JP2019100328A - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
JP2019100328A
JP2019100328A JP2017235922A JP2017235922A JP2019100328A JP 2019100328 A JP2019100328 A JP 2019100328A JP 2017235922 A JP2017235922 A JP 2017235922A JP 2017235922 A JP2017235922 A JP 2017235922A JP 2019100328 A JP2019100328 A JP 2019100328A
Authority
JP
Japan
Prior art keywords
temperature
internal combustion
combustion engine
reducing agent
selective reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017235922A
Other languages
English (en)
Other versions
JP7114887B2 (ja
Inventor
隆人 池戸
Takahito Ikedo
隆人 池戸
松栄 上田
Matsue Ueda
松栄 上田
真 永岡
Makoto Nagaoka
真 永岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017235922A priority Critical patent/JP7114887B2/ja
Publication of JP2019100328A publication Critical patent/JP2019100328A/ja
Application granted granted Critical
Publication of JP7114887B2 publication Critical patent/JP7114887B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】複数の選択還元触媒を備える内燃機関の排気浄化装置において、高い窒素酸化物の浄化率を維持しつつ、還元剤の消費量を低減する。【解決手段】内燃機関の排気浄化装置は、内燃機関からの排気が流通する主流路に設けられ、排気中の窒素酸化物を浄化する複数の選択還元触媒と、各選択還元触媒の温度を取得する複数の温度取得部と、各選択還元触媒に対して還元剤を供給する複数の還元剤供給部と、各還元剤供給部における還元剤の供給を制御する還元剤供給制御部とを備える。還元剤供給制御部は、各温度取得部により取得された各選択還元触媒の温度に応じて、それぞれの選択還元触媒に対して供給する還元剤の割合を変化させる。【選択図】図1

Description

本発明は、内燃機関の排気浄化装置に関する。
エンジンなどの内燃機関の排気に含まれる窒素酸化物(NOx)を浄化する技術が知られている。例えば、特許文献1には、尿素水を用いてNOxを浄化するSCR(Selective Catalytic Reduction)システムにおいて、内燃機関の運転状態が高負荷運転状態でない場合は、内燃機関及び排気通路内の状態に基づいて定められた基準供給量の尿素水をSCR触媒に供給し、高負荷運転状態の場合は、制限量を超えない量の尿素水をSCR触媒に供給することが記載されている。例えば、特許文献2には、2つのSCR触媒を備えたSCRシステムにおいて、排気ガスの温度が予め設定された閾値以上である場合は、還流制御弁を開状態として第1及び第2のSCR触媒でNOxを浄化し、排気ガスの温度が上記閾値未満である場合は、還流制御弁を閉状態として第1のSCR触媒でNOxを浄化することが記載されている。
特開2014−88826号公報 特開2013−124610号公報
一般的にSCR触媒は、NOxの浄化率について温度特性を有している。例えば、SCR触媒の温度が尿素水の加水分解によってアンモニアが発生する温度よりも低い場合、尿素水からアンモニアへの分解反応や、SCR触媒上でのアンモニアによる還元反応が進み難く、SCR触媒におけるNOx浄化率が低下する。
ところで、内燃機関の排気浄化装置では、特許文献2に記載のように、2つのSCR触媒を搭載することによるNOx浄化性能の向上が図られている。このように、複数のSCR触媒を搭載する内燃機関の排気浄化装置では、排気ガスの流通流路の上流に配置されるSCR触媒と、下流に配置されるSCR触媒との温度が相違することがある。上述の通り、SCR触媒はNOxの浄化率について温度特性を有することから、各SCR触媒の温度の相違は、各SCR触媒におけるNOx浄化率の相違に繋がる。この点、特許文献2に記載の技術では、SCR触媒の温度と尿素水の供給量について何ら考慮されていないため、NOx浄化反応に寄与せずに排出される尿素水量が増大し、尿素水の消費量が増大するという課題があった。また、特許文献1に記載の技術では、内燃機関の排気浄化装置に、複数のSCR触媒を搭載することについて記載されていない。
なお、このような課題は、尿素水を用いてNOxを浄化するSCR触媒に限らず、例えば、アンモニアガス、アンモニア水、有機溶媒等の非水系溶媒を用いた尿素溶液又はアンモニア溶液等の還元剤を用いてNOxを浄化する選択還元触媒の全般に共通する課題であった。
本発明は、上述した課題を解決するためになされたものであり、複数の選択還元触媒を備える内燃機関の排気浄化装置において、高い窒素酸化物(NOx)の浄化率を維持しつつ、還元剤の消費量を低減することを目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実現することが可能である。
(1)本発明の一形態によれば、内燃機関の排気浄化装置が提供される。この内燃機関の排気浄化装置は、内燃機関からの排気が流通する主流路に設けられ、排気中の窒素酸化物を浄化する複数の選択還元触媒と、各前記選択還元触媒の温度を取得する複数の温度取得部と、各前記選択還元触媒に対して還元剤を供給する複数の還元剤供給部と、各前記還元剤供給部における前記還元剤の供給を制御する還元剤供給制御部と、を備え、前記還元剤供給制御部は、各前記温度取得部により取得された各前記選択還元触媒の温度に応じて、それぞれの前記選択還元触媒に対して供給する前記還元剤の割合を変化させる。
この構成によれば、還元剤供給制御部は、温度取得部によって取得された各選択還元触媒の温度に応じて、それぞれの選択還元触媒に対して供給する還元剤の割合を変化させる。選択還元触媒は、窒素酸化物(NOx)の浄化率について温度特性を有しているため、還元剤供給制御部は、各選択還元触媒におけるNOx浄化率に応じて、供給する還元剤の割合を変化させることとなる。このため本構成によれば、NOx浄化反応に寄与せずに排出される還元剤の量を低減できる。この結果、複数の選択還元触媒を備える内燃機関の排気浄化装置において、高いNOxの浄化率を維持しつつ、還元剤の消費量を低減することができる。
(2)上記形態の内燃機関の排気浄化装置において、前記還元剤供給制御部は、各前記温度取得部により取得された各前記選択還元触媒の温度が、触媒活性領域として予め定められた温度範囲外である前記選択還元触媒に対して供給する前記還元剤の割合を0としてもよい。この構成によれば、還元剤供給制御部は、選択還元触媒の温度が、触媒活性領域として予め定められた温度範囲外である選択還元触媒に対して供給する還元剤の割合を0とし、還元剤の供給を行わない。このため、触媒活性領域として適切な温度範囲を予め定めておくことにより、NOx浄化率が低下する温度範囲にある選択還元触媒に対して還元剤が供給されることを抑制でき、NOx浄化反応に寄与せずに排出される還元剤の量をより一層低減できる。
(3)上記形態の内燃機関の排気浄化装置において、前記還元剤供給制御部は、各前記選択還元触媒の温度に対する窒素酸化物の浄化率を考慮して予め定められた算出式を用いて、前記還元剤の割合を変化させてもよい。この構成によれば、還元剤供給制御部は、選択還元触媒の温度に対するNOxの浄化率を考慮して、それぞれの選択還元触媒に対して供給する還元剤の割合を変化させるため、各選択還元触媒に供給される還元剤の割合を最適化できると共に、より高いNOx浄化率が得られる。
(4)上記形態の内燃機関の排気浄化装置において、前記還元剤供給制御部は、各前記選択還元触媒の温度に対する窒素酸化物の浄化率と、熱分解及び酸化反応に起因したアンモニアの減少量と、を考慮して予め定められた算出式を用いて、前記還元剤の割合を変化させてもよい。この構成によれば、還元剤供給制御部は、選択還元触媒の温度に対するNOxの浄化率を考慮して、それぞれの選択還元触媒に対して供給する還元剤の割合を変化させるため、各選択還元触媒に供給される還元剤の割合を最適化できると共に、より高いNOx浄化率が得られる。また、還元剤供給制御部は、熱分解及び酸化反応に起因したアンモニアの減少量を考慮して、それぞれの選択還元触媒に対して供給する還元剤の割合を変化させるため、NOx浄化反応に寄与せずに熱分解、酸化される還元剤の量を低減できる。
(5)上記形態の内燃機関の排気浄化装置では、さらに、前記複数の選択還元触媒のうち、前記主流路において最上流に設けられた前記選択還元触媒に流入する窒素酸化物の濃度を取得する濃度取得部を備え、前記還元剤供給制御部は、前記濃度取得部により取得された前記窒素酸化物の濃度を用いて、各前記還元剤供給部から供給される前記還元剤の総量を算出してもよい。この構成によれば、還元剤供給制御部は、最上流の選択還元触媒に流入するNOxの濃度を用いて、各還元剤供給部から供給される還元剤の総量を算出するため、NOx浄化反応のための還元剤の総量に過不足が生じることを抑制できる。
(6)上記形態の内燃機関の排気浄化装置では、さらに、前記主流路に設けられた三元触媒を備えていてもよい。この構成によれば、内燃機関の排気浄化装置は、複数の選択還元触媒に加えてさらに三元触媒を備えるため、例えば、全ての選択還元触媒の温度が触媒活性領域外の場合(すなわち、NOx浄化率が低下する温度範囲の場合)であっても、三元触媒を用いてNOxを浄化することができる。このため、複数の選択還元触媒を備える内燃機関の排気浄化装置において、高いNOxの浄化率を維持することができる。
(7)上記形態の内燃機関の排気浄化装置では、さらに、前記三元触媒の温度を取得する三元触媒温度取得部を備え、前記還元剤供給制御部は、各前記温度取得部により取得された各前記選択還元触媒の温度が、全て前記選択還元触媒の触媒活性領域として予め定められた温度範囲外であり、前記三元触媒温度取得部により取得された前記三元触媒の温度が、前記三元触媒の触媒活性領域として予め定められた下限温度以下である場合、前記内燃機関を前記排気の温度を上げる燃焼状態とさせてもよい。この構成によれば、内燃機関を排気の温度を上げる燃焼状態とさせることで、三元触媒の温度を速やかに上昇させることができる。三元触媒の昇温によって、三元触媒におけるNOx浄化率が向上するため、高いNOxの浄化率を維持することができる。
(8)上記形態の内燃機関の排気浄化装置において、前記還元剤供給制御部は、前記複数の選択還元触媒のうち、前記主流路において最下流に設けられた前記選択還元触媒の温度が、前記選択還元触媒の触媒活性領域として予め定められた上限温度以上である場合、前記内燃機関を前記排気の温度を下げる燃焼状態とさせてもよい。この構成によれば、内燃機関を排気の温度を下げる燃焼状態とさせることで、各選択還元触媒の温度を速やかに下降させることができる。選択還元触媒の降温によって、各選択還元触媒におけるNOx浄化率が向上するため、高いNOxの浄化率を維持することができる。さらに、選択還元触媒が過剰に高温になることを抑制し、選択還元触媒の熱劣化を抑制できる。
(9)上記形態の内燃機関の排気浄化装置において、前記還元剤供給制御部は、各前記温度取得部により取得された各前記選択還元触媒の温度が、全て前記選択還元触媒の触媒活性領域として予め定められた下限温度以下である場合、前記内燃機関を前記排気の温度を上げる燃焼状態とさせてもよい。この構成によれば、還元剤供給制御部は、内燃機関を排気の温度を上げる燃焼状態とさせることで、各選択還元触媒の温度を速やかに上昇させることができる。選択還元触媒の昇温によって、各選択還元触媒におけるNOx浄化率が向上するため、高いNOxの浄化率を維持することができる。
なお、本発明は、種々の態様で実現することが可能であり、例えば、内燃機関の排気浄化装置及びシステム、選択還元触媒に還元剤を供給するための還元剤供給装置及びシステム、これら装置及びシステムの制御方法、これら装置及びシステムにおいて実行されるコンピュータプログラム、そのコンピュータプログラムを配布するためのサーバ装置、そのコンピュータプログラムを記憶した一時的でない記憶媒体等の形態で実現することができる。
本発明の一実施形態としての内燃機関の排気浄化装置のブロック図である。 尿素供給制御部における制御の手順を示すフローチャートである。 NOx浄化率の温度特性と触媒活性領域について説明する図である。 触媒温度と尿素水の割合との関係を表す概念図である。 アンモニア減少量の温度特性について説明する図である。 第2実施形態における内燃機関の排気浄化装置のブロック図である。 第2実施形態における尿素供給制御部の制御手順を示すフローチャートである。
<第1実施形態>
図1は、本発明の一実施形態としての内燃機関の排気浄化装置1のブロック図である。内燃機関の排気浄化装置1は、例えば、内燃機関20と共に車両に搭載されて、内燃機関20の排気中における窒素酸化物(NOx)を浄化する装置である。内燃機関20は、例えば、ディーゼルエンジンや、リーンバーン運転方式のガソリンエンジンである。燃焼状態制御部12は、内燃機関20に対する空気や燃料の噴射を制御することで、内燃機関20内の空燃比をリーン、ストイキ、リッチの各状態へと制御する。燃焼状態制御部12は、例えば、電子制御ユニット(ECU、Electronic Control Unit)により実装される。
本実施形態の排気浄化装置1は、複数の選択還元触媒を備え、高いNOxの浄化率を維持しつつ、還元剤の消費量を低減できる。以下の説明では、複数の選択還元触媒として2つのSCR(Selective Catalytic Reduction)触媒を使用し、還元剤として尿素水を使用する場合を例示する。また、以下の説明では、排気浄化装置1のうち、内燃機関20に近い側を「上流側」と呼び、内燃機関20に遠い側を「下流側」と呼ぶ。図1の場合、左側が上流側に相当し、右側が下流側に相当する。
排気浄化装置1は、排気浄化装置1の各部を制御する尿素供給制御部10と、内燃機関20から伸びる排気管30と、排気管30上にそれぞれ設けられた三元触媒40と、第1SCR触媒52と、第2SCR触媒54と、流量取得部62と、第1濃度取得部64と、第2濃度取得部66と、第1温度センサ72と、第2温度センサ74と、第3温度センサ70と、尿素ポンプユニット80と、第1尿素ノズル82と、第2尿素ノズル84とを備える。
尿素供給制御部10は、後述する制御によって、排気浄化装置1が備える各SCR触媒52,54(第1SCR触媒52、第2SCR触媒54)に対する還元剤の供給を制御するほか、排気浄化装置1が備える触媒40,52,54(三元触媒40、第1SCR触媒52、第2SCR触媒54)の昇温や降温を行う。尿素供給制御部10は、「還元剤供給制御部」に相当する。
排気管30は、内燃機関20からの排気が流通する主流路を形成する。内燃機関20からの排気は、排気管30内の主流路を通って、三元触媒40と、第1SCR触媒52と、第2SCR触媒54とを通過して外気に放出される。流量取得部62は、内燃機関20からの排気(排出ガス)の流量を取得する。流量取得部62は、例えば、排気管30に設けられたピトー管式流量計によって測定された測定信号を取得することで実現してもよく、内燃機関20への吸入空気量信号や、燃料噴射量信号から流量を推定することで実現してもよい。
三元触媒40は、排気浄化装置1が備える触媒40,52,54のうち、最上流側に配置されている。第3温度センサ70は、三元触媒40の温度を測定するセンサであり、本実施形態では、三元触媒40の触媒ベッド中の温度(いわゆる床温)を測定する。なお、第3温度センサ70は、三元触媒40の床温に代えて、三元触媒40の出口近傍における温度を測定してもよい。第3温度センサ70は、「三元触媒温度取得部」に相当する。
第1SCR触媒52は、三元触媒40よりも下流側であって、かつ、排気浄化装置1が備える各SCR触媒52,54のうち上流側に配置されている。換言すれば、第1SCR触媒52は、複数の選択還元触媒の中では、最上流側に設けられている。第2SCR触媒54は、三元触媒40よりも下流側であって、かつ、排気浄化装置1が備える各SCR触媒52,54のうち下流側に配置されている。換言すれば、第2SCR触媒54は、排気浄化装置1が備える触媒40,52,54のうち、最下流側に配置されている。第1,2SCR触媒52,54は、「複数の選択還元触媒」に相当する。
第1温度センサ72は、第1SCR触媒52の温度(床温)を測定するセンサである。第2温度センサ74は、第2SCR触媒54の温度(床温)を測定するセンサである。なお、第1,2温度センサ72,74は、床温に代えて、第1,2SCR触媒52,54の出口近傍における温度を測定してもよい。第1,2温度センサ72,74は、「複数の温度取得部」に相当する。
尿素ポンプユニット80は、内部に還元剤としての尿素水を貯蔵すると共に、第1,2尿素ノズル82,84へと尿素水を送出するポンプを内蔵している。第1尿素ノズル82は尿素水の噴射口であり、第1SCR触媒52の上流側に設けられて、第1SCR触媒52に対して尿素水を供給する。第2尿素ノズル84は尿素水の噴射口であり、第2SCR触媒54の上流側に設けられて、第2SCR触媒54に対して尿素水を供給する。尿素ポンプユニット80と、第1,2尿素ノズル82,84とは、「複数の還元剤供給部」に相当する。
第1濃度取得部64は、排気中のNOx濃度を測定するセンサである。第1濃度取得部64は、三元触媒40よりも下流側かつ第1SCR触媒52よりも上流側に設けられている。このため、第1濃度取得部64では、第1SCR触媒52へ流入する排気中のNOx濃度を取得する。第2濃度取得部66は、排気中のNOx濃度を測定するセンサである。第2濃度取得部66は、第2SCR触媒54よりも下流側に設けられている。このため、第2濃度取得部66では、排気浄化装置1から排出される排気中のNOx濃度を取得する。なお、第1,2濃度取得部64,66のうち少なくとも一方は、センサによる測定に代えて、内燃機関20の燃焼状態(リーン、ストイキ、リッチ)から排気中のNOx濃度を推定してもよい。
図2は、尿素供給制御部10における制御の手順を示すフローチャートである。図2に示す処理は、任意のタイミングで実行可能であり、例えば、排気浄化装置1が搭載されている車両の走行中に定期的に実行できる。まず、ステップS10において尿素供給制御部10は、流量取得部62から、排気管30内部における排気の流量Qを取得する。ステップS12において尿素供給制御部10は、第1濃度取得部64から、第1SCR触媒52へ流入する排気中のNOx濃度を取得する。
ステップS14において尿素供給制御部10は、第1温度センサ72から、第1SCR触媒52の温度T1を取得する。ステップS16において尿素供給制御部10は、第2温度センサ74から、第2SCR触媒54の温度T2を取得する。ステップS20以降、尿素供給制御部10は、取得した各温度T1及びT2が、第1,2SCR触媒52,54の触媒活性領域として予め定められた温度範囲外であるか否かを判定すると共に、判定結果に応じて、第1,2SCR触媒52,54へ供給する尿素水の割合と量を算出する。
図3は、NOx浄化率の温度特性と触媒活性領域について説明する図である。横軸は第1SCR触媒52の温度を表し、縦軸は第1SCR触媒52におけるNOx浄化率(%)を表している。図示の通り、第1SCR触媒52は、NOxの浄化率について、触媒の温度変化に伴い放物線を描く特性(以降「温度特性PR」とも呼ぶ)を有している。ここで、下限温度TLより大きく、かつ、上限温度THより小さい温度範囲を「触媒活性領域」と呼ぶ。本実施形態では、下限温度TLは、還元剤として使用する尿素水が加水分解されてアンモニア(NH3)が発生する温度とし、上限温度THは、下限温度TL時における浄化率A%と同じ浄化率A%を得ることが可能な上限温度とする。なお、触媒活性領域の下限温度TL及び上限温度THは、選択還元触媒の種類や特性に応じて適宜決定できる。
このように、第1SCR触媒52は、触媒活性領域として予め定められた温度範囲(下限温度TLより大きく、かつ、上限温度THより小さい温度範囲)においては、高いNOx浄化率を有し、さらに、温度TmaxにおいてNOx浄化率のピークを有する。なお、本実施形態の第2SCR触媒54は、NOx浄化率について、第1SCR触媒52と同一の温度特性PRを有し、かつ、同一の触媒活性領域(下限温度TL、上限温度TH)を有する。このため、第2SCR触媒54の温度特性を示す図は、図3と同じになる。
図4は、触媒温度と尿素水の割合との関係を表す概念図である。横軸は、第1SCR触媒52の温度であり、第1SCR触媒52の触媒活性領域として予め定められた温度範囲(下限温度TL、上限温度TH)がプロットされている。縦軸は、第2SCR触媒54の温度であり、第2SCR触媒54の触媒活性領域として予め定められた温度範囲(下限温度TL、上限温度TH)がプロットされている。
図2に戻り説明を続ける。ステップS20において尿素供給制御部10は、第1SCR触媒52と第2SCR触媒54とが共に高温の領域A(図4)に位置するか否かを判定する。尿素供給制御部10は、第1SCR触媒52の温度T1が上限温度TH以上、かつ、第2SCR触媒54の温度T2が上限温度TH以上の場合に、領域Aに位置すると判定する。領域Aに位置する場合(ステップS20:YES)尿素供給制御部10は、各触媒へ供給する尿素水の割合を共に0とし、処理をステップS30へ遷移させる。一方、領域Aに位置しない場合(ステップS20:NO)、尿素供給制御部10は、処理をステップS22へ遷移させる。
ステップS22において尿素供給制御部10は、第1SCR触媒52が高温であり第2SCR触媒54が低温である領域B(図4)に位置するか否かを判定する。尿素供給制御部10は、第1SCR触媒52の温度T1が上限温度TH以上、かつ、第2SCR触媒54の温度T2が下限温度TL以下である場合に、領域Bに位置すると判定する。領域Bに位置する場合(ステップS22:YES)尿素供給制御部10は、各触媒へ供給する尿素水の割合を共に0とし、処理をステップS30へ遷移させる。一方、領域Bに位置しない場合(ステップS22:NO)尿素供給制御部10は、処理をステップS24へ遷移させる。
ステップS24において尿素供給制御部10は、第1SCR触媒52が低温であり第2SCR触媒54が高温である領域C(図4)に位置するか否かを判定する。尿素供給制御部10は、第1SCR触媒52の温度T1が下限温度TL以下、かつ、第2SCR触媒54の温度T2が上限温度TH以上である場合に、領域Cに位置すると判定する。領域Cに位置する場合(ステップS24:YES)尿素供給制御部10は、各触媒へ供給する尿素水の割合を共に0とし、処理をステップS30へ遷移させる。一方、領域Cに位置しない場合(ステップS24:NO)尿素供給制御部10は、処理をステップS26へ遷移させる。
ステップS26において尿素供給制御部10は、第1SCR触媒52と第2SCR触媒54とが共に低温の領域D(図4)に位置するか否かを判定する。尿素供給制御部10は、第1SCR触媒52の温度T1が下限温度TL以下、かつ、第2SCR触媒54の温度T2が下限温度TL以下である場合に、領域Dに位置すると判定する。領域Dに位置する場合(ステップS26:YES)尿素供給制御部10は、各触媒へ供給する尿素水の割合を共に0とし、処理をステップS30へ遷移させる。一方、領域Dに位置しない場合(ステップS26:NO)尿素供給制御部10は、処理をステップS40へ遷移させる。
ステップS20〜S26で説明した通り、尿素供給制御部10は、第1SCR触媒52と第2SCR触媒54とが、共に触媒活性領域として予め定められた温度範囲外である場合(領域A〜Dの場合)、第1SCR触媒52へ供給する尿素水の割合と、第2SCR触媒54へ供給する尿素水の割合とを共に0とする。この場合、第1SCR触媒52及び第2SCR触媒54には尿素水は供給されず、後述する三元触媒40によるNOxの浄化処理が行われる。これは、触媒活性領域として予め定められた温度範囲外の温度である場合、各触媒におけるNOx浄化率が低いことに加え(図3)、仮に尿素水が供給されたとしても尿素水の加水分解が十分に進行せず、排気管30の内側に付着したり、排気管30から排出されたりすることでNOx浄化反応に寄与しない尿素水の量が増大するためである。なお、図2に示す処理は車両の走行中において定期的に実行されるため、第1SCR触媒52や第2SCR触媒54が昇温し、触媒活性領域に入った後は、ステップS40以降の処理に従って各触媒への尿素水の供給が行われる。
ステップS30において尿素供給制御部10は、第3温度センサ70から、三元触媒40の温度T3wayを取得する。ステップS32において尿素供給制御部10は、三元触媒40の温度T3wayが、三元触媒40の触媒活性領域として予め定められた下限温度TL,3way以下であるか否かを判定する。ここで、三元触媒40についても、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)の浄化率の温度特性と、触媒活性領域として予め定められた温度範囲(下限温度TL,3way〜上限温度TH,3way)とを有している。
下限温度TL,3way以下である場合(ステップS32:YES)、ステップS34において尿素供給制御部10は、三元触媒40が活性状態でないと判定し、内燃機関20を排気の温度を上げる燃焼状態とさせるための指示信号を、燃焼状態制御部12へ送信する。燃焼状態制御部12は、例えば、内燃機関20での燃焼ピークを遅角させる等、内燃機関20の運転状態や空燃比を変更することで、内燃機関20からの排気の温度を上昇させる。このように、尿素供給制御部10(還元剤供給制御部)は、内燃機関20を排気の温度を上げる燃焼状態とさせることで、三元触媒40の温度を速やかに上昇させることができる。三元触媒40の昇温によって三元触媒40は活性状態となり、三元触媒40におけるNOx,HC,COの浄化率が向上するため、高いNOxの浄化率を維持することができる。
一方、下限温度TL,3wayより大きい場合(ステップS32:NO)、ステップS36において尿素供給制御部10は、三元触媒40が活性状態だと判定し、内燃機関20の燃焼状態をリーン燃焼状態からストイキ燃焼状態とさせるための指示信号を、燃焼状態制御部12へ送信する。ディーゼルエンジンや、リーンバーン運転方式のガソリンエンジンは通常、リーン燃焼状態で運転されるが、三元触媒40においてNOx,HC,COの高い浄化率を得るためには、ストイキ燃焼状態で運転されることが好ましいためである。
一方、第1SCR触媒52と第2SCR触媒54とが、共に触媒活性領域として予め定められた温度範囲外でない場合(領域A〜Dでない場合)、ステップS30において尿素供給制御部10は、第1SCR触媒52へ供給される尿素水割合r1と、第2SCR触媒54へ供給される尿素水割合r2を算出する。具体的には、尿素供給制御部10は、図4で説明したマップを用いた手順a1〜a5によって、尿素水割合r1,r2を算出する。ここで、尿素水割合r1,r2は、0≦r1≦1、0≦r2≦1、r1+r2=1の関係を満たす値とされる。
(a1)第1SCR触媒52の温度T1が上限温度TH以上、かつ、第2SCR触媒54の温度T2が触媒活性領域として予め定められた温度範囲内(下限温度TLより大きい〜上限温度THより小さい)である場合(領域R1)、尿素供給制御部10は、尿素水割合r1=0とし、r2=1とする。
(a2)第1SCR触媒52の温度T1が下限温度TL以下、かつ、第2SCR触媒54の温度T2が触媒活性領域として予め定められた温度範囲内である場合(領域R2)、尿素供給制御部10は、手順a1と同様に、尿素水割合r1=0とし、r2=1とする。
(a3)第1SCR触媒52の温度T1が触媒活性領域として予め定められた温度範囲内、かつ、第2SCR触媒54の温度T2が上限温度TH以上である場合(領域R3)、尿素供給制御部10は、尿素水割合r1=1とし、r2=0とする。
(a4)第1SCR触媒52の温度T1が触媒活性領域として予め定められた温度範囲内、かつ、第2SCR触媒54の温度T2が下限温度TL以下である場合(領域R4)、尿素供給制御部10は、手順a3と同様に、尿素水割合r1=1とし、r2=0とする。
(a5)第1SCR触媒52と第2SCR触媒54とが共に触媒活性領域として予め定められた温度範囲内である場合(領域R0)、尿素供給制御部10は、式1に表す算出式のF(r1)が最大となるように、尿素水割合r1,r2を算出する。
Figure 2019100328
ここで、式1のT[K]は、第1SCR触媒52及び第2SCR触媒54の温度、R[J/(K・mol)]は気体定数(R=8.314)、E[J/mol]は活性化エネルギー、TmaxはNOx浄化率が最大となる第1SCR触媒52及び第2SCR触媒54の温度(図3)を表す。
式1の右辺第1項は、NOx浄化率に関する項である。式1の右辺第1項では、第1SCR触媒52のNOx浄化率f(T1)と、第2SCR触媒54のNOx浄化率f(T2)とをNOx浄化率の最大値f(Tmax)で規格化し、尿素水割合r1及びr2(r2=1−r1)で重みづけしている。F(r1)が大きくなるほど、NOx浄化率は大きくなる。
図5は、アンモニア(NH3)減少量の温度特性について説明する図である。横軸は、第1,2SCR触媒52,54の温度であり、触媒活性領域として予め定められた温度範囲(下限温度TL、上限温度TH)がプロットされている。縦軸は、NH3の熱分解及び酸化反応に起因したNH3減少量を表している。図示の通り、NH3減少量は、触媒の温度が高温になるにつれて指数関数的に増加する特性(以降「温度特性DA」とも呼ぶ)を有している。温度特性DAによれば、第1,2SCR触媒52,54では、温度T1,T2が高温になるにつれて、NOx浄化に寄与しないNH3が増加する。
式1の右辺第2項は、NH3の熱分解及び酸化反応に起因したNH3減少量に関する項である。第1SCR触媒52へ流入するNH3[mol/m3]を(NH31と表すと第1SCR触媒52におけるNH3減少量は、アレニウスの式より、Aexp(−E/RT1)[(NH31nと表される。同様に、第2SCR触媒54へ流入するNH3[mol/m3]を(NH32と表すと、第2SCR触媒54におけるNH3減少量は、Aexp(−E/RT2)[(NH32nと表される。図5で説明した通り、NH3の熱分解及び酸化反応に起因したNH3減少量は、第1,2SCR触媒52,54の温度T1,T2に対して単調に増加し、(NH31と(NH32との範囲は以下の通りとなる。
0≦(NH31≦(NH31+(NH32
0≦(NH32≦(NH31+(NH32
このため、NH3減少量の最大値は、Aexp(−E/RTH)[(NH31+(NH32nとなる。第1SCR触媒52におけるNH3減少量を、上記の最大値で規格化すると、式2が得られる。
Figure 2019100328
同様に、第2SCR触媒54におけるNH3減少量を、上記の最大値で規格化すると、式3が得られる。
Figure 2019100328
したがって、式1のF(r1)が大きくなるほど、NH3の熱分解及び酸化反応に起因したNH3減少量は小さくなる。式1におけるα(α>0)は調整パラメータである。尿素水割合r1,r2を算出する際に、NOx浄化率(右辺第1項)を優先して考慮する場合はαを小さく、NH3減少量(右辺第2項)を優先して考慮する場合はαを大きくすればよい。
図2に戻り説明を続ける。ステップS42において尿素供給制御部10は、第1SCR触媒52及び第2SCR触媒54におけるNH3減少量を算出する。具体的には、尿素供給制御部10は、第1SCR触媒52の温度T1と予め実験等により求めた算出式とを用いて、第1SCR触媒52におけるNH3減少量D1を求める。同様に、尿素供給制御部10は、第2SCR触媒54の温度T2と予め実験等により求めた算出式とを用いて、第2SCR触媒54におけるNH3減少量D2を求める。
ステップS44において尿素供給制御部10は、第1SCR触媒52及び第2SCR触媒54へと供給される尿素水の総量Qureaを算出する。具体的には、尿素供給制御部10は、第1SCR触媒52へ流入する排気中のNOx濃度C1(ステップS12)から、排気中のNOx量を浄化するために必要なNH3量Dを求める。尿素供給制御部10は、求めたNH3量Dに対して、ステップS42で算出したNH3減少量D1及びD2を加算して、最終的に必要なNH3量DTを求める。尿素供給制御部10は、求めたNH3量DTを得られる尿素水の総量をQureaとして算出する。
ステップS46において尿素供給制御部10は、ステップS44で算出した尿素水の総量Qureaと、ステップS40で算出した尿素水割合r1及びr2を用いて、第1SCR触媒52へ尿素水を供給するための第1尿素ノズル82と、第2SCR触媒54へ尿素水を供給するための第2尿素ノズル84とのそれぞれにおける、尿素水量を算出する。その後、尿素供給制御部10は、算出結果に基づいて尿素ポンプユニット80を駆動し、第1尿素ノズル82及び第2尿素ノズル84から尿素水を噴射させる。
以上説明した通り、上記第1実施形態によれば、尿素供給制御部10(還元剤供給制御部)は、第1温度センサ72及び第2温度センサ74(温度取得部)によって取得された第1SCR触媒52及び第2SCR触媒54(各選択還元触媒)の温度T1,T2に応じて、それぞれの選択還元触媒に対して供給する尿素水(還元剤)の割合r1,r2を変化させる。図3の通り、SCR触媒は窒素酸化物(NOx)の浄化率について温度特性PRを有している。このため、上述した制御によって尿素供給制御部10は、各SCR触媒におけるNOx浄化率に応じて、供給する尿素水の割合r1,r2を変化させることとなる。このため、上記第1実施形態によれば、NOx浄化反応に寄与せずに排出される尿素水の量を低減できる。この結果、複数のSCR触媒を備える内燃機関20の排気浄化装置1において、高いNOxの浄化率を維持しつつ、尿素水の消費量を低減することができる。
また、ステップS20〜S36によれば、尿素供給制御部10(還元剤供給制御部)は、第1,2SCR触媒52,54(選択還元触媒)の温度T1,T2が、触媒活性領域として予め定められた温度範囲(図3:下限温度TLより大きく、かつ、上限温度THより小さい温度範囲)外であるSCR触媒に対して供給する尿素水(還元剤)の割合を0とし、尿素水の供給を行わない。このため、第1実施形態のように、触媒活性領域として適切な温度範囲(下限温度TL、上限温度TH)を予め定めておくことにより、NOx浄化率が低下する温度範囲にあるSCR触媒に対して尿素水が供給されることを抑制でき、NOx浄化反応に寄与せずに排出される尿素水の量をより一層低減できる。
さらに、ステップS40によれば、尿素供給制御部10(還元剤供給制御部)は、第1,2SCR触媒52,54(選択還元触媒)の温度T1,T2に対するNOxの浄化率を考慮した式1(右辺第1項)によって、第1SCR触媒52及び第2SCR触媒54(各選択還元触媒)に対して供給する尿素水(還元剤)の割合r1,r2を変化させるため、第1SCR触媒52及び第2SCR触媒54に供給される尿素水の割合を最適化できると共に、より高いNOx浄化率が得られる。また、尿素供給制御部10は、熱分解及び酸化反応に起因したアンモニア(NH3)の減少量を考慮した式1(右辺第2項)によって、第1SCR触媒52及び第2SCR触媒54に対して供給する尿素水の割合r1,r2を変化させるため、NOx浄化反応に寄与せずに熱分解、酸化される尿素水の量を低減できる。
さらに、ステップS44によれば、尿素供給制御部10(還元剤供給制御部)は、第1SCR触媒52(最上流の選択還元触媒)に流入するNOxの濃度C1を用いて、第1尿素ノズル82及び第2尿素ノズル84(各還元剤供給部)から供給される尿素水(還元剤)の総量Qureaを算出するため、NOx浄化反応のための尿素水の総量に過不足が生じることを抑制できる。
さらに、内燃機関20の排気浄化装置1は、第1SCR触媒52及び第2SCR触媒54(複数の選択還元触媒)に加えてさらに、三元触媒40を備える。このため、例えば、全てのSCR触媒の温度T1,T2が触媒活性領域(下限温度TL、上限温度TH)外の場合(すなわち、NOx浄化率が低下する温度範囲の場合)であっても、三元触媒40を用いてNOxを浄化することができる。このため、第1SCR触媒52及び第2SCR触媒54を備える排気浄化装置1において、高いNOxの浄化率を維持することができる。
<第2実施形態>
図6は、第2実施形態における内燃機関の排気浄化装置1aのブロック図である。第2実施形態では、上述した実施形態と同様の構成について説明を省略すると共に、図面における一部の符号を省略する場合がある。第1実施形態の排気浄化装置1では、三元触媒40を備え、第1,2SCR触媒52,54が共に触媒活性領域として予め定められた温度範囲外である場合(図4:領域A〜Dの場合)、三元触媒40を用いたNOx浄化を行っていた。しかし、第2実施形態の排気浄化装置1aでは、三元触媒40と第3温度センサ70とを備えず、上記条件下では第1,2SCR触媒52,54の昇温又は降温を行ったのち、第1,2SCR触媒52,54を用いてNOxを浄化する。
図7は、第2実施形態における尿素供給制御部10aの制御手順を示すフローチャートである。第2実施形態では、ステップS20〜S26及びステップS30〜S36(図2)に代えて、ステップS50〜S56を備える。ステップS50において尿素供給制御部10aは、最下流の第2SCR触媒54が高温であるか否かを判定する。具体的には、尿素供給制御部10aは、第2SCR触媒54の温度T2が上限温度TH以上である場合に、第2SCR触媒54が高温であると判定する。
第2SCR触媒54が高温の場合(ステップS50:YES)、ステップS54において尿素供給制御部10aは、第2SCR触媒54のNOx浄化率が低いと判定し、内燃機関20を排気の温度を下げる燃焼状態とさせるための指示信号を、燃焼状態制御部12へ送信する。燃焼状態制御部12は、例えば、排気の一部を吸気に戻す(排気ガスを再循環させる)ことで、内燃機関20からの排気の温度を低下させる。このように、尿素供給制御部10a(還元剤供給制御部)は、内燃機関20を排気の温度を下げる燃焼状態とさせることで、第1SCR触媒52及び第2SCR触媒54(各選択還元触媒)の温度T1,T2を速やかに下降させることができる。第1SCR触媒52及び第2SCR触媒54の降温によって、各触媒におけるNOx浄化率が向上するため、高いNOxの浄化率を維持することができる。さらに、第1,2SCR触媒52,54が過剰に高温になることを抑制し、触媒の熱劣化を抑制できる。
一方、第2SCR触媒54が高温でない場合(ステップS50:NO)、ステップS52において尿素供給制御部10aは、第1SCR触媒52と第2SCR触媒54とが共に低温の領域D(図4)に位置するか否かを判定する。尿素供給制御部10aは、第1SCR触媒52の温度T1が下限温度TL以下、かつ、第2SCR触媒54の温度T2が下限温度TL以下である場合に、領域Dに位置すると判定する。
領域Dに位置する場合(ステップS52:YES)、ステップS56において尿素供給制御部10aは、第1,2SCR触媒52,54のNOx浄化率が低いと判定し、内燃機関20を排気の温度を上げる燃焼状態とさせるための指示信号を、燃焼状態制御部12へ送信する。燃焼状態制御部12は、例えば、内燃機関20での燃焼ピークを遅角させる等、内燃機関20の運転状態や空燃比を変更することで、内燃機関20からの排気の温度を上昇させる。このように、尿素供給制御部10a(還元剤供給制御部)は、内燃機関20を排気の温度を上げる燃焼状態とさせることで、第1SCR触媒52及び第2SCR触媒54(各選択還元触媒)の温度T1,T2を速やかに上昇させることができる。第1SCR触媒52及び第2SCR触媒54の昇温によって、各触媒におけるNOx浄化率が向上するため、高いNOxの浄化率を維持することができる。
領域Dに位置しない場合(ステップS52:NO)、ステップS40〜S46において尿素供給制御部10aは、第1SCR触媒52と第2SCR触媒54とにおける尿素水割合r1,r2と、NH3減少量と、尿素水の総量Qureaと、第1尿素ノズル82と第2尿素ノズル84とのそれぞれにおける尿素水量とを算出し、算出結果に基づく尿素水の噴射を行う。詳細は、第1実施形態(図2)で説明した通りである。このように、第2実施形態によっても、第1実施形態と同様の効果を奏することができる。
<本実施形態の変形例>
本発明は上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
[変形例1]
上記実施形態では、内燃機関の排気浄化装置の構成の一例を示した。しかし、排気浄化装置の構成は種々の変形が可能である。例えば、排気浄化装置は、2つ以上のSCR触媒(選択還元触媒)を備えてもよい。例えば、排気浄化装置は、SCR触媒や三元触媒以外の他の触媒(例えば、NOx吸蔵還元触媒)をさらに備えていてもよい。例えば、還元剤として、尿素水に代えて、アンモニアガス、アンモニア水、有機溶媒等の非水系溶媒を用いた尿素溶液又はアンモニア溶液等を利用してもよい。
[変形例2]
上記実施形態では、第1SCR触媒と第2SCR触媒とは、同一の温度特性PRを有し、かつ、同一の触媒活性領域(下限温度TL、上限温度TH)を有するとした。しかし、第1,2SCR触媒におけるこれらの特性は、相違していてもよい。この場合、式1に代えて次の式4を用いて、尿素水割合r1,r2を算出すればよい。
Figure 2019100328
ここで、f1は第1SCR触媒のNOx浄化率を、f2は第2SCR触媒のNOx浄化率を、E1[J/mol]は第1SCR触媒の活性化エネルギーを、E2[J/mol]は第2SCR触媒の活性化エネルギーを、それぞれ表す。
[変形例3]
上記実施形態では、尿素供給制御部における制御の一例を示した。しかし、尿素供給制御部における制御内容は種々の変形が可能である。例えば、ステップS20〜S26,S40(図2)、ステップS50,S52,S40(図7)において、尿素供給制御部は、触媒活性領域として予め定められた温度範囲(下限温度TL,上限温度TH)外のSCR触媒に対して供給する尿素水の割合を0以外にしてもよい。しかしこの場合においても、触媒活性領域外の温度のSCR触媒では、NOx浄化率が低下している(非活性状態)であるため、供給する尿素水の割合は低くすることが好ましい。
例えば、ステップS40において尿素供給制御部は、NOx浄化率のみを考慮した算出式を用いて、尿素水割合r1,r2を算出してもよい。この場合、上述した式1において、右辺第2項を省略する、または、調整パラメータα=0とすればよい。例えば、ステップS40において尿素供給制御部は、上述した算出式を利用せずに、尿素水割合r1,r2を算出してもよい。この場合、例えば、上述した式1に代えて、第1,2SCR触媒の温度T1,T2と、尿素水割合r1,r2を対応付けて記憶するマップ等を用いて、尿素水割合r1,r2を算出できる。
例えば、ステップS42,S44において尿素供給制御部は、尿素水の総量Qureaの算出を行わず、尿素水の総量Qurea=一定量としてもよい。例えば、ステップS42,S44において尿素供給制御部は、第1,2SCR触媒におけるNH3減少量を考慮せずに第1SCR触媒52へ流入する排気中のNOx濃度C1のみを用いて尿素水の総量Qureaを算出してもよい。
例えば、ステップS34(図2)、ステップS54,S56(図7)において尿素供給制御部は、内燃機関の燃焼状態の制御に代えて、他の手段(例えば、ヒータ等による加熱)を用いて三元触媒や第1,2SCR触媒の温度を上昇又は下降させてもよい。例えば、ステップS50(図7)において尿素供給制御部は、第2SCR触媒だけでなく、第1SCR触媒の温度も判定条件に加えてもよい。
以上、実施形態、変形例に基づき本態様について説明してきたが、上記した態様の実施の形態は、本態様の理解を容易にするためのものであり、本態様を限定するものではない。本態様は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本態様にはその等価物が含まれる。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
1,1a…排気浄化装置
10,10a…尿素供給制御部
12…燃焼状態制御部
20…内燃機関
30…排気管
40…三元触媒
52…第1SCR触媒
54…第2SCR触媒
62…流量取得部
64…第1濃度取得部
66…第2濃度取得部
70…第3温度センサ
72…第1温度センサ
74…第2温度センサ
80…尿素ポンプユニット
82…第1尿素ノズル
84…第2尿素ノズル

Claims (9)

  1. 内燃機関の排気浄化装置であって、
    内燃機関からの排気が流通する主流路に設けられ、排気中の窒素酸化物を浄化する複数の選択還元触媒と、
    各前記選択還元触媒の温度を取得する複数の温度取得部と、
    各前記選択還元触媒に対して還元剤を供給する複数の還元剤供給部と、
    各前記還元剤供給部における前記還元剤の供給を制御する還元剤供給制御部と、
    を備え、
    前記還元剤供給制御部は、各前記温度取得部により取得された各前記選択還元触媒の温度に応じて、それぞれの前記選択還元触媒に対して供給する前記還元剤の割合を変化させる、内燃機関の排気浄化装置。
  2. 請求項1に記載の内燃機関の排気浄化装置であって、
    前記還元剤供給制御部は、
    各前記温度取得部により取得された各前記選択還元触媒の温度が、触媒活性領域として予め定められた温度範囲外である前記選択還元触媒に対して供給する前記還元剤の割合を0とする、内燃機関の排気浄化装置。
  3. 請求項1または請求項2に記載の内燃機関の排気浄化装置であって、
    前記還元剤供給制御部は、
    各前記選択還元触媒の温度に対する窒素酸化物の浄化率を考慮して予め定められた算出式を用いて、前記還元剤の割合を変化させる、内燃機関の排気浄化装置。
  4. 請求項1から請求項3のいずれか一項に記載の内燃機関の排気浄化装置であって、
    前記還元剤供給制御部は、
    各前記選択還元触媒の温度に対する窒素酸化物の浄化率と、
    熱分解及び酸化反応に起因したアンモニアの減少量と、を考慮して予め定められた算出式を用いて、前記還元剤の割合を変化させる、内燃機関の排気浄化装置。
  5. 請求項1から請求項4のいずれか一項に記載の内燃機関の排気浄化装置であって、さらに、
    前記複数の選択還元触媒のうち、前記主流路において最上流に設けられた前記選択還元触媒に流入する窒素酸化物の濃度を取得する濃度取得部を備え、
    前記還元剤供給制御部は、
    前記濃度取得部により取得された前記窒素酸化物の濃度を用いて、各前記還元剤供給部から供給される前記還元剤の総量を算出する、内燃機関の排気浄化装置。
  6. 請求項1から請求項5のいずれか一項に記載の内燃機関の排気浄化装置であって、さらに、
    前記主流路に設けられた三元触媒を備える、内燃機関の排気浄化装置。
  7. 請求項6に記載の内燃機関の排気浄化装置であって、さらに、
    前記三元触媒の温度を取得する三元触媒温度取得部を備え、
    前記還元剤供給制御部は、
    各前記温度取得部により取得された各前記選択還元触媒の温度が、全て前記選択還元触媒の触媒活性領域として予め定められた温度範囲外であり、
    前記三元触媒温度取得部により取得された前記三元触媒の温度が、前記三元触媒の触媒活性領域として予め定められた下限温度以下である場合、
    前記内燃機関を前記排気の温度を上げる燃焼状態とさせる、内燃機関の排気浄化装置。
  8. 請求項1から請求項5のいずれか一項に記載の内燃機関の排気浄化装置であって、
    前記還元剤供給制御部は、
    前記複数の選択還元触媒のうち、前記主流路において最下流に設けられた前記選択還元触媒の温度が、前記選択還元触媒の触媒活性領域として予め定められた上限温度以上である場合、
    前記内燃機関を前記排気の温度を下げる燃焼状態とさせる、内燃機関の排気浄化装置。
  9. 請求項8に記載の内燃機関の排気浄化装置であって、
    前記還元剤供給制御部は、
    各前記温度取得部により取得された各前記選択還元触媒の温度が、全て前記選択還元触媒の触媒活性領域として予め定められた下限温度以下である場合、
    前記内燃機関を前記排気の温度を上げる燃焼状態とさせる、内燃機関の排気浄化装置。
JP2017235922A 2017-12-08 2017-12-08 内燃機関の排気浄化装置 Active JP7114887B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017235922A JP7114887B2 (ja) 2017-12-08 2017-12-08 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017235922A JP7114887B2 (ja) 2017-12-08 2017-12-08 内燃機関の排気浄化装置

Publications (2)

Publication Number Publication Date
JP2019100328A true JP2019100328A (ja) 2019-06-24
JP7114887B2 JP7114887B2 (ja) 2022-08-09

Family

ID=66976402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017235922A Active JP7114887B2 (ja) 2017-12-08 2017-12-08 内燃機関の排気浄化装置

Country Status (1)

Country Link
JP (1) JP7114887B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055563A (ja) * 2019-09-27 2021-04-08 いすゞ自動車株式会社 内燃機関の排気浄化装置、及び車両
JP2021080874A (ja) * 2019-11-19 2021-05-27 日野自動車株式会社 排気浄化装置
WO2022264565A1 (ja) * 2021-06-14 2022-12-22 株式会社豊田自動織機 触媒昇温システムの制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268021A (ja) * 2003-02-20 2004-09-30 Sumitomo Metal Mining Co Ltd 窒素酸化物浄化方法及び浄化装置
JP2012097729A (ja) * 2010-10-08 2012-05-24 Hino Motors Ltd 排ガス浄化装置
JP2014020310A (ja) * 2012-07-20 2014-02-03 Hino Motors Ltd 排ガス浄化装置
JP2017040239A (ja) * 2015-08-21 2017-02-23 日野自動車株式会社 排気浄化装置
US20170087515A1 (en) * 2015-09-30 2017-03-30 Deere & Company System and method for regulating exhaust emissions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268021A (ja) * 2003-02-20 2004-09-30 Sumitomo Metal Mining Co Ltd 窒素酸化物浄化方法及び浄化装置
JP2012097729A (ja) * 2010-10-08 2012-05-24 Hino Motors Ltd 排ガス浄化装置
JP2014020310A (ja) * 2012-07-20 2014-02-03 Hino Motors Ltd 排ガス浄化装置
JP2017040239A (ja) * 2015-08-21 2017-02-23 日野自動車株式会社 排気浄化装置
US20170087515A1 (en) * 2015-09-30 2017-03-30 Deere & Company System and method for regulating exhaust emissions

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055563A (ja) * 2019-09-27 2021-04-08 いすゞ自動車株式会社 内燃機関の排気浄化装置、及び車両
JP2021080874A (ja) * 2019-11-19 2021-05-27 日野自動車株式会社 排気浄化装置
JP7280169B2 (ja) 2019-11-19 2023-05-23 日野自動車株式会社 排気浄化装置
WO2022264565A1 (ja) * 2021-06-14 2022-12-22 株式会社豊田自動織機 触媒昇温システムの制御装置

Also Published As

Publication number Publication date
JP7114887B2 (ja) 2022-08-09

Similar Documents

Publication Publication Date Title
JP5351186B2 (ja) 内燃機関の排気浄化システム
JP5653618B2 (ja) 選択的触媒還元の制御
JP5284408B2 (ja) 内燃機関の排気浄化システム
JP4438828B2 (ja) 内燃機関の排気浄化装置
JP5627367B2 (ja) 排気浄化装置及び排気浄化装置の制御方法
US20070137181A1 (en) Exhaust gas aftertreatment systems
US20090056315A1 (en) Method for reducing nh3 release from scr catalysts during thermal transients
JP4305643B2 (ja) 内燃機関の排気浄化装置
US8459011B2 (en) Exhaust gas purifying apparatus for internal combustion engine
JP2008157136A (ja) 内燃機関の排気浄化装置
JP7114887B2 (ja) 内燃機関の排気浄化装置
JP2012167549A (ja) 内燃機関の排気浄化システム
US10145284B2 (en) Exhaust after-treatment system including sliding mode ammonia controller
JP2019035370A (ja) 排気浄化装置およびこれを備えた車両
KR20220070516A (ko) 배기 가스 혼합기, 시스템, 및 사용 방법
JP5194590B2 (ja) エンジンの排気浄化装置
JP4419150B2 (ja) NOx触媒の異常診断装置及び異常診断方法
JP5837312B2 (ja) 内燃機関の排気浄化システム
KR102270963B1 (ko) 내연기관을 작동하기 위한 방법 및 제어장치
JP2012036799A (ja) 内燃機関の排気浄化システム
JP4396760B2 (ja) 内燃機関の排気浄化装置
JP4775282B2 (ja) 内燃機関の排気制御装置
JP2012215143A (ja) 触媒の劣化判定装置
JP2021050702A (ja) 排気浄化装置を備える車両の制御方法及び制御装置
JP2009243316A (ja) 排気ガス浄化装置及びその排気ガス浄化方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220509

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7114887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150