina. As an example, corrosion of the heat transfer tube can be prevented as long as it has a sulfur component in the range of 0.05 to 0.48 mg / m 2 as shown in Examples described later.
In the case of hot water washing, it is preferable to wash using about 60-80 ° C. hot water for about 1 second to 60 seconds. In the case of water washing, it is preferable to wash for about 10 seconds to 60 minutes.

以上説明の親水性焼付塗膜5を表面に備えたフィン材1であるならば、塗膜の密着性に優れ、親水性に優れ、耐汚染性に優れ、動摩擦係数が小さく、フィンを形成するためのプレス加工において金型摩耗を少なくし、金型寿命を長くできる特徴を有する。
これは、親水性焼付塗膜5について、モース硬度が従来材のコロイダルシリカよりも低いアルミナ粒子を含むアルミナゾルを用い、更に疎水性粒子としてのフッ素樹脂粒子8を混合することによって、親水性汚れを付着し難くして防汚性を向上させ、かつ、親水性焼付塗膜5の表面に面積率で90%以上のアルミナゾルに由来するアルミナ粒子を存在させることでプレス加工時の金型摩耗を低減できることによる。
If the fin material 1 has the hydrophilic baked coating film 5 described above on the surface, the adhesion of the coating film is excellent, the hydrophilicity is excellent, the contamination resistance is excellent, the dynamic friction coefficient is small, and fins are formed. It has the characteristics that mold wear can be reduced and the mold life can be extended in press processing for this purpose.
This is achieved by using an alumina sol containing alumina particles having a Mohs hardness lower than that of the conventional colloidal silica, and mixing the fluorocarbon resin particles 8 as hydrophobic particles for the hydrophilic baked film 5. It makes it hard to adhere and improves the antifouling property, and reduces the abrasion of the die at the time of press processing by making alumina particles derived from the alumina sol at an area ratio of 90% or more exist on the surface of the hydrophilic baked film 5 It depends on what you can do.

また、前述の耐食層3を備えた積層構造のフィン材1であるならば、室内に浮遊するシリコンや硫黄を含む成分(ヘアースプレーや芳香剤等)がフィン材表面に付着し難いので、付着位置を基点としてフィン材1に腐食を生じるおそれがない。シリコンや硫黄を含む成分が原因となる腐食を防止できるため、室内機から通風時に異臭が発生するおそれがない。
更に、室内機の意匠面の要求から熱交換器に着色を施す場合であっても、親水性焼付塗膜5ではなく、耐食層3に青色などの顔料を添加することで色落ちを生じ難い構造にすることが可能となる。よって、上述の積層構造のフィン材1は意匠性を配慮した室内機に問題なく適用することができる。
Moreover, if it is the fin material 1 of the laminated structure provided with the above-mentioned corrosion-resistant layer 3, the component (hair spray, an aromatic agent, etc.) which floats indoors in silicon and sulfur is hard to adhere to the fin material surface. There is no risk of corrosion of the fin material 1 based on the position. Since corrosion caused by components including silicon and sulfur can be prevented, there is no risk of generating an offensive odor from the indoor unit during ventilation.
Furthermore, even in the case where coloring is performed on the heat exchanger due to the requirement of the design surface of the indoor unit, it is difficult to cause color fading by adding a pigment such as blue to the corrosion resistant layer 3 instead of the hydrophilic baking coating 5 It becomes possible to make it a structure. Therefore, the fin material 1 of the above-mentioned lamination structure can be applied to an indoor unit in consideration of designability without any problem.

前記構造のフィン材1は、ルームエアコンの熱交換器、パッケージエアコンの熱交換器、自動販売機用熱交換器、冷凍ショーケース用熱交換器、冷蔵庫用熱交換器などに広く適用することができる。
また、フィン材1の表面と裏面の両方に化成皮膜2aを介し親水性焼付塗膜5を形成しても良い。また、熱交換器のフィン材1の表面と裏面に限らず、伝熱管を含めて熱交換器全体に塗布しても良い。例えば、フィン材1と伝熱管11を組み合わせて熱交換器コアを組み立てた後、熱交換器コアの全体に前述の水系塗料を塗布し焼成することで熱交換器コアの全体表面に親水性焼付塗膜5を形成しても良い。
この場合は親水性焼付塗膜5を熱交換器に対するポストコートとして形成することができる。
The fin material 1 of the above-mentioned structure can be widely applied to heat exchangers for room air conditioners, heat exchangers for package air conditioners, heat exchangers for vending machines, heat exchangers for refrigeration showcases, heat exchangers for refrigerators, etc. it can.
Alternatively, the hydrophilic baked film 5 may be formed on both the front surface and the back surface of the fin material 1 via the chemical conversion film 2a. Moreover, you may apply | coat to the whole heat exchanger not only the surface and back surface of the fin material 1 of a heat exchanger but a heat exchanger tube. For example, after assembling the heat exchanger core by combining the fin material 1 and the heat transfer tube 11, the above-mentioned water-based paint is applied to the whole of the heat exchanger core and baked to bake the entire surface of the heat exchanger core with hydrophilicity. The coating film 5 may be formed.
In this case, the hydrophilic baked film 5 can be formed as a postcoat for the heat exchanger.

図2はフィン材1からなる矩形板状のフィン(放熱板)15を所定の間隔で複数並列配置し、各フィン15に形成されている挿通孔15aにU字状の伝熱管11を挿通して熱交換器コア16を途中まで組み立てた状態を示す。U字状の伝熱管11は湾曲部11aをフィン1の並列体の一側に揃え、開口端11b側をフィン1の並列体の他側に揃えるように複数のフィン15の挿通孔15aに挿通されている。
これらの伝熱管11には図示略の拡管プラグを開口端11b側から挿入して拡管し、伝熱管11とフィン15の接合強度を向上させ、その後に伝熱管11の開口端側を結ぶように図示略のU字型のエルボ管を接続することで熱交換器コア16が完成される。
この熱交換器コア16において、伝熱管11とエルボ管は銅あるいは銅合金からなる。
In FIG. 2, a plurality of rectangular plate-shaped fins (radiator plates) 15 made of the fin material 1 are arranged in parallel at predetermined intervals, and the U-shaped heat transfer tube 11 is inserted into the insertion holes 15 a formed in each fin 15. The heat exchanger core 16 is shown partially assembled. The U-shaped heat transfer tube 11 is inserted into the insertion holes 15a of the plurality of fins 15 so that the curved portion 11a is aligned with one side of the parallel body of the fins 1 and the open end 11b is aligned with the other side of the parallel bodies of the fins 1 It is done.
An expansion plug (not shown) is inserted into the heat transfer pipe 11 from the opening end 11b side to expand the heat transfer pipe 11 and the fins 15 to improve bonding strength, and thereafter the open end side of the heat transfer pipe 11 is connected. The heat exchanger core 16 is completed by connecting a U-shaped elbow pipe (not shown).
In the heat exchanger core 16, the heat transfer tube 11 and the elbow tube are made of copper or a copper alloy.

図2に示す熱交換器コア16において、フィン15の表裏面には親水性焼付塗膜5が形成されている。このため、挿通孔15aの周縁部分において親水性焼付塗膜5と伝熱管11が接触されることとなる。この熱交換器コア16を倉庫などに保管した場合、結露水などが付着した状態が続くと従来の塗膜では塗膜から結露水に硫黄分が染み出して銅合金からなる伝熱管16を腐食させるおそれがあった。これに対し先に説明したようにフィン材1に形成されている親水性焼付塗膜5には0.5mg/m以下の硫黄分しか含まれていないので、親水性焼付塗膜5と伝熱管11との接触部分周りに結露水が存在していても結露水側に硫黄分の溶出は殆ど生じることがなく、伝熱管11に緑青などの腐食を生じることがない。 In the heat exchanger core 16 shown in FIG. 2, the hydrophilic baked film 5 is formed on the front and back surfaces of the fins 15. For this reason, the hydrophilic baked film 5 and the heat transfer tube 11 are brought into contact with each other at the peripheral portion of the insertion hole 15a. When the heat exchanger core 16 is stored in a warehouse or the like, if dew condensation water or the like continues to adhere to the conventional coating film, sulfur exudes from the coating film to the dew condensation water and corrodes the heat transfer tube 16 made of copper alloy. There was a risk of On the other hand, as described above, since the hydrophilic baked film 5 formed on the fin material 1 contains only a sulfur component of 0.5 mg / m 2 or less, the hydrophilic baked film 5 and the conductive baked film 5 are transmitted. Even if dew condensation water exists around the contact portion with the heat pipe 11, elution of sulfur is hardly generated on the dew condensation water side, and the heat conduction pipe 11 does not cause corrosion such as patina.

JIS規定A1050合金からなる厚さ100μmのアルミニウム合金板をリン酸クロメート処理して厚さ0.3μmの化成皮膜を形成後、このアルミニウム合金板の表面に以下の表1に示す組成の着色耐食性塗料と親水性塗料をそれぞれバーコーターで塗布し、オーブンにて着色耐食性塗料は200℃(オーブン設定温度)×30秒の条件で焼き付けし、親水性塗膜は220℃(オーブン設定温度)×30秒の条件で焼き付けし、親水性焼付塗膜を得た。
ポリビニルアルコールからなる着色耐食性塗料に添加する青顔料はピグメントブルーを主成分とする顔料を使用し、着色耐食性塗料の全塗料重量100g中に青顔料を0.8g添加した。
A colored anticorrosion paint of the composition shown in Table 1 below on the surface of this aluminum alloy plate after forming a chemical conversion film of 0.3 μm thickness after performing a phosphate treatment of a 100 μm thick aluminum alloy plate consisting of JIS specified A1050 alloy And hydrophilic paint are applied with a bar coater, respectively, and the coloring corrosion resistant paint is baked in the oven under the conditions of 200 ° C (oven setting temperature) x 30 seconds, and the hydrophilic coating is 220 ° C (oven setting temperature) x 30 seconds The film was baked under the conditions of the above to obtain a hydrophilic baked film.
The blue pigment added to the colored corrosion resistant paint composed of polyvinyl alcohol was a pigment based on pigment blue, and 0.8 g of the blue pigment was added to 100 g of the total paint weight of the colored corrosion resistant paint.

親水性塗料は、触媒化成工業株式会社製商品名(カタロイドAS-3)のアルミナゾル(アルミナ粒子の平均粒子径0.8μm)と、水溶性アクリル樹脂(2−アクリルアミド−2−メチルプロパンスルホン酸)と、ポリエチレングリコール(PEG#6000)と、旭硝子株式会社製商品名(PTFE AD911E)のフッ素樹脂(PTFEフッ素ディスパージョン)を含む水系塗料中の塗料固形分100質量%に対し、アルミナ粒子とフッ素樹脂粒子を以下の表1、表2に示す割合でそれぞれ混合し、親水性塗料とした。表1、表2ではPTFEフッ素ディスパージョンに含まれるフッ素樹脂粒子の量で添加量を表示している。
リン酸クロメート処理後のアルミニウム合金板の表面に着色耐食層、親水層を塗布し、焼き付けした上に、60℃×10secの湯洗浄を行い、更に潤滑性向上のために水溶性潤滑剤(ポリオキシエチレンアルキルエーテル)を塗膜厚0.1g/mとなるようにコーターで塗布し、オーブンにて120℃×30秒の条件で乾燥させ、潤滑層を形成した。
先の220℃、30秒間焼き付けにより、水系塗料の水分は蒸発し、アルミニウム合金板の上に水系塗料中の固形分のみが残留する。これにより親水性焼付塗膜を備えたフィン材が得られる。
The hydrophilic paint comprises an alumina sol (average particle diameter of 0.8 μm of alumina particles) and a water-soluble acrylic resin (2-acrylamido-2-methylpropane sulfonic acid) manufactured by Catalyst Chemical Industry Co., Ltd. (Cataloid AS-3). Alumina particles and fluorocarbon resin relative to 100% by mass of paint solids in a water-based paint containing polyethylene glycol (PEG # 6000) and fluorocarbon resin (PTFE fluorine dispersion) manufactured by Asahi Glass Co., Ltd. (PTFE AD 911 E) The particles were mixed in the proportions shown in Tables 1 and 2 below to obtain a hydrophilic paint. In Tables 1 and 2, the addition amount is indicated by the amount of the fluorine resin particles contained in the PTFE fluorine dispersion.
A colored corrosion resistant layer and a hydrophilic layer were applied to the surface of the aluminum alloy plate after phosphate chromate treatment, and a hydrophilic layer was applied and baked, and then it was washed with hot water at 60 ° C. × 10 sec. Oxyethylene alkyl ether was applied by a coater to a coating thickness of 0.1 g / m 2 and dried in an oven at 120 ° C. for 30 seconds to form a lubricating layer.
By baking at 220 ° C. for 30 seconds, the water-based paint evaporates, and only the solid content in the water-based paint remains on the aluminum alloy plate. Thereby, a fin material provided with a hydrophilic baked film is obtained.

得られた複数のフィン材について、塗膜の密着性、耐食性、流水後親水性、乾湿サイクル後接触角、耐汚染性、動摩擦係数、粉体付着率、金型摩耗、アルミナ粒子面積率、銅管変色の有無を測定し、以下の表1、表2に測定結果を示す。   About the obtained plurality of fin materials, adhesion of coating film, corrosion resistance, hydrophilicity after flowing water, contact angle after dry-wet cycle, contamination resistance, dynamic friction coefficient, powder adhesion rate, die wear, alumina particle area rate, copper The presence or absence of tube discoloration was measured, and the measurement results are shown in Tables 1 and 2 below.

表1、表2に示す密着性とは、1ポンドのハンマーに貼り付けたキムタオル(登録商標)を試料の潤滑層の表面に載置し、往復10回擦った後の親水性焼付塗膜の密着状態を観察した結果である。親水性焼付塗膜が剥離しない試料を◎、表層は剥離するが一層残る試料を○で示し、50%程度剥離する試料を△で示し、100%剥離が認められた試料を×で示した。
耐食性とは、JISZ2371規定の塩水噴霧試験を行い、960時間後の塗膜表面の孔食発生程度を全腐食面積率からレイティングナンバーを求め判定した。全腐食面積率0.02%未満、レイティングナンバー9.8以上の試料を○と記載し、全腐食面積率0.2%以上、レイティングナンバー9.8以下の試料を×と判定した。
The adhesion shown in Tables 1 and 2 refers to the hydrophilic baked film obtained by placing Kim Towel (registered trademark) attached to a 1 pound hammer on the surface of the lubricating layer of the sample and rubbing it back and forth 10 times. It is the result of observing adhesion state. A sample in which the hydrophilic baked film does not peel is indicated by ◎, a sample in which the surface layer peels but the remaining layer is indicated by ○, a sample in which 50% peeling is indicated by Δ, and a sample in which 100% peeling is observed is indicated by x.
The corrosion resistance was determined by conducting a salt spray test according to JIS Z2371 and determining the degree of pitting on the surface of the coated film after 960 hours by determining the rating number from the total corrosion area ratio. A sample with a total corrosion area rate of less than 0.02% and a rating number of 9.8 or more was described as 、, and a sample with a total corrosion area rate of 0.2% or more and a rating number of 9.8 or less was determined as x.

流水後親水性とは、試料に対し流量3L/minの常温流水に24時間浸漬した後の塗膜表面の接触角を測定した結果である。接触角が20゜以下の試料を○で示し、接触角が20゜を超えた試料を×で示した。なお、ポリオキシエチレンアルキルエーテルは初期状態のみ存在し、水洗を行うと水に溶解し、1時間程度の水洗で消失するので実質的に親水層の接触角を測定していることとなる。
乾湿サイクル後接触角とは、試料に対し流量3L/mの常温流水に8時間浸漬した後、80℃×16時間乾燥を交互に14サイクル行った後の親水性焼付塗膜表面の接触角を測定した結果である。接触角40゜以下の試料を○で示し、接触角40゜を超える試料を×で示した。
Hydrophilicity after running water is the result of measuring the contact angle of the coating film surface after being immersed in normal temperature running water with a flow rate of 3 L / min for a sample for 24 hours. A sample with a contact angle of 20 ° or less is indicated by ○, and a sample with a contact angle exceeding 20 ° is indicated by x. The polyoxyethylene alkyl ether exists only in the initial state, dissolves in water when it is washed with water, and disappears when it is washed with water for about 1 hour, so that the contact angle of the hydrophilic layer is substantially measured.
The contact angle after dry-wet cycle refers to the contact angle of the surface of the hydrophilic baked film after alternately immersing the sample in normal temperature running water with a flow rate of 3 L / m for 8 hours and then alternately drying for 10 cycles at 80 ° C for 16 hours. It is the result of measurement. Samples with a contact angle of 40 ° or less are indicated by ○, and samples with a contact angle of 40 ° or more are indicated by x.

耐汚染性を評価する耐汚染試験は、試料汚染物質としてパルミチン酸6gと試料とをガラスケースの中に入れ、100℃で8時間加熱暴露後、流量3L/mの常温流水に8時間浸漬を交互に14サイクル行った後の親水性焼付皮膜表面の接触角を測定した。接触角60゜以下の試料を○で示し、接触角60゜を超える試料を×で示した。
動摩擦係数は、バウデン式摩擦試験機を用い、プレス油を塗布しないで試料の防汚性皮膜表面に鋼球サイズφ9/32の接触子を200gの荷重で押し付け、試料を摺動(1サイクル)させたときの摩擦力を測定して。動摩擦係数を求めた。動摩擦係数が0.2以下の試料を○で示し、動摩擦係数が0.2を超えた試料を×で示した。
粉体付着率は、100mm×100mmの試料(アルミニウムフィン材)を流量3L/minの常温流水に1時間浸漬後、JISZ8901で定められる試験用粉体11種、12種のそれぞれを試料の防汚性皮膜の表面に付着させて、画像解析により付着面積率を測定した。付着面積率が3%以下の試料を○で示し、付着面積率が3%を超える試料を×で示した。
Contamination resistance test to evaluate the contamination resistance, put 6 g of palmitic acid and a sample as sample contaminants in a glass case, heat exposure at 100 ° C for 8 hours, and then immerse in cold water for 3 hours at a flow rate of 3 L / m. The contact angle of the surface of the hydrophilic baked film was measured after alternately performing 14 cycles. Samples with a contact angle of 60 ° or less are indicated by ○, and samples with a contact angle of 60 ° or more are indicated by x.
Dynamic friction coefficient, using a Bowden-type friction tester, press the contact of steel ball size φ 9/32 with a load of 200 g against the antifouling coating surface of the sample without applying press oil, and slide the sample (1 cycle) Measure the friction when you let it go. The dynamic friction coefficient was determined. A sample with a dynamic friction coefficient of 0.2 or less is indicated by ○, and a sample with a dynamic friction coefficient exceeding 0.2 is indicated by x.
The powder deposition rate is 100 nm × 100 mm of sample (aluminum fin material) immersed in normal temperature running water at a flow rate of 3 L / min for 1 hour, and then the test powder of 11 types and 12 types of samples specified in JIS Z 8901 The surface area of the adhesive film was measured by image analysis. The sample with the adhesion area ratio of 3% or less is indicated by ○, and the sample with the adhesion area ratio exceeding 3% is indicated with x.

金型摩耗は、プレス加工で100万回試料(アルミニウムフィン材)を切断し、金型(スリット刃)の摩耗状態を観察した。スリット刃の硬度はHRC37〜41のものを使用し、定量評価としてレーザー顕微鏡にて金型(スリット刃)の刃先の摩耗面積を測定し、2次元断面での摩耗面積が100μm以下の試料を○で示し、摩耗面積が100μmを超えた試料を×で示した。
アルミナ粒子の面積率は、定量評価としてレーザー顕微鏡にて親水性焼付塗膜の表面を対物レンズ100倍で観察し、50μm×50μmの視野での2値化した画像にて粒子解析によりアルミナ粒子の面積率を測定し、アルミナ粒子の面積率が90%以上の試料を○で示し、面積率が90%未満の試料を×で示した。
In mold wear, a sample (aluminum fin material) was cut 1,000,000 times by pressing, and the wear state of the mold (slit blade) was observed. The hardness of the slit blade is that of HRC 37-41, and the wear area of the cutting edge of the mold (slit blade) is measured with a laser microscope as quantitative evaluation, and the sample with a wear area of 100 μm 2 or less in a two-dimensional cross section It showed by (circle) and the sample in which the abrasion area exceeded 100 micrometers 2 was shown by x.
The area ratio of the alumina particles is determined by observing the surface of the hydrophilic baked film with a 100% objective lens with a laser microscope as a quantitative evaluation, and performing particle analysis on the binarized image in a 50 μm × 50 μm field of view. The area ratio was measured, a sample with an area ratio of alumina particles of 90% or more is shown by ○, and a sample with an area ratio of less than 90% is shown with x.

塗膜中の水に可溶な硫黄成分量の測定は、フィン材をA4サイズ4枚(8面)に切断して容器に収容し、そこに100mlの純水を入れて40℃に加熱し、10分間撹拌する。この水をICP発光分光分析で分析し、そこで測定された硫黄量を元の塗膜あたりの量に換算し直した値を採用した。
銅管変色試験は、まず上述のフィン材を高さ10cm、幅5cmに切り出し、同等長さの銅管とクリップで密着させた状態でビーカーの底部に収容し、ビーカーの底部に水を入れ、ビーカーの口部をラップで閉じてビーカーを密閉した。次に、試験環境条件は35℃×16hr→20℃×4hr→35℃×1hr→20℃×3hrを1サイクルとして7サイクル実施し、その後銅管の変色有無を観察した。銅管に変色が見られた場合に×で示し、変色が見られなかった場合は○で示した。
To measure the amount of water-soluble sulfur component in the coating film, cut fin material into 4 sheets of A4 size (8 faces) and store in a container, add 100 ml of pure water and heat it to 40 ° C. Stir for 10 minutes. This water was analyzed by ICP emission spectrometry, and the value obtained by converting the amount of sulfur measured there into the amount per original coating film was adopted.
In the copper tube discoloration test, first, the fin material described above is cut out to a height of 10 cm and a width of 5 cm, housed in the bottom of the beaker in close contact with a copper tube of equivalent length and a clip, and water is added to the bottom of the beaker The mouth of the beaker was closed with a wrap and the beaker was sealed. Next, test environment conditions carried out seven cycles of 35 ° C. × 16 hr → 20 ° C. × 4 hr → 35 ° C. × 1 hr → 20 ° C. × 3 hr as one cycle, and then the color change of the copper tube was observed. When the color change was observed in the copper tube, it was indicated by x, and when the color change was not observed, it was indicated by o.

表1に示す結果から親水性塗膜量が0.3〜0.8g/mの範囲となっているNo.1〜No.14、21、22、38の実施例試料は、塗膜の密着性に優れるとともに、流水後親水性と乾湿サイクル後接触角と耐汚染性と動摩擦係数と粉体付着率と金型摩耗と粒子面積率の試験のうち、全ての試験結果において優れ、バランスの良い特性を発揮した。
また、これらのNo.1〜No.14、21、22、23の試料はいずれにおいても塗膜中の水に可溶な硫黄成分量が0.5mg/m以下であり、銅の伝熱管に変色(腐食)を生じなかった。
試料No.1〜No.14、21、22、23、38において、塗膜量が0.3〜0.8g/mの範囲であり、アルミナ粒子添加量が塗料固形分中5〜45質量%であり、フッ素樹脂添加量が塗料固形分中0.05〜3.0質量%であるNo.1〜14の試料は全ての試験項目において優れた結果を示した。
From the results shown in Table 1, Example samples No. 1 to No. 14, 21, 22 and 38 in which the hydrophilic coating amount is in the range of 0.3 to 0.8 g / m 2 are the coating films. It is excellent in adhesion, and it is superior in all test results among the tests of hydrophilicity after wet water, post contact angle after wet / dry cycle, contamination resistance, dynamic friction coefficient, powder adhesion rate, die wear and particle area rate, and balance It exhibited good characteristics.
Moreover, these No. 1 to No. In each of the samples 14, 21, 22 and 23, the amount of the sulfur component soluble in water in the coating was 0.5 mg / m 2 or less, and no discoloration (corrosion) occurred in the copper heat transfer tube.
In the samples No. 1 to No. 14, 21, 22, 23, 38, the coating amount is in the range of 0.3 to 0.8 g / m 2 , and the alumina particle addition amount is 5 to 45 mass in the solid content of the paint. The samples No. 1 to No. 14 in which the amount of fluorine resin added was 0.05% to 3.0% by mass in the solid content of the coating showed excellent results in all the test items.

比較例のNo.15はアルミナ粒子添加量をより好ましい範囲より少なくした試料、比較例のNo.16、17はアルミナ粒子添加量をより好ましい範囲より多くした試料であるが、流水後親水性と乾湿サイクル後接触角と耐汚染性と動摩擦係数と粉体付着率と金型摩耗と粒子面積率の試験のうちいずれかの性能が低下した。
No.19、20の試料は、粉体付着率のみ劣るが、その他の試験項目は優れた結果が得られた。No.19、20の試料は、着色耐食性塗膜の焼付耐食層と親水性焼付塗膜を具備し、親水性焼付塗膜がアルミナゾルに含まれるアルミナ粒子とスルホン酸を含む水溶性アクリル樹脂とポリエチレングリコールを含み、水に可溶な硫黄成分を0.5mg/m以下、親水性焼付塗膜の塗膜量を0.3〜0.8g/m、焼付耐食層の塗膜量を0.2g/m以上とした実施例試料である。
No. 15 of the comparative example is a sample in which the amount of alumina particles added is smaller than the preferable range, and Nos. 16 and 17 of the comparative examples are samples in which the amount of alumina particles added is larger than the preferable range. After wet-dry cycles, the contact angle, stain resistance, dynamic friction coefficient, powder adhesion rate, die wear, and particle area rate tests decreased any of the performance.
Samples No. 19 and 20 were inferior only in the powder adhesion rate, but other test items gave excellent results. Samples No. 19 and 20 have a baked corrosion resistant layer of a colored corrosion resistant coating and a hydrophilic baked coating, and the hydrophilic baked coating contains a water-soluble acrylic resin and polyethylene containing an alumina particle and a sulfonic acid contained in an alumina sol. 0.5 mg / m 2 or less of a sulfur component soluble in water, containing glycol, 0.3 to 0.8 g / m 2 of a coating film amount of a hydrophilic baked film, 0 of a coated film thickness of a baking resistant layer Example sample with .2 g / m 2 or more.

また、親水性塗膜量の少ないNo.23、24の試料は、流水後親水性、乾湿サイクル後接触角、耐汚染性のいずれかが悪化した。
親水性塗膜量を多くし過ぎたNo.25、26の試料は密着性に問題を生じた。
Further, in the samples No. 23 and 24 with a small amount of hydrophilic coating, either the hydrophilicity after running water, the contact angle after dry-wet cycle, or the stain resistance deteriorated.
The samples of Nos. 25 and 26 in which the amount of the hydrophilic coating film was too large caused problems in adhesion.

No.27〜29の試料は塗料の塗布量が適正であり、アルミナ添加量、フッ素樹脂添加量も適切であるが、湯洗していないため、塗膜中の水に可溶な硫黄成分量が多い試料であり、銅の伝熱管に変色を生じた。
No.30の試料はアルミナ粒子添加量が多すぎる試料であるが、耐汚染性、動摩擦係数、金型摩耗に問題を生じ、粒子面積率が低く、湯洗もしていないために銅管変色も生じた。
No.31〜33の試料は塗料の塗膜量が適正であり、アルミナ添加量、フッ素樹脂添加量も適切であるが、湯洗していないため、塗膜中の水に可溶な硫黄成分量が多い試料であり、銅管に変色を生じた。
No. The amount of paint applied is appropriate for samples 27 to 29, and the amount of alumina added and the amount of fluorine resin added are also appropriate. However, since they are not washed with hot water, the amount of sulfur components soluble in water in the coating is large. It was a sample, and discoloration occurred in the copper heat transfer tube.
The sample No. 30 is a sample with too much alumina particles added, but causes problems in contamination resistance, dynamic friction coefficient, mold wear, low particle area ratio, and copper bath discoloration because it is not washed with hot water. occured.
No. Samples 31 to 33 have appropriate amount of paint coating, and addition amount of alumina and addition amount of fluorine resin are also appropriate, but since they are not washed with hot water, the amount of sulfur component soluble in water in the coating is There were many samples, and discoloration occurred in the copper tube.

No.34の試料はフッ素樹脂添加量が少なすぎる試料であり、塗膜中の水に可溶な硫黄成分量が多い試料であるが、粉体付着率が悪化し、銅の伝熱管の腐食も生じた。
No.35の試料はフッ素樹脂添加量が多すぎる試料であり、塗膜中の水に可溶な硫黄成分量も多い試料であるが、流水後親水性、乾湿サイクル、耐汚染性が悪化し、銅の伝熱管の腐食も生じた。
着色耐食性塗膜量が少ないNo.36の試料は耐食性に問題を生じた。着色耐食性塗膜量が多すぎたNo.37の試料は耐食性に問題を生じた。
着色耐食性塗膜量をより好ましい範囲より若干多くしたNo.38の試料は密着性○の範囲の中でもやや劣る結果であったがその他の特性に問題は生じなかった。
No. The sample No. 34 is a sample to which the amount of the fluorine resin added is too small, and is a sample having a large amount of water-soluble sulfur components in the coating, but the powder adhesion rate is deteriorated and the copper heat transfer tube is also corroded. The
No. The sample No. 35 is a sample to which the amount of the fluorine resin added is too large and the amount of the sulfur component soluble in water in the coating is also large. However, the hydrophilicity after running water, the wet / dry cycle, the stain resistance deteriorate, copper Corrosion of heat transfer tubes also occurred.
The sample No. 36 with a small amount of colored corrosion resistant coating film had a problem in corrosion resistance. The sample No. 37 in which the amount of the colored corrosion resistant coating film was too large caused a problem in the corrosion resistance.
The sample No. 38 in which the coloring corrosion resistance coating film amount was slightly larger than the more preferable range was a result which is slightly inferior in the range of the adhesion ○, but no problem occurred in the other characteristics.

表1に示す結果から、フィン材に親水性焼付塗膜を形成する場合、上述の着色耐食性塗膜量を0.2g/m以上としつつ、水系塗料の塗膜量を0.3〜0.8g/mの範囲の塗布量で塗布し、焼付け後に湯洗して水に可溶な硫黄成分量を0.5mg/m以下とすることが重要であることがわかる。
これにより、塗膜密着性に優れ、耐食性と親水性と耐汚染性と動摩擦係数と粉体付着率と金型摩耗と粒子面積率の試験のうち、多くの試験結果において優れ、バランスの良い特性を発揮するフィン材を提供できる。また、このフィン材であるならば、銅管と密着させた場合であっても腐食を生じない特徴を得ることができる。
更に、前記塗膜中のアルミナ粒子の平均粒子径が0.02〜20μmであり、焼付塗膜固形分100質量%中にアルミナ粒子が5〜45重量%含まれた塗膜であるならば、塗膜密着性と耐食性と親水性と接触角と耐汚染性と粒子面積率に優れ、金型摩耗が少なく、銅管に腐食も生じ難いフィンを提供できる。
From the results shown in Table 1, when forming a hydrophilic baked film on a fin material, the amount of the coating film of the water-based paint is 0.3 to 0 while the amount of the above-mentioned colored corrosion resistant coating film is 0.2 g / m 2 or more. It is understood that it is important to apply the coating amount in the range of 8 g / m 2 and wash it with water after baking so that the amount of the sulfur component soluble in water is 0.5 mg / m 2 or less.
As a result, the coating film has excellent adhesion, corrosion resistance, hydrophilicity, stain resistance, dynamic friction coefficient, powder adhesion rate, die wear and particle area rate among many test results, and well-balanced characteristics. Can provide a fin material that Moreover, if it is this fin material, even when it is made to contact | adhere with a copper pipe, the characteristic which corrosion does not produce can be acquired.
Furthermore, if the average particle diameter of alumina particles in the coating is 0.02 to 20 μm, and if 100% by mass of the baked coating solid content is 5 to 45% by weight of alumina particles, then It is possible to provide a fin which is excellent in coating film adhesion, corrosion resistance, hydrophilicity, contact angle, contamination resistance and particle area ratio, less in mold wear and less likely to cause corrosion in a copper tube.

図3は表1の実施例No.3の試料表面に形成した親水性焼付塗膜に含まれているアルミナ粒子とフッ素樹脂粒子(フッ素粒子)を示す顕微鏡写真である。
先の尖った凸部を複数有する不定形の多数のアルミナ粒子が米粒状のフッ素樹脂粒子とともに混在された状態を呈している。これらの粒子が樹脂層の内部に埋設した親水性焼付塗膜の概略構造となっていることがわかる。
FIG. 3 is a photomicrograph showing alumina particles and fluorine resin particles (fluorine particles) contained in the hydrophilic baked film formed on the sample surface of Example No. 3 in Table 1.
A large number of indeterminate alumina particles having a plurality of pointed convex portions are present together with the rice granular fluorine resin particles. It can be seen that these particles form a schematic structure of a hydrophilic baked film embedded in the inside of the resin layer.

1…フィン材、2…基材、2a…化成皮膜、3…耐食層、5…親水性焼付塗膜、6…樹脂層、7…アルミナ粒子、8…フッ素樹脂粒子、11…伝熱管、11a…開口部、15…フィン、15a…挿通孔、16…熱交換器コア。   DESCRIPTION OF SYMBOLS 1 ... Fin material, 2 ... Base material, 2a ... Chemical conversion film, 3 ... Corrosion resistant layer, 5 ... Hydrophilic baked film, 6 ... Resin layer, 7 ... Alumina particle, 8 ... Fluororesin particle, 11 ... Heat transfer tube, 11a ... Opening, 15 ... Fin, 15a ... Insertion hole, 16 ... Heat exchanger core.

Claims (8)

アルミニウム又はアルミニウム合金からなる板材と、該板材上に形成されたポリビニルアルコールを含む水系塗料からなる焼付耐食層と、該焼付耐食層上に形成された親水性焼付塗膜とを具備し、該親水性焼付塗膜が、アルミナゾルに含まれるアルミナ粒子とスルホン酸を含む水溶性アクリル樹脂とポリエチレングリコールを含み、水に可溶な硫黄成分が0.5mg/m以下であり、前記親水性焼付塗膜の塗膜量が0.3〜0.8g/mであり、前記焼付耐食層の塗膜量が0.2g/m以上であり、前記焼付耐食層に着色用の顔料が含まれていることを特徴とする親水性焼付塗膜。 A plate material comprising aluminum or an aluminum alloy, a baking-resistant layer formed of a water-based paint containing polyvinyl alcohol formed on the plate material, and a hydrophilic baked film formed on the baking-resistant layer, the hydrophilic And the water-soluble sulfur component is 0.5 mg / m 2 or less, and the hydrophilic baking coating is comprised of the alumina particles contained in the alumina sol, the water-soluble acrylic resin containing sulfonic acid and polyethylene glycol. coating amount of film is 0.3 to 0.8 g / m 2, coating amount of the baking corrosion resistant layer has a 0.2 g / m 2 or more, the pigment for coloring is contained in the baking corrosion resistant layer A hydrophilic baked film characterized in that 前記アルミナ粒子の平均粒子径が0.02〜20μmであり、前記焼付塗膜固形分100質量%中にアルミナ粒子が5〜45重量%含まれたことを特徴とする請求項1に記載の親水性焼付塗膜。   The hydrophilicity according to claim 1, wherein the alumina particles have an average particle size of 0.02 to 20 μm, and 5 to 45 wt% of the alumina particles are contained in 100% by mass of the baked coating solid content. Baked film. 表面の動摩擦係数が0.2以下であることを特徴とする請求項1または請求項2に記載の親水性焼付塗膜。   The hydrophilic baked film according to claim 1 or 2, wherein a dynamic friction coefficient of the surface is 0.2 or less. 平均粒子径0.1〜0.5μmのフッ素樹脂粒子が焼付塗膜固形分100質量%中に0.05〜3質量%含まれたことを特徴とする請求項1〜請求項3のいずれか一項に記載の親水性焼付塗膜。   The fluorine resin particles having an average particle diameter of 0.1 to 0.5 μm are contained in an amount of 0.05 to 3% by mass in 100% by mass of the baked coating film solid content. The hydrophilic baked film according to one aspect. 前記防汚性及び親水性焼付塗膜表面において前記アルミナ粒子の面積率が90%以上であることを特徴とする請求項1〜請求項4のいずれか一項に記載の親水性焼付塗膜。   The hydrophilic baked film according to any one of claims 1 to 4, wherein the area ratio of the alumina particles is 90% or more on the surface of the antifouling and hydrophilic baked film. 前記親水性焼付塗膜の最表面に水溶性潤滑剤層が塗布量0.05〜0.2g/mmの割合で設けられたことを特徴とする請求項1〜請求項5のいずれか一項に記載の親水性焼付塗膜。 The water-soluble lubricant layer is provided on the outermost surface of the hydrophilic baked film at a coating amount of 0.05 to 0.2 g / mm 2. The hydrophilic baked film as described in a term. アルミニウム又はアルミニウム合金からなる板材上に、請求項1〜請求項6のいずれか一項に記載の親水性焼付塗膜が形成されたことを特徴とする熱交換器用アルミニウムフィン材。   The hydrophilic baking film as described in any one of Claims 1-6 was formed on the board | plate material which consists of aluminum or aluminum alloy, The aluminum fin material for heat exchangers characterized by the above-mentioned. 請求項7に記載のアルミニウムフィン材が複数並列配置され、前記各アルミニウムフィン材に透孔が形成され、該透孔を挿通して前記アルミニウムフィン材と一体化される銅または銅合金からなる伝熱管が設けられたことを特徴とする熱交換器。   A plurality of aluminum fin materials according to claim 7 are arranged in parallel, and a through hole is formed in each of the aluminum fin materials, and a conductor made of copper or a copper alloy is inserted through the through hole and integrated with the aluminum fin material. A heat exchanger characterized in that a heat pipe is provided.
JP2017246956A 2017-12-22 2017-12-22 Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger Pending JP2019113251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246956A JP2019113251A (en) 2017-12-22 2017-12-22 Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246956A JP2019113251A (en) 2017-12-22 2017-12-22 Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger

Publications (1)

Publication Number Publication Date
JP2019113251A true JP2019113251A (en) 2019-07-11

Family

ID=67221433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246956A Pending JP2019113251A (en) 2017-12-22 2017-12-22 Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger

Country Status (1)

Country Link
JP (1) JP2019113251A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153495A1 (en) * 2020-01-29 2021-08-05 株式会社神戸製鋼所 Aluminum fin material, heat exchanger, air conditioner, and method for producing aluminum fin material
WO2021162061A1 (en) * 2020-02-13 2021-08-19 株式会社神戸製鋼所 Aluminum fin material, heat exchanger, and method for producing aluminum fin material
WO2022035207A1 (en) * 2020-08-13 2022-02-17 엘지전자 주식회사 Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223188A (en) * 1988-03-02 1989-09-06 Kansai Paint Co Ltd Hydrophilic treatment agent for heat-exchanger fin material
JPH0747329A (en) * 1993-08-04 1995-02-21 Toyo Ink Mfg Co Ltd Metallic substrate subjected to hydrophilic treatment
JP2000262968A (en) * 1999-03-15 2000-09-26 Kobe Steel Ltd Surface treated fin material
JP2005097703A (en) * 2003-09-26 2005-04-14 Mitsubishi Alum Co Ltd Aluminum material for heat exchanger excellent in corrosion resistance, and heat exchanger using the aluminum material
JP2009214001A (en) * 2008-03-10 2009-09-24 Mitsubishi Alum Co Ltd Colored hydrophilic coating film and fin material using the same
JP2014142139A (en) * 2013-01-24 2014-08-07 Kobe Steel Ltd Heat exchanger aluminum fin material
JP2016090105A (en) * 2014-10-31 2016-05-23 三菱アルミニウム株式会社 Heat insulation aluminum fin material with antifouling property

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01223188A (en) * 1988-03-02 1989-09-06 Kansai Paint Co Ltd Hydrophilic treatment agent for heat-exchanger fin material
JPH0747329A (en) * 1993-08-04 1995-02-21 Toyo Ink Mfg Co Ltd Metallic substrate subjected to hydrophilic treatment
JP2000262968A (en) * 1999-03-15 2000-09-26 Kobe Steel Ltd Surface treated fin material
JP2005097703A (en) * 2003-09-26 2005-04-14 Mitsubishi Alum Co Ltd Aluminum material for heat exchanger excellent in corrosion resistance, and heat exchanger using the aluminum material
JP2009214001A (en) * 2008-03-10 2009-09-24 Mitsubishi Alum Co Ltd Colored hydrophilic coating film and fin material using the same
JP2014142139A (en) * 2013-01-24 2014-08-07 Kobe Steel Ltd Heat exchanger aluminum fin material
JP2016090105A (en) * 2014-10-31 2016-05-23 三菱アルミニウム株式会社 Heat insulation aluminum fin material with antifouling property

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153495A1 (en) * 2020-01-29 2021-08-05 株式会社神戸製鋼所 Aluminum fin material, heat exchanger, air conditioner, and method for producing aluminum fin material
JP2021116993A (en) * 2020-01-29 2021-08-10 株式会社神戸製鋼所 Aluminum fin material, heat exchanger, air conditioner, and method of manufacturing the aluminum fin material
WO2021162061A1 (en) * 2020-02-13 2021-08-19 株式会社神戸製鋼所 Aluminum fin material, heat exchanger, and method for producing aluminum fin material
WO2022035207A1 (en) * 2020-08-13 2022-02-17 엘지전자 주식회사 Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger

Similar Documents

Publication Publication Date Title
JP6964489B2 (en) Antifouling and highly hydrophilic baked coating film and its manufacturing method, aluminum fin material for heat exchanger, heat exchanger and cooling equipment
JP6374219B2 (en) Fin material for heat exchanger and manufacturing method thereof
JP2019113251A (en) Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger
JP5586834B2 (en) Aluminum fin material for heat exchanger
JP6470548B2 (en) Aluminum fin material for heat exchanger having antifouling property, method for producing the same, heat exchanger including the aluminum fin material, and air conditioner
JP2010096416A (en) Precoat aluminum fin material for heat exchanger
JP6061755B2 (en) Aluminum fin material and manufacturing method thereof
JP5559227B2 (en) Aluminum fin material
JP5859895B2 (en) Aluminum fin material
JP2003201577A (en) Aluminum or aluminum alloy material for heat exchanger fin, and fin for heat exchanger
JP6551949B2 (en) Aluminum fin material for heat exchanger having antifouling property, method for producing the same, and heat exchanger provided with the aluminum fin material
WO2021153495A1 (en) Aluminum fin material, heat exchanger, air conditioner, and method for producing aluminum fin material
WO2018110644A1 (en) Highly hydrophilic antifouling baked coating film, method for producing same, aluminum fin material for heat exchanger, heat exchanger, and cooling machine
WO2022215374A1 (en) Aluminum fin material
JP5301701B1 (en) Aluminum fin material
WO2021162061A1 (en) Aluminum fin material, heat exchanger, and method for producing aluminum fin material
WO2021199876A1 (en) Fin material formed of aluminum
WO2021199875A1 (en) Aluminum fin material
JP7193443B2 (en) Aluminum fin stock
JP2024021422A (en) Aluminum fin material
JP5661866B2 (en) Aluminum fin material
JP2021188866A (en) Aluminum-made fin material
JPH09273892A (en) Aluminum surface treated fin material with excellent stain resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211221