WO2022035207A1 - Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger - Google Patents
Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger Download PDFInfo
- Publication number
- WO2022035207A1 WO2022035207A1 PCT/KR2021/010631 KR2021010631W WO2022035207A1 WO 2022035207 A1 WO2022035207 A1 WO 2022035207A1 KR 2021010631 W KR2021010631 W KR 2021010631W WO 2022035207 A1 WO2022035207 A1 WO 2022035207A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coating film
- heat exchanger
- polyacrylic resin
- hydrophilic coating
- present
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/14—Heat exchangers specially adapted for separate outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/26—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
- F28F1/28—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element the element being built-up from finned sections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
Definitions
- the present invention relates to a hydrophilic coating composition capable of reducing the freezing temperature by adding ethylene glycol or butylcarbitol to a hydrophilic polyacrylic resin, a fin material for a heat exchanger including the same, and a heat exchanger.
- the heat exchange system refers to a system provided in a device that uses heat exchange as a basic mechanism.
- devices such as an air conditioner, a refrigerator, and a dehumidifier are all included in the category of a device having the heat exchange system because a desired result is obtained through heat exchange.
- a device typically employed in a heat exchange system is a heat exchanger.
- moisture is condensed on the surface of the heat exchanger.
- a heat exchanger is used as an evaporator of an air conditioner, the temperature of the evaporator is lower than room temperature when the air conditioner is cooled. Accordingly, condensed water is formed on the surface of the evaporator.
- a hydrophilic film is generally formed on the surface of the fin material to solve the above problem.
- a corrosion-resistant film is provided between the fin material and the hydrophilic film for corrosion protection.
- Korean Patent Laid-Open Publication No. 10-2020-0006436 (published on January 20, 2020) relates to a “heat exchange system” and discloses a heat exchange system in which a chemical conversion layer and a hydrophilic coating layer are formed.
- Republic of Korea Patent Registration No. 10-1463050 (published on November 18, 2014) relates to "a material containing a superhydrophobic surface and a method for manufacturing the same", through a configuration of coating a titanium dioxide layer with a compound containing fluorine. Disclosed is a configuration for preventing freezing by forming superhydrophobicity on the aluminum metal surface.
- an object of the present invention is to provide a hydrophilic coating composition capable of imparting hydrophilicity to a metal surface and reducing the freezing temperature of the aluminum metal surface to reduce freezing of the aluminum metal surface.
- the present invention uses an organic polyacrylic resin used for a corrosion-resistant coating film as a base material for a hydrophilic coating film to minimize changes in physical properties due to external environments and to provide a fin for a heat exchanger that can simplify the process It is another object .
- Another object of the present invention is to provide a heat exchanger capable of imparting hydrophilicity to a metal surface and reducing freezing temperature on an aluminum metal surface to reduce freezing.
- the present invention is a polyacrylic resin; and ethylene glycol or butyl carbitol, and provides a hydrophilic coating composition capable of simultaneously expressing an effect of lowering the freezing temperature while maintaining the hydrophilicity of the polyacrylic resin.
- ethylene glycol or butyl carbitol is added to prevent hydrogen bonding between water molecules, thereby lowering the freezing temperature.
- the hydrophilic coating composition according to the present invention maintains the hydrophilicity of the polyacrylic resin and contains ethylene glycol or butyl carbitol to prevent the coating film from falling off the metal surface with the effect of lowering the freezing temperature by 1 to 3 weights of the total weight of the polyacrylic resin % may be included.
- the present invention provides a fin for a heat exchanger to which the above-described hydrophilic coating composition is applied.
- the present invention is a metal material; a corrosion-resistant coating film formed on the metal material; and a hydrophilic coating film formed on the corrosion-resistant coating film, wherein the hydrophilic coating film provides a fin for a heat exchanger formed by adding ethylene glycol or butyl carbitol to a polyacrylic resin.
- the present invention is an outdoor heat exchanger comprising a refrigerant pipe and a plurality of fins coupled to the refrigerant pipe, comprising a corrosion-resistant coating film formed on the surface of the fin and a hydrophilic coating film formed on the corrosion-resistant coating film, the hydrophilic coating film comprising:
- a heat exchanger formed by adding ethylene glycol or butylcarbitol to a polyacrylic resin comprising:
- the hydrophilic coating composition according to the present invention can impart hydrophilicity to the coating film by increasing the water spread diameter and reducing the contact angle in the coating film, including the acrylic resin.
- the hydrophilic coating composition according to the present invention can reduce the freezing temperature of water in the coating film by adding ethylene glycol or butyl carbitol to prevent hydrogen bonding between water molecules.
- the polyacrylic resin used for the corrosion-resistant coating film as the base material of the hydrophilic coating film, it is possible to minimize the change in physical properties due to the external environment and simplify the process.
- FIG. 1 is a cross-sectional view showing a fin for a heat exchanger according to the present invention.
- FIG. 2 is a block diagram of an air conditioner.
- FIG 3 is a cross-sectional view of the outdoor heat exchanger provided in the outdoor unit according to the present invention.
- Example 4 is a graph showing the change in the freezing temperature according to the cycle of Example 2, Example 4, and Comparative Example 1 according to the present invention.
- FIG. 5 is a photograph showing the freezing state according to the temperature of the coating film formed of the hydrophilic coating composition according to the present invention, the coating film formed of a polyacrylic resin, and the coating film formed of glycerin. It shows the frozen state, and Figure 5 (b) shows the frozen state of the coating film at -2 °C.
- first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from other components, and unless otherwise stated, it goes without saying that the first component may be the second component.
- hydrophilic coating composition according to the present invention, a fin for a heat exchanger including the same, and a heat exchanger will be described.
- the present invention is a polyacrylic resin
- hydrophilic coating composition comprising; ethylene glycol or butyl carbitol.
- the air conditioner outdoor heat exchanger uses aluminum coated with a hydrophilic material as a fin material of the heat exchanger to improve drainage of condensate generated during evaporation.
- a hydrophilic material as a fin material of the heat exchanger to improve drainage of condensate generated during evaporation.
- the present invention provides a hydrophilic coating composition capable of reducing the freezing temperature of water in a coating film by adding ethylene glycol or butylcarbitol to a polyacrylic-based organic agent that imparts hydrophilicity to the metal surface.
- ethylene glycol or butylcarbitol is interposed between water molecules to prevent regular hydrogen bond formation, ie, ice formation, thereby lowering the freezing temperature of water.
- hydrophilic coating composition according to the present invention can impart hydrophilicity to the coating film by including the polyacrylic resin to increase the water spread diameter and the contact angle in the coating film.
- the polyacrylic resin used for the corrosion-resistant coating film as a base material for the hydrophilic coating film, it is possible to minimize the change in physical properties due to the external environment and simplify the process.
- the polyacrylic resin may include sulfonic acid (SO 3 H).
- SO 3 H sulfonic acid
- the ethylene glycol or butyl carbitol is preferably included in an amount of 1 to 3% by weight of the total weight of the polyacrylic resin.
- the ethylene glycol or butylcarbitol is added in an amount of less than 1% by weight, the effect of reducing the freezing temperature is not expressed.
- the present invention is a metal material
- the hydrophilic coating film provides a fin for a heat exchanger formed by adding ethylene glycol or butylcarbitol to a polyacrylic resin.
- the heat exchanger fin includes a metal material 100, a corrosion-resistant coating film 200 and a hydrophilic coating film 300, and the metal material 100 may be aluminum generally used as a fin material, and a corrosion-resistant coating film ( 200) may be formed including organic polyacrylic, epoxy and melamine.
- the hydrophilic coating film 300 may be formed including an organic polyacrylic resin, and ethylene glycol or butyl carbitol as described above, wherein the organic polyacrylic resin includes sulfonic acid (SO 3 H), As described above, the ethylene glycol or butyl carbitol is included in 1 to 3% by weight of the total weight of the polyacrylic resin, so that the effect of reducing the freezing temperature is not expressed, the hydrophilicity is lowered, and the problem of the coating film falling off from the substrate can be prevented. there is.
- SO 3 H sulfonic acid
- heat exchange between the refrigerant pipe and the air around the fins may be made, and a plurality of fins may be provided to increase heat exchange efficiency.
- the present invention is an outdoor heat exchanger comprising a refrigerant pipe and a plurality of fins coupled to the refrigerant pipe,
- the hydrophilic coating film provides a heat exchanger formed by adding ethylene glycol or butyl carbitol to a polyacrylic resin.
- FIG. 2 is a block diagram of an air conditioner
- FIG. 3 is a cross-sectional view of an outdoor heat exchanger provided in an outdoor unit according to the present invention.
- the heat exchanger according to the present invention will be described in detail with reference to FIGS. 2 and 3 .
- an indoor heat exchanger and an outdoor heat exchanger have been described separately, but the heat exchanger according to the present invention is not limited to an indoor heat exchanger or an outdoor heat exchanger.
- the air conditioner may include an indoor unit 1 and an outdoor unit 2 .
- the air conditioner may be classified into a stand type, a wall-mounted type, or a ceiling type according to the shape of the indoor unit 1, and the air conditioner performs only cooling, heating only, and both heating and cooling. may include
- the indoor unit 1 may discharge heat-exchanged air into the room.
- the outdoor unit 2 may be connected to the indoor unit 1 to deliver a refrigerant required for air conditioning in the indoor unit 1 to the indoor unit 1 , and the indoor unit 1 may heat exchange the indoor air with the indoor unit. It may further include an indoor blower 12 for blowing air with the unit 11 .
- the outdoor unit 2 may include an outdoor heat exchanger 21 through which outdoor air and refrigerant exchange heat.
- the outdoor heat exchanger 21 may operate as a condenser in which the gaseous refrigerant transferred to the outdoor heat exchanger 21 may be condensed by the outdoor air.
- the outdoor heat exchanger 21 may operate as an evaporator in which the liquid refrigerant transferred to the outdoor heat exchanger 21 may be evaporated by the outdoor air.
- the outdoor heat exchanger 21 may include a refrigerant pipe 210 through which a refrigerant flows therein, and a plurality of the refrigerant pipe 210 may be provided.
- the outdoor heat exchanger 21 may further include a return band 211 curved in a U shape to connect the plurality of refrigerant pipes 210 .
- the plurality of refrigerant pipes 210 may be connected in series through the return band 211 to form one refrigerant passage, or the plurality of refrigerant pipes 210 may be connected in series through the return band 211 . It is also possible that a plurality of groups of the connected refrigerant pipes 210 are connected in parallel to form a plurality of refrigerant passages. However, in the following description, the plurality of refrigerant pipes 210 are limited to being provided in one heat exchanger through the return band 211 .
- the outdoor heat exchanger 21 may include a fin 220 coupled to the refrigerant pipe 210 and having one or more holes formed therein.
- the number of holes formed in the fin 220 may correspond to the number of refrigerant pipes 210 provided in the outdoor heat exchanger 21 . Accordingly, as the plurality of refrigerant pipes 210 are respectively penetrated through one or more holes formed in the fin 220 , the plurality of refrigerant pipes 210 may be coupled to the fin 220 .
- the fin 220 may be formed in a flat plate shape, for example, and the fin 220 may allow heat exchange between the refrigerant pipe 210 and the air around the fin 220 .
- the plurality of fins 220 may be provided, and the plurality of fins 220 may be disposed to be spaced apart from each other at a set interval.
- the plurality of pins 220 may include a first pin 231 to which a positive voltage (+) is applied and a second pin 232 to which a negative voltage (-) is applied.
- the first and second pins 231 and 232 may be formed of a conductor.
- the outdoor unit 2 may further include a voltage generator (not shown) for applying a voltage to the first and second pins 231 and 232 .
- the voltage generator and the first and second pins 231 and 232 may be electrically connected to each other by a cable, for example.
- An electric field may be formed in the space between the first fin 231 and the second fin 232 , and frost is applied to the first and second fins 231 and 232 using the changed capacitance value of the space. It is possible to judge whether or not the implantation of
- the power storage unit 230 is disposed in an area where the temperature change is expected to be greatest in the outdoor heat exchanger 21, so that the dew formed on the outdoor heat exchanger 21 is frozen, and the It is possible to efficiently determine the defrost rush point of the outdoor heat exchanger 21 .
- An area where the temperature change is expected to be greatest in the outdoor heat exchanger 21 is, for example, the inlet side (FIG. 3A) through which the refrigerant flows into the outdoor heat exchanger 21, or the outlet side (FIG. B) of 3 may be included.
- the power storage unit 230 may be disposed at a position in which air flows most smoothly due to the outdoor fan. Accordingly, since the power storage unit 230 is disposed in an area where the temperature change of the outdoor heat exchanger 21 is large, it may be easy to determine a defrosting start time of the outdoor heat exchanger 21 .
- ice can be removed by providing the power storage unit in an optimal place where freezing can occur.
- a coating composition it is possible to provide a coating composition capable of at least reducing or eliminating icing occurring in the heat exchanger.
- a corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried.
- the hydrophilic coating film was a mixture of polyacrylic resin and ethylene glycol. At this time, ethylene glycol was mixed at 1% by weight of the total weight of the polyacrylic resin.
- a corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried.
- the hydrophilic coating film was a mixture of polyacrylic resin and ethylene glycol. At this time, ethylene glycol was mixed in 3 wt% of the total weight of the polyacrylic resin.
- a corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried.
- the hydrophilic coating film was a mixture of polyacrylic resin and butyl carbitol. At this time, butylcarbitol was mixed in an amount of 1% by weight of the total weight of the polyacrylic resin.
- a corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried.
- the hydrophilic coating film was a mixture of polyacrylic resin and butyl carbitol. At this time, butylcarbitol was mixed in an amount of 3% by weight of the total weight of the polyacrylic resin.
- a coating film was formed on the aluminum metal surface in the same manner as in Example 1, except that 100% by weight of polyacrylic was used without adding ethylene glycol.
- a coating film was formed on the aluminum metal surface in the same manner as in Example 1, except that ethylene glycol was mixed in an amount of 5% by weight of the total weight of the polyacrylic resin.
- a coating film was formed on the aluminum metal surface in the same manner as in Example 3, except that butylcarbitol was mixed in an amount of 5% by weight based on the total weight of the polyacrylic resin.
- a coating film was formed on the aluminum metal surface in the same manner as in Example 1, except that glycerin was mixed in an amount of 3% by weight based on the total weight of the polyacrylic resin.
- Table 1 is a table showing the basic properties of ethylene glycol, butylcarbitol and glycerin used in Examples and Comparative Examples.
- the initial hydrophilic water spread diameter, the sustained hydrophilic water spread diameter, the coating film appearance and the freezing temperature were analyzed in the coating films of Examples 1 to 4 and Comparative Examples 1 to 3 according to the present invention, and the results are shown in Table 2 below.
- the water spread diameter was measured with a vernier caliper after 20 seconds after free-falling 0.01 ml of distilled water from a height of 10 mm by making the prepared coating film perpendicular to the micropipette, and three places in the prepared coating film
- the average value was measured by measuring the above, and in the case of not having a garden, it was measured as a value of (larger now + small diameter)/2.
- the coating films prepared in Examples 1 to 4 according to the present invention have no abnormality in appearance, and in Comparative Example 2, ethylene glycol is included in 5% by weight of the total weight of the polyacrylic resin, so that the initial hydrophilic water The spread diameter is 8.2 mm, so the hydrophilicity is lowered and the coating film is removed from the metal substrate.
- Comparative Example 1 in which ethylene glycol or butyl carbitol was not added, the initial hydrophilic water spread diameter and the sustained hydrophilic water spread diameter were measured similarly to Example 1 of the present invention, so it can be seen that the hydrophilicity is excellent.
- Example 1 The freezing temperature of Example 1 was -0.8 °C, so Examples 1 to 4 of the present invention (Example 1: -1.4 °C, Example 2: -2.5 °C, Example 3: -1.0 °C, Example 4: -1.7 °C) ), it can be seen that freezing occurs more easily than
- the wet/dry test method was performed by repeatedly dipping the coating film in distilled water for 10 minutes and then drying the coating film for 10 minutes.
- the contact angle of the coating film was set as the contact angle shown on the screen of the tester after free-falling 0.01 ml of distilled water from a height of 10 mm by making the prepared coating film perpendicular to the contact angle meter.
- the freezing temperature was measured by spraying water on the surface of the coating film in a constant temperature chamber in an atmosphere of minus 5 degrees Celsius to freeze, and then increasing the temperature of the constant temperature chamber to check the melting temperature of water (ice) frozen in each coating film.
- Example 2 Example 4 value result value result freezing temperature -0.8 -1.7 ⁇ -2.5 ⁇ 10 cycle freezing temperature -0.4 -1.4 ⁇ -1.9 ⁇ Water spread diameter [mm] 9.8 9.9 ⁇ 9.1 ⁇ Contact angle (°) 8.6 8.3 ⁇ 9.0 ⁇ 300 cycle freezing temperature -0.4 -1.1 ⁇ -1.4 ⁇ Water spread diameter [mm] 6.6 6.7 ⁇ 6.9 ⁇ Contact angle (°) 26.3 25.5 ⁇ 24.1 ⁇
- Example 2 of the present invention shows that the coating film freezing temperature, 10-cycle freezing temperature, and 300-cycle freezing temperature are low compared to Comparative Example 1 in which ethylene glycol or butylcarbidol is not added. Can be, which indicates that the frost formed on the coating film is generated at a lower temperature than Comparative Example 1.
- the coating films of Examples 2 and 4 of the present invention have similar water spread diameters and contact angles to those of Comparative Example 1, so that hydrophilicity in the coating film can be maintained even when the freezing temperature is lowered.
- the hydrophilic coating composition according to the present invention was deposited on the gold surface to form a hydrophilic coating film, and then the freezing state on the gold surface was analyzed at -5 °C and -2 °C.
- the photo on the far left in FIGS. 5 (a) and (b) shows that a coating film was formed on the gold surface by mixing ethylene glycol (EG) at 3 wt% of the total weight of the polyacrylic resin, and the photo on the right is butyl Carbitol (BDG) was mixed at 3% by weight of the total weight of the polyacrylic resin to form a coating film on the gold surface.
- EG ethylene glycol
- BDG butyl Carbitol
- the melting temperature of the coating composition according to the present invention is lowered, and as compared to a coating film prepared by mixing 100% by weight of polyacryl and 97% by weight of polyacrylic and 3% by weight of glycerin, there is no freezing compared to the coating film. It can be seen that less That is, in the coating composition according to the present invention, ethylene glycol or butyl carbitol is added to reduce the freezing temperature to -1.7 °C or -0.9 °C compared to the prior art, respectively.
- Figure 5 (a) shows the coating film at -5 ° C. It can be seen that all the coating films are frozen
- Figure 5 (b) shows the coating film at -2 ° C. ethylene at -2 ° C. It can be seen that only the coating film to which 3 wt% of glycol is added is not frozen and melted.
- the coating film to which butylcarbitol is added, the coating film to which glycerin is added, and the coating film composed only of polyacrylic have melting temperatures of -0.8 °C, -0.8 °C, and -1.7 °C, respectively, so they are frozen without melting at an external temperature of -2 °C. . Therefore, it can be seen that the melting temperature of the coating film to which ethylene glycol is added is lowered, thereby reducing freezing.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Geometry (AREA)
- Combustion & Propulsion (AREA)
- Paints Or Removers (AREA)
Abstract
The present invention relates to a hydrophilic coating composition, a heat exchanger fin comprising same, and a heat exchanger. The hydrophilic coating composition, according to the present invention, comprises: an organic polyacrylic resin; and ethylene glycol or butyl carbitol, and thus may lower a freezing temperature.
Description
본 발명은 친수성 폴리아크릴 수지에 에틸렌글리콜 또는 부틸카비톨을 첨가하여 결빙 온도를 저감시킬 수 있는 친수성 코팅 조성물, 이를 포함하는 열교환기용 핀 소재 및 열교환기에 관한 것이다.The present invention relates to a hydrophilic coating composition capable of reducing the freezing temperature by adding ethylene glycol or butylcarbitol to a hydrophilic polyacrylic resin, a fin material for a heat exchanger including the same, and a heat exchanger.
열교환 시스템이란 열교환을 기본 매커니즘으로 하는 장치에 구비되는 시스템을 가리킨다. 예컨대, 공기 조화기(air conditioner), 냉장고, 제습기 등과 같은 장치들은 모두 열교환을 통해 목적하는 결과를 도출하기 때문에 상기 열교환 시스템을 구비하는 장치의 범주에 포함된다.The heat exchange system refers to a system provided in a device that uses heat exchange as a basic mechanism. For example, devices such as an air conditioner, a refrigerator, and a dehumidifier are all included in the category of a device having the heat exchange system because a desired result is obtained through heat exchange.
열교환 시스템에 대표적으로 채택되는 장치는 열교환기다. 열교환기가 지속적으로 작동되다 보면 열교환기의 표면에 수분이 맺히게 된다. 예를 들어 열교환기가 공기 조화기의 증발기로 이용되는 경우, 상기 공기 조화기가 냉방 운전되면 증발기의 온도가 상온보다 낮아지게 된다. 이에 따라 증발기의 표면에는 응축수가 맺히게 된다.A device typically employed in a heat exchange system is a heat exchanger. When the heat exchanger is continuously operated, moisture is condensed on the surface of the heat exchanger. For example, when a heat exchanger is used as an evaporator of an air conditioner, the temperature of the evaporator is lower than room temperature when the air conditioner is cooled. Accordingly, condensed water is formed on the surface of the evaporator.
열교환기가 하절기 냉방용으로 사용될 경우, 알루미늄 핀의 표면온도는 대기의 이슬점 이하가 됨으로써 핀 표면에 물방울이 달라 붙는다. 핀 표면에 물방울이 달라붙으면, 다음과 같은 세가지 문제점이 생긴다. 첫째는, 알루미늄 핀이 부식하기 쉬운 상태로 된다는 점이다. 둘째는, 통풍 저항이 증대되어 풍량이 감소하기 때문에 열교환 효율이 저하된다는 점이다. 끝으로 셋째는, 핀 표면의 물방울이 냉각공기 중에 흡인되어 실내 또는 차내로 비산하게 된다는 점이다.When the heat exchanger is used for cooling in summer, the surface temperature of the aluminum fin is below the dew point of the atmosphere, so that water droplets adhere to the surface of the fin. When water droplets stick to the pin surface, there are three problems: First, the aluminum fins become corrosive. The second is that the heat exchange efficiency is lowered because the ventilation resistance is increased and the air volume is reduced. Finally, thirdly, water droplets on the surface of the fins are sucked into the cooling air and scattered into the room or inside the vehicle.
핀 표면의 습윤성이 좋으면, 핀 표면에 달라붙는 물이 구형의 물방울이 아니라 수막의 형태로 되기 때문에, 상기 문제점을 해결하기 위하여 일반적으로 핀재의 표면에 친수성 피막을 형성하게 된다. 또한, 방식을 위하여 핀재와 친수성 피막과의 사이에 내식성 피막을 제공하게 된다.If the wettability of the fin surface is good, since the water adhering to the fin surface is in the form of a water film rather than a spherical water droplet, a hydrophilic film is generally formed on the surface of the fin material to solve the above problem. In addition, a corrosion-resistant film is provided between the fin material and the hydrophilic film for corrosion protection.
관련하여, 대한민국 공개특허 제10-2020-0006436호(공개일: 2020.01.20)는 "열교환 시스템"에 관한 것으로, 화성층 및 친수성 코팅층이 형성된 열교환 시스템을 개시하고 있다.In relation to this, Korean Patent Laid-Open Publication No. 10-2020-0006436 (published on January 20, 2020) relates to a “heat exchange system” and discloses a heat exchange system in which a chemical conversion layer and a hydrophilic coating layer are formed.
*그러나, 상기 특허는 열교환 시스템의 항균 기능과 냄새 제거 기능을 위해 화성층과 친수성 코팅층이 모재 표면에서 수분의 잔류 시간이 긴 영역에 형성되는 것을 기재하고 있어, 서리 방지에 대한 효과는 미미한 실정이다.*However, the above patent describes that a chemical conversion layer and a hydrophilic coating layer are formed in a region with a long retention time of moisture on the surface of the base material for the antibacterial function and odor removal function of the heat exchange system, so the effect on frost prevention is insignificant. .
또한, 대한민국 등록특허 제10-1463050호(공고일: 2014.11.18)는 "초소수성 표면을 포함하는 재료 및 이의 제조 방법"에 관한 것으로, 불소를 함유하는 화합물로 이산화티탄층을 코팅하는 구성을 통해 알루미늄 금속 표면에 초소수성을 형성하여 결빙을 방지하는 구성을 개시하고 있다. In addition, Republic of Korea Patent Registration No. 10-1463050 (published on November 18, 2014) relates to "a material containing a superhydrophobic surface and a method for manufacturing the same", through a configuration of coating a titanium dioxide layer with a compound containing fluorine. Disclosed is a configuration for preventing freezing by forming superhydrophobicity on the aluminum metal surface.
그러나, 상기 특허는 폴리도파민 코팅층, 이산화티탄층 및 불소를 함유하는 화합물 등 3가지 이상의 층이 재료 표면에 형성시켜야 하므로 공정이 복잡하고 실외 열교환기와 같이 기온 차이가 심한 환경에서 코팅층을 안정하게 유지할 수 있는지에 대해서는 확인된 바가 없다.However, in the above patent, three or more layers such as a polydopamine coating layer, a titanium dioxide layer, and a fluorine-containing compound must be formed on the surface of the material, so the process is complicated and the coating layer can be stably maintained in an environment with a large temperature difference such as an outdoor heat exchanger. It has not been confirmed whether there is
따라서, 본 발명은 금속 표면에 친수성을 부여할 수 있고 결빙 온도를 저감시켜 알루미늄 금속 표면의 결빙을 저감시킬 수 있는 친수성 코팅 조성물을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a hydrophilic coating composition capable of imparting hydrophilicity to a metal surface and reducing the freezing temperature of the aluminum metal surface to reduce freezing of the aluminum metal surface.
또한, 본 발명은 내식성 코팅막에 사용되는 유기계 폴리아크릴 수지를 친수소성 코팅막의 베이스 물질로 사용하여 외부 환경에 의한 물성 변화를 최소화하고 공정을 간소화할 수 있는 열교환기용 핀을 제공하는 것을 다른 목적으로 한다.In addition, the present invention uses an organic polyacrylic resin used for a corrosion-resistant coating film as a base material for a hydrophilic coating film to minimize changes in physical properties due to external environments and to provide a fin for a heat exchanger that can simplify the process It is another object .
나아가, 본 발명은 금속 표면에 친수성을 부여할 수 있고 결빙 온도를 저감시켜 알루미늄 금속 표면의 결빙을 저감시킬 수 있는 열교환기를 제공하는 것을 또 다른 목적으로 한다.Furthermore, another object of the present invention is to provide a heat exchanger capable of imparting hydrophilicity to a metal surface and reducing freezing temperature on an aluminum metal surface to reduce freezing.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 이해될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects and advantages of the present invention not mentioned may be understood by the following description, and will be more clearly understood by the examples of the present invention. It will also be readily apparent that the objects and advantages of the present invention may be realized by the means and combinations thereof indicated in the appended claims.
상술한 기술적 과제를 해결하기 위해, 본 발명은 폴리아크릴 수지; 및 에틸렌글리콜 또는 부틸카비톨;을 포함하고, 폴리아크릴 수지가 갖는 친수성을 유지하면서 결빙 온도 저하 효과를 동시에 발현시킬 수 있는 친수성 코팅 조성물을 제공한다. In order to solve the above technical problem, the present invention is a polyacrylic resin; and ethylene glycol or butyl carbitol, and provides a hydrophilic coating composition capable of simultaneously expressing an effect of lowering the freezing temperature while maintaining the hydrophilicity of the polyacrylic resin.
즉, 본 발명에 따른 친수성 코팅 조성물은 에틸렌글리콜 또는 부틸카비톨이 첨가되어 물 분자끼리의 수소 결합을 방해하여 결빙 온도를 낮출 수 있는 것이다.That is, in the hydrophilic coating composition according to the present invention, ethylene glycol or butyl carbitol is added to prevent hydrogen bonding between water molecules, thereby lowering the freezing temperature.
또한, 본 발명에 따른 친수성 코팅 조성물은 폴리아크릴 수지가 갖는 친수성을 유지하면서 결빙 온도 저하 효과와 함께 금속 표면에 코팅막이 탈락되지 않도록 에틸렌글리콜 또는 부틸카비톨이 폴리아크릴 수지 총 중량의 1 ~ 3 중량%로 포함될 수 있다. In addition, the hydrophilic coating composition according to the present invention maintains the hydrophilicity of the polyacrylic resin and contains ethylene glycol or butyl carbitol to prevent the coating film from falling off the metal surface with the effect of lowering the freezing temperature by 1 to 3 weights of the total weight of the polyacrylic resin % may be included.
또한, 본 발명은 전술한 친수성 코팅 조성물이 적용된 열교환기용 핀을 제공한다.In addition, the present invention provides a fin for a heat exchanger to which the above-described hydrophilic coating composition is applied.
구체적으로, 본 발명은 금속재; 상기 금속재 상에 형성된 내식성 코팅막; 및 상기 내식성 코팅막 상에 형성된 친수성 코팅막;을 포함하고, 상기 친수성 코팅막은 폴리아크릴 수지에 에틸렌글리콜 또는 부틸카비톨이 첨가되어 형성된 열교환기용 핀을 제공한다.Specifically, the present invention is a metal material; a corrosion-resistant coating film formed on the metal material; and a hydrophilic coating film formed on the corrosion-resistant coating film, wherein the hydrophilic coating film provides a fin for a heat exchanger formed by adding ethylene glycol or butyl carbitol to a polyacrylic resin.
나아가, 본 발명은 냉매배관 및 상기 냉매배관에 결합되는 다수 개의 핀을 포함하는 실외 열교환기로서, 상기 핀의 표면에 형성된 내식성 코팅막 및 상기 내식성 코팅막 상에 형성된 친수성 코팅막을 포함하고, 상기 친수성 코팅막은 폴리아크릴 수지에 에틸렌글리콜 또는 부틸카비톨이 첨가되어 형성된 열교환기를 제공한다.Furthermore, the present invention is an outdoor heat exchanger comprising a refrigerant pipe and a plurality of fins coupled to the refrigerant pipe, comprising a corrosion-resistant coating film formed on the surface of the fin and a hydrophilic coating film formed on the corrosion-resistant coating film, the hydrophilic coating film comprising: Provided is a heat exchanger formed by adding ethylene glycol or butylcarbitol to a polyacrylic resin.
본 발명에 따른 친수성 코팅 조성물은 아크릴 수지를 포함하여 코팅막에서 물의 물퍼짐 지름이 증가하고 접촉각이 작아져 코팅막에 친수성을 부여할 수 있다.The hydrophilic coating composition according to the present invention can impart hydrophilicity to the coating film by increasing the water spread diameter and reducing the contact angle in the coating film, including the acrylic resin.
또한, 본 발명에 따른 친수성 코팅 조성물은 에틸렌글리콜 또는 부틸카비톨을 첨가하여 물 분자끼리의 수소 결합을 방해함으로써 코팅막에서의 물의 결빙 온도를 저감시킬 수 있다. In addition, the hydrophilic coating composition according to the present invention can reduce the freezing temperature of water in the coating film by adding ethylene glycol or butyl carbitol to prevent hydrogen bonding between water molecules.
또한, 내식성 코팅막에 사용되는 폴리아크릴 수지를 친수성 코팅막의 베이스 물질로 사용하여 외부 환경에 의한 물성 변화를 최소화하고 공정을 간소화할 수 있다. In addition, by using the polyacrylic resin used for the corrosion-resistant coating film as the base material of the hydrophilic coating film, it is possible to minimize the change in physical properties due to the external environment and simplify the process.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the specific effects of the present invention will be described together while describing specific details for carrying out the invention below.
도 1은 본 발명에 따른 열교환기용 핀을 나타낸 단면도이다.1 is a cross-sectional view showing a fin for a heat exchanger according to the present invention.
도 2는 공기조화기의 구성도이다.2 is a block diagram of an air conditioner.
도 3은 본 발명에 따른 실외기에 구비되는 실외 열교환기의 단면도이다.3 is a cross-sectional view of the outdoor heat exchanger provided in the outdoor unit according to the present invention.
도 4는 본 발명에 따른 실시예 2, 실시예 4 및 비교예 1의 사이클에 따른 결빙 온도 변화를 나타낸 그래프이다.4 is a graph showing the change in the freezing temperature according to the cycle of Example 2, Example 4, and Comparative Example 1 according to the present invention.
도 5는 본 발명에 따른 친수성 코팅 조성물이 형성된 코팅막, 폴리아크릴계 수지로 형성된 코팅막 및 글리세린으로 형성된 코팅막의 온도에 따른 결빙 상태를 나타낸 사진으로, 도 5의 (a)는 -5 ℃에서의 코팅막의 결빙 상태를 나타낸 것이고, 도 5의 (b)는 -2 ℃에서의 코팅막의 결빙 상태를 나타낸 것이다. 5 is a photograph showing the freezing state according to the temperature of the coating film formed of the hydrophilic coating composition according to the present invention, the coating film formed of a polyacrylic resin, and the coating film formed of glycerin. It shows the frozen state, and Figure 5 (b) shows the frozen state of the coating film at -2 ℃.
전술한 목적, 특징 및 장점은 첨부된 도면을 참조하여 상세하게 후술되며, 이에 따라 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 것이다. 본 발명을 설명함에 있어서 본 발명과 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 상세한 설명을 생략한다. 이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 도면에서 동일한 참조부호는 동일 또는 유사한 구성요소를 가리키는 것으로 사용된다.The above-described objects, features and advantages will be described below in detail with reference to the accompanying drawings, and accordingly, those of ordinary skill in the art to which the present invention pertains will be able to easily implement the technical idea of the present invention. In describing the present invention, if it is determined that a detailed description of a known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. In the drawings, the same reference numerals are used to indicate the same or similar components.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것으로, 특별히 반대되는 기재가 없는 한, 제1 구성요소는 제2 구성요소일 수도 있음은 물론이다.Although the first, second, etc. are used to describe various elements, these elements are not limited by these terms, of course. These terms are only used to distinguish one component from other components, and unless otherwise stated, it goes without saying that the first component may be the second component.
명세서 전체에서, 특별히 반대되는 기재가 없는 한, 각 구성요소는 단수일 수도 있고 복수일 수도 있다. Throughout the specification, unless otherwise stated, each element may be singular or plural.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.As used herein, the singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “consisting of” or “comprising” should not be construed as necessarily including all of the various components or various steps described in the specification, some of which components or some steps are It should be construed that it may not include, or may further include additional components or steps.
이하에서는, 본 발명에 따른 친수성 코팅 조성물, 이를 포함하는 열교환기용 핀 및 열교환기를 설명하도록 한다.Hereinafter, a hydrophilic coating composition according to the present invention, a fin for a heat exchanger including the same, and a heat exchanger will be described.
본 발명은 폴리아크릴 수지; 및The present invention is a polyacrylic resin; and
에틸렌글리콜 또는 부틸카비톨;을 포함하는 친수성 코팅 조성물을 제공한다.It provides a hydrophilic coating composition comprising; ethylene glycol or butyl carbitol.
에어컨 실외 열교환기는 증발시 발생하는 응축수의 배수성을 향상시키기 위해 열교환기의 핀 소재로 친수성 물질이 코팅된 알루미늄을 사용한다. 실외의 온도가 영하에 가깝거나 영하로 떨어지면 열교환기에는 물의 착상이 발생하며 서리의 성장으로 추가의 제상 운전이 필요하다. The air conditioner outdoor heat exchanger uses aluminum coated with a hydrophilic material as a fin material of the heat exchanger to improve drainage of condensate generated during evaporation. When the outdoor temperature is near or below zero, water is formed in the heat exchanger, and additional defrosting operation is required due to the growth of frost.
따라서, 본 발명은 금속 표면에 친수성을 부여하는 폴리아크릴 기반의 유기제에 에틸렌글리콜 또는 부틸카비톨을 첨가하여 코팅막에서 물의 결빙 온도를 저감시킬 수 있는 친수성 코팅 조성물을 제공하는 것이다. Accordingly, the present invention provides a hydrophilic coating composition capable of reducing the freezing temperature of water in a coating film by adding ethylene glycol or butylcarbitol to a polyacrylic-based organic agent that imparts hydrophilicity to the metal surface.
즉, 본 발명에 따른 친수성 코팅 조성물은 에틸렌글리콜 또는 부틸카비톨이 물 분자 사이에 끼여 들어서 규칙적인 수소결합 형성, 즉 얼음 형성을 방해하여 물의 결빙 온도를 낮아지게 한다.That is, in the hydrophilic coating composition according to the present invention, ethylene glycol or butylcarbitol is interposed between water molecules to prevent regular hydrogen bond formation, ie, ice formation, thereby lowering the freezing temperature of water.
또한, 본 발명에 따른 친수성 코팅 조성물은 폴리아크릴 수지를 포함하여 코팅막에서 물의 물퍼짐 지름이 증가하고 접촉각이 작아져 코팅막에 친수성을 부여할 수 있다.In addition, the hydrophilic coating composition according to the present invention can impart hydrophilicity to the coating film by including the polyacrylic resin to increase the water spread diameter and the contact angle in the coating film.
덧붙여, 내식성 코팅막에 사용되는 폴리아크릴 수지를 친수성 코팅막의 베이스 물질로 사용하여 외부 환경에 의한 물성 변화를 최소화하고 공정을 간소화할 수 있는다. In addition, by using the polyacrylic resin used for the corrosion-resistant coating film as a base material for the hydrophilic coating film, it is possible to minimize the change in physical properties due to the external environment and simplify the process.
또한, 본 발명에 따른 친수성 코팅 조성물에서 상기 폴리아크릴 수지는 술폰산(SO3H)을 포함할 수 있다. 상기 폴리아크릴 수지에 술폰산을 포함하는 기가 결합되어 물퍼짐 지름이 커지고 접촉각이 작아 친수 효과를 발휘할 수 있다.In addition, in the hydrophilic coating composition according to the present invention, the polyacrylic resin may include sulfonic acid (SO 3 H). A group containing sulfonic acid is bonded to the polyacrylic resin, so that the water spread diameter is increased and the contact angle is small, thereby exhibiting a hydrophilic effect.
또한, 본 발명에 따른 친수성 코팅 조성물에서 상기 에틸렌글리콜 또는 부틸카비톨이 폴리아크릴 수지 총 중량의 1 ~ 3 중량%로 포함되는 것이 바람직하다. 상기 에틸렌글리콜 또는 부틸카비톨이 1 중량% 미만으로 첨가되면 결빙 온도 저감 효과가 발현되지 않고, 3 중량%를 초과하는 경우 친수성이 저하되고 코팅막이 금속 기재에서 탈락되는 문제가 발생한다. In addition, in the hydrophilic coating composition according to the present invention, the ethylene glycol or butyl carbitol is preferably included in an amount of 1 to 3% by weight of the total weight of the polyacrylic resin. When the ethylene glycol or butylcarbitol is added in an amount of less than 1% by weight, the effect of reducing the freezing temperature is not expressed.
또한, 본 발명은 금속재;In addition, the present invention is a metal material;
상기 금속재 상에 형성된 내식성 코팅막; 및a corrosion-resistant coating film formed on the metal material; and
상기 내식성 코팅막 상에 형성된 친수성 코팅막;을 포함하고,Including; a hydrophilic coating film formed on the corrosion-resistant coating film,
상기 친수성 코팅막은 폴리아크릴 수지에 에틸렌글리콜 또는 부틸카비톨이 첨가되어 형성된 열교환기용 핀을 제공한다.The hydrophilic coating film provides a fin for a heat exchanger formed by adding ethylene glycol or butylcarbitol to a polyacrylic resin.
도 1은 본 발명에 따른 열교환기용 핀을 나타낸 단면도이다. 도 1을 참고하면, 열교환기용 핀은 금속재(100), 내식성 코팅막(200) 및 친수성 코팅막(300)을 포함하고, 금속재(100)는 일반적으로 핀 소재로 사용되는 알루미늄일 수 있고, 내식성 코팅막(200)은 유기계 폴리아크릴, 에폭시 및 멜라민을 포함하여 형성될 수 있다. 1 is a cross-sectional view showing a fin for a heat exchanger according to the present invention. 1, the heat exchanger fin includes a metal material 100, a corrosion-resistant coating film 200 and a hydrophilic coating film 300, and the metal material 100 may be aluminum generally used as a fin material, and a corrosion-resistant coating film ( 200) may be formed including organic polyacrylic, epoxy and melamine.
또한, 상기 친수성 코팅막(300)은 전술한 바와 같이 유기계 폴리아크릴 수지, 및 에틸렌글리콜 또는 부틸카비톨을 포함하여 형성될 수 있고, 이때 상기 유기계 폴리아크릴 수지는 술폰산(SO3H)을 포함하며, 상기 에틸렌글리콜 또는 부틸카비톨이 전술한 바와 같이 폴리아크릴 수지 총 중량의 1 ~ 3 중량%로 포함되어, 결빙 온도 저감 효과가 발현되지 않고 친수성이 저하되며 코팅막이 기재에서 탈락되는 문제를 방지할 수 있다.In addition, the hydrophilic coating film 300 may be formed including an organic polyacrylic resin, and ethylene glycol or butyl carbitol as described above, wherein the organic polyacrylic resin includes sulfonic acid (SO 3 H), As described above, the ethylene glycol or butyl carbitol is included in 1 to 3% by weight of the total weight of the polyacrylic resin, so that the effect of reducing the freezing temperature is not expressed, the hydrophilicity is lowered, and the problem of the coating film falling off from the substrate can be prevented. there is.
본 발명에 따른 열교환기용 핀은 하기에서 더욱 구체적으로 설명하겠지만, 냉매배관 및 핀 주변의 공기 간의 열교환이 이루어지도록 할 수 있고, 열교환 효율을 높이기 위해 다수 개로 구비될 수 있다.Although the fins for a heat exchanger according to the present invention will be described in more detail below, heat exchange between the refrigerant pipe and the air around the fins may be made, and a plurality of fins may be provided to increase heat exchange efficiency.
또한, 본 발명은 냉매배관 및 상기 냉매배관에 결합되는 다수 개의 핀을 포함하는 실외 열교환기로서,In addition, the present invention is an outdoor heat exchanger comprising a refrigerant pipe and a plurality of fins coupled to the refrigerant pipe,
상기 핀의 표면에 형성된 내식성 코팅막 및 상기 내식성 코팅막 상에 형성된 친수성 코팅막을 포함하고,A corrosion-resistant coating film formed on the surface of the pin and a hydrophilic coating film formed on the corrosion-resistant coating film,
상기 친수성 코팅막은 폴리아크릴 수지에 에틸렌글리콜 또는 부틸카비톨이 첨가되어 형성된 열교환기를 제공한다.The hydrophilic coating film provides a heat exchanger formed by adding ethylene glycol or butyl carbitol to a polyacrylic resin.
도 2는 공기조화기의 구성도이고, 도 3은 본 발명에 따른 실외기에 구비되는 실외 열교환기의 단면도로, 도 2 및 도 3을 참조하여 본 발명에 따른 열교환기를 구체적으로 설명한다. 다만, 하기에서는 실내 열교환기 및 실외 열교환기로 구분하여 설명하였으나, 본 발명에 따른 열교환기가 실내 열교환기 또는 실외 열교환기에 제한되는 것은 아니다.2 is a block diagram of an air conditioner, and FIG. 3 is a cross-sectional view of an outdoor heat exchanger provided in an outdoor unit according to the present invention. The heat exchanger according to the present invention will be described in detail with reference to FIGS. 2 and 3 . However, in the following, an indoor heat exchanger and an outdoor heat exchanger have been described separately, but the heat exchanger according to the present invention is not limited to an indoor heat exchanger or an outdoor heat exchanger.
도 2 및 도 3에 도시된 바와 같이, 공기조화기는 실내기(1) 및 실외기(2)를 포함할 수 있다. 상기 공기조화기는 상기 실내기(1)의 형상에 따라 스탠드형, 벽걸이형 또는 천장형 등으로 분류될 수 있고, 상기 공기조화기는 냉방만을 수행하는 경우, 난방만을 수행하는 경우, 그리고 냉난방 모두 수행하는 경우를 포함할 수 있다.2 and 3 , the air conditioner may include an indoor unit 1 and an outdoor unit 2 . The air conditioner may be classified into a stand type, a wall-mounted type, or a ceiling type according to the shape of the indoor unit 1, and the air conditioner performs only cooling, heating only, and both heating and cooling. may include
상기 실내기(1)는 열교환된 공기를 실내로 토출할 수 있다. 그리고 상기 실외기(2)는 상기 실내기(1)와 연결되어 상기 실내기(1)에서 공기를 조화하는데 필요한 냉매를 상기 실내기(1)로 전달할 수 있고, 상기 실내기(1)는 실내 공기를 상기 실내 열교환기(11)로 송풍시키는 실내 송풍기(12)를 더 포함할 수 있다.The indoor unit 1 may discharge heat-exchanged air into the room. In addition, the outdoor unit 2 may be connected to the indoor unit 1 to deliver a refrigerant required for air conditioning in the indoor unit 1 to the indoor unit 1 , and the indoor unit 1 may heat exchange the indoor air with the indoor unit. It may further include an indoor blower 12 for blowing air with the unit 11 .
한편, 상기 실외기(2)는 도 3에 도시된 바와 같이 실외 공기와 냉매가 열교환되는 실외 열교환기(21)를 포함할 수 있다. 상기 공기조화기가 냉방 운전으로 작동될 때, 상기 실외 열교환기(21)는 상기 실외 열교환기(21)로 전달되는 기상 냉매가 실외 공기에 의해 응축될 수 있는 응축기로 작동될 수 있다.Meanwhile, as shown in FIG. 3 , the outdoor unit 2 may include an outdoor heat exchanger 21 through which outdoor air and refrigerant exchange heat. When the air conditioner is operated in the cooling operation, the outdoor heat exchanger 21 may operate as a condenser in which the gaseous refrigerant transferred to the outdoor heat exchanger 21 may be condensed by the outdoor air.
또한, 상기 공기조화기가 난방 운전으로 작동될 때, 상기 실외 열교환기(21)는 상기 실외 열교환기(21)로 전달되는 액상 냉매가, 실외 공기에 의해 증발될 수 있는 증발기로 작동될 수 있다.Also, when the air conditioner is operated in a heating operation, the outdoor heat exchanger 21 may operate as an evaporator in which the liquid refrigerant transferred to the outdoor heat exchanger 21 may be evaporated by the outdoor air.
상기 실외 열교환기(21)는 내부에 냉매가 유동되는 냉매배관(210)을 포함할 수 있고, 상기 냉매배관(210)은 다수 개로 구비될 수 있다. 그리고, 상기 실외 열교환기(21)는 다수 개의 냉매배관(210)을 연결하기 위하여 U자형으로 만곡되는 리턴밴드(211)를 더 포함할 수 있다. The outdoor heat exchanger 21 may include a refrigerant pipe 210 through which a refrigerant flows therein, and a plurality of the refrigerant pipe 210 may be provided. In addition, the outdoor heat exchanger 21 may further include a return band 211 curved in a U shape to connect the plurality of refrigerant pipes 210 .
상기 다수 개의 냉매배관(210)은 상기 리턴밴드(211)를 통해 직렬로 연결되어 하나의 냉매유로를 형성할 수 있거나, 상기 다수 개의 냉매배관(210)은 상기 리턴밴드(211)를 통해 직렬로 연결된 냉매배관(210)의 복수 군이 병렬로 연결되어 복수 개의 냉매 유로를 형성하는 것도 가능하다. 다만, 이하에서는 상기 다수 개의 냉매배관(210)이 상기 리턴밴드(211)를 통해 하나의 열교환기에 구비되는 것으로 한정하여 설명한다.The plurality of refrigerant pipes 210 may be connected in series through the return band 211 to form one refrigerant passage, or the plurality of refrigerant pipes 210 may be connected in series through the return band 211 . It is also possible that a plurality of groups of the connected refrigerant pipes 210 are connected in parallel to form a plurality of refrigerant passages. However, in the following description, the plurality of refrigerant pipes 210 are limited to being provided in one heat exchanger through the return band 211 .
상기 실외 열교환기(21)는 상기 냉매배관(210)에 결합되며 하나 이상의 홀이 형성되는 핀(220)을 포함할 수 있다. 상기 핀(220)에 형성되는 홀의 개수는 상기 실외 열교환기(21)에 구비되는 냉매배관(210)의 개수에 대응될 수 있다. 따라서, 상기 다수 개의 냉매배관(210)이 상기 핀(220)에 형성된 하나 이상의 홀에 각각 관통됨으로써, 상기 다수 개의 냉매배관(210)은 상기 핀(220)에 결합될 수 있다. 상기 핀(220)은 일례로 평판형으로 형성될 수 있고, 상기 핀(220)은 상기 냉매배관(210) 및 핀(220) 주변의 공기 간의 열교환이 이루지도록 할 수 있다. 또한, 상기 핀(220)은 열교환 효율을 높이기 위해, 다수 개로 구비될 수 있고, 상기 다수 개의 핀(220)은 각각 설정 간격으로 이격되어 배치될 수 있다.The outdoor heat exchanger 21 may include a fin 220 coupled to the refrigerant pipe 210 and having one or more holes formed therein. The number of holes formed in the fin 220 may correspond to the number of refrigerant pipes 210 provided in the outdoor heat exchanger 21 . Accordingly, as the plurality of refrigerant pipes 210 are respectively penetrated through one or more holes formed in the fin 220 , the plurality of refrigerant pipes 210 may be coupled to the fin 220 . The fin 220 may be formed in a flat plate shape, for example, and the fin 220 may allow heat exchange between the refrigerant pipe 210 and the air around the fin 220 . In addition, in order to increase heat exchange efficiency, the plurality of fins 220 may be provided, and the plurality of fins 220 may be disposed to be spaced apart from each other at a set interval.
한편, 상기 다수 개의 핀(220)는 양전압(+)이 인가되는 제1 핀(231) 및 음전압(-)이 인가되는 제2 핀(232)을 포함할 수 있다. 상기 제1, 2 핀(231, 232)은 도체로 형성될 수 있다. 그리고, 상기 실외기(2)는 상기 제1, 2 핀(231, 232)에 전압을 인가하는 전압발생기(미도시)를 더 포함할 수 있다. 상기 전압발생기 및 상기 제 1, 2 핀(231, 232)은 일례로 케이블에 의해 서로 전기적으로 연결될 수 있다.Meanwhile, the plurality of pins 220 may include a first pin 231 to which a positive voltage (+) is applied and a second pin 232 to which a negative voltage (-) is applied. The first and second pins 231 and 232 may be formed of a conductor. In addition, the outdoor unit 2 may further include a voltage generator (not shown) for applying a voltage to the first and second pins 231 and 232 . The voltage generator and the first and second pins 231 and 232 may be electrically connected to each other by a cable, for example.
상기 제 1 핀(231) 및 상기 제 2 핀(232) 사이의 공간에는 전기장이 형성될 수 있고, 가변된 공간의 전기용량의 값을 이용하여 상기 제 1, 2 핀(231, 232)에 서리의 착상 여부 및 착상된 서리량을 판단할 수 있다.An electric field may be formed in the space between the first fin 231 and the second fin 232 , and frost is applied to the first and second fins 231 and 232 using the changed capacitance value of the space. It is possible to judge whether or not the implantation of
한편, 상기 실외 열교환기(21)에서, 온도 변화가 큰 영역은 이슬이 맺히기가 용이할 수 있고, 상기 실외 열교환기(21) 맺힌 이슬은 실외의 저온환경에 의해 쉽게 결빙될 수 있다. 따라서, 상기 축전부(230)는 상기 실외 열교환기(21)에서 온도변화가 가장 클 것으로 기대되는 영역에 배치됨으로써, 상기 실외 열교환기(21)에 맺힌 이슬이 결빙되는 것을 신속하게 감지하고, 상기 실외 열교환기(21)의 제상 돌입 시점을 효율적으로 결정할 수 있다. On the other hand, in the outdoor heat exchanger (21), a region with a large temperature change may easily form dew, and the dew formed in the outdoor heat exchanger (21) may be easily frozen by an outdoor low-temperature environment. Accordingly, the power storage unit 230 is disposed in an area where the temperature change is expected to be greatest in the outdoor heat exchanger 21, so that the dew formed on the outdoor heat exchanger 21 is frozen, and the It is possible to efficiently determine the defrost rush point of the outdoor heat exchanger 21 .
상기 실외 열교환기(21)에서 온도변화가 가장 클 것으로 기대되는 영역은 일례로, 상기 실외 열교환기(21)에 냉매가 유입되는 입구측(도 3의 A) 또는 냉매가 유출되는 출구측(도 3 의 B)을 포함할 수 있다. 또는, 상기 축전부(230)는 상기 실외기팬으로 인하여 공기의 흐름이 가장 원활한 위치에 배치될 수 있다. 따라서, 상기 축전부(230)가 상기 실외 열교환기(21)의 온도변화가 큰 영역에 배치됨으로써, 상기 실외 열교환기(21)의 제상 돌입 시점을 결정하는 데 용이할 수 있다.An area where the temperature change is expected to be greatest in the outdoor heat exchanger 21 is, for example, the inlet side (FIG. 3A) through which the refrigerant flows into the outdoor heat exchanger 21, or the outlet side (FIG. B) of 3 may be included. Alternatively, the power storage unit 230 may be disposed at a position in which air flows most smoothly due to the outdoor fan. Accordingly, since the power storage unit 230 is disposed in an area where the temperature change of the outdoor heat exchanger 21 is large, it may be easy to determine a defrosting start time of the outdoor heat exchanger 21 .
전술한 바와 같이 제상 운전을 위해서는 축전부를 결빙이 발생할 수 있는 최적의 장소에 구비하는 것으로 결빙을 제거할 수 있으나, 본 발명은 축전부의 위치와 유관하거나 무관하게 열교환기용 핀 및 이를 포함하는 열교환기에 전술한 코팅 조성물을 적용함으로써, 열교환기에서 발생하는 결빙을 최소한 저감시키거나 없앨 수 있는 코팅 조성물을 제공할 수 있다.As described above, for the defrosting operation, ice can be removed by providing the power storage unit in an optimal place where freezing can occur. By applying a coating composition, it is possible to provide a coating composition capable of at least reducing or eliminating icing occurring in the heat exchanger.
이하, 실시예들 및 비교예들에 따른 친수성 코팅 조성물을 포함하는 코팅막을 통하여 본 발명을 좀더 상세하게 설명한다. 이러한 실시예는 본 발명을 좀더 상세하게 설명하기 위하여 예시로 제시한 것에 불과하다. 따라서 본 발명이 이러한 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through a coating film comprising a hydrophilic coating composition according to Examples and Comparative Examples. These embodiments are merely presented as examples in order to explain the present invention in more detail. Therefore, the present invention is not limited to these examples.
<실시예><Example>
실시예 1: 코팅막 제조 1Example 1: Coating film preparation 1
알루미늄 금속 표면에 폴리아크릴 수지, 에폭시 및 멜라민을 포함하는 내식성 코팅막을 형성시킨 후 건조시켰다. 상기 내식성 코팅막 상에 친수성 코팅막을 형성시킨 후 건조시켰다. 상기 친수성 코팅막은 폴리아크릴 수지 및 에틸렌글리콜을 혼합하였다. 이때, 에틸렌글리콜은 폴리아크릴 수지 총 중량의 1 중량%로 혼합하였다.A corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried. The hydrophilic coating film was a mixture of polyacrylic resin and ethylene glycol. At this time, ethylene glycol was mixed at 1% by weight of the total weight of the polyacrylic resin.
실시예 2: 코팅막 제조 2Example 2: Coating film preparation 2
알루미늄 금속 표면에 폴리아크릴 수지, 에폭시 및 멜라민을 포함하는 내식성 코팅막을 형성시킨 후 건조시켰다. 상기 내식성 코팅막 상에 친수성 코팅막을 형성시킨 후 건조시켰다. 상기 친수성 코팅막은 폴리아크릴 수지 및 에틸렌글리콜을 혼합하였다. 이때, 에틸렌글리콜은 폴리아크릴 수지 총 중량의 3 중량%로 혼합하였다.A corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried. The hydrophilic coating film was a mixture of polyacrylic resin and ethylene glycol. At this time, ethylene glycol was mixed in 3 wt% of the total weight of the polyacrylic resin.
실시예 3: 코팅막 제조 3Example 3: Coating film preparation 3
알루미늄 금속 표면에 폴리아크릴 수지, 에폭시 및 멜라민을 포함하는 내식성 코팅막을 형성시킨 후 건조시켰다. 상기 내식성 코팅막 상에 친수성 코팅막을 형성시킨 후 건조시켰다. 상기 친수성 코팅막은 폴리아크릴 수지 및 부틸카비톨을 혼합하였다. 이때, 부틸카비톨은 폴리아크릴 수지 총 중량의 1 중량%로 혼합하였다.A corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried. The hydrophilic coating film was a mixture of polyacrylic resin and butyl carbitol. At this time, butylcarbitol was mixed in an amount of 1% by weight of the total weight of the polyacrylic resin.
실시예 4: 코팅막 제조 4Example 4: Preparation of coating film 4
알루미늄 금속 표면에 폴리아크릴 수지, 에폭시 및 멜라민을 포함하는 내식성 코팅막을 형성시킨 후 건조시켰다. 상기 내식성 코팅막 상에 친수성 코팅막을 형성시킨 후 건조시켰다. 상기 친수성 코팅막은 폴리아크릴 수지 및 부틸카비톨을 혼합하였다. 이때, 부틸카비톨은 폴리아크릴 수지 총 중량의 3 중량%로 혼합하였다.A corrosion-resistant coating film containing polyacrylic resin, epoxy and melamine was formed on the aluminum metal surface, and then dried. After forming a hydrophilic coating film on the corrosion-resistant coating film, it was dried. The hydrophilic coating film was a mixture of polyacrylic resin and butyl carbitol. At this time, butylcarbitol was mixed in an amount of 3% by weight of the total weight of the polyacrylic resin.
비교예 1Comparative Example 1
에틸렌글리콜을 첨가하지 않고 폴리아크릴을 100 중량%로 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 알루미늄 금속 표면에 코팅막을 형성하였다.A coating film was formed on the aluminum metal surface in the same manner as in Example 1, except that 100% by weight of polyacrylic was used without adding ethylene glycol.
비교예 2Comparative Example 2
에틸렌글리콜을 폴리아크릴 수지 총 중량의 5 중량%로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 알루미늄 금속 표면에 코팅막을 형성하였다. A coating film was formed on the aluminum metal surface in the same manner as in Example 1, except that ethylene glycol was mixed in an amount of 5% by weight of the total weight of the polyacrylic resin.
비교예 3Comparative Example 3
*부틸카비톨을 폴리아크릴 수지 총 중량의 5 중량%로 혼합한 것을 제외하고는 상기 실시예 3과 동일한 방법으로 알루미늄 금속 표면에 코팅막을 형성하였다.* A coating film was formed on the aluminum metal surface in the same manner as in Example 3, except that butylcarbitol was mixed in an amount of 5% by weight based on the total weight of the polyacrylic resin.
*비교예 4*Comparative Example 4
글리세린을 폴리아크릴 수지 총 중량의 3 중량%로 혼합한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 알루미늄 금속 표면에 코팅막을 형성하였다.A coating film was formed on the aluminum metal surface in the same manner as in Example 1, except that glycerin was mixed in an amount of 3% by weight based on the total weight of the polyacrylic resin.
하기 표 1은 실시예 및 비교예에서 사용된 에틸렌글리콜, 부틸카비톨 및 글리세린의 기본 성질을 나타낸 표이다.Table 1 below is a table showing the basic properties of ethylene glycol, butylcarbitol and glycerin used in Examples and Comparative Examples.
<실험예><Experimental example>
실험예 1: 코팅막의 외관 및 결빙 온도 분석Experimental Example 1: Analysis of the appearance and freezing temperature of the coating film
본 발명에 따른 실시예 1 내지 4 및 비교예 1 내지 3의 코팅막에서 초기친수성 물퍼짐 지름, 지속친수성 물퍼짐 지름, 코팅막 외관 및 결빙 온도를 분석하고 그 결과를 하기 표 2에 나타내었다.The initial hydrophilic water spread diameter, the sustained hydrophilic water spread diameter, the coating film appearance and the freezing temperature were analyzed in the coating films of Examples 1 to 4 and Comparative Examples 1 to 3 according to the present invention, and the results are shown in Table 2 below.
이때, 물퍼짐 지름은 제조된 코팅막을 마이크로 피펫과 수직이 되도록 하여 10 mm의 높이에서 0.01 ml의 증류수를 자유 낙하시킨 후 20 초 후에 버니어 켈리퍼스로 물퍼짐 지름을 측정하였으며, 제조된 코팅막에서 세곳 이상을 측정하여 평균값을 측정하였으며, 정원이 안될 경우 (큰지금 + 작은지름)/2의 값으로 측정하였다.At this time, the water spread diameter was measured with a vernier caliper after 20 seconds after free-falling 0.01 ml of distilled water from a height of 10 mm by making the prepared coating film perpendicular to the micropipette, and three places in the prepared coating film The average value was measured by measuring the above, and in the case of not having a garden, it was measured as a value of (larger now + small diameter)/2.
구분division | 실시예 1Example 1 | 실시예 2Example 2 | 실시예 3Example 3 | 실시예 4Example 4 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 |
초기친수성물퍼짐 지름[mm] (Wet/Dry 10 사이클)Initial hydrophilicity spread diameter [mm] (Wet/ |
9.69.6 | 9.19.1 | 9.99.9 | 9.99.9 | 9.89.8 | 8.28.2 | -- |
지속친수성물퍼짐 지름[mm] (Wet/Dry 300 사이클)Persistent hydrophilic water spread diameter [mm] (Wet/ |
6.96.9 | 6.96.9 | 6.76.7 | 6.76.7 | 6.66.6 | 5.75.7 | -- |
도료 외관paint appearance | 이상 없음clear | 이상 없음clear | 이상 없음clear | 이상 없음clear | 이상 없음clear | 친수성 저하 및 코팅막 탈락Decrease in hydrophilicity and drop off coating film | 코팅막 탈락coating film peeling off |
결빙 온도(℃)Freezing temperature (℃) | -1.4-1.4 | -2.5-2.5 | -1.0-1.0 | -1.7-1.7 | -0.8-0.8 | -- | -- |
상기 표 2에 기재된 바와 같이, 본 발명에 따른 실시예 1 내지 4에서 제조된 코팅막은 외관에 이상이 없으며, 비교예 2는 에틸렌글리콜이 폴리아크릴 수지 총 중량의 5 중량%로 포함되어 초기 친수성 물퍼짐 지름이 8.2 mm여서 친수성이 저하되고 코팅막이 금속 기재에서 탈락되며, 비교예 3은 부틸카비톨이 폴리아크릴 수지 총 중량의 5 중량%가 포함되어 친수성 코팅막이 금속 기재에서 탈락되는 것을 알 수 있다.또한, 에틸렌글리콜 또는 부틸카비톨이 첨가되지 않은 비교예 1의 경우 초기 친수성 물퍼짐 지름 및 지속 친수성 물퍼짐 지름이 본 발명의 실시예 1과 유사하게 측정되어 친수성이 우수한 것을 알 수 있고, 비교예 1의 결빙 온도는 -0.8 ℃여서 본 발명의 실시예 1 내지 4(실시예 1: -1.4 ℃, 실시예 2: -2.5 ℃, 실시예 3: -1.0 ℃, 실시예 4: -1.7℃)에 비해 결빙이 잘 발생하는 것을 알 수 있다. As shown in Table 2 above, the coating films prepared in Examples 1 to 4 according to the present invention have no abnormality in appearance, and in Comparative Example 2, ethylene glycol is included in 5% by weight of the total weight of the polyacrylic resin, so that the initial hydrophilic water The spread diameter is 8.2 mm, so the hydrophilicity is lowered and the coating film is removed from the metal substrate. In addition, in the case of Comparative Example 1 in which ethylene glycol or butyl carbitol was not added, the initial hydrophilic water spread diameter and the sustained hydrophilic water spread diameter were measured similarly to Example 1 of the present invention, so it can be seen that the hydrophilicity is excellent. The freezing temperature of Example 1 was -0.8 °C, so Examples 1 to 4 of the present invention (Example 1: -1.4 °C, Example 2: -2.5 °C, Example 3: -1.0 °C, Example 4: -1.7 °C) ), it can be seen that freezing occurs more easily than
실험예 2: Wet/Dry 사이클 반복 회수에 따른 결빙 온도 및 접촉각 분석Experimental Example 2: Analysis of freezing temperature and contact angle according to the number of repeated wet/dry cycles
본 발명에 따른 실시예 2 및 4의 코팅막의 Wet/Dry 사이클 반복 회수에 따른 결빙 온도 및 접촉각을 분석하고, 그 결과를 하기 표 3 및 도 4에 나타내었다.The freezing temperature and contact angle according to the number of repeated wet/dry cycles of the coating films of Examples 2 and 4 according to the present invention were analyzed, and the results are shown in Tables 3 and 4 below.
이때, Wet/Dry 시험 방법은 코팅막을 증류수에 10분 침적 후 10분 건조하는 작업을 반복하여 수행하였다.In this case, the wet/dry test method was performed by repeatedly dipping the coating film in distilled water for 10 minutes and then drying the coating film for 10 minutes.
코팅막의 접촉각은 제조된 코팅막을 접촉각 측정기에서 수직이 되도록 하여 10 mm의 높이에서 0.01 ml의 증류수를 자유 낙하시킨 후 시험기의 화면에 보이는 접촉각으로 하였다.The contact angle of the coating film was set as the contact angle shown on the screen of the tester after free-falling 0.01 ml of distilled water from a height of 10 mm by making the prepared coating film perpendicular to the contact angle meter.
결빙 온도는 영하 5도 분위기의 항온 챔버에서 물을 코팅막의 표면에 뿌려 결빙되게 한 후 항온 챔버의 온도를 승온시켜 각각의 코팅막에서 결빙된 물(얼음)의 녹는 온도를 확인하는 방법으로 측정하였다.The freezing temperature was measured by spraying water on the surface of the coating film in a constant temperature chamber in an atmosphere of minus 5 degrees Celsius to freeze, and then increasing the temperature of the constant temperature chamber to check the melting temperature of water (ice) frozen in each coating film.
구분division | 비교예 1Comparative Example 1 | 실시예 2Example 2 | 실시예 4Example 4 | ||
값value | 결과result | 값value | 결과result | ||
결빙 온도freezing temperature | -0.8-0.8 | -1.7-1.7 | ○○ | -2.5-2.5 | ◎◎ |
10 사이클 결빙 온도10 cycle freezing temperature | -0.4-0.4 | -1.4-1.4 | ○○ | -1.9-1.9 | ◎◎ |
물퍼짐 지름[mm]Water spread diameter [mm] | 9.89.8 | 9.99.9 | ○○ | 9.19.1 | ○○ |
접촉각(°)Contact angle (°) | 8.68.6 | 8.38.3 | ○○ | 9.09.0 | ○○ |
300 사이클 결빙 온도300 cycle freezing temperature | -0.4-0.4 | -1.1-1.1 | ○○ | -1.4-1.4 | ○○ |
물퍼짐 지름[mm]Water spread diameter [mm] | 6.66.6 | 6.76.7 | ○○ | 6.96.9 | ○○ |
접촉각(°)Contact angle (°) | 26.326.3 | 25.525.5 | ○○ | 24.124.1 | ◎◎ |
상기 표 3에서 ◎는 비교예 1 대비 우수한 것을 나타내고, ○는 비교예 1 대비 동등한 수준을 나타낸다. 상기 표 3 및 도 4에 나타낸 바와 같이, 본 발명의 실시예 2는 에틸렌글리콜 또는 부틸카비돌이 첨가되지 않은 비교예 1과 비교하여 코팅막 결빙 온도, 10 사이클 결빙 온도 및 300 사이클 결빙 온도가 낮은 것을 알 수 있고, 이는 코팅막에 형성된 서리가 비교예 1 대비 낮은 온도에서 생성되는 것을 나타낸다. In Table 3, ◎ indicates that it is superior to Comparative Example 1, and ○ indicates an equivalent level compared to Comparative Example 1. As shown in Tables 3 and 4, Example 2 of the present invention shows that the coating film freezing temperature, 10-cycle freezing temperature, and 300-cycle freezing temperature are low compared to Comparative Example 1 in which ethylene glycol or butylcarbidol is not added. Can be, which indicates that the frost formed on the coating film is generated at a lower temperature than Comparative Example 1.
또한, 본 발명의 실시예 2 및 4의 코팅막은 비교예 1과 물퍼짐 지름 및 접촉각이 서로 유사하여 결빙 온도가 낮아짐에도 코팅막에서의 친수성을 유지할 수 있음을 알 수 있다.In addition, it can be seen that the coating films of Examples 2 and 4 of the present invention have similar water spread diameters and contact angles to those of Comparative Example 1, so that hydrophilicity in the coating film can be maintained even when the freezing temperature is lowered.
실험예 3: 코팅막의 결빙 상태 분석Experimental Example 3: Analysis of the frozen state of the coating film
본 발명에 따른 친수성 코팅 조성물의 금속 표면에서의 온도에 따른 결빙 상태를 분석하고 그 결과를 하기 표 4 및 도 5에 나타내었다. The freezing state according to the temperature on the metal surface of the hydrophilic coating composition according to the present invention was analyzed, and the results are shown in Tables 4 and 5 below.
구체적으로, 본 발명에 따른 친수성 코팅 조성물을 금 표면에 증착시켜 친수성 코팅막을 형성시킨 후 -5 ℃ 및 -2 ℃에서 금 표면에서의 결빙 상태를 분석하였다.Specifically, the hydrophilic coating composition according to the present invention was deposited on the gold surface to form a hydrophilic coating film, and then the freezing state on the gold surface was analyzed at -5 °C and -2 °C.
도 5의 (a) 및 (b)에서 가장 좌측에 있는 사진은 에틸렌글리콜(EG)을 폴리아크릴 수지 총 중량의 3 중량%로 혼합하여 금 표면에 코팅막을 형성시킨 것이며, 다음 우측의 사진은 부틸카비톨(BDG)을 폴리아크릴 수지 총 중량의 3 중량%로 혼합하여 금 표면에 코팅막을 형성시킨 것이고, 다음 우측의 사진은 글리세린(glycerin)을 폴리아크릴 수지 총 중량의 3 중량%로 혼합하여 금 표면에 코팅막을 형성시킨 것이며, 가장 우측에 있는 사진은 폴리아크릴 수지를 금 표면에 코팅막으로 형성시킨 것이다.The photo on the far left in FIGS. 5 (a) and (b) shows that a coating film was formed on the gold surface by mixing ethylene glycol (EG) at 3 wt% of the total weight of the polyacrylic resin, and the photo on the right is butyl Carbitol (BDG) was mixed at 3% by weight of the total weight of the polyacrylic resin to form a coating film on the gold surface. A coating film is formed on the surface, and the photo on the far right shows a polyacrylic resin formed as a coating film on the gold surface.
예Yes | 폴리아크릴 100%100% polyacrylic |
폴리아크릴 97% +글리세린 3%Polyacrylic 97% +Glycerin 3% |
폴리아크릴 97% +부틸카비톨 3%Polyacrylic 97% +Butylcarbitol 3% |
폴리아크릴 97% +에틸렌글리콜 3%Polyacrylic 97% +Ethylene glycol 3% |
결빙점(℃)Freezing point (℃) | -5-5 | -5-5 | -5-5 | -5-5 |
녹는 온도(℃)Melting temperature (℃) | -0.8-0.8 | -0.8-0.8 | -1.7-1.7 | -2.5-2.5 |
결빙 판정Freeze Judgment | -- | 효과 없음no effect | 효과 있음in effect | 효과 있음in effect |
상기 표 4에 나타낸 바와 같이, 본 발명에 따른 코팅 조성물은 녹는 온도가 낮아져 폴리아크릴 100 중량%로 제조된 코팅막과 폴리아크릴 97 중량%와 글리세린 3 중량%가 혼합되어 제조된 코팅막과 비교하여 결빙이 덜 발생하는 것을 알 수 있다. 즉, 본 발명에 따른 코팅 조성물은 에틸렌글리콜 또는 부틸카비톨이 첨가되어 결빙 온도를 각각 종래 대비 -1.7 ℃ 또는 -0.9 ℃로 저감시킬 수 있다.As shown in Table 4, the melting temperature of the coating composition according to the present invention is lowered, and as compared to a coating film prepared by mixing 100% by weight of polyacryl and 97% by weight of polyacrylic and 3% by weight of glycerin, there is no freezing compared to the coating film. It can be seen that less That is, in the coating composition according to the present invention, ethylene glycol or butyl carbitol is added to reduce the freezing temperature to -1.7 ℃ or -0.9 ℃ compared to the prior art, respectively.
또한, 도 5의 (a)는 -5 ℃에서의 코팅막을 나타낸 것으로 모든 코팅막이 결빙되어 있는 것을 알 수 있고, 도 5의 (b)는 -2 ℃에서의 코팅막을 나타낸 것으로 -2 ℃에서 에틸렌글리콜이 3 중량% 첨가된 코팅막만이 결빙되지 않고 녹는 것을 알 수 있다.In addition, Figure 5 (a) shows the coating film at -5 ° C. It can be seen that all the coating films are frozen, Figure 5 (b) shows the coating film at -2 ° C. ethylene at -2 ° C. It can be seen that only the coating film to which 3 wt% of glycol is added is not frozen and melted.
즉, 부틸카비톨이 첨가된 코팅막, 글리세린이 첨가된 코팅막 및 폴리아크릴만으로 구성된 코팅막은 각각 녹는 온도가 -0.8 ℃, -0.8 ℃ 및 -1.7 ℃여서 -2 ℃의 외부 온도에서 녹지 않고 결빙되어 있다. 따라서, 에틸렌글리콜이 첨가된 코팅막은 녹는 온도가 낮아져 결빙을 저하시킬 수 있는 것을 알 수 있다. That is, the coating film to which butylcarbitol is added, the coating film to which glycerin is added, and the coating film composed only of polyacrylic have melting temperatures of -0.8 °C, -0.8 °C, and -1.7 °C, respectively, so they are frozen without melting at an external temperature of -2 °C. . Therefore, it can be seen that the melting temperature of the coating film to which ethylene glycol is added is lowered, thereby reducing freezing.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시 예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시 예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed in this specification, and various methods can be obtained by those skilled in the art within the scope of the technical spirit of the present invention. It is obvious that variations can be made. In addition, although the effects according to the configuration of the present invention have not been explicitly described and described while describing the embodiments of the present invention, it is natural that the effects predictable by the configuration should also be recognized.
[부호의 설명][Explanation of code]
100: 금속재100: metal
200: 내식성 코팅막200: corrosion-resistant coating film
300: 친수성 코팅막300: hydrophilic coating film
1: 실내기1: Indoor unit
2: 실외기2: outdoor unit
11: 실내 열교환기11: Indoor heat exchanger
12: 실내 송풍기12: indoor blower
21: 실외 열교환기21: outdoor heat exchanger
210: 냉매배관210: refrigerant pipe
211: 리턴밴드211: return band
220: 핀220: pin
231: 제1 핀231: first pin
232: 제2 핀232: second pin
230: 축전부230: power storage unit
Claims (10)
- 폴리아크릴 수지; 및polyacrylic resin; and에틸렌글리콜 또는 부틸카비톨;을 포함하는 친수성 코팅 조성물.A hydrophilic coating composition comprising; ethylene glycol or butyl carbitol.
- 제1항에 있어서,According to claim 1,상기 에틸렌글리콜 또는 부틸카비톨은 상기 폴리아크릴 수지 총 중량의 1 ~ 3 중량%로 포함되는 친수성 코팅 조성물.The ethylene glycol or butyl carbitol is a hydrophilic coating composition comprising 1 to 3% by weight of the total weight of the polyacrylic resin.
- 제1항에 있어서,According to claim 1,상기 폴리아크릴 수지는 술폰산(SO3H)을 포함하는 친수성 코팅 조성물.The polyacrylic resin is a hydrophilic coating composition comprising sulfonic acid (SO 3 H).
- 금속재;metal material;상기 금속재 상에 형성된 내식성 코팅막; 및a corrosion-resistant coating film formed on the metal material; and상기 내식성 코팅막 상에 형성된 친수성 코팅막;을 포함하고,Including; a hydrophilic coating film formed on the corrosion-resistant coating film,상기 친수성 코팅막은 폴리아크릴 수지에 에틸렌글리콜 또는 부틸카비톨이 첨가되어 형성된 열교환기용 핀.The hydrophilic coating film is a fin for a heat exchanger formed by adding ethylene glycol or butyl carbitol to a polyacrylic resin.
- 제4항에 있어서,5. The method of claim 4,상기 내식성 코팅막은 유기계 폴리아크릴, 에폭시 및 멜라민을 포함하는 열교환기용 핀.The corrosion-resistant coating film is a fin for a heat exchanger comprising organic polyacrylic, epoxy and melamine.
- 제4항에 있어서,5. The method of claim 4,상기 유기계 폴리아크릴 수지는 술폰산(SO3H)을 포함하는 열교환기용 핀.The organic polyacrylic resin is a fin for a heat exchanger comprising sulfonic acid (SO 3 H).
- 제4항에 있어서,5. The method of claim 4,상기 에틸렌글리콜 또는 부틸카비톨은 상기 폴리아크릴 수지 총 중량의 1 ~ 3 중량%로 포함되는 열교환기용 핀.The ethylene glycol or butyl carbitol is included in 1 to 3% by weight of the total weight of the polyacrylic resin fins for a heat exchanger.
- 냉매배관 및 상기 냉매배관에 결합되는 다수 개의 핀을 포함하는 실외 열교환기로서,An outdoor heat exchanger comprising a refrigerant pipe and a plurality of fins coupled to the refrigerant pipe,상기 핀의 표면에 형성된 내식성 코팅막 및 상기 내식성 코팅막 상에 형성된 친수성 코팅막을 포함하고,A corrosion-resistant coating film formed on the surface of the pin and a hydrophilic coating film formed on the corrosion-resistant coating film,상기 친수성 코팅막은 폴리아크릴 수지에 에틸렌글리콜 또는 부틸카비톨이 첨가되어 형성된 열교환기.The hydrophilic coating film is a heat exchanger formed by adding ethylene glycol or butyl carbitol to a polyacrylic resin.
- 제8항에 있어서,9. The method of claim 8,상기 유기계 폴리아크릴 수지는 술폰산(SO3H)을 포함하는 열교환기.The organic polyacrylic resin is a heat exchanger comprising sulfonic acid (SO 3 H).
- 제8항에 있어서,9. The method of claim 8,상기 에틸렌글리콜 또는 부틸카비톨은 상기 폴리아크릴 수지 총 중량의 1 ~ 3 중량%로 포함되는 열교환기.The ethylene glycol or butyl carbitol is included in 1 to 3% by weight of the total weight of the polyacrylic resin heat exchanger.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2020-0101823 | 2020-08-13 | ||
KR1020200101823A KR20220021234A (en) | 2020-08-13 | 2020-08-13 | Hydrophilic coating composition, fin for heat exchanger and heat exchanger including the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022035207A1 true WO2022035207A1 (en) | 2022-02-17 |
Family
ID=80247464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2021/010631 WO2022035207A1 (en) | 2020-08-13 | 2021-08-11 | Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20220021234A (en) |
WO (1) | WO2022035207A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157325A1 (en) * | 2011-05-17 | 2012-11-22 | 関西ペイント株式会社 | Aqueous coating composition for preventing frost formation in heat exchanger fin, method for forming coating film for frost formation prevention purposes, and heat exchanger fin equipped with coating film for frost formation prevention purposes |
KR20130130897A (en) * | 2012-05-23 | 2013-12-03 | (주)노루페인트 | Surface treating composition of aluminum and aluminum alloy and surface treating method using the same |
JP5567167B1 (en) * | 2013-02-28 | 2014-08-06 | 日新製鋼株式会社 | Metal siding manufacturing method and manufacturing apparatus |
JP2015190744A (en) * | 2014-03-28 | 2015-11-02 | 株式会社神戸製鋼所 | Aluminum fin material for heat exchanger |
JP6466874B2 (en) * | 2016-03-03 | 2019-02-06 | 日新製鋼株式会社 | Manufacturing method of decorative building board |
JP2019113251A (en) * | 2017-12-22 | 2019-07-11 | 三菱アルミニウム株式会社 | Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger |
-
2020
- 2020-08-13 KR KR1020200101823A patent/KR20220021234A/en not_active Application Discontinuation
-
2021
- 2021-08-11 WO PCT/KR2021/010631 patent/WO2022035207A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157325A1 (en) * | 2011-05-17 | 2012-11-22 | 関西ペイント株式会社 | Aqueous coating composition for preventing frost formation in heat exchanger fin, method for forming coating film for frost formation prevention purposes, and heat exchanger fin equipped with coating film for frost formation prevention purposes |
KR20130130897A (en) * | 2012-05-23 | 2013-12-03 | (주)노루페인트 | Surface treating composition of aluminum and aluminum alloy and surface treating method using the same |
JP5567167B1 (en) * | 2013-02-28 | 2014-08-06 | 日新製鋼株式会社 | Metal siding manufacturing method and manufacturing apparatus |
JP2015190744A (en) * | 2014-03-28 | 2015-11-02 | 株式会社神戸製鋼所 | Aluminum fin material for heat exchanger |
JP6466874B2 (en) * | 2016-03-03 | 2019-02-06 | 日新製鋼株式会社 | Manufacturing method of decorative building board |
JP2019113251A (en) * | 2017-12-22 | 2019-07-11 | 三菱アルミニウム株式会社 | Hydrophilic baked coat, aluminium fin material for heat exchanger, and heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
KR20220021234A (en) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5112521B2 (en) | Anti-icing frost paint and method of use | |
CA2020241A1 (en) | Spray encapsulation of photovoltaic modules | |
USRE47783E1 (en) | Indirect evaporative cooling heat exchanger | |
WO2017069485A1 (en) | Outdoor unit of air conditioner, cooling unit applied to the outdoor unit, and method for manufacturing the cooling unit | |
EP0504314B1 (en) | Polymeric compositions crosslinked with bistriazene compounds | |
CN101307208B (en) | High-hydrophobicity anti-icing and anti-frosting coatings and method for preparing same | |
CN103270583A (en) | Post implant wafer heating using light | |
WO2022035207A1 (en) | Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger | |
WO2023195618A1 (en) | Interior water paint composition for insulation and initial fire extinguishing | |
MY118037A (en) | Water repellent coating film, method and apparatus for manufacturing the same, and water repellent coating material composition | |
CN101707103A (en) | Coating method for wire or electrical insulator with teflon coating | |
WO2023195616A1 (en) | External aqueous paint composition for shielding heat and extinguishing initial fire | |
CN104134499A (en) | High-voltage composite insulator | |
WO2018194366A1 (en) | Electrostatic chuck sealed with sealant and method for manufacturing same | |
WO2020091274A1 (en) | Anti-corrosion coating layer | |
WO2022240203A1 (en) | Method for forming temperature-responsive hydrophilic-hydrophobic conversion surface, and temperature-responsive hydrophilic-hydrophobic conversion surface and heat exchanger, using same | |
KR102435526B1 (en) | Composition for surface coating with excellent anti-icing properties | |
CN115403967A (en) | Anti-condensation flashover coating and construction process thereof | |
US12077867B2 (en) | Surface structure having function freezing delay and icing layer separation and manufacturing method thereof | |
CN207339144U (en) | A kind of cable testing bridge of good heat dissipation effect | |
WO2021230553A1 (en) | Cooling tower and chiller system comprising same | |
WO2020256394A1 (en) | Method for manufacturing composite material, and composite material | |
WO2017111541A2 (en) | Method of manufacturing dew formation preventing member, and refrigerator and evaporator having dew formation preventing member | |
Vosloo et al. | The effect of thermal characteristics of power line insulators on pollution performance | |
CN1117827C (en) | Transitory efficient insulating paint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21856213 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21856213 Country of ref document: EP Kind code of ref document: A1 |