JP2019107791A - タイヤ成型用金型および空気入りタイヤの製造方法 - Google Patents

タイヤ成型用金型および空気入りタイヤの製造方法 Download PDF

Info

Publication number
JP2019107791A
JP2019107791A JP2017240581A JP2017240581A JP2019107791A JP 2019107791 A JP2019107791 A JP 2019107791A JP 2017240581 A JP2017240581 A JP 2017240581A JP 2017240581 A JP2017240581 A JP 2017240581A JP 2019107791 A JP2019107791 A JP 2019107791A
Authority
JP
Japan
Prior art keywords
temperature measurement
measurement probe
tire
temperature
vulcanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017240581A
Other languages
English (en)
Other versions
JP7030500B2 (ja
Inventor
倫一 中山
Tomoichi Nakayama
倫一 中山
英樹 島
Hideki Shima
英樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd, Toyo Tire Corp filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2017240581A priority Critical patent/JP7030500B2/ja
Priority to PCT/JP2018/040982 priority patent/WO2019116778A1/ja
Publication of JP2019107791A publication Critical patent/JP2019107791A/ja
Application granted granted Critical
Publication of JP7030500B2 publication Critical patent/JP7030500B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Tyre Moulding (AREA)

Abstract

【課題】タイヤ毎に加硫工程の終了時点を確実に決定するために、加硫中の空気入りタイヤの温度を正確に測定可能なタイヤ成型用金型を提供すること。【解決手段】トレッド部に圧接可能なトレッド型部を少なくとも備え、トレッド型部は、周方向に分割されて、生タイヤの径方向に移動可能な複数のセグメントを有し、セグメントのうち、少なくとも二つ以上のセグメントは、温度測定プローブを固定する固定手段と、固定手段から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴と、固定手段により固定され、内周面側に向かって、温度測定プローブ挿入穴内をタイヤ径方向に延び、内周面側端が温度測定プローブ挿入穴の内周面側端を超えてトレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、温度測定プローブの外径D1は、温度測定プローブ挿入穴の内径D2よりも小さく形成されているタイヤ成型用金型。【選択図】 図3

Description

本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型に関する。
ゴム製品である空気入りタイヤを製造する場合、その加硫工程はもっとも時間を要する工程となるため、加硫工程の時間短縮の努力が現在でも行われている。その一方で、加硫工程においてゴム部の加硫が不十分であると、ゴムの加硫反応により発生したエアが加硫ゴム内に残存し、かかる残存エアは製品段階でのタイヤ故障の原因となる場合がある。したがって、通常のタイヤ生産の現場では、季節要因などにより、例えば原料である未加硫の生タイヤの温度、金型内温度、雰囲気温度などがばらつく点を考慮し、加硫工程での全ばらつきを加味した余裕時間を加算して加硫工程に要する時間を設定している。
しかしながら、余裕時間の設定はタイヤの生産性向上の観点からは好ましくなく、タイヤ毎に加硫終了時を決定し、効率良く加硫工程を実行することが望まれていた。
下記特許文献1には、加硫工程が進行している間に加硫試料のインピーダンスを測定し、加硫試料の高分子抵抗値Rpの増加速度が急激に緩慢になる時点を最適の加硫停止時間とする、加硫試料の実時間加硫調節方法が記載されている。しかしながら、この方法では、加硫試料に対するインピーダンス測定を、2個の電極の間に加硫試料を挟んで測定する必要があり、しかもタイヤは通常、複合材料の積層体であるため、この方法をタイヤ加硫時のタイヤに応用することは困難である。
特開2003−211459号公報
本発明は上記実情に鑑みてなされたものであり、その目的は、タイヤ毎に加硫工程の終了時点を確実に決定するために、加硫中の空気入りタイヤの温度を正確に測定可能なタイヤ成型用金型を提供することにある。
上記目的は、下記の如き本発明により達成できる。即ち本発明は、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、前記トレッド部に圧接可能なトレッド型部を少なくとも備え、前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、前記セグメントのうち、少なくとも二つ以上のセグメントは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴と、前記固定手段により固定され、内周面側に向かって、前記温度測定プローブ挿入穴内をタイヤ径方向に延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
前記温度測定プローブの外径D1は、前記温度測定プローブ挿入穴の内径D2よりも小さく形成されていることを特徴とするタイヤ成型用金型に関する。
本発明に係るタイヤ成型用金型は、少なくともトレッド型部が周方向に分割された、所謂「セグメンタルモールド」であり、分割されたセグメントのうち、少なくとも二つ以上のセグメントに、上記特定の温度測定プローブを備える。これにより、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができる。また二つ以上のセグメントに温度測定プローブを配設しているため、複数個所で温度測定することになるため正確な温度測定が可能となり、かつ、万が一、ある温度測定プローブが破損しても、他の温度測定プローブでの測定が可能となる。
また本発明に係るタイヤ成型用金型は、セグメントの進行方向および温度測定プローブの配設方向をいずれも生タイヤの径方向としている。前記のとおり、セグメントは生タイヤの径方向に移動するため、温度測定プローブの配設方向も生タイヤの径方向とした場合、温度測定プローブをショルダー部内に埋設する際、負荷が最も少なくなるため好ましい。温度測定プローブへの負荷軽減を考慮した場合、セグメントが径方向に移動する際の進行方向と、温度測定プローブの径方向への配設方向とのズレは、3°以下であることが好ましく、1°以下であることがより好ましい。
上記タイヤ成型用金型において、前記温度測定プローブの外径D1が、1〜10mmであることが好ましい。
上記タイヤ成型用金型において、前記固定手段の内周面側端から測定した前記温度測定プローブの長さをL1としたとき、L1/D1が10以上であることが好ましい。
上記タイヤ成型用金型において、前記温度測定プローブ挿入穴の内周面側端と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率のスペーサーにより塞がれていることが好ましい。
上記タイヤ成型用金型において、前記温度測定プローブ挿入穴と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率の断熱材により塞がれていることが好ましい。
上記タイヤ成型用金型において、前記温度測定プローブが、プラチナ測温抵抗体であることが好ましい。
また本発明は、前記いずれかに記載のタイヤ成型用金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法に関する。
上記製造方法によれば、加硫中の空気入りタイヤの温度、特にはタイヤの加硫が最も進行し難いトレッド部のショルダー部の温度を正確に測定することができるため、タイヤ毎に加硫工程の終了時点を確実に決定できる。
上記空気入りタイヤの製造方法において、前記加硫工程が、ショルダー部に温度測定プローブを埋設する第1段階と、前記温度測定プローブにより、加硫中の前記生タイヤの温度の時系列データを10秒以下の間隔で取得する第2段階と、前記時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で前記加硫工程を終了する第3段階とを備えることが好ましい。
上記製造方法では、まず、一対のビード部と、ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤの加硫最遅部に相当するトレッド部に、温度測定プローブを埋設し(第1段階)、温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。次いで、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。その結果、余分な余裕時間の設定が不要となり、空気入りタイヤの生産性を高めることができる。加えて、空気入りタイヤ1本毎に加硫反応が確実に終了していることが確認できるため、品質保証体制を確立することができる。なお、「目標加硫温度の近傍」とは、好ましくは設定した目標加硫温度の±10℃の範囲を意味するものとする。
上記空気入りタイヤの製造方法において、さらに前記第3段階が、前記時系列データに基づき、前記生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする第3a段階と、プロットした前記加硫温度曲線で前記目標加硫温度の近傍に現れる、下に凸な変曲点を検出した時点で前記加硫工程を終了する第3b段階とを備えることが好ましい。かかる構成によれば、プロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点を加硫終点とするため、見極めが容易で簡便である。これにより、空気入りタイヤの加硫終点をより確実に見極めることが可能となり、空気入りタイヤの生産性をさらに高めることができる。
上記空気入りタイヤの製造方法において、前記目標加硫温度が125〜165℃であることが好ましい。目標加硫温度の設定が高い場合、空気入りタイヤの加硫速度が速くなるため、加硫反応による吸熱を検出した時点に基づく加硫終点の検出、さらにはプロットした加硫温度曲線で目標加硫温度の近傍に現れる、下に凸な変曲点に基づく加硫終点の検出が困難になる場合がある。一方、目標加硫温度が125〜165℃、特には125〜145℃であると、加硫終点の見極めが容易であるため、空気入りタイヤの生産性をさらに高めることができる。なお、目標加硫温度が125〜145℃である場合を空気入りタイヤの低温加硫という場合があるが、低温加硫の場合は、空気入りタイヤの加硫速度が遅くなるため、従来は余裕時間を通常よりも長く確保する必要があった。このため、加硫時における高温下での空気入りタイヤの熱劣化抑制という低温加硫のメリットが、加硫時間増加により損なわれる場合があった。しかしながら本発明では、低温加硫(目標加硫温度が125〜145℃)であっても、余裕時間を通常よりも短く設計可能であるため、熱劣化による空気入りタイヤの物性悪化を防止することができる。
本発明において製造可能なタイヤの一例を示すタイヤ子午線断面図 本発明のタイヤ成型用金型を概念的に示す断面図 本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図 本発明の一実施形態における加硫温度曲線を示すグラフの一例
本発明の実施の形態について図面を参照しながら説明する。図1に示した生タイヤ9は、一対のビード部1と、ビード部1の各々からタイヤ径方向外側に延びるサイドウォール部2と、サイドウォール部2の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部3とを備えた空気入りタイヤである。ビード部1には、環状のビードコア1aが配されている。
カーカス層4は、トレッド部3からサイドウォール部2を経てビード部1に至り、その端部がビードコア1aを介して折り返されている。カーカス層4は、少なくとも一枚のカーカスプライによって構成される。カーカスプライは、タイヤ周方向に対して略90°の角度で延びるカーカスコードをトッピングゴムで被覆して形成されている。
ベルト層5は、トレッド部3でカーカス層4の外側に貼り合わされ、トレッドゴム6により外側から覆われている。ベルト層5は、複数枚(本実施形態では二枚)のベルトプライによって構成される。各ベルトプライは、タイヤ周方向に対して傾斜して延びるベルトコードをトッピングゴムで被覆して形成され、該ベルトコードがプライ間で互いに逆向きに交差するように積層されている。
トレッドゴム6は、1層のみで構成しても良く、タイヤ径方向内側のベーストレッドと、その外周側に位置するキャップトレッドとを有する、所謂キャップベース構造で構成しても良い。
図1に示した生タイヤ9は、未加硫状態の生タイヤであり、後述する加硫工程において、製品タイヤの形状にシェーピングされる(図2参照)とともに、そのトレッド表面には種々のトレッドパターンが形成される。
生タイヤ9の加硫成形では、本発明に係るタイヤ成型用金型(以下、単に「金型」ともいう)が使用される。図2に本発明のタイヤ成型用金型を概念的に表した断面図を示す。この金型10には、生タイヤ9が未加硫状態のままセットされ、その金型10内の生タイヤ9に加熱加圧を施すことで加硫工程が行われる。
金型10は、生タイヤ9のトレッド部3に圧接可能なトレッド型部11を少なくとも備える。本実施形態では、金型10は、生タイヤ9の踏面に接するトレッド型部11と、下方を向いたタイヤ外面に接する下型部12と、上方を向いたタイヤ外面に接する上型部13とを備える。これらは、周囲に設置された開閉機構(不図示)によって、型締め状態と金型開放状態との間で変位自在に構成され、かかる開閉機構の構造は周知である。トレッド型部11はさらに周方向に複数個のセグメントに分割されており、金型10内に配設される生タイヤ9の径方向に移動可能となっている。また、金型10には、電気ヒータや蒸気ジャケットなどの熱源を有するプラテン板(不図示)が設けられており、これによって各型部の加熱が行われる。
金型10の中心部には、タイヤと同軸状に中心機構14が設けられ、これの周囲にトレッド型部11、下型部12および上型部13が設置されている。中心機構14は、ゴム袋状のブラダー15と、タイヤ軸方向に延びるセンターポスト16とを有し、センターポスト16には、ブラダー15の端部を把持する上部クランプ17と下部クランプ18が設けられている。
中心機構14には、ブラダー15内への加熱媒体の供給を行うための媒体供給路21が上下に延設され、その媒体供給路21の上端に噴出し口22が形成されている。媒体供給路21には、加熱媒体供給源23から供給された加熱媒体や、加圧媒体供給源26から供給された加圧媒体が流れる供給配管24が接続されている。加熱媒体は、バルブ25の開閉操作に応じて供給され、加圧媒体は、バルブ28の開閉操作に応じて供給される。
また、中心機構14には、ブラダー15内の加熱媒体と加圧媒体とが混合された高温高圧流体を排出するための媒体排出路31が上下に延設され、その媒体排出路31の上端に回収口32が形成されている。媒体排出路31には、高温高圧流体が流れる排出配管34が接続され、その開閉を操作するブローバルブ33を排出配管34に設けている。ポンプ35は、媒体排出路31を通る高温高圧流体が媒体供給路21を経由してブラダー15の内部に再供給されるように、高温高圧流体を強制循環させる手法を用いても構わない。
以下、本発明の金型10が備えるトレッド型部11を構成するセグメント41について説明する。図3は、本発明の金型のトレッド型部を構成するセグメントにおいて、ショルダー部に温度測定プローブを埋設する状態を概念的に示す断面図を示す。図3において、「内周面側」とは生タイヤ9が金型10にセットされる際、生タイヤ9に近い側を意味する。セグメント41は、トレッド型部11が、例えば周方向に6〜12分割されたものの一つであり、その各々が生タイヤ9の径方向に移動することにより、生タイヤ9のトレッド部3に圧接可能となっている。セグメント41の分割数は、6〜12の範囲内で奇数であることがより好ましい。
セグメント41の少なくとも一つは、温度測定プローブ44を固定する固定手段42と、固定手段42から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴43と、固定手段42により固定され、内周面側に向かって、温度測定プローブ挿入穴43内をタイヤ径方向に延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられた温度測定プローブ44とを備える。かかる温度測定プローブ44は、複数のセグメント41のうちの一つに取り付けてもよく、複数のセグメント41に取り付けてもよく、全部のセグメント41に取り付けてもよい。
温度測定プローブ44を固定する固定手段42は、例えば外周面側をダブルナットなどで構成し、内周面側をネジ構造で構成することにより、温度測定プローブ穴43からの温度測定プローブ44の突出高さL2を調製可能となるように設計可能である。
固定手段42の内周面側には、径方向に延びる温度測定プローブ挿入穴43が形成されている。温度測定プローブ挿入穴43の内周面側は開口しており、温度測定プローブ44が金型10のキャビティ内に突出し、トレッド部3のショルダー部3S内に埋設可能となるように設計されている。
温度測定プローブ44は、外周面側の端部が固定手段42により固定され、内周面側に向かって、温度測定プローブ挿入穴43内をタイヤ径方向に延び、内周面側端が温度測定プローブ挿入穴43の内周面側端を超えてトレッド部3のショルダー部3S内に埋設可能な姿勢で取り付けられている。温度測定プローブ44の断面形状は特に限定されないが、円形状であることが好ましい。
前記のとおり、セグメント41は生タイヤ9の径方向に移動するため、温度測定プローブ44の配設方向も生タイヤ9の径方向とした場合、温度測定プローブ44をショルダー部3S内に埋設する際、負荷が最も少なくなるため好ましい。
本発明において、加硫温度を測定する際に使用する温度測定プローブとして、金属の電気抵抗が温度変化に対して変化する性質を利用した測温抵抗体を使用することができる。かかる金属としては、プラチナ、ニッケル、および銅などが例示可能であるが、本発明においては、温度変化に対する抵抗値変化(感度)が大きく、その結果、温度変化に対する感度が非常に高い白金測温抵抗体を特に好適に使用することができる。
温度測定プローブ44は、温度測定プローブ挿入穴43内に配置され、温度測定プローブ44の外径D1は、温度測定プローブ挿入穴43の内径D2よりも小さく形成されている(図3(b))。かかる構成によれば、セグメント41が加硫時に加熱されるところ、加硫時には温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入し、温度測定プローブ44とセグメント41とが直接接触するのを防止することができる。その結果、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。温度測定プローブ44の外径D1は、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、1〜10mmが好ましい。また、温度測定プローブ挿入穴43の内径D2も、製造する空気入りタイヤのサイズに応じて適宜設計可能であるが、温度測定プローブ44の外径D1よりも0.5〜1.0mm大きいことが好ましい。
固定手段42の内周面側端から測定した温度測定プローブ44の長さをL1としたとき、L1/D1が10以上であると、セグメント41からの温度測定プローブ44への熱伝導による測定誤差を低減できるため好ましい。L1および温度測定プローブ穴43からの温度測定プローブ44の突出高さL2は、製造する空気入りタイヤのサイズに応じて適宜設計可能である。このうち、L2は0.5〜10mmが好ましい。また、固定手段42の内周側端からの温度測定プローブ穴の深さL3も製造する空気入りタイヤのサイズに応じて適宜設計可能である。
図3(b)では、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が塞がれていない例を示したが、図3(c)に示すとおり、温度測定プローブ挿入穴43の内周面側端と温度測定プローブ44との隙間が、セグメント41よりも小さい熱伝導率のスペーサー45により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44と温度測定プローブ挿入穴43との隙間にゴムが侵入せず、温度測定プローブ44周りが中空となる。この構成でも、温度測定プローブ44により、加硫最遅部に相当するトレッド部3の温度を正確に測定することができる。スペーサー45の長さL4は、例えばセグメント41の深さ方向に10〜50mmであることが好ましい。スペーサー45は、セグメント41よりも小さい熱伝導率を示す素材、例えばコンスタンタン、チタン、ニクロムなどの金属で構成可能である。
また、図3(d)に示すとおり、温度測定プローブ挿入穴43と温度測定プローブ44との隙間が、セグメントよりも小さい熱伝導率の断熱材46により塞がれていてもよい。かかる構成によれば、加硫時に温度測定プローブ44が断熱材46により覆われるため、加硫最遅部に相当するトレッド部3の温度を、温度測定プローブ44により正確に測定することができる。断熱材46の長さは、例えば温度測定プローブ穴の深さL3の50〜80%が好ましい。断熱材46についても、スペーサー45と同様、コンスタンタン、チタン、ニクロムなどの金属で構成可能である。
次に、本発明の空気入りタイヤの製造方法における加硫工程について具体的に説明する。
まず、図2のように金型10内に生タイヤ9をセットし、膨張させたブラダー15によって生タイヤ9を金型10の内面形状近くまでシェーピングする。これにより、生タイヤ9は、ブラダー15によって保持され、トレッド型部11、下型部12および上型部13の各々に宛がわれる。この時点で、生タイヤ9の加硫最遅部に温度測定プローブを埋設する(第1段階)。加硫最遅部とは、タイヤの加硫が最も進行し難い部位を意味し、通常はトレッド部3のショルダー部を意味する。特にショルダー部の中でも、加硫後のトレッド部3の内表面の法線に沿って測定される、トレッド部3の厚みが最大になる位置を加硫最遅部とすることが好ましい。いずれにせよ、本発明においては、加硫最遅部における加硫温度を測定するため、温度測定プローブを生タイヤ9の加硫最遅部に埋設する。埋設方法としては、例えば温度測定プローブをトレッド型部11のショルダー部に対応する位置に配設し、トレッド型部11が生タイヤ9の径方向に移動して生タイヤ9が宛がわれる際、温度測定プローブが生タイヤ9内に押し込まれつつ埋設されるように設計することが考えられる。このように生タイヤ9内に埋設された温度測定プローブにより、加硫工程時には生タイヤの温度を測定し、加硫工程終了時にはトレッド型部11を含む金型10からタイヤを脱型する際に加硫最遅部から温度測定プローブを同時に抜き取れば良い。
続いて、金型10を加熱してタイヤ9をタイヤ外面側から加熱する外側加熱と、金型10内のブラダー15に高温の加熱媒体を供給してタイヤ9をタイヤ内面側から加熱する内側加熱とからなる加熱を行い、生タイヤ9の加硫を実行する。金型10は、上記の蒸気ジャケットなどにより予め加熱されていて、これにより外側加熱が行われる。内側加熱は、タイヤ9のシェーピング後に、媒体供給路21を通じてブラダー15内に加熱媒体を供給することで行われる。加熱媒体を所定時間供給した後、引き続いてブラダー15内に加圧媒体を供給し、タイヤ9を高圧で加圧する。加熱媒体としては、例えばスチームや高温水が使用され、加圧媒体としては、例えば窒素ガスなどの不活性ガスやスチームが使用される。
温度測定プローブにより、加硫中の生タイヤの温度の時系列データを10秒以下の間隔で取得する(第2段階)。かかる時系列データの取得には、市場において一般に流通する高精度デジタルデータロガー(温度分解能0.001℃程度、精度±0.005℃程度、温度値の最小取得間隔1秒)を使用可能である。第2段階において、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短い場合、最終的な加硫終点をより正確に決定することができるため好ましい。具体的には、加硫中の生タイヤの温度の時系列データは、5秒以下の間隔で取得することが好ましく、1秒以下の間隔で取得することが好ましい。一方、加硫中の生タイヤの温度の時系列データのデータ取得間隔が短すぎると、却ってノイズが大きくなり加硫終点を正確に決定し難くなる恐れがある。このため、加硫中の生タイヤの温度の時系列データのデータ取得間隔は0.5秒以上が好ましい。
第2段階の後、時系列データに基づき、目標加硫温度の近傍で加硫反応による吸熱を検出した時点で加硫工程を終了する(第3段階)。これにより、空気入りタイヤの加硫工程において、容易に加硫終点を見極めることができる。加硫終点の見極めが容易になることから、目標加硫温度は125℃〜165℃であることが好ましく、125℃〜145℃であることがより好ましく、125〜135℃であることが特に好ましい。加硫反応による吸熱の検出方法としては、目標加硫温度の近傍で、所定期間(例えばデータ取得間隔が1秒であれば1秒)における生タイヤの温度変化量を算出し、その温度変化量に基づき決定することが可能である。
本発明においては、第3工程を2つに分け、より簡便に加硫終点を決定することができる。まず、時系列データに基づき、生タイヤの温度と加硫時間との関係を示す加硫温度曲線をプロットする(第3a段階)。図4は本発明の一実施形態における加硫温度曲線を示すグラフの一例であり、Aは金型10の型締め完了時点を加硫開始点としたときの、生タイヤの温度(℃)を縦軸、時間(秒)を横軸とする加硫温度曲線を示す。図4に示すとおり、本発明に係るタイヤ成型用金型を使用して空気入りタイヤを加硫した場合、1℃以内の微小な温度変化も正確に測定できる。
本実施形態では、目標加硫温度を130℃に設定し、生タイヤの温度の時系列データを1秒間隔で取得した際の加硫温度曲線Aを示す。加硫温度曲線Bは、加硫温度曲線Aの目標加硫温度の近傍(2000秒手前〜8000秒手前)を拡大したものである。第3a段階の後、プロットした加硫温度曲線Aで目標加硫温度の近傍に現れる下に凸な変曲点Pを検出した時点で加硫工程を終了する(第3b段階)。本実施形態では、加硫温度曲線Bにおいて、目標加硫温度(130℃)の近傍に現れる下に凸な変曲点に相当する点P(現在の図3ではBPTと記載されておりますが、点Pに修正します)が容易に検出可能であり、この点Pが検出された時点を加硫終点として、加硫を終了することができる。
加硫工程終了後は、金型10を解放状態としつつ、金型10内に配設した温度測定プローブを加硫済タイヤから抜き取る。その結果、タイヤ毎に加硫終点を見極め、加硫時間を短縮しつつ空気入りタイヤを製造することができる。
本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。

Claims (7)

  1. 一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤを加熱加硫するタイヤ成型用金型であって、
    前記トレッド部に圧接可能なトレッド型部を少なくとも備え、
    前記トレッド型部は、周方向に分割されて、前記生タイヤの径方向に移動可能な複数のセグメントを有し、
    前記セグメントのうち、少なくとも二つ以上のセグメントは、温度測定プローブを固定する固定手段と、前記固定手段から内周面側に向かって、径方向に延びる温度測定プローブ挿入穴と、前記固定手段により固定され、内周面側に向かって、前記温度測定プローブ挿入穴内をタイヤ径方向に延び、内周面側端が前記温度測定プローブ挿入穴の内周面側端を超えて前記トレッド部のショルダー部内に埋設可能な姿勢で取り付けられた温度測定プローブとを備え、
    前記温度測定プローブの外径D1は、前記温度測定プローブ挿入穴の内径D2よりも小さく形成されていることを特徴とするタイヤ成型用金型。
  2. 前記温度測定プローブの外径D1が、1〜10mmである請求項1に記載のタイヤ成型用金型。
  3. 前記固定手段の内周面側端から測定した前記温度測定プローブの長さをL1としたとき、L1/D1が10以上である請求項1または2に記載のタイヤ成型用金型。
  4. 前記温度測定プローブ挿入穴の内周面側端と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率のスペーサーにより塞がれている請求項1〜3のいずれかに記載のタイヤ成型用金型。
  5. 前記温度測定プローブ挿入穴と前記温度測定プローブとの隙間が、前記セグメントよりも小さい熱伝導率の断熱材により塞がれている請求項1〜3のいずれかに記載のタイヤ成型用金型。
  6. 前記温度測定プローブが、プラチナ測温抵抗体である請求項1〜5のいずれかに記載のタイヤ成型用金型。
  7. 請求項1〜6のいずれかに記載のタイヤ成型用金型内で加熱加硫する加硫工程を含む空気入りタイヤの製造方法であって、
    前記加硫工程が、一対のビード部と、前記ビード部の各々からタイヤ径方向外側に延びるサイドウォール部と、前記サイドウォール部の各々のタイヤ径方向外側端に連なって踏面を構成するトレッド部とを備えた未加硫の生タイヤのトレッド部に含まれるショルダー部に温度測定プローブを埋設することにより、前記ショルダー部の温度を測定する工程を含むことを特徴とする空気入りタイヤの製造方法。
JP2017240581A 2017-12-15 2017-12-15 タイヤ成型用金型および空気入りタイヤの製造方法 Active JP7030500B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017240581A JP7030500B2 (ja) 2017-12-15 2017-12-15 タイヤ成型用金型および空気入りタイヤの製造方法
PCT/JP2018/040982 WO2019116778A1 (ja) 2017-12-15 2018-11-05 タイヤ成型用金型および空気入りタイヤの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017240581A JP7030500B2 (ja) 2017-12-15 2017-12-15 タイヤ成型用金型および空気入りタイヤの製造方法

Publications (2)

Publication Number Publication Date
JP2019107791A true JP2019107791A (ja) 2019-07-04
JP7030500B2 JP7030500B2 (ja) 2022-03-07

Family

ID=67178730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017240581A Active JP7030500B2 (ja) 2017-12-15 2017-12-15 タイヤ成型用金型および空気入りタイヤの製造方法

Country Status (1)

Country Link
JP (1) JP7030500B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7429546B2 (ja) 2020-01-21 2024-02-08 Toyo Tire株式会社 タイヤ成型用金型および空気入りタイヤの製造方法
JP7475136B2 (ja) 2019-12-26 2024-04-26 Toyo Tire株式会社 タイヤ成型用金型および空気入りタイヤの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317010A (ja) * 1986-07-08 1988-01-25 Bridgestone Corp タイヤ加硫の制御方法
JPS63209817A (ja) * 1987-02-25 1988-08-31 Bridgestone Corp 加硫制御方法
JPH05162137A (ja) * 1991-12-13 1993-06-29 Toyo Tire & Rubber Co Ltd タイヤの加硫制御方法
JP2006027115A (ja) * 2004-07-16 2006-02-02 Bridgestone Corp タイヤの加硫方法
JP2010284863A (ja) * 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd タイヤ用加硫装置
JP2016203553A (ja) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 空気入りタイヤの製造方法および空気入りタイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317010A (ja) * 1986-07-08 1988-01-25 Bridgestone Corp タイヤ加硫の制御方法
JPS63209817A (ja) * 1987-02-25 1988-08-31 Bridgestone Corp 加硫制御方法
JPH05162137A (ja) * 1991-12-13 1993-06-29 Toyo Tire & Rubber Co Ltd タイヤの加硫制御方法
JP2006027115A (ja) * 2004-07-16 2006-02-02 Bridgestone Corp タイヤの加硫方法
JP2010284863A (ja) * 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd タイヤ用加硫装置
JP2016203553A (ja) * 2015-04-27 2016-12-08 東洋ゴム工業株式会社 空気入りタイヤの製造方法および空気入りタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475136B2 (ja) 2019-12-26 2024-04-26 Toyo Tire株式会社 タイヤ成型用金型および空気入りタイヤの製造方法
JP7429546B2 (ja) 2020-01-21 2024-02-08 Toyo Tire株式会社 タイヤ成型用金型および空気入りタイヤの製造方法

Also Published As

Publication number Publication date
JP7030500B2 (ja) 2022-03-07

Similar Documents

Publication Publication Date Title
JP6465734B2 (ja) 空気入りタイヤの製造方法および空気入りタイヤ
JP7030500B2 (ja) タイヤ成型用金型および空気入りタイヤの製造方法
JP6912366B2 (ja) 空気入りタイヤの製造方法
JP5314214B1 (ja) 重荷重用空気入りタイヤおよびその製造方法
JP2019107790A (ja) タイヤ成型用金型および空気入りタイヤの製造方法
JP6457880B2 (ja) 空気入りタイヤの製造方法および空気入りタイヤ
JP7475136B2 (ja) タイヤ成型用金型および空気入りタイヤの製造方法
WO2019116778A1 (ja) タイヤ成型用金型および空気入りタイヤの製造方法
JP6912365B2 (ja) 空気入りタイヤの製造方法
WO2019116757A1 (ja) 空気入りタイヤの製造方法
JP7429546B2 (ja) タイヤ成型用金型および空気入りタイヤの製造方法
JP7321040B2 (ja) 空気入りタイヤの製造方法
JP6489920B2 (ja) 空気入りタイヤの製造方法および空気入りタイヤ
JP7178242B2 (ja) 温度センサおよび空気入りタイヤの製造方法
JP2019025780A (ja) タイヤ加硫方法及びタイヤ加硫装置
JP6465735B2 (ja) 空気入りタイヤの製造方法
JP6465731B2 (ja) 空気入りタイヤの製造方法および空気入りタイヤ
KR100995661B1 (ko) 가류기 브라다의 내부온도 감지장치
JP2022101835A (ja) 空気入りタイヤの製造方法
JP2022101880A (ja) 空気入りタイヤの製造方法
JP2022101883A (ja) 空気入りタイヤの製造方法
JP2022101837A (ja) タイヤ成型用金型
JP7469628B2 (ja) 空気入りタイヤの製造方法及び製造装置
JP2019025779A (ja) タイヤ加硫方法及びタイヤ加硫装置
US20210229384A1 (en) Rubber temperature measuring device and rubber product manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150