JP6466874B2 - Manufacturing method of decorative building board - Google Patents
Manufacturing method of decorative building board Download PDFInfo
- Publication number
- JP6466874B2 JP6466874B2 JP2016041324A JP2016041324A JP6466874B2 JP 6466874 B2 JP6466874 B2 JP 6466874B2 JP 2016041324 A JP2016041324 A JP 2016041324A JP 2016041324 A JP2016041324 A JP 2016041324A JP 6466874 B2 JP6466874 B2 JP 6466874B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- water
- coating layer
- resin emulsion
- emulsion paint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Finishing Walls (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
本発明は、金属サイディング基材の表面に表面被覆層を有する化粧建築板の製造方法に関する。 The present invention relates to a method for manufacturing a decorative building board having a surface coating layer on the surface of a metal siding substrate.
従来、建物の外装用建材として、金属サイディング基材上に印刷層や、クリア層等の表面被覆層を形成した化粧建築板が知られている。印刷層は、化粧建築板に意匠性を付与すること等を目的として形成され、印刷層の例には、凹凸を有する層や、特定の模様を形成した層等が含まれる。一方、クリア層等の表面被覆層は、金属サイディング基材や印刷層等を、外部の水分等から保護する目的で形成され、例えば合成樹脂粒子が水に分散された水系樹脂エマルション塗料を塗布して形成される。水系樹脂エマルション塗料の例には、水系シリコーン変性アクリル樹脂エマルション塗料や、水系アクリル樹脂エマルション塗料、水系アクリルスチレン樹脂エマルション塗料等が含まれる(例えば、特許文献1参照)。これらの水系樹脂エマルション塗料には、合成樹脂粒子や造膜助剤等が含まれる。 Conventionally, a decorative building board in which a surface layer such as a printed layer or a clear layer is formed on a metal siding base material is known as a building exterior material. The printed layer is formed for the purpose of imparting design properties to the decorative building board, and examples of the printed layer include a layer having irregularities, a layer having a specific pattern, and the like. On the other hand, the surface coating layer such as a clear layer is formed for the purpose of protecting the metal siding substrate and the printing layer from external moisture etc., for example, by applying a water-based resin emulsion paint in which synthetic resin particles are dispersed in water. Formed. Examples of the water-based resin emulsion paint include a water-based silicone-modified acrylic resin emulsion paint, a water-based acrylic resin emulsion paint, and a water-based acrylic styrene resin emulsion paint (see, for example, Patent Document 1). These water-based resin emulsion paints include synthetic resin particles and film-forming aids.
ここで、一般的な金属サイディング基材は、金属板、芯材、および裏面材がこの順に積層されており、芯材はポリウレタンやイソシアヌレート等の樹脂発泡体からなる。そのため、金属サイディング基材上に水系樹脂エマルション塗料を塗布した後、これを高い温度で乾燥させると、金属サイディング基材が反ったり、金属板と芯材との間で界面剥離が生じたり、裏面材が膨れたり、裏面材に皺がよる等、金属サイディング基材に不良が発生することがある。一方で、水系樹脂エマルション塗料の乾燥が十分に行われず、表面被覆層中に造膜助剤が残存すると、化粧建築板の耐水性が低下したり、表面被覆層と金属サイディング基材等との密着性が不十分になることがある。 Here, as for the general metal siding base material, a metal plate, a core material, and a back surface material are laminated | stacked in this order, and a core material consists of resin foams, such as a polyurethane and an isocyanurate. Therefore, after applying the water-based resin emulsion paint on the metal siding substrate, if this is dried at a high temperature, the metal siding substrate warps, the interface peeling occurs between the metal plate and the core, the back surface Defects may occur in the metal siding base material, such as swelling of the material or wrinkles on the back material. On the other hand, if the water-based resin emulsion paint is not sufficiently dried and the film-forming aid remains in the surface coating layer, the water resistance of the decorative building board is reduced, or the surface coating layer and the metal siding substrate are Adhesion may be insufficient.
ここで、金属サイディング以外の一般的な建築外装材として、窯業サイディングが挙げられる。窯業サイディングでは、基材表面の材質がセラミックであり、その熱容量が大きい。そのため、窯業サイディング基材は一度加熱すれば、温度が下がり難く、短時間の加熱で、水系樹脂エマルション塗料中の造膜助剤や水を効果的に蒸発させることが可能である。これに対し、金属サイディング基材は、表面が金属であるため、その熱容量が小さく、加熱しても温度が下がりやすい。したがって、金属サイディング基材では、短時間の加熱で、水系樹脂エマルション塗料中の造膜助剤や水を十分に蒸発させることが難しかった。 Here, ceramic siding is mentioned as a general building exterior material other than metal siding. In ceramic siding, the material of the substrate surface is ceramic, and its heat capacity is large. Therefore, once the ceramic siding substrate is heated, it is difficult to lower the temperature, and the film-forming aid and water in the water-based resin emulsion paint can be effectively evaporated with a short heating. On the other hand, since the surface of a metal siding base material is a metal, its heat capacity is small, and the temperature tends to decrease even when heated. Therefore, with a metal siding base material, it has been difficult to sufficiently evaporate the film-forming aid and water in the water-based resin emulsion paint by heating in a short time.
そこで、金属サイディング基材上に表面被覆層を形成する方法として、水系樹脂エマルション塗料の塗布後、金属サイディング基材を温和な条件で加熱し、さらに近赤外線または中赤外線を照射する方法が提案されている(特許文献2参照)。当該方法によれば、金属サイディング基材の金属板側のみの加熱が可能である。したがって、当該方法によれば、水系樹脂エマルション塗料中の造膜助剤を十分に除去することができる。 Therefore, as a method of forming a surface coating layer on a metal siding substrate, a method of heating the metal siding substrate under mild conditions after applying a water-based resin emulsion paint, and further irradiating near infrared rays or mid infrared rays has been proposed. (See Patent Document 2). According to the method, it is possible to heat only the metal plate side of the metal siding substrate. Therefore, according to the method, the film-forming aid in the aqueous resin emulsion paint can be sufficiently removed.
一方、近年、外装建材に対して、雨筋汚れ防止性等の耐汚染性も求められるようになっており、化粧建築板の表面被覆層にも、耐汚染性が求められている。このような要求に対し、親水性防汚成分としてコロイダルシリカ粒子を、水系樹脂エマルション塗料に添加することが提案されている(特許文献3および特許文献4参照)。 On the other hand, in recent years, the exterior building materials are also required to have stain resistance such as rain-stain stain prevention, and the surface covering layer of the decorative building board is also required to have stain resistance. In response to such demands, it has been proposed to add colloidal silica particles as hydrophilic antifouling components to water-based resin emulsion paints (see Patent Document 3 and Patent Document 4).
上述の特許文献3や特許文献4に記載のコロイダルシリカ粒子は、表面被覆層の表面側に、その濃度が高い層を形成する(濃化する)ことで、防汚性能を発現する。しかしながら、従来の水系樹脂エマルション塗料にコロイダルシリカ粒子を添加した場合には、コロイダルシリカ粒子が表面側に移動し難く、十分な防汚性能が得られ難かった。またこの現象は、金属サイディング基材上に表面被覆層を形成する場合に顕著であった。 The colloidal silica particles described in Patent Document 3 and Patent Document 4 described above exhibit antifouling performance by forming (concentrating) a layer having a high concentration on the surface side of the surface coating layer. However, when colloidal silica particles are added to the conventional water-based resin emulsion paint, the colloidal silica particles are difficult to move to the surface side, and it is difficult to obtain sufficient antifouling performance. This phenomenon was remarkable when the surface coating layer was formed on the metal siding substrate.
その理由は以下のように推察される。コロイダルシリカ粒子は通常、水系樹脂エマルション塗料中の造膜助剤が蒸発する際に、当該造膜助剤と共に塗膜表面側に移動する。しかしながら、金属サイディング基材上に表面被覆層を形成する場合、上述のように、水系樹脂エマルション塗料の乾燥温度を高く設定することが難しい。そのため、造膜助剤が十分蒸発しない、もしくは造膜助剤の蒸発速度を十分に早めることが難しく、コロイダルシリカ粒子が表面被覆層の表面側に移動できないと考えられる。なお、前述の特許文献2に記載されている方法により、表面被覆層を形成しても、造膜助剤の蒸発速度が十分ではなく、防汚性を十分に高めることは難しかった。 The reason is guessed as follows. Colloidal silica particles usually move to the coating surface side together with the film-forming aid when the film-forming aid in the water-based resin emulsion paint evaporates. However, when the surface coating layer is formed on the metal siding substrate, it is difficult to set the drying temperature of the water-based resin emulsion paint high as described above. For this reason, it is considered that the film-forming auxiliary does not evaporate sufficiently, or it is difficult to sufficiently evaporate the film-forming auxiliary, and the colloidal silica particles cannot move to the surface side of the surface coating layer. Even if the surface coating layer is formed by the method described in Patent Document 2, the evaporation rate of the film-forming aid is not sufficient, and it is difficult to sufficiently improve the antifouling property.
このような状況を鑑み、本発明は、金属サイディング基材上に、耐水性や密着性に優れ、さらに防汚性にも優れる表面被覆層を有する化粧建築板の製造方法の提供を目的とする。 In view of such circumstances, an object of the present invention is to provide a method for producing a decorative building board having a surface coating layer that is excellent in water resistance and adhesion, and also in antifouling properties, on a metal siding substrate. .
本発明は、以下の化粧建築板の製造方法を提供する。
[1]金属板、芯材、および裏面材をこの順に有する金属サイディング基材と、前記金属サイディング基材の金属板側表面に形成された表面被覆層と、を有する化粧建築板の製造方法であって、造膜助剤と親水性防汚成分と合成樹脂粒子とを含む水系樹脂エマルション塗料を、前記金属サイディング基材の金属板側表面に塗布後、加熱して、前記表面被覆層を形成する工程を有し、前記造膜助剤が、エチレングリコールモノブチルエーテルを含み、前記親水性防汚成分が、コロイダルシリカ粒子および/またはコロイダルシリカ・樹脂複合粒子を含み、前記エチレングリコールモノブチルエーテルの量が、前記水系樹脂エマルション塗料の総量に対して2〜10質量%である、化粧建築板の製造方法。
The present invention provides the following method for producing a decorative building board.
[1] A method for producing a decorative building board, comprising: a metal siding base material having a metal plate, a core material, and a back surface material in this order; and a surface covering layer formed on the metal plate side surface of the metal siding base material. A water-based resin emulsion paint containing a film-forming aid, a hydrophilic antifouling component, and synthetic resin particles is applied to the surface of the metal siding substrate on the metal plate side and then heated to form the surface coating layer. The film-forming aid contains ethylene glycol monobutyl ether, the hydrophilic antifouling component contains colloidal silica particles and / or colloidal silica / resin composite particles, and the amount of the ethylene glycol monobutyl ether However, it is 2-10 mass% with respect to the total amount of the said water-system resin emulsion coating material, The manufacturing method of a decorative building board.
[2]前記前記造膜助剤が、水に可溶かつ沸点150℃以上のアルコール系有機溶媒をさらに含み、前記アルコール系有機溶媒の量が、前記水系樹脂エマルション塗料の総量に対して4質量%以下である、[1]に記載の化粧建築板の製造方法。
[3]前記合成樹脂粒子が、シリコーン変性アクリル樹脂粒子および/またはアクリル樹脂粒子を含む、[1]または[2]に記載の化粧建築板の製造方法。
[4]前記水系樹脂エマルション塗料の塗布後、50〜90℃の温度で10分以下加熱する、[1]〜[3]のいずれかに記載の化粧建築板の製造方法。
[2] The film-forming aid further includes an alcohol-based organic solvent that is soluble in water and has a boiling point of 150 ° C. or higher, and the amount of the alcohol-based organic solvent is 4 mass based on the total amount of the water-based resin emulsion paint. % Of the decorative building board production method according to [1].
[3] The method for manufacturing a decorative building board according to [1] or [2], wherein the synthetic resin particles include silicone-modified acrylic resin particles and / or acrylic resin particles.
[4] The method for producing a decorative building board according to any one of [1] to [3], wherein the coating is performed at a temperature of 50 to 90 ° C. for 10 minutes or less after the application of the water-based resin emulsion paint.
本発明の製造方法によれば、金属サイディング基材等と密着性が高く、耐水性や防汚性も高い表面被覆層を有する化粧建築板が得られる。 According to the production method of the present invention, a decorative building board having a surface coating layer having high adhesion to a metal siding substrate and the like, and having high water resistance and antifouling properties can be obtained.
本発明は、金属サイディング基材と、当該金属サイディング基材上に形成された表面被覆層とを有する化粧建築板の製造方法に関する。なお、本明細書でいう「表面被覆層」とは、化粧建築板が建築物に使用される際に、最も外側に配置される膜をいう。なお、本発明において、金属サイディング基材上に直接、表面被覆層を形成してもよいが、金属サイディング基材上には、例えば下塗り層や上塗り層、インキ層等、他の層等が形成されていてもよく、表面被覆層をこれらの層の上に形成してもよい。 The present invention relates to a method for manufacturing a decorative building board having a metal siding base material and a surface coating layer formed on the metal siding base material. The “surface covering layer” in the present specification refers to a film disposed on the outermost side when a decorative building board is used in a building. In the present invention, the surface coating layer may be formed directly on the metal siding substrate, but other layers such as an undercoat layer, an overcoat layer, and an ink layer are formed on the metal siding substrate. The surface coating layer may be formed on these layers.
前述のように、金属サイディング基材の表面に表面被覆層を形成する際、過度な熱がかかると、金属サイディング基材が反る等、金属サイディング基材に不良が発生することがあった。その一方で、表面被覆層を形成するための水系樹脂エマルション塗料の乾燥が不十分であり、造膜助剤が表面被覆層に残存すると、表面被覆層と金属サイディング基材との密着性が低下したり、表面被覆層の耐水性が低下しやすかった。また、水系樹脂エマルション塗料に、親水性防汚成分を添加しても、親水性防汚成分が表面被覆層の表面側に移動し難く、防汚性が十分に発現し難かった。 As described above, when the surface coating layer is formed on the surface of the metal siding substrate, if excessive heat is applied, the metal siding substrate may be defective, for example, the metal siding substrate may be warped. On the other hand, if the water-based resin emulsion paint for forming the surface coating layer is insufficiently dried and the film-forming aid remains in the surface coating layer, the adhesion between the surface coating layer and the metal siding substrate is reduced. Or the water resistance of the surface coating layer was liable to decrease. Further, even when a hydrophilic antifouling component was added to the water-based resin emulsion paint, it was difficult for the hydrophilic antifouling component to move to the surface side of the surface coating layer, and it was difficult to sufficiently exhibit the antifouling property.
これに対し、本発明は、親水性防汚成分として、コロイダルシリカ粒子および/またはコロイダルシリカ・樹脂複合粒子を含み、造膜助剤としてエチレングリコールモノブチルエーテルを一定量含む水系樹脂エマルション塗料を金属サイディング基材上に塗布し、これを加熱して表面被覆層を形成する。これにより、比較的低い温度で水系樹脂エマルション塗料を乾燥させたとしても、表面被覆層から十分に造膜助剤を蒸発させることが可能であり、金属サイディング基材と密着性が高く、耐水性や防汚性が高い表面被覆層が得られる。 In contrast, the present invention provides a metal siding of a water-based resin emulsion paint containing colloidal silica particles and / or colloidal silica / resin composite particles as a hydrophilic antifouling component and containing a certain amount of ethylene glycol monobutyl ether as a film-forming aid. It is applied onto a substrate and heated to form a surface coating layer. As a result, even when the water-based resin emulsion paint is dried at a relatively low temperature, it is possible to sufficiently evaporate the film-forming aid from the surface coating layer, and the adhesiveness to the metal siding substrate is high and the water resistance is high. And a surface coating layer having high antifouling properties can be obtained.
その理由として、以下の点が挙げられる。エチレングリコールモノブチルエーテルは、水と完全に相容可能であり、水系樹脂エマルション塗料中に比較的多く含まれたとしても、相分離等し難い。また、その沸点が171℃であるにも関わらず、蒸気圧が0.8mmHgであり、蒸発しやすい性質を有する。そのため、表面被覆層形成時における加熱温度が比較的低くても、水系樹脂エマルション塗料の塗膜から造膜助剤(エチレングリコールモノブチルエーテル)が蒸発しやすく、表面被覆層中に造膜助剤が残存し難い。また、コロイダルシリカ粒子や、コロイダルシリカ・樹脂複合粒子は、エチレングリコールモノブチルエーテルの蒸発と共に塗膜の表面に移動するが、エチレングリコールモノブチルエーテルが、比較的早い速度で塗膜から蒸発するため、塗膜が硬化する前に塗膜の表面側に移動することが可能となる。したがって、表面被覆層の表面側における親水性防汚成分の濃度が十分に高くなり、表面被覆層の防汚性能が高くなる。 The reason is as follows. Ethylene glycol monobutyl ether is completely compatible with water, and even if it is contained in a relatively large amount in the water-based resin emulsion paint, phase separation is difficult. Moreover, although the boiling point is 171 ° C., the vapor pressure is 0.8 mmHg, and it has the property of being easily evaporated. Therefore, even if the heating temperature at the time of forming the surface coating layer is relatively low, the film-forming auxiliary (ethylene glycol monobutyl ether) is likely to evaporate from the coating film of the water-based resin emulsion paint, and the film-forming auxiliary is present in the surface coating layer. It is hard to remain. Colloidal silica particles and colloidal silica / resin composite particles move to the surface of the coating as the ethylene glycol monobutyl ether evaporates. However, since ethylene glycol monobutyl ether evaporates from the coating at a relatively high rate, It becomes possible to move to the surface side of the coating film before the film is cured. Therefore, the concentration of the hydrophilic antifouling component on the surface side of the surface coating layer is sufficiently high, and the antifouling performance of the surface coating layer is increased.
以下、本発明の化粧建築材の製造方法に用いる金属サイディングおよび水系樹脂エマルションについて先に説明し、その後、化粧建築板の製造方法を説明する。 Hereinafter, the metal siding and water-based resin emulsion used in the method for manufacturing a decorative building material of the present invention will be described first, and then the method for manufacturing a decorative building board will be described.
(金属サイディング基材)
金属サイディング基材は、金属板、芯材および裏面材がこの順に積層されたものであればよく、例えば他の部材がさらに含まれていてもよい。金属サイディング基材の層構成は、公知の金属サイディング基材から表面被覆層や印刷層を除いた層構成とすることができる。金属サイディング基材は、市販の金属サイディング基材をそのまま用いてもよく、公知の方法によって製造してもよい。
(Metal siding base material)
The metal siding base material only needs to have a metal plate, a core material, and a back surface material laminated in this order. For example, another member may be further included. The layer structure of the metal siding substrate can be a layer structure obtained by removing a surface coating layer and a printing layer from a known metal siding substrate. As the metal siding substrate, a commercially available metal siding substrate may be used as it is, or may be produced by a known method.
金属板の種類は特に制限されず、その具体例には、溶融亜鉛−5%アルミニウム合金めっき鋼板、溶融亜鉛−55%アルミニウム合金めっき鋼板、アルミニウム合金板、ステンレス鋼板およびこれらの塗装鋼板等が含まれる。 The type of the metal plate is not particularly limited, and specific examples thereof include hot dip zinc-5% aluminum alloy plated steel plate, hot dip zinc-55% aluminum alloy plated steel plate, aluminum alloy plate, stainless steel plate, and these coated steel plates. It is.
また、金属板の形状は特に制限されず、平板状であってもよく、化粧建築板の用途に合わせて所望の形状に曲げ加工等されたものであってもよい。さらに、金属板には、エンボス加工や絞り成型加工、凹凸加工等が施されていてもよい。金属板にこのような加工が施されていると、タイル調や、レンガ調、木目調等、種々の表面形状を有する化粧建築板を製造することができる。 The shape of the metal plate is not particularly limited, and may be a flat plate shape or may be bent into a desired shape according to the use of the decorative building board. Furthermore, the metal plate may be subjected to embossing, drawing molding, uneven processing, and the like. When such a process is applied to the metal plate, a decorative building board having various surface shapes such as a tile tone, a brick tone, and a wood grain tone can be manufactured.
また、金属板には、表面処理が施されていてもよく、金属板は、金属の化成処理によって形成された化成処理皮膜を有していてもよい。金属板が化成処理されていると、金属板上に形成される表面被覆層等の密着性が高まったり、金属板の耐食性が高まったりする。化成処理の例には、クロメート処理、クロムフリー処理、リン酸塩処理等が含まれる。 Further, the metal plate may be subjected to a surface treatment, and the metal plate may have a chemical conversion treatment film formed by a chemical conversion treatment of a metal. When the metal plate is subjected to chemical conversion treatment, adhesion of a surface coating layer or the like formed on the metal plate is increased, or the corrosion resistance of the metal plate is increased. Examples of the chemical conversion treatment include chromate treatment, chromium-free treatment, phosphate treatment and the like.
化成処理皮膜の付着量は、化成処理の種類に応じて適宜選択される。例えば、化成処理皮膜がクロメート皮膜である場合、その付着量は、全Cr換算で5〜100mg/m2とすることができる。クロムフリー処理による皮膜の例には、Ti−Mo複合皮膜およびフルオロアシッド系皮膜が含まれる。そして化成処理皮膜がTi−Mo複合皮膜である場合、その付着量は、TiおよびMoの総量換算で10〜500mg/m2とすることができる。一方、化成処理皮膜がフルオロアシッド系皮膜である場合、その付着量は、フッ素換算または総金属元素換算で3〜100mg/m2とすることができる。化成処理皮膜がリン酸塩皮膜である場合、その付着量は、リン換算で5〜500mg/m2とすることができる。 The adhesion amount of the chemical conversion treatment film is appropriately selected according to the type of chemical conversion treatment. For example, when the chemical conversion film is a chromate film, the amount of adhesion can be 5 to 100 mg / m 2 in terms of total Cr. Examples of the coating by the chromium-free treatment include a Ti—Mo composite coating and a fluoroacid coating. And when a chemical conversion treatment film is a Ti-Mo composite film, the adhesion amount can be 10-500 mg / m < 2 > in conversion of the total amount of Ti and Mo. On the other hand, when the chemical conversion film is a fluoroacid-based film, the adhesion amount can be 3 to 100 mg / m 2 in terms of fluorine or total metal elements. When the chemical conversion treatment film is a phosphate film, the adhesion amount can be 5 to 500 mg / m 2 in terms of phosphorus.
一方、金属サイディング基材の芯材は、合成樹脂の発泡体とすることができる。芯材の例には、ポリウレタンフォーム、ポリスチレンフォーム、ポリイソシアヌレートフォーム、フェノールウレタンフォーム、フェノールフォーム、および尿素フォームが含まれる。 On the other hand, the core material of the metal siding base material can be a synthetic resin foam. Examples of the core material include polyurethane foam, polystyrene foam, polyisocyanurate foam, phenol urethane foam, phenol foam, and urea foam.
裏面材は、ラミネート紙等、金属サイディングの裏面材として通常使用されるシート状の部材を用いることができる。裏面材の具体例には、アルミニウム箔とクラフト紙のラミネート紙、ポリエチレンが熱融着されたクラフト紙、炭酸カルシウム含浸紙とアルミニウム箔のラミネート紙、および鉄板が含まれる。 As the back material, a sheet-like member usually used as a back material of metal siding, such as laminated paper, can be used. Specific examples of the back material include laminated paper of aluminum foil and kraft paper, kraft paper heat-sealed with polyethylene, laminated paper of calcium carbonate impregnated paper and aluminum foil, and iron plate.
ここで、金属サイディング基材の金属板表面には、前述のように、下塗り層、上塗り層、およびインキ層等が形成されていてもよい。 Here, as described above, an undercoat layer, an overcoat layer, an ink layer, and the like may be formed on the surface of the metal plate of the metal siding substrate.
下塗り層は、金属板または化成処理皮膜の上に形成される層であり、金属板等の耐食性や上塗り層の密着性を高めるための層である。下塗り層は、金属板の全面に形成されていてもよく、一部領域にのみ形成されていてもよい。下塗り層は、下塗り塗料を、金属板または化成処理皮膜の表面に塗布し、乾燥(または硬化)させることで形成される。下塗り塗料に含まれる樹脂の種類の例には、ポリエステル、エポキシ樹脂、およびアクリル樹脂が含まれる。エポキシ樹脂は、極性が高く、かつ金属板または化成処理皮膜に対する密着性が良好であるため、特に好ましい。下塗り層の膜厚は、特に制限されず、例えば5μm程度とすることができる。 The undercoat layer is a layer formed on the metal plate or the chemical conversion film, and is a layer for improving the corrosion resistance of the metal plate or the like and the adhesion of the overcoat layer. The undercoat layer may be formed on the entire surface of the metal plate, or may be formed only in a partial region. The undercoat layer is formed by applying an undercoat paint to the surface of a metal plate or chemical conversion treatment film and drying (or curing) it. Examples of the type of resin contained in the undercoat paint include polyester, epoxy resin, and acrylic resin. Epoxy resins are particularly preferred because of their high polarity and good adhesion to metal plates or chemical conversion coatings. The film thickness of the undercoat layer is not particularly limited, and can be about 5 μm, for example.
上塗り層は、下塗り層の上に形成され、化粧建築板に意匠性等を付与するための層である。上塗り層は、金属板の全面に形成されていてもよく、一部領域にのみ形成されていてもよい。上塗り層は、化粧建築板に意匠性を付与する観点から、表面凹凸を有する層であってもよい。上塗り層は、上塗り塗料を、下塗り層の表面に塗布し、乾燥(または硬化)させることで形成される。上塗り層を形成するための上塗り塗料の例には、ポリエステルとメラミン樹脂およびウレタン樹脂の一方または両方とを含む組成物が含まれる。上塗り層には、体質顔料や着色顔料等がさらに含まれていてもよい。上塗り層の膜厚は特に制限されず、例えば10〜40μmとすることができる。 The topcoat layer is a layer that is formed on the undercoat layer and imparts designability and the like to the decorative building board. The overcoat layer may be formed on the entire surface of the metal plate, or may be formed only in a partial region. The topcoat layer may be a layer having surface irregularities from the viewpoint of imparting design properties to the decorative building board. The topcoat layer is formed by applying a topcoat paint to the surface of the undercoat layer and drying (or curing). Examples of the top coat for forming the top coat layer include a composition containing polyester and one or both of a melamine resin and a urethane resin. The overcoat layer may further contain extender pigments, colored pigments, and the like. The film thickness of the overcoat layer is not particularly limited and can be, for example, 10 to 40 μm.
インキ層は、上塗り層の上に形成され、化粧建築板の意匠性を高めるための層である。インキ層は、金属板の全面に形成されていてもよく、一部領域にのみ形成されていてもよい。インキ層は、例えば、硬化性樹脂と着色剤とを含有するインキを上塗り層の表面に塗布し、加熱やUV照射等により硬化させることで形成される。インキの塗布方法の例には、インクジェット法が含まれる。 The ink layer is formed on the top coat layer and is a layer for enhancing the design of the decorative building board. The ink layer may be formed on the entire surface of the metal plate, or may be formed only in a partial region. The ink layer is formed, for example, by applying ink containing a curable resin and a colorant to the surface of the topcoat layer and curing it by heating, UV irradiation, or the like. Examples of the ink application method include an inkjet method.
インキの例には、エポキシ基含有シランカップリング剤、ヒドロキシル基含有オキセタン化合物、着色剤、カチオン重合性化合物および光重合開始剤を含有する組成物が含まれる。当該着色剤の例には、有機顔料および無機顔料の各種顔料が含まれる。また、カチオン重合性化合物の例には、芳香族エポキシド、脂環式エポキシドおよび脂肪族エポキシドが含まれる。インキ層の膜厚は特に制限されない。 Examples of the ink include a composition containing an epoxy group-containing silane coupling agent, a hydroxyl group-containing oxetane compound, a colorant, a cationic polymerizable compound, and a photopolymerization initiator. Examples of the colorant include various pigments such as organic pigments and inorganic pigments. Examples of the cationically polymerizable compound include aromatic epoxides, alicyclic epoxides, and aliphatic epoxides. The film thickness of the ink layer is not particularly limited.
(水系樹脂エマルション塗料)
金属サイディング基材上に塗布する水系樹脂エマルション塗料には、少なくとも造膜助剤と、親水性防汚成分と、合成樹脂粒子とが含まれる。水系樹脂エマルション塗料において、合成樹脂粒子および親水性防汚成分は、水や造膜助剤中に分散されている。なお、水系樹脂エマルション塗料には、必要に応じてその他の成分が含まれていてもよい。
(Water-based resin emulsion paint)
The water-based resin emulsion paint applied on the metal siding substrate contains at least a film-forming aid, a hydrophilic antifouling component, and synthetic resin particles. In the water-based resin emulsion paint, the synthetic resin particles and the hydrophilic antifouling component are dispersed in water or a film-forming aid. The water-based resin emulsion paint may contain other components as necessary.
水系樹脂エマルション塗料に含まれる合成樹脂粒子は、表面被覆層を形成する際に、粒子同士が結着(例えば融着や接着、化学結合等)し、金属サイディング基材等の表面を被覆することが可能なものであれば特に制限されない。当該合成樹脂粒子の種類は、表面被覆層に要求される物性に応じて適宜選択される。 Synthetic resin particles contained in water-based resin emulsion paints, when forming a surface coating layer, the particles are bonded to each other (for example, fusion, adhesion, chemical bonding, etc.) to cover the surface of a metal siding substrate, etc. If it is possible, there is no particular limitation. The kind of the synthetic resin particles is appropriately selected according to the physical properties required for the surface coating layer.
合成樹脂粒子を構成する合成樹脂の例には、アクリル系樹脂や、ポリエステル系樹脂、アルキド系樹脂、シリコーン変性アクリル系樹脂、シリコーン変性ポリエステル系樹脂、シリコーン系樹脂、フッ素系樹脂等が含まれる。水系樹脂エマルション塗料には、合成樹脂粒子が一種のみ含まれていてもよく、2種以上が含まれていてもよい。合成樹脂粒子が、アクリル系樹脂またはシリコーン変性アクリル系樹脂からなると、表面被覆層の耐候性および透明性が高まりやすい。 Examples of synthetic resins constituting the synthetic resin particles include acrylic resins, polyester resins, alkyd resins, silicone-modified acrylic resins, silicone-modified polyester resins, silicone resins, and fluorine resins. The water-based resin emulsion paint may contain only one kind of synthetic resin particle or two or more kinds. When the synthetic resin particles are made of an acrylic resin or a silicone-modified acrylic resin, the weather resistance and transparency of the surface coating layer are likely to increase.
合成樹脂粒子は、前述のように、表面被覆層を形成する際に粒子同士が結着するため、その平均粒子径は特に制限されず、所望の表面被覆層の膜厚等に応じて適宜選択される。また、水系樹脂エマルション塗料中の総量に対する合成樹脂粒子の量は、30〜70質量%であることが好ましく、40〜60質量%であることが好ましい。合成樹脂粒子の量が30質量%以上であると、所望の膜厚の表面皮膜層を効率よく形成しやすくなる。一方、合成樹脂粒子の量が70質量%以下であると、相対的に造膜助剤や親水性防汚成分の量が十分に多くなり、防汚性に優れた層が得られやすくなる。 As described above, since the synthetic resin particles are bonded to each other when forming the surface coating layer, the average particle diameter is not particularly limited, and is appropriately selected according to the desired film thickness of the surface coating layer, etc. Is done. Moreover, it is preferable that the quantity of the synthetic resin particle with respect to the total amount in a water-system resin emulsion coating material is 30-70 mass%, and it is preferable that it is 40-60 mass%. When the amount of the synthetic resin particles is 30% by mass or more, it becomes easy to efficiently form a surface coating layer having a desired film thickness. On the other hand, when the amount of the synthetic resin particles is 70% by mass or less, the amount of the film-forming aid and the hydrophilic antifouling component is relatively large, and a layer excellent in antifouling property is easily obtained.
水系樹脂エマルション塗料に含まれる造膜助剤は、水系樹脂エマルション塗料を塗布した際に、塗膜の表面平滑性を高める機能や、合成樹脂粒子どうしの結着性を高める機能を果たす。造膜助剤には、少なくともエチレングリコールモノブチルエーテルが含まれる。エチレングリコールモノブチルエーテルが含まれることで、後述するように、水系樹脂エマルション塗料の乾燥を60〜80℃で行うことが可能となる。また前述のように、エチレングリコールモノブチルエーテルは蒸発性が高いため、もし仮に表面被覆層の成膜直後、塗膜内にモノエチレングリコールブチルエーテルが若干残存したとしても、数週間で塗膜から蒸発することが可能である。 The film-forming aid contained in the water-based resin emulsion paint fulfills a function of improving the surface smoothness of the coating film and a function of improving the binding property between the synthetic resin particles when the water-based resin emulsion paint is applied. The film forming aid contains at least ethylene glycol monobutyl ether. By including ethylene glycol monobutyl ether, the water-based resin emulsion paint can be dried at 60 to 80 ° C. as described later. Also, as described above, ethylene glycol monobutyl ether is highly evaporable, so even if a little monoethylene glycol butyl ether remains in the coating film immediately after the surface coating layer is formed, it will evaporate from the coating film in a few weeks. It is possible.
エチレングリコールモノブチルエーテルは、水系樹脂エマルション塗料の総量に対して2〜10質量%含まれるが、3〜9質量%含まれることがより好ましい。エチレングリコールモノブチルエーテルが過度に少ないと、合成樹脂粒子どうしが結着し難くなり、得られる表面被覆層にクラック等が発生することがある。また、エチレングリコールモノブチルエーテルの量が少ないと、親水性防汚成分が表面被覆層の成膜時に表面側に移動し難く、十分な防汚性能が発現し難くなる。これに対し、エチレングリコールモノブチルエーテルの量が2質量%以上、特に3質量%以上であると、親水性防汚成分が表面被覆層の表面側に移動しやすくなり、表面被覆層の防汚性能が高まりやすくなる。さらに、表面被覆層の成膜時に、合成樹脂粒子どうしが結着しやすくなり、得られる表面被覆層にクラックが生じ難くなる。一方、エチレングリコールモノブチルエーテルの量が過剰であると、合成樹脂粒子が膨潤しやすく、水系樹脂エマルション塗料の保存安定性が低下する傾向があるが、エチレングリコールモノブチルエーテルの量が10質量%以下であれば、水系樹脂エマルション塗料の保存安定性が十分に高くなる。また、エチレングリコールモノブチルエーテルの量が9質量%以下であると、得られる表面被覆層の密着性が高まるだけでなく、表面被覆層の鉛筆硬度も高まりやすくなる。 Ethylene glycol monobutyl ether is contained in an amount of 2 to 10% by mass, more preferably 3 to 9% by mass, based on the total amount of the water-based resin emulsion paint. If the amount of ethylene glycol monobutyl ether is excessively small, the synthetic resin particles are difficult to bind to each other, and cracks or the like may occur in the resulting surface coating layer. Further, when the amount of ethylene glycol monobutyl ether is small, it is difficult for the hydrophilic antifouling component to move to the surface side during the formation of the surface coating layer, and sufficient antifouling performance is hardly exhibited. On the other hand, when the amount of ethylene glycol monobutyl ether is 2% by mass or more, particularly 3% by mass or more, the hydrophilic antifouling component easily moves to the surface side of the surface coating layer, and the antifouling performance of the surface coating layer. Is likely to increase. Further, when the surface coating layer is formed, the synthetic resin particles are easily bound to each other, and cracks are hardly generated in the obtained surface coating layer. On the other hand, if the amount of ethylene glycol monobutyl ether is excessive, the synthetic resin particles tend to swell and the storage stability of the water-based resin emulsion paint tends to decrease, but the amount of ethylene glycol monobutyl ether is 10% by mass or less. If so, the storage stability of the water-based resin emulsion paint is sufficiently high. Further, when the amount of ethylene glycol monobutyl ether is 9% by mass or less, not only the adhesion of the obtained surface coating layer is increased, but also the pencil hardness of the surface coating layer is easily increased.
造膜助剤には、沸点が150℃以上であり、水に可溶なアルコール系有機溶媒がさらに含まれることが好ましい。造膜助剤にアルコール系有機溶媒が含まれると、水系樹脂エマルション塗料を塗布した際のレベリング性が良好になりやすい。なお、アルコール系有機溶媒の沸点は270℃以下であることが好ましい。造膜助剤の沸点が過度に高いと、水系樹脂エマルション塗料を加熱してもアルコール系有機溶媒が塗膜中に残存しやすくなり、得られる表面被覆層の耐水性および密着性が不十分となることがある。 It is preferable that the film-forming aid further contains an alcohol-based organic solvent having a boiling point of 150 ° C. or higher and soluble in water. When an alcohol-based organic solvent is contained in the film-forming aid, leveling properties when a water-based resin emulsion paint is applied tend to be good. The boiling point of the alcoholic organic solvent is preferably 270 ° C. or lower. If the boiling point of the film-forming aid is excessively high, the alcohol-based organic solvent tends to remain in the coating film even when the water-based resin emulsion paint is heated, and the resulting surface coating layer has insufficient water resistance and adhesion. May be.
沸点が150℃以上であり、水に可溶なアルコール系溶媒の例には、1−ブトキシ−2−プロパノール、テキサノール、カルビトール、ブチルカルビトールアセテート、ブチルカルビトール、トリプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノブチルエーテル等が含まれる。 Examples of alcohol solvents having a boiling point of 150 ° C. or more and soluble in water include 1-butoxy-2-propanol, texanol, carbitol, butyl carbitol acetate, butyl carbitol, tripropylene glycol monomethyl ether, dipropylene Propylene glycol monobutyl ether and the like are included.
ここで、アルコール系溶媒の合計量は、水系樹脂エマルション塗料の総量に対して、4質量%以下であることが好ましく、1〜3質量%であることがより好ましい。アルコール系溶媒の量が4質量%以下であると、表面被覆層にアルコール系溶媒が残存し難くなり、金属サイディング基材等と表面被覆層との密着性が高まりやすくなる。また、水系樹脂エマルション塗料の保存安定性も高くなる。 Here, the total amount of the alcohol solvent is preferably 4% by mass or less, and more preferably 1 to 3% by mass with respect to the total amount of the aqueous resin emulsion paint. When the amount of the alcohol solvent is 4% by mass or less, the alcohol solvent hardly remains in the surface coating layer, and the adhesion between the metal siding substrate and the surface coating layer is likely to increase. In addition, the storage stability of the water-based resin emulsion paint is also increased.
親水性防汚成分は、化粧建築板(表面被覆層)表面に汚染物質が付着することを防止する成分であり、親水性防汚成分としては、水との接触角が低い物質が用いられる。このような親水性防汚成分を表面被覆層の表面側に配置することで、表面被覆層の親水性が高まる。その結果、疎水性の高い汚染物質が化粧建築板に付着し難くなり、さらに化粧建築板表面に汚染物質が付着したとしても、雨水により付着した汚染物質が流れ落ちやすくなる。 A hydrophilic antifouling component is a component which prevents that a pollutant adheres to the surface of a decorative building board (surface coating layer), and a substance with a low contact angle with water is used as a hydrophilic antifouling component. By disposing such a hydrophilic antifouling component on the surface side of the surface coating layer, the hydrophilicity of the surface coating layer is increased. As a result, contaminants with high hydrophobicity are less likely to adhere to the decorative building board, and even if contaminants adhere to the surface of the decorative building board, the contaminants attached due to rainwater tend to flow down.
このような親水性防汚成分には、少なくともコロイダルシリカ粒子および/またはコロイダルシリカ・樹脂複合粒子が含まれる。本明細書において、「コロイダルシリカ粒子」とは、二酸化ケイ素を基本単位とする、平均粒子径が5〜120nmの水に分散可能な粒子をいう。コロイダルシリカ粒子の平均粒子径が120nm以下であると、水系樹脂エマルション塗料の貯蔵安定性が良好になりやすい。なお、平均粒子径は60nm以下であることがより好ましい。当該平均粒子径は、電子顕微鏡による観察により特定される値である。 Such hydrophilic antifouling components include at least colloidal silica particles and / or colloidal silica / resin composite particles. In the present specification, “colloidal silica particles” refers to particles that have silicon dioxide as a basic unit and can be dispersed in water having an average particle diameter of 5 to 120 nm. When the average particle size of the colloidal silica particles is 120 nm or less, the storage stability of the water-based resin emulsion paint tends to be good. The average particle diameter is more preferably 60 nm or less. The average particle diameter is a value specified by observation with an electron microscope.
また、コロイダルシリカ粒子の形状は特に制限されず、球状や、鎖状、棒状、パールスライク状等、いずれの形状であってもよい。 The shape of the colloidal silica particles is not particularly limited, and may be any shape such as a spherical shape, a chain shape, a rod shape, or a pearl like shape.
コロイダルシリカの具体例としては、例えば、日産化学工業社製のスノーテックスST−20、ST−O、ST−C、ST−S、ST−N、ST−20L、ST−AK、ST−UP、ST−ZL;ADEKA社製のアデライトAT−20、AT−30、AT−20N、AT−30N、AT−20A、AT−20S、AT−20Q、AT−30A、AT−30S、AT−40、AT−50、AT−300;触媒化成工業社製のカタロイドS−20H、カタロイドS−30、カタロイドS−30H、カタロイドSI−500、カタロイドSN、カタロイドSA;日本化学工業社製のシリカドール30、シリカドール20、シリカドール20A、シリカドール20B;クラリアントジャパン社製のクレボゾール30R9、クレボゾール30R50、クレボゾール50R50;デュポン社製のルドックスHS−40、ルドックスHS−30、ルドックスLS、ルドックスSM−30、ルドックスAS、ルドックスAM等が挙げられる。水系樹脂エマルション塗料には、これらのコロイダルシリカ粒子が1種のみ含まれてもよく、2種以上含まれてもよい。 Specific examples of colloidal silica include, for example, Snowtex ST-20, ST-O, ST-C, ST-S, ST-N, ST-20L, ST-AK, ST-UP, manufactured by Nissan Chemical Industries, Ltd. ST-ZL: Adelite AT-20, AT-30, AT-20N, AT-30N, AT-20N, AT-20S, AT-20Q, AT-30A, AT-30S, AT-40, AT manufactured by ADEKA -50, AT-300; Cataloid S-20H, Cataloid S-30, Cataloid S-30H, Cataloid SI-500, Cataloid SN, Cataloid SA manufactured by Catalyst Kasei Kogyo Co., Ltd .; Dole 20, Silica Doll 20A, Silica Doll 20B; Clevosol 30R9, Clevosol 30R50 manufactured by Clariant Japan, Rebozoru 50R50; DuPont Ludox HS-40, Ludox HS-30, Ludox LS, Ludox SM-30, Ludox AS, Ludox AM, and the like. The water-based resin emulsion paint may contain only one kind of these colloidal silica particles or two or more kinds.
コロイダルシリカ粒子は、水系樹脂エマルション塗料の総量に対して、0.2〜8質量%含まれることが好ましく、2〜6質量%含まれることがより好ましい。コロイダルシリカ粒子が上記範囲含まれると、表面被覆層の表面の親水性が十分に高まりやすい。 The colloidal silica particles are preferably contained in an amount of 0.2 to 8 mass%, more preferably 2 to 6 mass%, based on the total amount of the water-based resin emulsion paint. When the colloidal silica particles are included in the above range, the hydrophilicity of the surface of the surface coating layer is likely to be sufficiently increased.
一方、本明細書において、「コロイダルシリカ・樹脂複合粒子」とは、樹脂粒子の表面が、コロイダルシリカによって覆われた粒子をいう。コロイダルシリカ・樹脂複合粒子は、例えばα,β−エチレン性不飽和単量体100質量部に対して、上述のコロイダルシリカ粒子を1〜300質量部添加し、α,β−エチレン性不飽和単量体を公知の方法で乳化重合することにより調製することができる。このようなコロイダルシリカ・樹脂複合粒子の調製方法の一例として、特開2008−23979号公報に記載の方法が挙げられる。 On the other hand, in the present specification, “colloidal silica / resin composite particles” refers to particles in which the surface of resin particles is covered with colloidal silica. The colloidal silica / resin composite particles are added, for example, by adding 1 to 300 parts by mass of the above-mentioned colloidal silica particles to 100 parts by mass of the α, β-ethylenically unsaturated monomer. The monomer can be prepared by emulsion polymerization by a known method. An example of a method for preparing such colloidal silica / resin composite particles is the method described in JP-A-2008-23979.
コロイダルシリカ・樹脂複合粒子を調製する際に用いられるα,β−エチレン性不飽和単量体の例には、アクリル酸、(メタ)アクリル酸、フマール酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、およびクロトン酸等のカルボキシ基含有単量体;2−アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、3−アミノプロピル(メタ)アクリレート、2−ブチルアミノエチル(メタ)アクリレート、および4−ビニルピリジン等のアミノ基含有単量体;アクリルアミド、(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジメチルアミノプロピル(メタ)アクリルアミド、およびN−ビニル−2−ピロリドン等のアミド基含有単量体;アリルアルコール、2−ヒドロキシエチル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチルアクリレート、2−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、およびポリプロピレングリコール(メタ)アクリレート等のヒドロキシル基含有単量体;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルメチルジエトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン、γ−(メタ)アクリロキシプロピルトリエトキシシラン、β−(メタ)アクリロキシエチルトリメトキシシラン、β−(メタ)アクリロキシエチルトリエトキシシラン、γ−(メタ)アクリロキシプロピルメチルジメトキシシラン、γ−(メタ)アクリロキシプロピルメチルジエトキシシラン、γ−(メタ)アクリロキシプロピルメチルジプロポキシシラン、γ−(メタ)アクリロキシブチルフェニルジメトキシシラン、γ−(メタ)アクリロキシプロピルジメチルメトキシシラン、およびγ−(メタ)アクリロキシプロピルジエチルメトキシシラン等のアルコキシシリル基含有単量体;等が含まれる。 Examples of α, β-ethylenically unsaturated monomers used in preparing colloidal silica / resin composite particles include acrylic acid, (meth) acrylic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid Carboxy group-containing monomers such as itaconic anhydride and crotonic acid; 2-aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, 3-aminopropyl (meth) acrylate, 2-butylaminoethyl (meta ) Acrylate, and amino group-containing monomers such as 4-vinylpyridine; acrylamide, (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide and N-vinyl Amide group-containing monomers such as 2-pyrrolidone; allyl alcohol, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl acrylate, 2-hydroxybutyl (meth) acrylate, polyethylene Hydroxyl group-containing monomers such as glycol (meth) acrylate and polypropylene glycol (meth) acrylate; vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, vinylmethyldiethoxysilane, γ- (meth) acryloxy Propyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, β- (meth) acryloxyethyltrimethoxysilane, β- (meth) acryloxyethyltriethoxysilane, γ- (meta ) Acryloxypropylmethyldimethoxysilane, γ- (meth) acryloxypropylmethyldiethoxysilane, γ- (meth) acryloxypropylmethyldipropoxysilane, γ- (meth) acryloxybutylphenyldimethoxysilane, γ- (meta ) Alkoxysilyl group-containing monomers such as acryloxypropyldimethylmethoxysilane and γ- (meth) acryloxypropyldiethylmethoxysilane;
コロイダルシリカ・樹脂複合粒子は、水系樹脂エマルション塗料中に0.5〜18質量%含まれることが好ましく、3〜9質量%含まれることがより好ましい。コロイダルシリカ・樹脂複合粒子が上記範囲含まれると、表面被覆層の親水性が十分に高まりやすい。 The colloidal silica / resin composite particles are preferably contained in the water-based resin emulsion paint in an amount of 0.5 to 18% by mass, and more preferably 3 to 9% by mass. When the colloidal silica / resin composite particles are included in the above range, the hydrophilicity of the surface coating layer is likely to be sufficiently increased.
また、水系樹脂エマルション塗料には、通常、分散媒として水が含まれる。水の量は、水系樹脂エマルション塗料の所望の粘度や乾燥(加熱)条件等に応じて適宜選択される。 In addition, the water-based resin emulsion paint usually contains water as a dispersion medium. The amount of water is appropriately selected according to the desired viscosity of the water-based resin emulsion paint and the drying (heating) conditions.
水系樹脂エマルション塗料には、必要に応じて、さらに他の成分が含まれてもよい。他の成分の例には、アクリルビーズ等の樹脂ビーズや親水性シリカ等の無機粒子、界面活性剤、紫外線吸収剤、増粘剤、ワックス、消泡剤、光安定剤等が含まれる。 The water-based resin emulsion paint may further contain other components as necessary. Examples of other components include resin beads such as acrylic beads, inorganic particles such as hydrophilic silica, surfactants, ultraviolet absorbers, thickeners, waxes, antifoaming agents, and light stabilizers.
樹脂ビーズや無機粒子が含まれると、表面被覆層の光沢を調整することができる。また、これらの粒子が含まれると、表面被覆層の機械的強度が高まりやすい。なお、樹脂ビーズや無機粒子の平均粒子径は特に制限されないが、例えば1〜10μm程度とすることがとすることができる。これらの粒子の平均粒子径が上記範囲であると、表面被覆層の光沢を調整したり、表面被覆層の機械的強度が高まりやすくなる。樹脂ビーズや無機粒子の量は、所望の表面被覆層の性状等に合わせて適宜選択される。当該平均粒子径は、レーザー回折散乱法により測定される値である。 When resin beads or inorganic particles are included, the gloss of the surface coating layer can be adjusted. Moreover, when these particles are contained, the mechanical strength of the surface coating layer tends to increase. The average particle diameter of the resin beads and inorganic particles is not particularly limited, but can be set to about 1 to 10 μm, for example. When the average particle diameter of these particles is within the above range, the gloss of the surface coating layer is easily adjusted and the mechanical strength of the surface coating layer is likely to increase. The amount of resin beads and inorganic particles is appropriately selected according to the desired properties of the surface coating layer. The average particle diameter is a value measured by a laser diffraction scattering method.
一方、水系樹脂エマルション中に含まれる増粘剤の量が過剰であると、親水性防汚成分の塗膜表面への移動が阻害されることがある。一方で、増粘剤の量が少ないと、各種粒子の分散状態を維持できなくなることがある。そこで、増粘剤の量は、水系樹脂エマルションの総量に対して0.2〜5質量%であることが好ましく、0.5〜2.0質量%であることがより好ましい。 On the other hand, when the amount of the thickener contained in the aqueous resin emulsion is excessive, the movement of the hydrophilic antifouling component to the coating film surface may be inhibited. On the other hand, if the amount of the thickener is small, the dispersed state of various particles may not be maintained. Therefore, the amount of the thickener is preferably 0.2 to 5% by mass and more preferably 0.5 to 2.0% by mass with respect to the total amount of the aqueous resin emulsion.
また、水系樹脂エマルション塗料の最低造膜温度は、十分に低い温度であることが好ましく、具体的には0〜50℃であることが好ましい。最低造膜温度が低すぎると、水系樹脂エマルション塗料の保存安定性が不十分になることがある。一方、最低造膜温度が高すぎると、表面被覆層を形成する際に、高い温度に加熱する必要があり、金属サイディング基材に変形等が生じることがある。水系樹脂エマルション塗料の最低造膜温度は、造膜助剤の種類や量等によって調整することが可能である。 Further, the minimum film-forming temperature of the water-based resin emulsion paint is preferably a sufficiently low temperature, specifically, preferably 0 to 50 ° C. If the minimum film-forming temperature is too low, the storage stability of the water-based resin emulsion paint may be insufficient. On the other hand, when the minimum film-forming temperature is too high, it is necessary to heat to a high temperature when forming the surface coating layer, and deformation or the like may occur in the metal siding substrate. The minimum film-forming temperature of the water-based resin emulsion paint can be adjusted by the type and amount of the film-forming aid.
水系樹脂エマルション塗料の調製方法は特に制限されず、例えば以下のように調製することが可能である。まず、合成樹脂粒子を含むエマルションや、コロイダルシリカ粒子のコロイド溶液および/またはコロイダルシリカ・樹脂複合粒子のエマルション、その他の添加剤等を必要に応じて水で希釈し、これらを均一に混合・分散させる。その後、当該混合液に、造膜助剤を加えて均一に混合する。これにより、各成分が均一に分散された水系樹脂エマルション塗料を調製することが可能である。 The method for preparing the water-based resin emulsion paint is not particularly limited, and for example, it can be prepared as follows. First, dilute emulsions containing synthetic resin particles, colloidal solution of colloidal silica particles and / or emulsions of colloidal silica / resin composite particles, and other additives with water as necessary, and mix and disperse them uniformly. Let Thereafter, a film-forming aid is added to the mixed solution and mixed uniformly. Thereby, it is possible to prepare a water-based resin emulsion paint in which each component is uniformly dispersed.
(化粧建築板の製造方法)
本発明の化粧建築板の製造方法には、前述の金属サイディング基材上に、前述の水系樹脂エマルション塗料を塗布し、これを加熱して、金属サイディング基材上に表面被覆層を形成する工程が含まれる。
(Manufacturing method of decorative building board)
In the method for producing a decorative building board of the present invention, the above-described aqueous resin emulsion paint is applied onto the above-mentioned metal siding substrate, and this is heated to form a surface coating layer on the metal siding substrate. Is included.
水系樹脂エマルション塗料を金属サイディング基材上に塗布する方法は特に制限されず、公知の方法から適宜選択することが可能である。水系樹脂エマルション塗料を塗布する方法の例には、ロールコート法や、カーテンフロー法、スピンコート法、エアースプレー法、エアーレススプレー法および浸漬引き上げ法が含まれる。 The method for applying the water-based resin emulsion paint on the metal siding substrate is not particularly limited, and can be appropriately selected from known methods. Examples of the method for applying the water-based resin emulsion paint include a roll coating method, a curtain flow method, a spin coating method, an air spray method, an airless spray method, and a dip-up method.
一方、金属サイディング基材上に塗布された水系樹脂エマルション塗料の塗膜を加熱する方法は特に制限されず、温風による加熱や近赤外線の照射等、公知の方法によって行うことができる。加熱により、水系樹脂エマルション塗料中の合成樹脂粒子が結着して膜が形成されると共に、造膜助剤の蒸発に伴って、親水性防汚成分が塗膜表面側に移動する。 On the other hand, the method for heating the coating film of the water-based resin emulsion coating applied on the metal siding substrate is not particularly limited, and can be performed by a known method such as heating with warm air or irradiation with near infrared rays. By heating, the synthetic resin particles in the water-based resin emulsion paint are bound to form a film, and the hydrophilic antifouling component moves to the coating surface side as the film-forming aid evaporates.
ここで、水系樹脂エマルション塗料の加熱温度は50℃〜90℃であることが好ましく、60〜80℃であることがより好ましい。加熱温度を90℃以下とすることで、金属サイディング基材の反りや、金属板と芯材との剥離等を抑制することができる。一方で、加熱温度を50℃以上とすることで、十分に水や造膜助剤を蒸発させることができる。また、加熱時間は、10分以下であることが好ましく、3〜8分であることがより好ましい。 Here, the heating temperature of the water-based resin emulsion paint is preferably 50 ° C to 90 ° C, more preferably 60 to 80 ° C. By setting the heating temperature to 90 ° C. or lower, warpage of the metal siding substrate, peeling between the metal plate and the core material, and the like can be suppressed. On the other hand, when the heating temperature is 50 ° C. or higher, water and the film-forming aid can be sufficiently evaporated. Moreover, it is preferable that heating time is 10 minutes or less, and it is more preferable that it is 3 to 8 minutes.
加熱方法の一例として、水系樹脂エマルション塗料が塗布された金属サイディング基材の金属板の到達温度を60〜80℃に制御しながら、金属サイディング基材の板面風速(金属板の表面での風速)が4m/秒以下となるように熱風処理する方法が挙げられる。板面風速が4m/秒を超えると、水系樹脂エマルション塗料の塗膜中から、水および造膜助剤が蒸発する速度が速すぎるため、親水性防汚成分が表面被覆層の表面に十分に移動できないことがある。 As an example of the heating method, the plate surface wind speed of the metal siding substrate (the wind speed on the surface of the metal plate) is controlled while the ultimate temperature of the metal plate of the metal siding substrate to which the water-based resin emulsion paint is applied is controlled to 60 to 80 ° C. ) Is hot air treatment so that it becomes 4 m / sec or less. When the plate surface wind speed exceeds 4 m / sec, water and the film-forming aid evaporate too quickly from the coating film of the water-based resin emulsion paint, so that the hydrophilic antifouling component is sufficiently applied to the surface of the surface coating layer. You may not be able to move.
ここで、表面被覆層の膜厚は、化粧建築板の製造方法に応じて適宜設定されるが、表面被覆層の膜厚は、10〜40μm程度とすることができ、20〜40μmとすることがより好ましい。表面被覆層の膜厚が上記範囲であると、金属サイディング基材を外部の湿度や水等から十分に保護することが可能となる。 Here, although the film thickness of a surface coating layer is suitably set according to the manufacturing method of a decorative building board, the film thickness of a surface coating layer can be about 10-40 micrometers, and shall be 20-40 micrometers. Is more preferable. When the film thickness of the surface coating layer is in the above range, the metal siding substrate can be sufficiently protected from external humidity, water, and the like.
以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例により限定されない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.
[金属サイディング基材の作製]
(下塗り層、上塗り層、およびインキ層の形成)
板厚が0.27mmのA4サイズの、片面当たりのめっき付着量が90g/m2の溶融Zn−55%Al合金めっき鋼板(金属板)を準備した。当該金属板の表面をアルカリ脱脂し、表面に塗布型クロメート処理液(NRC300NS、日本ペイント社製)を塗布した。このとき、化成処理皮膜の全Cr換算付着量は50mg/m2とした。
[Production of metal siding substrate]
(Formation of undercoat layer, topcoat layer, and ink layer)
A hot-dip Zn-55% Al alloy-plated steel plate (metal plate) having an A4 size with a plate thickness of 0.27 mm and a plating adhesion amount per side of 90 g / m 2 was prepared. The surface of the metal plate was alkali degreased, and a coating type chromate treatment solution (NRC300NS, manufactured by Nippon Paint Co., Ltd.) was applied to the surface. At this time, the total Cr conversion adhesion amount of the chemical conversion coating was 50 mg / m 2 .
次いで、エポキシ系下塗り塗料(700P、日本ファインコーティングス社製)を、バーコーターにて化成処理皮膜上に塗布し、到達板温215℃で焼き付けた。その後、乾燥膜厚5μmの下塗り層を化成処理皮膜上に形成した。 Next, an epoxy-based undercoat paint (700P, manufactured by Nippon Fine Coatings Co., Ltd.) was applied onto the chemical conversion film with a bar coater and baked at a final plate temperature of 215 ° C. Thereafter, an undercoat layer having a dry film thickness of 5 μm was formed on the chemical conversion film.
次いで、バーコーターを用いて、下塗り層の上に、上塗り塗料を塗布し、到達板温225℃で1分間焼き付けることで、微細な凹凸を表面に有する18μmの乾燥膜厚の上塗り層を形成した。上塗り塗料は、ベース樹脂に、触媒、アミン、および顔料を配合することで調製した。ベース樹脂は、ポリエステル(数平均分子量5000、ガラス転移温度30℃、水酸基価28mgKOH/g、DIC社製)とメチル化メラミン樹脂(サイメル303、三井サイテック社製)とを70:30で混合した混合物とした。触媒は、ドデシルベンゼンスルフォン酸とし、当該触媒の添加量は、樹脂固形分に対して1質量%とした。アミンは、ジメチルアミノエタノールとし、当該アミンの添加量は、ドデシルベンゼンスルフォン酸の酸等量に対するアミン等量で1.25倍となる量とした。顔料には、上塗り塗料の固形分に対してそれぞれ、平均粒径0.28μmの酸化チタン(JR−603、テイカ社製)を45質量%、平均粒径5.5μmの疎水性シリカA(サイシリア456、富士シリシア化学社製)を6質量%、平均粒径10μmのマイカ(SJ−010、ヤマグチマイカ社製)を13質量%、および、平均粒径40μmのアクリル樹脂ビーズ(タフチック AR650S、東洋紡社製)を2質量%用いた。 Then, using a bar coater, an overcoat was applied on the undercoat layer and baked at a final plate temperature of 225 ° C. for 1 minute to form an overcoat layer of 18 μm dry thickness having fine irregularities on the surface. . The top coating was prepared by blending a base resin with a catalyst, an amine, and a pigment. The base resin is a mixture of polyester (number average molecular weight 5000, glass transition temperature 30 ° C., hydroxyl value 28 mg KOH / g, manufactured by DIC) and methylated melamine resin (Cymel 303, manufactured by Mitsui Cytec) at 70:30. It was. The catalyst was dodecylbenzenesulfonic acid, and the amount of the catalyst added was 1% by mass with respect to the resin solid content. The amine was dimethylaminoethanol, and the amount of amine added was 1.25 times the amount of amine equivalent to the acid equivalent of dodecylbenzenesulfonic acid. As the pigment, 45% by mass of titanium oxide (JR-603, manufactured by Teica) having an average particle diameter of 0.28 μm and hydrophobic silica A having an average particle diameter of 5.5 μm (Cycilia) with respect to the solid content of the top coating material, respectively. 456, manufactured by Fuji Silysia Chemical Co., Ltd.), 6% by mass of mica (SJ-010, manufactured by Yamaguchi Mica Co., Ltd.) having an average particle size of 10 μm, and acrylic resin beads (Tuffic AR650S, Toyobo Co., Ltd.) having an average particle size of 40 μm. 2 mass%) was used.
次いで、上塗り層の表面に、カチオン重合型のUVインキを均一にインクジェット法により塗布し、UVインキの100%ベタ画像を形成した。次いで、塗布されたUVインキに紫外線を照射して当該UVインキを硬化させ、次いで、硬化した当該UVインキを、熱風炉中にて、70℃の炉温で5分間加熱する後加熱処理を行った。こうして、上塗り層の表面に、インキ塗布量が8.4g/m2のUVインキ層を形成した。 Next, a cationic polymerization type UV ink was uniformly applied to the surface of the overcoat layer by an ink jet method to form a 100% solid image of the UV ink. Next, the applied UV ink is irradiated with ultraviolet rays to cure the UV ink, and then the cured UV ink is heated in a hot air oven at a furnace temperature of 70 ° C. for 5 minutes, followed by heat treatment. It was. Thus, a UV ink layer having an ink coating amount of 8.4 g / m 2 was formed on the surface of the topcoat layer.
UVインキは、以下のように調製した。まず、ガラス瓶に、高分子分散剤(PB822、味の素ファインテクノ社製)3.5質量部、ヒドロキシル基を有するオキセタン化合物(OXT−101、東亜合成社製)25質量部、エポキシ化合物(CEL2021P、CEL3000、ダイセル社製)10質量部、オキセタン化合物(OXT−221、東亜合成社製)35.5質量部、および、黒色顔料(チャンネルブラック RCF♯33、三菱化学社製)3.0質量部、の混合物にジルコニアビーズ(直径1mm)200質量部を入れて、当該ガラス瓶を密栓した。次いで、ペイントシェーカーで混合物を4時間、分散処理した。分散処理後、混合物からジルコニアビーズを除去して顔料分散体を得た。当該顔料分散体に、光カチオン重合開始剤(CPI−100P、サンアプロ社製)18質量部を混合した。 The UV ink was prepared as follows. First, 3.5 parts by mass of a polymer dispersant (PB822, manufactured by Ajinomoto Fine Techno Co.), 25 parts by mass of an oxetane compound having a hydroxyl group (OXT-101, manufactured by Toagosei Co., Ltd.), an epoxy compound (CEL2021P, CEL3000). 10 parts by mass of Daicel), 35.5 parts by mass of oxetane compound (OXT-221, manufactured by Toa Gosei Co., Ltd.), and 3.0 parts by mass of black pigment (Channel Black RCF # 33, manufactured by Mitsubishi Chemical Corporation) 200 parts by mass of zirconia beads (diameter 1 mm) were added to the mixture, and the glass bottle was sealed. The mixture was then dispersed for 4 hours on a paint shaker. After the dispersion treatment, zirconia beads were removed from the mixture to obtain a pigment dispersion. The pigment dispersion was mixed with 18 parts by mass of a cationic photopolymerization initiator (CPI-100P, manufactured by San Apro).
インクジェット法には、インクジェットプリンター(パターニングジェット、トライテック社製)を用いた。インクジェットヘッドのノズル径を35μm、インクジェット印刷時のインクジェットヘッドの温度を45℃、印加電圧を11.5V、パルス幅を10.0μs、駆動周波数を3483Hz、インク滴の体積を42pL、そして、解像度を360dpiとした。 In the ink jet method, an ink jet printer (patterning jet, manufactured by Tritech) was used. The nozzle diameter of the inkjet head is 35 μm, the temperature of the inkjet head during inkjet printing is 45 ° C., the applied voltage is 11.5 V, the pulse width is 10.0 μs, the drive frequency is 3483 Hz, the volume of the ink droplet is 42 pL, and the resolution is 360 dpi.
紫外線は、高圧水銀ランプ(Hバルブ、フュージョンUVシステムズ・ジャパン社製)により照射した。ランプ出力は200W/cm、積算光量を600mJ/cm2とした。なお、積算光量は、赤外線光量計UV−351−25、オーク製作所社製で測定した。後加熱処理には、自動排出型乾燥機AT0−101型、東上熱学社製を用いた。 Ultraviolet rays were irradiated with a high-pressure mercury lamp (H bulb, manufactured by Fusion UV Systems Japan). The lamp output was 200 W / cm, and the integrated light quantity was 600 mJ / cm 2 . The integrated light quantity was measured with an infrared light quantity meter UV-351-25, manufactured by Oak Manufacturing Co., Ltd. For the post-heating treatment, an automatic discharge dryer AT0-101, manufactured by Tojo Thermal Engineering Co., Ltd. was used.
(金属板の成形加工)
前述の下塗り層、上塗り層、およびインキ層を形成した金属板(以下、「塗装金属板」とも称する)に、エンボス加工により表面加工を施し、さらにロールフォーミング加工により嵌合形状を成形した。具体的には、アンコイラーに巻かれた前述の塗装金属板を連続的に送り出し、ロール式エンボス成形機により、ブリック柄に高さ1.8mm〜4.0mmのエンボス形状を連続成形した。これにより、タイル模様の外観を有する塗装金属板が得られた。続いて、ロールフォーミング成形機により塗装金属板を成形し、嵌合凸部および嵌合凹部を形成した。
(Metal plate forming)
The metal plate (hereinafter also referred to as “painted metal plate”) on which the above-described undercoat layer, topcoat layer, and ink layer were formed was subjected to surface processing by embossing, and a fitting shape was formed by roll forming. Specifically, the above-described coated metal plate wound around an uncoiler was continuously fed out, and an embossed shape having a height of 1.8 mm to 4.0 mm was continuously formed on a brick pattern by a roll-type embossing machine. Thereby, the painted metal plate which has the external appearance of a tile pattern was obtained. Subsequently, a coated metal plate was formed by a roll forming machine to form a fitting convex portion and a fitting concave portion.
(塗装金属板、芯材、および裏面材の積層)
ポリイソシアヌレート原料である、ソフランR−HIPおよびトーヨーソフランR746−19D(いずれもソフランウィズ社製)を、発泡機内で、質量比10対7で混合した。そして当該ポリイソシアヌレート原料を混合押出機により、前述の塗装金属板の裏面に吐出した。そして、吐出されたポリイソシアヌレート原料上に、アルミニウムクラフト紙(裏面材)を送り出し、塗装金属板とアルミニウムクラフト紙との間に発泡状態のポリイソシアヌレート原料を挟み込んだ。この状態で加熱および加圧を行い、ポリイソシアヌレート原料を発泡成形した。これにより、塗装金属板、芯材(ポリイソシアヌレート)、およびアルミニウムクラフト紙(裏面材)をこの順に有する金属サイディング基材を得た。なお、芯材の厚みは、17mmとした。芯材の厚みは、発泡成形(加熱および加圧)時に、金属塗装板、ポリイソシアヌレート原料層、およびアルミニウムクラフト紙を積層方向に挟持するダブルコンベアのコンベア間の距離で調整した。また、ポリイソシアヌレート原料の詳細な発泡条件は以下の通りである。
(Lamination of painted metal plate, core material, and back material)
Sophane R-HIP and Toyosofuran R746-19D (both manufactured by Soflanwith), which are polyisocyanurate raw materials, were mixed at a mass ratio of 10: 7 in a foaming machine. And the said polyisocyanurate raw material was discharged to the back surface of the above-mentioned coating metal plate with the mixing extruder. And the aluminum kraft paper (back surface material) was sent out on the discharged polyisocyanurate raw material, and the foamed polyisocyanurate raw material was inserted | pinched between the coating metal plate and the aluminum kraft paper. In this state, heating and pressurization were performed to foam-mold the polyisocyanurate raw material. Thereby, the metal siding base material which has a coating metal plate, a core material (polyisocyanurate), and aluminum kraft paper (back surface material) in this order was obtained. The thickness of the core material was 17 mm. The thickness of the core material was adjusted by the distance between the conveyors of the double conveyor that sandwiches the metal-coated plate, the polyisocyanurate raw material layer, and the aluminum kraft paper in the laminating direction during foam molding (heating and pressing). The detailed foaming conditions of the polyisocyanurate raw material are as follows.
(発泡条件)
コンベアラインスピード 40m/min
流量(ポリイソシアヌレート原料の吐出量) 6kg/min
ポリイソシアヌレート原料温度 30℃
塗装金属板のプレヒート温度 35℃
加熱(オーブンキュアー)温度 50℃
発泡機 低圧型アジテータミキシング発泡機
(Foaming conditions)
Conveyor line speed 40m / min
Flow rate (Discharge rate of polyisocyanurate raw material) 6kg / min
Polyisocyanurate raw material temperature 30 ° C
Preheating temperature of painted metal plate 35 ℃
Heating (oven cure) temperature 50 ° C
Foaming machine Low pressure agitator mixing foaming machine
[実施例1〜11および比較例1〜11]
・水系樹脂エマルション塗料の調製
アクリル樹脂エマルション7504(樹脂分55.5%、最低造膜温度(MFT) 57℃、Tg 46℃、BASFジャパン社製)100質量部、平均粒径18μmのアクリルビーズ(平均粒子径:18μm、タフチックAR650S、東洋紡社製)3.8質量部、平均粒径12μmの親水性シリカ粒子(平均粒子径:12μm、サイシリア470、富士シリシア化学社製)1.5質量部、ノニオン性界面活性剤(アデカプラノンMPC−800、曇点約30℃、ADEKA社製)0.1質量部、コロイダルシリカ粒子含有エマルション(スノーテックスC、日産化学工業社製、SiO2含量 20質量%、pH8.8、平均粒子径 10〜15nm)10質量部、紫外線吸収剤(TINUVIN1130、BASFジャパン社製)5質量部、高分子型特殊ノニオン系増粘剤(アデカノールUH540、ADEKA社製)0.07質量部、および水100質量部を混合して、10分間攪拌し、80メッシュのフィルターでろ過した。これにより、造膜助剤以外の成分からなる混合物を得た。
[Examples 1 to 11 and Comparative Examples 1 to 11]
-Preparation of water-based resin emulsion paint Acrylic resin emulsion 7504 (resin content 55.5%, minimum film-forming temperature (MFT) 57 ° C., Tg 46 ° C., manufactured by BASF Japan Ltd.) 100 parts by mass, average particle size 18 μm acrylic beads ( Average particle size: 18 μm, Tuftic AR650S, manufactured by Toyobo Co., Ltd.) 3.8 parts by mass, hydrophilic silica particles having an average particle size of 12 μm (average particle size: 12 μm, Cicilia 470, manufactured by Fuji Silysia Chemical Ltd.), Nonionic surfactant (Adecoupler MPC-800, cloud point of about 30 ° C., manufactured by ADEKA) 0.1 part by mass, colloidal silica particle-containing emulsion (Snowtex C, manufactured by Nissan Chemical Industries, SiO 2 content 20% by mass, 10 parts by mass of pH 8.8, average particle size 10-15 nm), UV absorber (TINUVIN 1130, B SF Japan Co., Ltd.) 5 parts by mass, polymer-type special nonionic thickener (Adecanol UH540, ADEKA Co., Ltd.) 0.07 parts by mass, and water 100 parts by mass are mixed and stirred for 10 minutes, and 80 mesh Filtered with a filter. This obtained the mixture which consists of components other than the film-forming aid.
当該混合物に、表1に示される組成となるように、造膜助剤を添加した。具体的には、エチレングリコールモノブチルエーテル(沸点171℃)を2.2〜27.2質量部、1−ブトキシ−2−プロパノール(沸点170℃)を4.4〜14質量部、ジプロピレングリコールモノブチルエーテル(沸点227℃)を4.4〜14質量部、もしくはトリプロピレングリコールモノメチルエーテル(沸点243℃)を4.4〜14質量部を上記混合物に添加し、各実施例および比較例の水系樹脂エマルション塗料を得た。 A film-forming aid was added to the mixture so that the composition shown in Table 1 was obtained. Specifically, ethylene glycol monobutyl ether (boiling point 171 ° C.) is 2.2 to 27.2 parts by mass, 1-butoxy-2-propanol (boiling point 170 ° C.) is 4.4 to 14 parts by mass, dipropylene glycol mono 4.4 to 14 parts by mass of butyl ether (boiling point 227 ° C.) or 4.4 to 14 parts by mass of tripropylene glycol monomethyl ether (boiling point 243 ° C.) was added to the above mixture, and the water-based resin of each Example and Comparative Example An emulsion paint was obtained.
・表面被覆層の作製
各水系樹脂エマルション塗料を、金属サイディング基材の塗装金属板(上記インキ層)の表面に、乾燥質量30g/m2となるようにエアーレススプレー装置によって塗装した。その後、塗装した金属サイディング基材を板面風速(金属サイディング基材の金属板の表面での風速)4m/秒、金属板の到達温度80℃、到達温度保持時間5分で熱風処理した。
Preparation Each aqueous resin emulsion paint and surface coating layer on the surface of the coated metal plate of the metal siding substrate (the ink layer) was coated by airless spray device so that the dry mass 30 g / m 2. Thereafter, the coated metal siding base material was subjected to hot air treatment at a plate surface wind speed (wind speed on the surface of the metal plate of the metal siding base material) of 4 m / second, a metal plate temperature of 80 ° C., and a temperature hold time of 5 minutes.
[実施例12]
アクリル樹脂エマルションの量を100重量部から96重量部に変更し、コロイダルシリカ粒子含有エマルションの代わりに、以下の方法で調製したコロイダルシリカ・樹脂複合粒子含有エマルションを4質量部添加した以外は、前述の方法と同様に造膜助剤以外の成分の混合物を調製した。その後、当該混合物に、造膜助剤としてエチレングリコールモノブチルエーテル(沸点171℃)を9.2重量部添加し、水系樹脂エマルション塗料を得た。その後、実施例1等と同様の方法により、金属サイディング基材上に表面被覆層を形成した。
[Example 12]
The amount of the acrylic resin emulsion was changed from 100 parts by weight to 96 parts by weight, except that 4 parts by weight of the colloidal silica / resin composite particle-containing emulsion prepared by the following method was added instead of the colloidal silica particle-containing emulsion. A mixture of components other than the film-forming aid was prepared in the same manner as described above. Thereafter, 9.2 parts by weight of ethylene glycol monobutyl ether (boiling point: 171 ° C.) as a film forming aid was added to the mixture to obtain an aqueous resin emulsion paint. Thereafter, a surface coating layer was formed on the metal siding substrate by the same method as in Example 1 and the like.
(コロイダルシリカ・樹脂複合粒子含有エマルションの調製)
撹拌装置、温度計、冷却管および滴下装置を備えた反応器中に、コロイダルシリカ粒子含有エマルション(商品名:スノーテックスS、日産化学工業社製、固形分30質量%、平均粒子径8〜11nm、Na安定型)500質量部、脱イオン水350部を仕込み、反応器内部を窒素で置換しながら、80℃まで昇温・保持した。次いで、過硫酸カリウム2部を加え、予め別容器で撹拌混合しておいたメタクリル酸メチル210部、アクリル酸2−エチルヘキシル90部の混合溶液を、4時間かけて連続滴下した。滴下終了後、80℃で2時間攪拌を続けながら熟成し、室温まで冷却した。その後、アンモニア水溶液を添加して、pH9〜10に調整し、コロイダルシリカ・樹脂複合粒子含有エマルションを得た。コロイダルシリカ・樹脂複合粒子の固形分量は39質量%であった。
(Preparation of emulsion containing colloidal silica / resin composite particles)
In a reactor equipped with a stirrer, a thermometer, a cooling pipe and a dropping device, a colloidal silica particle-containing emulsion (trade name: Snowtex S, manufactured by Nissan Chemical Industries, Ltd., solid content 30% by mass, average particle size 8-11 nm , Na stable type) 500 parts by mass and 350 parts of deionized water were charged, and the temperature inside the reactor was increased to 80 ° C. while being replaced with nitrogen. Next, 2 parts of potassium persulfate was added, and a mixed solution of 210 parts of methyl methacrylate and 90 parts of 2-ethylhexyl acrylate which had been stirred and mixed in a separate container in advance was continuously added dropwise over 4 hours. After completion of dropping, the mixture was aged while continuing stirring at 80 ° C. for 2 hours, and cooled to room temperature. Thereafter, an aqueous ammonia solution was added to adjust the pH to 9 to 10 to obtain an emulsion containing colloidal silica / resin composite particles. The solid content of the colloidal silica / resin composite particles was 39% by mass.
[比較例12]
コロイダルシリカ含有エマルションおよびコロイダルシリカ・樹脂複合粒子含有エマルションを添加しなかった以外は、上記実施例1等と同様の方法で、造膜助剤以外の成分の混合物を調製した。その後、当該混合物に、造膜助剤としてエチレングリコールモノブチルエーテル(沸点171℃)を9.2重量部添加し、水系樹脂エマルション塗料を得た。その後、実施例1等と同様の方法により、金属サイディング基材上に表面被覆層を形成した。
[Comparative Example 12]
A mixture of components other than the film-forming aid was prepared in the same manner as in Example 1 except that the colloidal silica-containing emulsion and the colloidal silica / resin composite particle-containing emulsion were not added. Thereafter, 9.2 parts by weight of ethylene glycol monobutyl ether (boiling point: 171 ° C.) as a film forming aid was added to the mixture to obtain an aqueous resin emulsion paint. Thereafter, a surface coating layer was formed on the metal siding substrate by the same method as in Example 1 and the like.
[評価]
(密着性)
得られた表面被覆層について、JIS K5600−5−6に従い、碁盤目状にクロスカットを入れて100個のマス目を作製し、密着性を評価した。○以上であれば使用可能なレベルである。
◎:剥離した箇所が5個以下
○:剥離した箇所が6個以上29個以下
×:剥離した箇所が30個以上
[Evaluation]
(Adhesion)
About the obtained surface coating layer, according to JISK5600-5-6, the crosscut was put into the grid | lattice form, 100 squares were produced, and adhesiveness was evaluated. ○ If it is above, it is a usable level.
◎: No more than 5 peeled places ○: No less than 6 and no more than 29 places ×: 30 or more peeled places
(鉛筆硬度)
得られた表面被覆層について、JIS K5600−5−4に規定された測定方法に従って、鉛筆硬度を測定した。○以上であれば使用可能なレベルにある。
◎:H以上
○:HB以上F以下
×:B以下
(Pencil hardness)
About the obtained surface coating layer, the pencil hardness was measured according to the measuring method prescribed | regulated to JISK5600-5-4. ○ If it is above, it is at a usable level.
◎: H or more ○: HB or more and F or less ×: B or less
(耐水接着性)
化粧建築板を、98℃以上の沸騰したイオン交換水中に2時間浸漬した後、室温で2時間乾燥させた。その後、前述と同様に、表面被覆層に100個のマス目を作製し、密着性の評価を行った。○以上であれば使用可能なレベルにある。
◎:剥離した箇所が5個以下
○:剥離した箇所が6個以上29個以下
×:剥離した箇所が30個以上
(Water resistant adhesiveness)
The decorative building board was immersed in boiling ion exchange water at 98 ° C. or higher for 2 hours, and then dried at room temperature for 2 hours. Thereafter, in the same manner as described above, 100 squares were prepared in the surface coating layer, and the adhesion was evaluated. ○ If it is above, it is at a usable level.
◎: No more than 5 peeled places ○: No less than 6 and no more than 29 places ×: 30 or more peeled places
(成膜性)
表面被覆層の表面を20倍のルーペで観察して、クラックの有無により成膜性を評価した。○以上ならば使用可能なレベルである。
◎:クラック無し
○:微小クラック有り
×:クラック有り
(Film formability)
The surface of the surface coating layer was observed with a 20-fold magnifier, and the film forming property was evaluated based on the presence or absence of cracks. ○ If it is above, it is a usable level.
◎: No crack ○: There is a minute crack ×: There is a crack
(水接触角)
液滴体積1μLで表面被覆層の水接触角を測定した。○以上であれば耐汚染性が良好なレベルである。
◎:35°未満
○:35°以上50°未満
×:50°以上
(Water contact angle)
The water contact angle of the surface coating layer was measured with a droplet volume of 1 μL. ○ If it is above, the contamination resistance is a good level.
◎: Less than 35 ° ○: 35 ° or more and less than 50 ° ×: 50 ° or more
(水系樹脂エマルション塗料の貯蔵安定性)
実施例および比較例で調製した水系樹脂エマルション塗料を50℃の恒温室内に4週間保管して保管前後の25℃の塗料粘度をB型粘度計で測定して粘度上昇率を計算した。
◎:粘度上昇率10%未満
○:粘度上昇率10%以上20%未満
×:粘度上昇率20%以上
(Storage stability of water-based resin emulsion paint)
The aqueous resin emulsion paints prepared in Examples and Comparative Examples were stored in a thermostatic chamber at 50 ° C. for 4 weeks, and the viscosity of the paint at 25 ° C. before and after storage was measured with a B-type viscometer to calculate the rate of increase in viscosity.
A: Viscosity increase rate is less than 10% B: Viscosity increase rate is 10% or more and less than 20% X: Viscosity increase rate is 20% or more
表1に示されるように、造膜助剤としてエチレングリコールモノブチルエーテルを2〜10質量%と、コロイダルシリカ粒子および/またはコロイダルシリカ・樹脂複合粒子とを含む水系樹脂エマルション塗料により表面被覆層を形成した場合、表面被覆層と金属サイディング基材との密着性が良好であった(実施例1〜12)。これに対し、エチレングリコールモノブチルエーテルの量が少ない場合には、十分な密着性が得られず、耐水密着性、成膜性も低かった(比較例1)。これは、表面被覆層から造膜助剤が十分に蒸発せず、膜中に残存したことが一因として考えられる。またこのとき、水接触性も低かった。これは、エチレングリコールモノブチルエーテルの蒸発速度が遅いため、表面被覆層の表面に均一にコロイダルシリカ粒子もしくはコロイダルシリカ・樹脂複合粒子が移動し難かったと推察される。 As shown in Table 1, a surface coating layer is formed by an aqueous resin emulsion paint containing 2 to 10% by mass of ethylene glycol monobutyl ether as a film-forming aid and colloidal silica particles and / or colloidal silica / resin composite particles. When it did, the adhesiveness of a surface coating layer and a metal siding base material was favorable (Examples 1-12). On the other hand, when the amount of ethylene glycol monobutyl ether was small, sufficient adhesion could not be obtained, and water-resistant adhesion and film-forming properties were also low (Comparative Example 1). This is probably because the film-forming aid was not sufficiently evaporated from the surface coating layer and remained in the film. At this time, water contact was also low. This is presumably because the colloidal silica particles or the colloidal silica / resin composite particles did not easily move to the surface of the surface coating layer because the evaporation rate of ethylene glycol monobutyl ether was slow.
一方、エチレングリコールモノブチルエーテルの量が過剰である場合には、密着性が低く、さらに塗料の保存安定性が低下した(比較例2)。エチレングリコールモノブチルエーテルの量が過剰になると、合成樹脂粒子が膨潤して塗料が不安定になり、塗料粘度が上昇したり、塗料の貯蔵安定性が低下したと推察される。 On the other hand, when the amount of ethylene glycol monobutyl ether was excessive, the adhesion was low, and the storage stability of the paint was further reduced (Comparative Example 2). If the amount of ethylene glycol monobutyl ether becomes excessive, it is presumed that the synthetic resin particles swell and the coating becomes unstable, the viscosity of the coating increases, and the storage stability of the coating decreases.
また、エチレングリコールモノブチルエーテルを、他の造膜助剤に替えた場合には、表面被覆層の密着性等が低下しやすく、いずれも水接触角が十分に高まらなかった(比較例3〜11)。表面被覆層から造膜助剤が蒸発し難く、表面被覆層の表面にコロイダルシリカ粒子もしくはコロイダルシリカ・樹脂複合粒子が十分に移動しなかったと推察される。 In addition, when ethylene glycol monobutyl ether was replaced with another film-forming auxiliary, the adhesion of the surface coating layer was liable to decrease, and the water contact angle did not increase sufficiently (Comparative Examples 3 to 11). ). It is presumed that the film-forming auxiliary hardly evaporates from the surface coating layer, and the colloidal silica particles or the colloidal silica / resin composite particles did not move sufficiently to the surface of the surface coating layer.
本発明の化粧建築板の製造方法で得られる表面被覆膜は、耐水性や金属サイディング基材との密着性に優れ、さらに防汚性にも優れる。したがって、当該化粧建築板は、各種建築物に適用が可能である。 The surface coating film obtained by the method for producing a decorative building board of the present invention is excellent in water resistance and adhesion to a metal siding substrate, and is also excellent in antifouling properties. Accordingly, the decorative building board can be applied to various buildings.
Claims (5)
造膜助剤と親水性防汚成分と合成樹脂粒子とを含む水系樹脂エマルション塗料を、前記金属サイディング基材の金属板側表面に塗布後、60℃以上90℃以下に加熱して、前記表面被覆層を形成する工程を有し、
前記造膜助剤が、エチレングリコールモノブチルエーテルを含み、
前記親水性防汚成分が、コロイダルシリカ粒子および/またはコロイダルシリカ・樹脂複合粒子を含み、
前記エチレングリコールモノブチルエーテルの量が、前記水系樹脂エマルション塗料の総量に対して2〜10質量%であり、
前記加熱時に、板面風速が4m/秒以下である熱風を吹き付ける、
化粧建築板の製造方法。 A metal siding substrate having a metal plate, a core material, and a back material in this order, and a surface covering layer formed on the metal plate side surface of the metal siding substrate,
After applying a water-based resin emulsion paint containing a film-forming aid, a hydrophilic antifouling component, and synthetic resin particles to the metal plate side surface of the metal siding substrate, the surface is heated to 60 ° C. or higher and 90 ° C. or lower to obtain the surface Forming a coating layer,
The film-forming aid contains ethylene glycol monobutyl ether,
The hydrophilic antifouling component contains colloidal silica particles and / or colloidal silica / resin composite particles,
The amount of the ethylene glycol monobutyl ether, Ri 2 to 10% by mass relative to the total amount of the aqueous resin emulsion paint,
During the heating, hot air with a plate surface wind speed of 4 m / sec or less is blown,
A method for manufacturing a decorative building board.
前記アルコール系有機溶媒の量が、前記水系樹脂エマルション塗料の総量に対して4質量%以下である、
請求項1に記載の化粧建築板の製造方法。 The film-forming aid is at least one alcohol-based organic solvent selected from the group consisting of 1-butoxy-2-propanol, texanol, carbitol, butyl carbitol, tripropylene glycol monomethyl ether, and dipropylene glycol monobutyl ether Further including
The amount of the alcohol-based organic solvent is 4% by mass or less based on the total amount of the water-based resin emulsion paint.
The manufacturing method of the decorative building board of Claim 1.
請求項1または2に記載の化粧建築板の製造方法。 The synthetic resin particles include silicone-modified acrylic resin particles and / or acrylic resin particles.
The manufacturing method of the decorative building board of Claim 1 or 2.
請求項1〜3のいずれか一項に記載の化粧建築板の製造方法。 The heating time in the step of forming the surface coating layer is 10 minutes or less,
The manufacturing method of the decorative building board as described in any one of Claims 1-3.
請求項1〜4のいずれか一項に記載の化粧建築板の製造方法。 The manufacturing method of the decorative building board as described in any one of Claims 1-4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016041324A JP6466874B2 (en) | 2016-03-03 | 2016-03-03 | Manufacturing method of decorative building board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016041324A JP6466874B2 (en) | 2016-03-03 | 2016-03-03 | Manufacturing method of decorative building board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017155522A JP2017155522A (en) | 2017-09-07 |
JP6466874B2 true JP6466874B2 (en) | 2019-02-06 |
Family
ID=59808321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016041324A Active JP6466874B2 (en) | 2016-03-03 | 2016-03-03 | Manufacturing method of decorative building board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6466874B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022035207A1 (en) * | 2020-08-13 | 2022-02-17 | 엘지전자 주식회사 | Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6693629B1 (en) * | 2019-05-27 | 2020-05-13 | ナトコ株式会社 | Water-based coating composition for topcoat of metal siding, method for producing metal siding, and water-based coating composition for topcoat of metal siding |
JP6693628B1 (en) * | 2019-05-27 | 2020-05-13 | ナトコ株式会社 | Aqueous coating composition for topcoat of metal siding, metal siding |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003053258A (en) * | 2001-06-04 | 2003-02-25 | Kansai Paint Co Ltd | Method for forming metal siding structure having high design effect and metal siding structure formed thereby |
JP4673224B2 (en) * | 2004-02-04 | 2011-04-20 | 三菱レイヨン株式会社 | Aqueous coating material, coating film using the same, and coated article with coating film formed thereon |
JP2006160880A (en) * | 2004-12-07 | 2006-06-22 | Jsr Corp | Aqueous dispersion, its manufacturing process and water-based stain-resistant coating using the aqueous dispersion |
JP4812902B1 (en) * | 2011-02-28 | 2011-11-09 | 大日本塗料株式会社 | Antifouling paint composition and method for forming antifouling coating film |
JP5946247B2 (en) * | 2011-03-31 | 2016-07-06 | 大日本塗料株式会社 | Hydrophilic antifouling treatment method for building outer wall surface and building |
JP5854740B2 (en) * | 2011-10-01 | 2016-02-09 | 株式会社日本触媒 | Manufacturing method of building materials |
JP5567167B1 (en) * | 2013-02-28 | 2014-08-06 | 日新製鋼株式会社 | Metal siding manufacturing method and manufacturing apparatus |
-
2016
- 2016-03-03 JP JP2016041324A patent/JP6466874B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022035207A1 (en) * | 2020-08-13 | 2022-02-17 | 엘지전자 주식회사 | Hydrophilic coating composition, heat exchanger fin comprising same, and heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2017155522A (en) | 2017-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4842744B2 (en) | Printed material and paint for base formation used for forming the printed material | |
KR101726310B1 (en) | Printing material | |
WO2015079596A1 (en) | Process for producing decorative building board | |
JP5208804B2 (en) | Building board manufacturing method | |
JP6466874B2 (en) | Manufacturing method of decorative building board | |
JP5357348B1 (en) | Painting materials, printing materials and coating materials | |
EP3305419B1 (en) | Manufacturing method for decorative construction plate | |
JP2007044614A (en) | Method for manufacturing building material having decorative design | |
JP2010112073A (en) | Building plate | |
JP5893878B2 (en) | Manufacturing method of colored plate | |
JP6105327B2 (en) | Printing materials and coating materials | |
JP6544906B2 (en) | Ink jet printed matter and method of manufacturing ink jet printed matter | |
JP5189610B2 (en) | Designable building material and method for producing the same | |
JP6230568B2 (en) | Manufacturing method of decorative building board | |
JP2015123588A (en) | Coated metal plate, coated metal plate molding and method for producing the same | |
JP2013142242A (en) | Building board, manufacturing method thereof, and foundation coating material for picture on the building board | |
JP5567167B1 (en) | Metal siding manufacturing method and manufacturing apparatus | |
JP7514780B2 (en) | Metal substrate for printing, its manufacturing method, and coated metal material | |
JP7417800B2 (en) | Paints for metals, metal base materials for printing obtained from the same and methods for producing the same, and coated metal materials | |
JP2014101748A (en) | Building board | |
JP7402397B2 (en) | Manufacturing method of painted metal plate | |
CN117320819A (en) | Liquid or aerosol spray coating composition for a substrate, coated substrate and coating method | |
JP2020111659A (en) | Coating composition for ink-receiving layer, ink-receiving layer, inorganic decorative plate, and method for producing the same | |
JP2003292875A (en) | Topcoating composition for inorganic building material, its applying method and coated inorganic building material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180116 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180116 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20180326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181005 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190110 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6466874 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |