JP2019093548A - Long polyimide laminate and method for producing the same - Google Patents

Long polyimide laminate and method for producing the same Download PDF

Info

Publication number
JP2019093548A
JP2019093548A JP2016069660A JP2016069660A JP2019093548A JP 2019093548 A JP2019093548 A JP 2019093548A JP 2016069660 A JP2016069660 A JP 2016069660A JP 2016069660 A JP2016069660 A JP 2016069660A JP 2019093548 A JP2019093548 A JP 2019093548A
Authority
JP
Japan
Prior art keywords
polyimide
film
laminate
dimensional change
fccl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016069660A
Other languages
Japanese (ja)
Inventor
誠二 細貝
Seiji Hosogai
誠二 細貝
隼平 齋藤
Jumpei Saito
隼平 齋藤
直樹 福島
Naoki Fukushima
直樹 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2016069660A priority Critical patent/JP2019093548A/en
Priority to PCT/JP2017/013311 priority patent/WO2017170893A1/en
Priority to TW106110790A priority patent/TW201805168A/en
Publication of JP2019093548A publication Critical patent/JP2019093548A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42

Landscapes

  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

To provide a polyimide material capable of stably providing a flexible printed wiring board (FPC) that prevents positional deviation when being connected to other component and a circuit material even when a wiring width and an interval formed on the FPC are made to be extremely small.SOLUTION: A polyimide laminate has a thermoplastic polyimide resin layer on at least one surface of a non-thermoplastic polyimide film, when the width is set at 150 mm or more, a heat shrinkage ratio in the longitudinal direction of the film at a glass transition temperature of the laminate is represented by α and a heat shrinkage ratio in the width direction thereof is represented by β, 2.1<α<0.1, -2.5<β<-0.5 and -0.1<α×β<6.0 are satisfied. In the polyimide laminate, preferably, the glass transition temperature of the polyimide laminate is 100-300°C.SELECTED DRAWING: None

Description

本発明は、寸法変化率の小さいポリイミドフィルムに関する。   The present invention relates to a polyimide film having a small dimensional change rate.

ポリイミドフィルムはフレキシブルプリント配線板の基板として用いられている。近年のエレクトロニクス製品の軽量化、小型化、高機能化に伴い、絶縁フィルムに熱硬化性接着剤を介して金属箔を張り合わせた3層フレキシブル金属張積層板を用いたプリント配線板から、接着層に熱可塑性ポリイミドを用いた2層フレキシブル金属張積層板(以下、2層FCCLともいう)を用いたフレキシブルプリント配線板(以下、2層FPCともいう)へと需要が移りつつある。   A polyimide film is used as a substrate of a flexible printed wiring board. Adhesive layer from printed wiring board using 3-layer flexible metal-clad laminate in which metal foil is pasted to insulating film via thermosetting adhesive along with weight reduction, miniaturization and high functionality of electronic products in recent years The demand is shifting to a flexible printed wiring board (hereinafter also referred to as a two-layer FPC) using a two-layer flexible metal-clad laminate (hereinafter also referred to as a two-layer FCCL) using a thermoplastic polyimide.

2層FPCの代表的な製造方法として、ポリイミドフィルムに熱可塑性ポリイミド層を設けた積層体に、金属箔を加熱しながら貼り合わせる方法がある。工業的に2層FCCLを製造する場合、ロール状になった幅広の上記積層体と金属箔とを連続的に繰り出しながら熱ロールラミネート装置やダブルベルトプレス装置を用いて貼り合わせる。   As a typical manufacturing method of the two-layer FPC, there is a method of bonding while heating a metal foil to a laminate in which a thermoplastic polyimide layer is provided on a polyimide film. When manufacturing two-layer FCCL industrially, it bonds together using a heat | fever roll laminating apparatus or a double belt press apparatus, drawing | feeding out continuously the said roll-shaped wide laminated body and metal foil.

このようにして得られる2層FCCLを使って、エッチングなどにより金属箔部分に回路を形成して2層FPCが製造されるのであるが、FPCに加工した後の寸法変化が大きくなると、設計時の部品搭載位置から回路の位置がずれてしまうなどの問題が発生し、搭載しようとする部品とFPCとの接続がとれなくなるという問題がある。   A circuit is formed on the metal foil portion by etching etc. using the two-layer FCCL obtained in this way, and a two-layer FPC is manufactured. However, when the dimensional change after processing into the FPC becomes large, There is a problem that the position of the circuit deviates from the component mounting position, and the connection between the component to be mounted and the FPC can not be established.

一方、従来より、加工したFPCに寸法変化の問題が発生するのは、ポリイミドフィルムの熱膨張係数や吸湿膨張係数が大きいことや、吸水率が高いことが原因であると考えられている。つまりFCCLやFPCの加工工程における熱や吸水によるポリイミドフィルムの寸法変化が金属箔の寸法変化に比して大きいため、設計どおりの配線を形成できないと考えられている。このため、熱膨張係数が金属箔と同等であるポリイミドフィルムや、吸湿膨張係数、吸水率の小さいポリイミドフィルムへの取り組みがなされてきた。例えば、特許文献1では、ポリイミドフィルムの組成を選択することで寸法変化と耐熱性の問題を解決している。   On the other hand, conventionally, the problem of dimensional change in the processed FPC is considered to be caused by the large thermal expansion coefficient and the hygroscopic expansion coefficient of the polyimide film and the high water absorption coefficient. That is, it is considered that the wiring as designed can not be formed because the dimensional change of the polyimide film due to heat or water absorption in the processing steps of FCCL and FPC is larger than the dimensional change of the metal foil. For this reason, efforts have been made to a polyimide film having a thermal expansion coefficient equivalent to that of a metal foil, and a polyimide film having a low hygroscopic expansion coefficient and a low water absorption coefficient. For example, in patent document 1, the problem of a dimensional change and heat resistance is solved by selecting the composition of a polyimide film.

ところで、ポリイミドフィルムの物性として加熱収縮率が測定される場合がある。加熱収縮率も低いほうがよいと考えられている。特許文献1にも記載のあるように、加熱収縮率は150℃〜250℃の範囲の温度で、30分〜1時間加熱した場合の値を測定することが多い。これは、フレキシブルプリント配線板の基板に半田づけや異方導電性フィルムの張り合わせなどにより部品を実装する際の寸法変化を予測するために用いられることが多い。   By the way, a heat shrinkage rate may be measured as a physical property of a polyimide film. It is considered that a lower heat shrinkage rate is better. As also described in Patent Document 1, the heat shrinkage ratio is often measured at a temperature in the range of 150 ° C. to 250 ° C. for 30 minutes to 1 hour of heating. This is often used to predict dimensional change when mounting a component on a flexible printed wiring board substrate by soldering, lamination of an anisotropic conductive film, or the like.

ポリイミドフィルムの片面または両面に、熱可塑性ポリイミドを含有する接着層を形成したフィルム状接合部材であって、250℃、30分加熱した際のTD方向の寸法変化率が−0.01%〜−0.10%であり、かつMD方向の寸法変化率が+0.01%〜+0.10%である接着性接合部材が特許文献2に開示されている。250℃、30分加熱した際のTD方向の寸法変化率とは、フィルム状接合部材の寸法と、これに金属層を積層し、さらにエッチングで除去したものを上記条件で加熱した後の寸法との比率である。特許文献2は、予めフィルム状接合に熱ラミネートにより発生するMD方向、TD方向の寸法変化をキャンセルする寸法歪み、すなわち加熱時寸法変化をもたせておくことにより、FCCLの寸法変化率を改善できると記載されている。   A film-like bonding member in which an adhesive layer containing a thermoplastic polyimide is formed on one side or both sides of a polyimide film, and the dimensional change rate in the TD direction when heated at 250 ° C. for 30 minutes is -0.01% to- Patent Document 2 discloses an adhesive bonding member which is 0.10% and has a dimensional change rate in the MD direction of + 0.01% to + 0.10%. The dimensional change rate in the TD direction when heated at 250 ° C. for 30 minutes is the size of the film-like bonding member and the size after the metal layer is laminated thereon and the one removed by etching under the above conditions. Ratio. According to Patent Document 2, the dimensional change rate of FCCL can be improved by previously providing dimensional distortion that cancels dimensional change in the MD direction and TD direction generated by thermal lamination in film-like bonding, that is, dimensional change during heating. Have been described.

このように寸法変化の課題へのさまざまな取り組みがなされているが、電子機器の小型化・高性能化に伴い、FPCの配線の微細化・薄型化も進み、ポリイミド材料に要求される寸法変化率のレベルはかなり高くなり、寸法変化率の課題は技術が進歩すればするほど、解決へのハードルが高くなっている。   As described above, various efforts have been made to the problem of dimensional change, but with the miniaturization and high performance of electronic devices, the miniaturization and thinning of FPC wiring are also progressing, and the dimensional change required for polyimide materials is required. The level of rates has become quite high, and the dimensional change issues are becoming more difficult to solve as the technology advances.

日本国公開特許公報「特開2007−196670号公報」(2007年8月9日公開)Japanese Patent Publication "Japanese Patent Application Publication No. 2007-196670" (August 9, 2007) 日本国公開特許公報「特開2005−335102号公報」(2005年12月8日公開)Japanese patent publication "Japanese Patent Application Laid-Open No. 2005-335102" (December 8, 2005)

要求される寸法変化率のレベルが高くなるにしたがい、従来の取り組みだけでは不十分になってきている。すなわち、FPCに形成される配線幅や間隔がさらに小さくなればなるほど、従来のFPCでは問題とならなかった程度の寸法変化も問題視されてくる。特に、熱ラミネート法、中でも熱ロールラミネート法によりFCCLが製造される場合、FCCL製造業者は各々異なる製造条件を設定しているため、別のラミネート方法で製造した場合には問題とならかったような寸法変化の問題が発生したり、従来は寸法変化率が小さいとされたポリイミド材料が、FCCL製造業者やFPC製造業者が使う製造条件やスペック次第で、寸法変化率が大きい、と判断されてしまう場合が出てきている。また、これには、連続的に2層FCCLを製造し、FPCに加工する場合、部位によって寸法変化率の大きい箇所や小さい箇所がまちまちで、それを予測できないという問題や、ロット間でのバラツキの問題も含まれる。そこで、極めて微細な配線を形成しても、他の部品や回路材料との接続を取る際の位置ずれが発生しないFPCを安定的に提供できるポリイミド材料を提供することが当業界の課題となりつつある。   As the level of dimensional change required increases, conventional approaches alone have become inadequate. That is, as the width and interval of the wiring formed on the FPC become smaller, the dimensional change which has not been a problem in the conventional FPC also becomes a problem. In particular, when FCCL is manufactured by the thermal laminating method, and particularly by the heat roll laminating method, the FCCL manufacturers set different manufacturing conditions, so it would be a problem when manufactured by another laminating method. It is judged that the dimensional change rate is large depending on the manufacturing conditions and the specifications used by FCCL manufacturers and FPC manufacturers, where the problem of dimensional change occurs or the polyimide material which has conventionally been considered to have a small dimensional change rate. The case is coming out. In addition, when two-layer FCCL is continuously manufactured and processed into FPC, there is a problem that parts with large or small dimensional change rate are different depending on the part, and it can not be predicted, and variation between lots Problems are also included. Therefore, it becomes an issue in the industry to provide a polyimide material that can stably provide an FPC that does not generate positional deviation when making connections with other parts and circuit materials even if extremely fine wiring is formed. is there.

本発明者らは、以下の新規なポリイミド積層体により上記課題を解決しうる。
1)非熱可塑性ポリイミドフィルムの少なくとも片面に、熱可塑性ポリイミド樹脂層を有するポリイミド積層体であって、該積層体はガラス転移点を有し、幅が150mm以上であり、かつ積層体のガラス転移温度におけるフィルムの長手方向の加熱収縮率α、ガラス転移温度におけるフィルムの幅方向の加熱収縮率βとしたとき、−2.1<α<0.1、−2.5<β<−0.5であり、かつ−0.1<α×β<6.0の範囲であることを特徴とする、ポリイミド積層体。
2)前記ポリイミド積層体のガラス転移温度が100〜300℃であることを特徴とする、1)に記載のポリイミド積層体。
3)前記ポリイミド積層体は、非熱可塑性ポリイミドフィルムの少なくとも片面に、熱可塑性ポリイミドの前駆体または熱可塑性ポリイミドの少なくともいずれか一つを含む溶液を塗布・乾燥して得られることを特徴とする、1)または2)に記載のポリイミド積層体の製造方法。
The present inventors can solve the above problems by the following novel polyimide laminates.
1) A polyimide laminate having a thermoplastic polyimide resin layer on at least one surface of a non-thermoplastic polyimide film, wherein the laminate has a glass transition point, a width of 150 mm or more, and a glass transition of the laminate Assuming that the heat shrinkage ratio α in the longitudinal direction of the film at the temperature and the heat shrinkage ratio β in the width direction of the film at the glass transition temperature, −2.1 <α <0.1, −2.5 <β <−0. 5 and a range of −0.1 <α × β <6.0.
2) The polyimide laminate according to 1), wherein the glass transition temperature of the polyimide laminate is 100 to 300 ° C.
3) The polyimide laminate is obtained by applying and drying a solution containing at least one of a thermoplastic polyimide precursor and a thermoplastic polyimide on at least one surface of a non-thermoplastic polyimide film. The manufacturing method of the polyimide laminated body as described in 1, and 2).

本発明のポリイミドフィルム積層体を用いて、金属箔を除去した後の寸法変化率が、MD方向およびTD方向どちらにおいても寸法変化率が0±0.025%、面内バラツキはσ=0.030%となるFCCLを提供することができる。   The dimensional change after removing the metal foil using the polyimide film laminate of the present invention is 0 ± 0.025% in both the MD and TD directions, and the in-plane variation is σ = 0. It can provide an FCCL of 030%.

熱ラミ歪みの測定用サンプルの模式図である。It is a schematic diagram of the sample for measurement of thermal lami distortion. 全内部歪みとエッチング前後寸法変化率のプロットである。It is a plot of total internal distortion and the dimensional change before and behind etching. 加熱収縮率の測定サンプルの取得位置を示す模式図である。It is a schematic diagram which shows the acquisition position of the measurement sample of a heating contraction rate.

本発明は、非熱可塑性ポリイミドフィルムの少なくとも片面に、熱可塑性ポリイミド樹脂層を有するポリイミド積層体であって、幅が150mm以上であり、かつ積層体のガラス転移温度における積層体の長手方向の加熱収縮率α、ガラス転移温度における積層体の幅方向の加熱収縮率βとしたとき、−2.1<α<0.1、−2.5<β<−0.5となっており、かつ−0.1<α×β<6.0の範囲となっている長尺ポリイミド積層体である。   The present invention is a polyimide laminate having a thermoplastic polyimide resin layer on at least one surface of a non-thermoplastic polyimide film, and having a width of 150 mm or more, and heating the laminate in the longitudinal direction at the glass transition temperature of the laminate. The shrinkage factor α and the heat shrinkage factor β in the width direction of the laminate at the glass transition temperature are −2.1 <α <0.1 and −2.5 <β <−0.5, and It is a long polyimide layered product which has become the range of -0.1 <alphax beta <6.0.

本発明のポリイミド積層体は、ポリイミド積層体のガラス転移温度におけるフィルムの長手方向(MD方向)の加熱収縮率αと、積層体の幅方向(TD方向)の加熱収縮率β、およびα−βの絶対値が特定の範囲内にある。従来から知られている寸法変化率を小さくする方法としては、フィルム製造の観点からは、代表的にはフィルムの線膨張係数を銅箔のそれとできるだけ近づけて、熱による寸法変化の差を小さくするという方法がある。しかし、本発明者らが最終的にFPCに加工した際のより小さい寸法変化の実現に向けてさまざまなポリイミド積層体のFPC作製時における寸法変化率を検討したところ、線膨張係数が同じであっても、寸法変化が必ずしも同じになるとは限らないことがわかった。すなわち線膨張係数だけでは説明がつかないことがわった。このことは、後述するようなフィルム積層体(サイズ:MD方向120mm×TD方向120mm)を銅箔とラミネートして得られる材料のMD方向とTD方向の寸法変化と、これをラミネート方向に対し90°回転させて銅箔とラミネートして得られる材料のMD方向とTD方向の寸法変化率で違いが生じることや、本発明者らの行った実験において寸法変化率と線膨張係数の相関係数が低いことにより確認された。そこで本発明者らは、最終的にFPCに加工した際のより小さい寸法変化の実現に向けて、ポリイミド材料の製造からFCCLの製造、さらにFPCの製造の工程で、どのようにして寸法変化が発生するのかをつぶさに解析を行った。   In the polyimide laminate of the present invention, the heat shrinkage ratio α in the longitudinal direction (MD direction) of the film at the glass transition temperature of the polyimide laminate, the heat shrinkage ratio β in the width direction (TD direction) of the laminate, and α-β The absolute value of is within a specific range. As a method of reducing the dimensional change rate conventionally known, from the viewpoint of film production, typically, the coefficient of linear expansion of the film is made as close as possible to that of copper foil to reduce the difference in dimensional change due to heat. There is a way. However, when the inventors examined the dimensional change rate at the time of FPC preparation of various polyimide laminates toward realization of smaller dimensional change when finally processed into FPC, the linear expansion coefficient is the same. However, it was found that the dimensional change was not always the same. That is, it has been found that the linear expansion coefficient alone can not be explained. This is because the dimensional change of the material obtained by laminating the film laminate (size: 120 mm in MD direction × 120 mm in TD direction) as described later with the copper foil and the dimensional change in the MD direction and TD direction There is a difference in the dimensional change in the MD and TD directions of the material obtained by laminating it with a copper foil by rotating it and the correlation coefficient between the dimensional change and the linear expansion coefficient in the experiments conducted by the present inventors. Was confirmed by the fact that Therefore, we aim to realize smaller dimensional changes when finally processed into FPCs, and how do dimensional changes occur in the processes of polyimide material manufacture, FCCL manufacture, and FPC manufacture The analysis was performed to determine if it occurred.

FCCLは、幅広のポリイミドフィルム積層体と金属箔とを、連続的に繰り出しながら熱ラミネートする方法によって製造される場合が多く、その後、エッチングにより配線が形成されてFPCとなる。このエッチングにより開放される歪みに着目し、これらの製造工程を経るにつれてポリイミドフィルム積層体にどのような歪みが蓄積されるかを理論的および実験的の両側面から見積もった。まず、ポリイミド積層体は、その製膜時に凍結された歪みを持った状態で、熱ラミネートに付される。というのも、非熱可塑性ポリイミドフィルムの上に熱可塑性ポリイミドを含有する層を設け、幅広で長尺の積層体を得るまでの過程においてすでにフィルムはさまざまな応力を受け、それらがポリイミド積層体に歪みとなって残留する。この歪が残留した状態で金属箔と熱ラミネートにより貼り合わされるが、熱ラミネートは通常、連続的に行われる場合が多いので、その際の機械送り方向(長さ方向;MD方向)にかけられる張力や、ラミネート時に加えられる熱、ラミネート時の加圧面による固定などによって、FCCLに内在するポリイミド積層体にはさらに歪が蓄積される。この状態でエッチングにより回路が形成されると、エッチングされたことにより歪みが開放されるため寸法変化が生じると考えた。このように考えると、MD方向とTD方向で、蓄積される歪みの量が異なるため、MD方向とTD方向では寸法変化率にも違いが生じると考えることができる。従って、ポリイミド積層体の製造〜FCCLの製造までで発生する歪みの総計、すなわちFCCLとなったポリイミド積層体部分に内在する全歪みが、金属層のエッチング前後における寸法変化を小さくする上において鍵となると考えた。   In many cases, FCCL is manufactured by a method of thermally laminating a wide polyimide film laminate and a metal foil while continuously feeding it out, and thereafter, a wiring is formed by etching to become an FPC. Focusing on the strain released by this etching, it was estimated from both theoretical and experimental sides what strain is accumulated in the polyimide film laminate as it goes through these manufacturing processes. First, a polyimide laminate is subjected to thermal lamination in a state of having a strain frozen at the time of film formation. For example, a thermoplastic polyimide-containing layer is provided on a non-thermoplastic polyimide film, and the film is already subjected to various stresses in the process of obtaining a wide and long laminate, and these become polyimide laminates. It remains as distortion. Although this distortion remains with the metal foil and is laminated by thermal lamination, since thermal lamination is usually performed continuously in many cases, the tension applied to the machine feed direction (longitudinal direction; MD direction) at that time Further, distortion is further accumulated in the polyimide laminate inherent in FCCL due to heat applied at the time of lamination, fixation by a pressure surface at the time of lamination, and the like. If a circuit is formed by etching in this state, it is considered that the dimensional change occurs because the distortion is released by the etching. Considering this, it can be considered that the dimensional change rate also differs in the MD direction and the TD direction because the amount of accumulated strain is different in the MD direction and the TD direction. Therefore, the total strain generated from the production of the polyimide laminate to the production of the FCCL, that is, the total strain inherent in the portion of the polyimide laminate which has become the FCCL, is a key in reducing the dimensional change before and after the etching of the metal layer. I thought it would be.

そこで本発明者らは、FCCL内のポリイミド積層体に残留する全内部歪みは、下記式(1)で表されるように、ポリイミド積層体を製造する工程で積層体に蓄積される歪み(以下、製膜歪みとも言う)と、熱ラミネートの工程で加わる力と熱などによりさらに蓄積される歪み(以下、熱ラミ歪みとも言う)の和であると仮定を置いた。
製膜歪み+熱ラミ歪み=FCCL内のポリイミド積層体に残留する全内部歪み・・・式(1)
そして、さまざまな製膜歪みを持つポリイミド積層体を、複数の熱ラミネート条件を用いてFCCLを作製し、その寸法変化率のデータを数多く取得して、寸法変化率を小さくするポリイミド積層体はどのような積層体かを統計的に考察した。これをより具体的に説明する。
Therefore, the present inventors, as represented by the following formula (1), the total internal strain remaining in the polyimide laminate in FCCL is a strain accumulated in the laminate in the process of producing the polyimide laminate (hereinafter referred to as It is assumed that it is the sum of distortion (also referred to as film formation distortion) and distortion (hereinafter also referred to as heat lamination distortion) accumulated further by force and heat applied in the process of heat lamination.
Film formation distortion + thermal laminal distortion = total internal distortion remaining in the polyimide laminate in FCCL formula (1)
Then, a polyimide laminate having various film-forming distortions is produced in FCCL using a plurality of thermal laminating conditions, and a large number of data of dimensional change rate is acquired to reduce the dimensional change rate. It was considered statistically whether such a laminate. This will be described more specifically.

ポリイミド積層体の製造〜FCCLの製造までに蓄積される歪みがFCCL内に残留する全内部歪みであり、式(1)で表される。   The strain accumulated from the production of the polyimide laminate to the production of the FCCL is the total internal strain remaining in the FCCL and is represented by the formula (1).

製膜歪みは、ポリイミド積層体のガラス転移温度で30分間加熱した際の加熱収縮率を採用した。加熱収縮率が発生する原因はポリイミド積層体の残留歪みによるものであるからで、残留歪みには2種類あり、配向歪みと凍結歪みがある。配向歪みはガラス転移温度近傍で、凍結歪みはガラス転移温度以下で歪みを解放すると考えられる。これら2つの歪みをより正確に見積もるには、両方の歪みを解放させる必要があるため、ガラス転移温度で加熱した測定値が重要なのである。30分間加熱するのは、この程度加熱すればすべての歪みが十分に開放されると考えられるためである。この加熱収縮率を積層体のMD方向およびTD方向について測定した。   The film-forming distortion employ | adopted the heat contraction rate at the time of heating for 30 minutes at the glass transition temperature of a polyimide laminated body. The cause of the heat shrinkage ratio is the residual strain of the polyimide laminate, and there are two types of residual strain: orientation distortion and freeze distortion. Orientation strain is considered to be near the glass transition temperature, and freezing strain is considered to release strain below the glass transition temperature. Because it is necessary to release both strains in order to estimate these two strains more accurately, measurements heated at the glass transition temperature are important. The heating for 30 minutes is because it is believed that this degree of heating will fully release all distortion. The heat shrinkage was measured in the MD and TD directions of the laminate.

次に熱ラミ歪みは、次のような測定により求めることできる。ガラス転移温度で30分間加熱して、ポリイミドフィルム積層体に蓄積された残留歪みを除去したフィルム積層体(サイズ:MD方向120mm×TD方向120mm)を用意し、図1に示すような穴あけ加工を施し、MD1/MD2/TD1/TD2の寸法を測定する。例えば、ラミネート温度を360℃と想定すると、そのフィルムを360℃、0.6ton、1m/minでラミネートした後に、再度MD1/MD2/TD1/TD2の寸法を測定し、ラミネート前後の寸法変化率をMD方向(MD1とMD2の平均)およびTD方向(TD1とTD2の平均)について求める。360℃での熱ラミ歪みは、MD方向は0.05%で、TD方向は0.35%で、方向により異なっている。このように熱ラミ歪みは、ラミネート温度が決まれば、一定と考えることができる。   Next, thermal lami distortion can be determined by the following measurement. A film laminate (size: MD direction 120 mm × TD direction 120 mm) from which residual strain accumulated in the polyimide film laminate has been removed by heating at a glass transition temperature for 30 minutes is prepared, and drilling is performed as shown in FIG. Apply and measure the dimensions of MD1 / MD2 / TD1 / TD2. For example, assuming that the laminating temperature is 360 ° C., the film is laminated at 360 ° C., 0.6 ton, 1 m / min, and then the dimensions of MD1 / MD2 / TD1 / TD2 are measured again, and the dimensional change before and after laminating is determined. It calculates about MD direction (average of MD1 and MD2) and TD direction (average of TD1 and TD2). The thermal lamination strain at 360 ° C. differs depending on the MD direction at 0.05% and the TD direction at 0.35%. In this way, the thermal lami distortion can be considered to be constant if the lamination temperature is determined.

本発明者らは、さまざまな加熱収縮率を持つポリイミド積層体のサンプル(大きさ:MD方向120mm×TD方向120mm)を調整した。これは枚葉で積層体を作製したり、連続的に生産された積層体で寸法変化率が部位により安定していないフィルム、言い換えるとFCCLの製造には適さない長尺ポリイミド積層体から様々な箇所を採取することで行った。このとき、MD方向の加熱収縮率とTD方向の加熱収縮率が敢えて異なるものを用いた。ラミネート方向に対して、サンプルを90度回転させることで、一つのサンプルから2つのデータセットが得られるからである。これらのサンプルを銅箔とラミネートしてFCCLを作製し、銅箔エッチング後の寸法変化率を確認した。FCCL内のポリイミド積層体に残留する全内部歪みと銅箔エッチング後の寸法変化率の関係を表1や図2に示すように求めた。   The present inventors adjusted samples (size: MD direction 120 mm × TD direction 120 mm) of polyimide laminates having various heat shrinkage rates. This is various from the film which produces a laminated body in sheet | leaf, or the film in which a dimensional change rate is not stabilized by a site | part in the laminated body produced continuously, in other words, a long polyimide laminated body unsuitable for manufacture of FCCL. It did by collecting the part. At this time, a heat shrinkage ratio in the MD direction and a heat shrinkage ratio in the TD direction were dare different from each other. By rotating the sample by 90 degrees with respect to the laminating direction, two data sets can be obtained from one sample. These samples were laminated with copper foil to prepare FCCL, and the dimensional change rate after copper foil etching was confirmed. The relationship between the total internal strain remaining in the polyimide laminate in the FCCL and the dimensional change rate after copper foil etching was determined as shown in Table 1 and FIG.

すると、全内部歪みと寸法変化率との間に良い相関が得られた。その結果、予想に反してFCCL内のポリイミド積層体に残留する全内部歪みが0となっているとき、金属層エッチング後の寸法変化率が0になるわけではなく、ある一定の範囲で歪みを持たせるほうがよいことがわかった。その理由は定かではないが、熱ラミネートされる際に積層体がガラス転移温度を超えたとき、積層体の一部が塑性変形するためであると推察される。これは、エッチングにより得られたFPCを加熱する前後の寸法変化率を小さくすることが目的である特許文献2とは異なる技術思想に基づく。一方で、ガラス転移点を有するポリイミド積層体を用いることは熱ラミネート法によりFCCLが製造される際に、銅箔のMD方向伸張、TD方向収縮の塑性変形とそれに追随するフィルムが粘弾性変形しやすいためガラス転移点を有する積層体であることが好ましい。   Then, a good correlation was obtained between the total internal strain and the dimensional change. As a result, when the total internal strain remaining in the polyimide laminate in FCCL is unexpectedly zero, the dimensional change rate after metal layer etching does not necessarily become zero, but the strain within a certain range is I found it better to have it. The reason is not clear, but it is speculated that part of the laminate plastically deforms when the laminate exceeds the glass transition temperature during heat lamination. This is based on a technical idea different from that of Patent Document 2 whose purpose is to reduce the dimensional change rate before and after heating the FPC obtained by the etching. On the other hand, when using a polyimide laminate having a glass transition point, when FCCL is produced by a thermal lamination method, plastic deformation of the copper foil in the MD direction and TD direction contraction and the film following it are subjected to viscoelastic deformation It is preferable that it is a laminated body which has a glass transition point, since it is easy.

本発明者らは、寸法変化率の小さくなるような全内部歪みの値をまず求め、次いで、式(1)を用いてMD方向とTD方向の各々について、適切な製膜歪みの値を求めた。また、ラミネート温度として320℃、380℃を想定した場合について同様の測定と解析を行った。ラミネート温度が320℃である場合と380℃である場合の解析を加えた理由は、できるだけ精度良く寸法変化率が小さくなるような全内部歪みを求めるため、もしくはFCCL製造時に銅箔種、積層体材料に応じてラミ温度を320〜380℃変更する可能性があるからである。このようにして全内部歪みと寸法変化率の相関を見るための数多くのデータを取得して解析した結果、ポリイミド積層体と金属箔を熱ラミネートする際の機械送り方向の加熱収縮率は−2.1より大きく0.1より小さく、機械方向と直交方向の加熱収縮率は−2.5より大きく−0.5より小さくなっており、かつ(機械送り方向の加熱収縮率)×(直交方向の加熱収縮率)が−0.1より大きく6.0以下となっている場合、MD方向とTD方向の寸法変化率の差が小さくなることが分かった。工業的には、FCCLはロール状の幅広のポリイミド積層体を金属箔とを連続的に繰り出してラミネートすることで製造されるので、ポリイミド積層体の長手方向の加熱収縮率αが熱ラミネート時の機械送り方向となり、幅方向βがその直交方向となる。そして各々、−2.1<α<0.1、−2.5<β<−0.5となっており、かつ−0.1<α×β<6.0となるポリイミド積層体とすれば、寸法変化率の小さいFPCが得られる。   The present inventors first determine the value of total internal strain so as to reduce the dimensional change rate, and then determine the appropriate value of film formation strain for each of the MD direction and the TD direction using Equation (1). The Moreover, the same measurement and analysis were performed about the case where 320 degreeC and 380 degreeC were assumed as lamination temperature. The reason for adding the analysis when the lamination temperature is 320 ° C and 380 ° C is to obtain the total internal strain so as to reduce the dimensional change rate with high accuracy as much as possible, or copper foil type, laminate during FCCL manufacture This is because there is a possibility of changing the laminating temperature by 320 to 380 ° C. depending on the material. As a result of acquiring and analyzing a large number of data to see the correlation between the total internal strain and the rate of dimensional change in this manner, the heat shrinkage rate in the machine feed direction when the polyimide laminate and metal foil are thermally laminated is -2 .1 and less than 0.1, and the heat shrinkage rate in the direction orthogonal to the machine direction is greater than -2.5 and less than -0.5, and (heat shrinkage rate in the machine feed direction) x (cross direction) It was found that the difference in dimensional change rate between the MD direction and the TD direction becomes smaller when the heat shrinkage rate of (1) is greater than -0.1 and not more than 6.0. Industrially, FCCL is manufactured by continuously feeding and laminating a roll-like wide polyimide laminate with a metal foil, so that the heat shrinkage ratio α in the longitudinal direction of the polyimide laminate is at the time of thermal lamination In the machine feed direction, the width direction β is in the orthogonal direction. And polyimide laminates satisfying −2.1 <α <0.1, −2.5 <β <−0.5, and −0.1 <α × β <6.0, respectively. For example, an FPC with a small dimensional change rate can be obtained.

このように熱ラミネートにより製造されたFCCLのエッチング前後の寸法変化率を小さくするために制御できるポリイミド積層体の物性として、加熱収縮率が選択でき、その制御すべき範囲が定められたので、少なくとも長尺ポリイミド積層体の少なくとも両端および中央部で上記の範囲に入っていれば、寸法変化率の小さいFPCが工業的に取得できる。寸法変化率をポリイミド積層体の製膜歪みと熱ラミネートの際に蓄積される熱ラミ歪みの観点からMD方向とTD方向の各々についてつぶさに解析し、各方向について最適な製膜歪みを求める手法はこれまで報告されておらず、本発明者らによる上記解析とデータを元に見出されたものである。   Thus, as the physical properties of the polyimide laminate that can be controlled to reduce the dimensional change before and after etching of FCCL manufactured by thermal lamination, the heat shrinkage rate can be selected, and the range to be controlled is determined. If it is in the above-mentioned range at least at both ends and the central part of the long polyimide laminate, an FPC having a small dimensional change rate can be industrially obtained. The dimensional change rate is analyzed in each of MD and TD directions from the viewpoint of film formation distortion of polyimide laminate and thermal lamination distortion accumulated during thermal lamination to be crushed, and a method for determining the optimum film formation distortion in each direction is used. It has not been reported so far and has been found based on the above analysis and data by the present inventors.

好ましいαの範囲は、−0.5%〜−2.0%であり、さらに好ましくは−0.9%〜−1.4%である。好ましいβの範囲は、−2.3%〜−1.1%であり、さらに好ましくは−1.9%〜−1.5%である。また、好ましいα×βの範囲は、0.3<α×β<3.0である。これらの好ましい値の範囲やさらに好ましい値の範囲は、上述のデータや解析に基づき設定されたものである。   The preferred range of α is -0.5% to -2.0%, and more preferably -0.9% to -1.4%. The preferred range of β is −2.3% to −1.1%, more preferably −1.9% to −1.5%. Further, the preferable range of α × β is 0.3 <α × β <3.0. The range of these preferable values and the range of the more preferable values are set based on the above-mentioned data and analysis.

ポリイミド積層体のガラス転移温度とは、周波数1Hz、5Hz、10Hz、昇温速度は3℃/分の測定条件で動的粘弾性測定をしたときの損失係数(tanδ)のピークトップ温度を指す。加熱収縮率の測定は、図3に示す3箇所からサンプル(サイズ:12cm×12cm)を取得し、MD1/MD2/TD1/TD2の寸法を測定する。次に、ガラス転移温度で30分間加熱した際のMD1/MD2/TD1/TD2の寸法を再度測定し、MD方向とTD方向の各々の変化率(MD1とMD2の平均およびTD1とTD2の平均)を求める。図に示す3箇所において、加熱収縮率が上記範囲に入っていることが熱ラミネートを連続的に行って得られるFCCLを用いたFPCの寸法変化率を小さくする上で必要である。これらは、ポリイミド積層体全体の特性を確認するのに適した測定部位だからである。   The glass transition temperature of the polyimide laminate refers to the peak top temperature of the loss coefficient (tan δ) when the dynamic viscoelasticity measurement is performed under the measurement conditions of frequencies of 1 Hz, 5 Hz, 10 Hz, and 3 ° C./min. For measurement of the heat shrinkage rate, samples (size: 12 cm × 12 cm) are obtained from three places shown in FIG. 3, and the dimensions of MD1 / MD2 / TD1 / TD2 are measured. Next, the dimensions of MD1 / MD2 / TD1 / TD2 when heated at the glass transition temperature for 30 minutes are measured again, and the rate of change in each of MD and TD (average of MD1 and MD2 and average of TD1 and TD2) Ask for It is necessary to reduce the dimensional change rate of the FPC using FCCL obtained by continuously performing the thermal lamination that the heat shrinkage ratio falls within the above-mentioned range at three places shown in the figure. These are because they are measurement sites suitable for confirming the characteristics of the entire polyimide laminate.

本発明のポリイミド積層体は、工業的なFCCLの生産に適した長尺の積層体であり、幅150mm以上、好ましくは250mm以上、さらに好ましくは500mm以上である。また、3箇所で測定されたαの最大値と最小値の差は、0.10%以下であることが好ましい。3箇所で測定されたβの最大値と最小値の差は、0.10%以下であることが好ましい。そして3箇所で得られるα−βの最大値と最小値の差は0.10%以下であることが好ましい。   The polyimide laminate of the present invention is a long laminate suitable for industrial FCCL production, and has a width of 150 mm or more, preferably 250 mm or more, and more preferably 500 mm or more. The difference between the maximum value and the minimum value of α measured at three locations is preferably 0.10% or less. The difference between the maximum value and the minimum value of β measured at three locations is preferably 0.10% or less. The difference between the maximum value and the minimum value of α-β obtained at three locations is preferably 0.10% or less.

本発明のポリイミド積層体は、非熱可塑性ポリイミドフィルムの少なくとも片面に熱可塑性ポリイミド樹脂層を有する。そこでまず、非熱可塑性ポリイミドフィルムの製造について説明する。   The polyimide laminate of the present invention has a thermoplastic polyimide resin layer on at least one surface of a non-thermoplastic polyimide film. Therefore, first, the production of the non-thermoplastic polyimide film will be described.

非熱可塑性ポリイミドフィルムの製造に使用するジアミンについては特に限定されるものではないが、最終的に得られるポリイミドがβ緩和を発現する必要があるため、β緩和を発現し易いジアミンを少なくとも一種使用することが好ましい。酸二無水物の構造にも左右されるため、β緩和を発現するジアミンを一義的に決めることは出来ないが、ビフェニル骨格、フェニル骨格を有するジアミンを用いると、得られるポリイミドがβ緩和を発現し易い。具体的には、4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ヒドロキシビフェニル、1,4−ジアミノベンゼン、1,3−ジアミノベンゼン、4,4’−ビス(4−アミノフェノキシ)ビフェニルなどが挙げられる。機械強度等の諸特性制御のため、最終的に得られるポリイミドがβ緩和を発現する範囲内で、上記以外のジアミンを原料の一部として使用することも可能である。上記以外のジアミンとしては、具体的に4,4’−ジアミノジフェニルエーテル、2,2−ビス{4−(4−アミノフェノキシ)フェニル}プロパン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼンなどが挙げられる。   The diamine used for producing the non-thermoplastic polyimide film is not particularly limited, but at least one type of diamine which is likely to exhibit β relaxation is used since the polyimide finally obtained needs to exhibit β relaxation. It is preferable to do. Because it depends on the structure of acid dianhydride, it is not possible to uniquely determine the diamine expressing β relaxation, but when using a diamine having a biphenyl skeleton and a phenyl skeleton, the obtained polyimide exhibits β relaxation Easy to do. Specifically, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-3,3'-hydroxybiphenyl, 1,4-diaminobenzene, 1,3-diaminobenzene, 4,4'-bis (4-aminophenoxy) biphenyl and the like. In order to control various properties such as mechanical strength, it is also possible to use diamines other than the above as a part of the raw materials, as long as the polyimide finally obtained exhibits β relaxation. Specific examples of the diamine other than the above include 4,4′-diaminodiphenyl ether, 2,2-bis {4- (4-aminophenoxy) phenyl} propane, 1,3-bis (4-aminophenoxy) benzene, 1 And 4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene and the like.

酸二無水物についても特に限定されるものではないが、β緩和を発現し易い酸二無水物を少なくとも一種使用することが好ましい。ジアミンの構造にも左右されるが、酸二無水物についてもビフェニル骨格、フェニル骨格を有する酸二無水物を用いるとβ緩和を発現し易い。具体的な構造としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物などが挙げられる。酸二無水物についても、最終的に得られるポリイミドがβ緩和を発現する範囲内で、上記以外の酸二無水物を原料の一部として使用することが可能である。具体的には、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが挙げられる。   The acid dianhydride is also not particularly limited, but it is preferable to use at least one acid dianhydride which is apt to develop β relaxation. Although it also depends on the structure of diamine, β acid relaxation is likely to be expressed using acid dianhydride having a biphenyl skeleton and a phenyl skeleton also for acid dianhydride. Specific structures include 3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride, pyromellitic acid dianhydride, and the like. With regard to the acid dianhydride, it is possible to use acid dianhydrides other than the above as a part of the raw materials, as long as the polyimide finally obtained exhibits β relaxation. Specifically, 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride, 4,4'-oxydiphthalic acid dianhydride, etc. are mentioned.

ポリイミドの前駆体であるポリアミック酸は、上記ジアミンと酸二無水物を有機溶媒中で実質的に略等モルになるように混合、反応することにより得られる。使用する有機溶媒は、ポリアミック酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒すなわちN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどが好ましく、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが特に好ましく用いられ得る。ポリアミック酸の固形分濃度は特に限定されず、5〜35重量%の範囲内であればポリイミドとした際に十分な機械強度を有するポリアミック酸が得られる。   The polyamic acid which is a precursor of polyimide is obtained by mixing and reacting the above diamine and acid dianhydride in an organic solvent so as to be substantially equimolar. As the organic solvent to be used, any solvent can be used as long as it dissolves polyamic acid, but amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used. The solid content concentration of the polyamic acid is not particularly limited, and when it is in the range of 5 to 35% by weight, a polyamic acid having sufficient mechanical strength can be obtained when it is used as a polyimide.

原料であるジアミンと酸二無水物の添加順序についても特に限定されないが、原料の化学構造だけでなく、添加順序を制御することによっても、得られるポリイミドの特性を制御することが可能である。   The order of addition of the raw material diamine and acid dianhydride is not particularly limited, but it is possible to control the properties of the obtained polyimide not only by the chemical structure of the raw material but also by controlling the order of addition.

また、原料として1,4−ジアミノベンゼンとピロメリット酸二無水物を用いる場合、両者が結合して得られるポリイミド構造はデスミア液に対する耐久性が低いため、添加順序を調整して両者が直接結合した構造を形成しないようにすることが好ましい。   In addition, when 1,4-diaminobenzene and pyromellitic dianhydride are used as raw materials, the polyimide structure obtained by combining the two has low durability to a desmear liquid, so the addition order is adjusted and both are directly bonded It is preferable not to form the same structure.

上記ポリアミック酸には、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。   A filler may be added to the polyamic acid for the purpose of improving various properties of the film such as slidability, thermal conductivity, conductivity, corona resistance, loop stiffness and the like. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

また、得られる樹脂層全体としての特性を損なわない範囲で、エポキシ樹脂、フェノキシ樹脂などの熱硬化性樹脂、ポリエーテルケトン、ポリエーテルエーテルケトンなどの熱可塑性樹脂を混合しても良い。これら樹脂の添加方法としては、溶剤に可溶のものであれば上記ポリアミック酸に添加する方法が挙げられる。ポリイミドも可溶性のものであるなら、ポリイミド溶液に添加しても良い。   In addition, thermosetting resins such as epoxy resin and phenoxy resin, and thermoplastic resins such as polyether ketone and polyether ether ketone may be mixed within a range that does not impair the characteristics of the entire resin layer obtained. As a method of adding these resins, a method of adding to the above polyamic acid as long as it is soluble in a solvent can be mentioned. If the polyimide is also soluble, it may be added to the polyimide solution.

本発明において、非熱可塑性ポリイミドフィルムの製造方法は、
i)有機溶剤中で芳香族ジアミンと芳香族テトラカルボン酸二無水物を反応させてポリアミック酸溶液を得る工程、
ii)上記ポリアミック酸溶液を含む製膜ドープを支持体上に流延する工程、
iii)支持体上で加熱した後、支持体からゲルフィルムを引き剥がす工程、
iv)更に加熱して、残ったアミック酸をイミド化し、かつ乾燥させる工程、
を含むことが好ましい。
ii)以降の工程においては、熱イミド化法と化学イミド化法に大別される。熱イミド化法は、脱水閉環剤等を使用せず、ポリアミック酸溶液を製膜ドープとして支持体に流涎、加熱だけでイミド化を進める方法である。一方の化学イミド化法は、ポリアミック酸溶液に、脱水閉環剤及び/又は触媒を添加したものを製膜ドープとして使用し、イミド化を促進する方法である。どちらの方法を用いても構わないが、化学イミド化法の方が生産性に優れる。
In the present invention, the method for producing the non-thermoplastic polyimide film is
i) reacting an aromatic diamine with an aromatic tetracarboxylic acid dianhydride in an organic solvent to obtain a polyamic acid solution,
ii) casting a film forming dope containing the above polyamic acid solution on a support,
iii) peeling off the gel film from the support after heating on the support;
iv) further heating to imidize the remaining amic acid and drying it;
Is preferred.
In the following steps ii), thermal imidization and chemical imidization are roughly classified. The thermal imidization method is a method in which a polyamic acid solution is used as a film-forming dope to flow to a support without using a dehydrating ring-closing agent or the like, and imidization is promoted only by heating. One chemical imidization method is a method of promoting imidization by using a polyamic acid solution to which a dehydrated ring-closing agent and / or a catalyst is added as a film-forming dope. Either method may be used, but the chemical imidation method is more excellent in productivity.

脱水閉環剤としては、無水酢酸に代表される酸無水物が好適に用いられ得る。触媒としては、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等の三級アミンが好適に用いられ得る。   As a dehydrating ring-closing agent, an acid anhydride represented by acetic anhydride can be suitably used. As the catalyst, tertiary amines such as aliphatic tertiary amines, aromatic tertiary amines and heterocyclic tertiary amines can be suitably used.

製膜ドープを流延する支持体としては、ガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラム等が好適に用いられ得る。最終的に得られるシートの厚み、生産速度に応じて加熱条件を設定し、部分的にイミド化及び/または乾燥した後、支持体から剥離してポリアミック酸フィルム(以下、ゲルフィルムという)を得る。   As a support which casts film forming dope, a glass plate, aluminum foil, an endless stainless steel belt, a stainless steel drum etc. may be used suitably. The heating conditions are set according to the thickness and production rate of the finally obtained sheet, and after partial imidization and / or drying, the support is peeled off to obtain a polyamic acid film (hereinafter referred to as gel film). .

前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、水、残留溶媒、残存転化剤及び触媒を除去し、そして残ったアミド酸を完全にイミド化して、ポリイミドを含有するシートが得られる。加熱条件については、最終的に得られるシートの厚み、生産速度に応じて適宜設定すれば良いが、温度は350℃〜500℃であることが好ましく、加熱時間は15秒〜30秒であることが好ましい。   The end of the gel film is fixed and dried to avoid shrinkage on curing to remove water, residual solvent, residual conversion agent and catalyst, and to fully imidize the remaining amic acid to contain polyimide. Sheet is obtained. The heating conditions may be appropriately set according to the thickness of the sheet finally obtained and the production rate, but the temperature is preferably 350 ° C. to 500 ° C., and the heating time is 15 seconds to 30 seconds. Is preferred.

非熱可塑性であるとは、フィルムを450℃〜500℃程度に加熱した際に溶融し、フィルムの形状を保持しているものを指す。   The term "non-thermoplastic" refers to a material which is melted when the film is heated to about 450 ° C. to 500 ° C. and retains the shape of the film.

次に熱可塑性ポリイミド樹脂層に使用される熱可塑性ポリイミド樹脂について説明する。熱可塑性ポリイミド樹脂に使用される芳香族ジアミンと芳香族テトラカルボン酸二無水物は、非熱可塑性ポリイミドフィルムに使用されるそれらと同じものが挙げられるが、熱可塑性のポリイミドとするためには、屈曲性を有するジアミンと酸二無水物とを反応させることが好ましい。屈曲性を有するジアミンの例として、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、酸二無水物の例としては、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが挙げられる。熱可塑性であるとは、ガラス転移温度を有し、かつ、圧縮モード(プローブ径3mmφ、荷重5g)の熱機械分析測定(TMA)において、10℃〜400℃(昇温速度:10℃/min)の温度範囲で永久圧縮変形を起こすものをいう。なお、熱可塑性ポリイミド樹脂層には、必要に応じて他の樹脂や添加剤が含まれていてもよい。本発明における熱可塑性ポリイミド樹脂層の好ましいガラス転移温度は、100℃〜300℃である。   Next, the thermoplastic polyimide resin used for the thermoplastic polyimide resin layer will be described. The aromatic diamine and the aromatic tetracarboxylic acid dianhydride used for the thermoplastic polyimide resin may be the same as those used for the non-thermoplastic polyimide film, but in order to obtain a thermoplastic polyimide, It is preferable to react a diamine having flexibility with an acid dianhydride. Examples of flexible diamines include 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis (4-aminophenoxyphenyl) ) Examples of propane and acid dianhydride include pyromellitic dianhydride, 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyltetracarboxylic acid Acid dianhydride, 4,4'- oxydiphthalic acid dianhydride, etc. are mentioned. Thermoplastic means that it has a glass transition temperature and in the thermomechanical analysis (TMA) of the compression mode (probe diameter 3 mmφ, load 5 g) (10 ° C. to 400 ° C. (heating rate: 10 ° C./min) The one that causes permanent compression deformation in the temperature range of In addition, other resin and additive may be contained in the thermoplastic polyimide resin layer as needed. The preferable glass transition temperature of the thermoplastic polyimide resin layer in the present invention is 100 ° C to 300 ° C.

熱可塑性ポリイミド樹脂層を設ける方法としては、熱可塑性ポリイミドの前駆体を上述のようにして得られた非熱可塑性ポリイミドフィルム上に塗布し、その後イミド化する方法や、熱可塑性ポリイミド溶液を塗布・乾燥する方法が挙げられるがこれに限定されない。ポリイミド積層体のガラス転移点温度は、熱ラミネート温度の点から、280℃以上が好ましく320℃以上がさらに好ましい。   As a method of providing a thermoplastic polyimide resin layer, a method of applying a thermoplastic polyimide precursor on the non-thermoplastic polyimide film obtained as described above and imidization thereafter, or applying a thermoplastic polyimide solution It includes, but is not limited to, a method of drying. The glass transition temperature of the polyimide laminate is preferably 280 ° C. or more, and more preferably 320 ° C. or more, from the viewpoint of the heat laminating temperature.

ゲルの溶剤残存率が高いほど、ベルト−ゲル間の密着強度が高くなり、ゲル引き剥がし時にMD方向へと引き伸ばされ、TD方向はポアソン比で収縮し、MD方向、TD方向それぞれ加熱時に収縮/膨張する方向の歪みが蓄積される。ベルトから引き剥がしたゲルにかける張力が大きい場合はMD方向へと引き伸ばされ、TD方向はポアソン比で収縮し、MD方向、TD方向それぞれ加熱時に収縮/膨張する方向の歪みが蓄積される。ゲルを加熱開始する温度も影響する。ゲルは溶剤を含みかつイミド化率も低いため、加熱開始温度が高いほど溶剤の揮発と硬化収縮が急激に進み、MD方向ならびにTD方向の加熱収縮率が大きくなる。また、加熱炉出口に向かうほどフィルム温度は下がり、非熱可塑性ポリイミドのガラス転移温度を下回ったところから、歪みが蓄積するため、イミド化最高温度と炉出口の温度の落差が大きいほどMD方向ならびにTDの加熱収縮率は大きくなる。   The higher the solvent retention rate of the gel, the higher the adhesion strength between the belt and the gel, which is stretched in the MD direction at the time of gel peeling, shrinks in the TD direction at Poisson's ratio, and shrinks / shrinks in the MD and TD directions respectively. Distortion in the direction of expansion is accumulated. When the tension applied to the gel pulled off from the belt is large, the gel is stretched in the MD direction, and the TD direction shrinks at Poisson's ratio, and strain in the shrinkage / expansion direction is accumulated during heating in the MD and TD directions. The temperature at which heating of the gel begins is also affected. Since the gel contains a solvent and the imidization rate is also low, the higher the heating start temperature, the more volatilization and curing shrinkage of the solvent proceed rapidly, and the heat shrinkage rates in the MD and TD directions increase. In addition, the film temperature decreases toward the heating furnace outlet, and strain accumulates from the point where the temperature is below the glass transition temperature of non-thermoplastic polyimide, so the larger the difference between the maximum temperature of imidization and the temperature at the furnace outlet, the MD direction and The heat shrinkage of TD increases.

このようにして得られる本発明のポリイミドフィルム積層体は金属箔と積層してFCCLを製造することができる。本発明において使用できる金属箔としては特に限定されるものではないが、電子機器・電気機器用途に本発明のフレキシブル金属張積層板を用いる場合には、例えば、銅若しくは銅合金、ステンレス鋼若しくはその合金、ニッケル若しくはニッケル合金(42合金も含む)、アルミニウム若しくはアルミニウム合金からなる箔を挙げることができる。一般的なフレキシブル金属張積層板では、圧延銅箔、電解銅箔といった銅箔が多用されるが、本発明においても好ましく用いることができる。   The polyimide film laminate of the present invention thus obtained can be laminated with a metal foil to produce FCCL. The metal foil that can be used in the present invention is not particularly limited, but in the case of using the flexible metal-clad laminate of the present invention for electronic device and electric device applications, for example, copper or copper alloy, stainless steel or the like A foil made of an alloy, nickel or nickel alloy (including 42 alloy), aluminum or aluminum alloy can be mentioned. In general flexible metal-clad laminates, copper foils such as rolled copper foils and electrolytic copper foils are often used, but they can also be preferably used in the present invention.

金属箔とポリイミドフィルム積層体を貼り合わせるには、例えば、一対以上の金属ロールを有する熱ロールラミネート装置或いはダブルベルトプレス(DBP)による連続処理を用いることができる。中でも、本発明のポリイミドフィルム積層体は、一対以上の金属ロールを有する熱ロールラミネート装置を用いる場合に顕著な効果を発現する。   In order to bond the metal foil and the polyimide film laminate, for example, a continuous treatment using a heat roll laminating apparatus having a pair or more of metal rolls or a double belt press (DBP) can be used. Among them, the polyimide film laminate of the present invention exhibits a remarkable effect when using a heat roll laminating apparatus having a pair or more of metal rolls.

上記熱ラミネートを実施する手段の具体的な構成は特に限定されるものではないが、得られる積層板の外観を良好なものとするために、加圧面と金属箔との間に保護材料を配置することが好ましい。使用する保護フィルムとしては、熱ラミネート工程の加熱温度に耐えうるものであれば良く、非熱可塑性ポリイミドフィルム等の耐熱性プラスチック、銅箔、アルミニウム箔、SUS箔等の金属箔等が挙げられるが、中でも、耐熱性、再使用性等のバランスが優れる点から、非熱可塑性ポリイミドフィルムが好適に用いられ得る。   Although the specific configuration of the means for carrying out the thermal lamination is not particularly limited, a protective material is disposed between the pressing surface and the metal foil in order to improve the appearance of the resulting laminate. It is preferable to do. As the protective film to be used, any film can be used as long as it can withstand the heating temperature of the thermal laminating process, and heat resistant plastic such as non-thermoplastic polyimide film, metal foil such as copper foil, aluminum foil, SUS foil etc. may be mentioned. Among them, a non-thermoplastic polyimide film can be suitably used, from the viewpoint that the balance of heat resistance, reusability and the like is excellent.

上記熱ラミネート工程における加熱温度は、320℃〜380℃が一般的である。上記熱ラミネート工程におけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上であれば十分な熱ラミネートが可能になり、1.0m/分以上であれば生産性をより一層向上することができる。   The heating temperature in the heat lamination step is generally 320 ° C. to 380 ° C. The laminating speed in the heat laminating step is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. If it is 0.5 m / min or more, sufficient thermal lamination is possible, and if it is 1.0 m / min or more, productivity can be further improved.

上記熱ラミネート工程における圧力は、49N/cm〜490N/cm(5kgf/cm〜50kgf/cm)の範囲内であることが好ましく、98N/cm〜320N/cm(10kgf/cm〜30kgf/cm)の範囲内であることがより好ましい。   The pressure in the thermal laminating step is preferably in the range of 49 N / cm to 490 N / cm (5 kgf / cm to 50 kgf / cm), and 98 N / cm to 320 N / cm (10 kgf / cm to 30 kgf / cm). It is more preferable to be within the range.

また、ラミネート時に積層体にかかる張力は、0.01N/cm〜2N/cm、さらには0.02N/cm〜1.5N/cm、特には0.05N/cm〜1.0N/cmが好ましい。張力がこの範囲を下回ると外観の良好なフレキシブル金属張積層板を得ることが困難となる場合があり、またこの範囲を上回ると寸法安定性が劣る傾向にある。   The tension applied to the laminate during lamination is preferably 0.01 N / cm to 2 N / cm, more preferably 0.02 N / cm to 1.5 N / cm, and particularly preferably 0.05 N / cm to 1.0 N / cm. . If the tension is below this range, it may be difficult to obtain a flexible metal-clad laminate with a good appearance, and if it is above this range, dimensional stability tends to be poor.

本発明のポリイミドフィルム積層体を使用したFCCLは、金属箔を除去した後の寸法変化率が、MD方向およびTD方向どちらにおいても寸法変化率が0±0.025%、面内バラツキはσ=0.030%となっている。   In FCCL using the polyimide film laminate of the present invention, the dimensional change rate after removing the metal foil is 0 ± 0.025% in both the MD direction and the TD direction, and the in-plane variation is σ = It is 0.030%.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

(ガラス転移温度の測定方法)
SIIナノテクノロジー社製 DMS6100により損失係数(tanδ)を求め、ピークトップの温度をガラス転移温度とした。
サンプル測定範囲;幅9mm、つかみ具間距離20mm
測定温度範囲;0〜440℃
昇温速度;3℃/分
歪み振幅;10μm
測定周波数;1,5,10Hz
最小張力/圧縮力;100mN
張力/圧縮ゲイン;1.5
力振幅初期値;100mN
(ポリイミドフィルム積層体加熱収縮率の測定方法)
120mm×120mm の大きさのサンプルをとり、MD1/MD2/TD1/TD2の寸法を測定する。次に、ガラス転移温度×30分間加熱した際のMD1/MD2/TD1/TD2の寸法を再度測定し、MD方向とTD方向の各々の変化率を求めた。
(Method of measuring glass transition temperature)
The loss coefficient (tan δ) was determined by DMS 6100 manufactured by SII Nano Technology, and the temperature at the peak top was taken as the glass transition temperature.
Sample measurement range; width 9 mm, distance between jaws 20 mm
Measurement temperature range: 0 to 440 ° C
Heating rate: 3 ° C / min Strain amplitude: 10μm
Measurement frequency: 1, 5, 10 Hz
Minimum tension / compression force; 100mN
Tension / compression gain; 1.5
Force amplitude initial value: 100 mN
(Method of measuring heat shrinkage of polyimide film laminate)
Take a sample of 120 mm × 120 mm and measure the dimensions of MD1 / MD2 / TD1 / TD2. Next, the dimensions of MD1 / MD2 / TD1 / TD2 when heated at glass transition temperature × 30 minutes were measured again, and the change rates in each of the MD direction and the TD direction were determined.

(寸法変化率の測定方法)
長尺(幅255mm)のポリイミド積層体の両面に12μmの電解銅箔(3EC−M3S−HTE(K))、さらにその両側に保護材料(アピカル125NPI:カネカ製)を配して、熱ロールラミネート機を用いて、ラミネート温度360℃、ラミネート圧力0.6トン、ラミネート速度1.0m/分の条件で熱ラミネートを行い、両面銅張り板(FCCL)を作製した。得られたFCCLを120mm×120mmのサイズに切り出して、FCCLの4隅に穴径1.0mmφの穴を80mm間隔で空け、円の中心間の距離を銅全面エッチング前後で測定した。寸法変化率の測定は温度25℃、湿度60%の条件下、CNC画像処理測定システムを使用して行った。エッチング前の距離MD1/TD1、エッチング後の距離をMD2/TD2とし、寸法変化率は下記の式により計算した。
寸法変化率MD(%)=[(MD2−MD1)/MD1]×100
寸法変化率TD(%)=[(TD2−TD1)/TD1]×100
なお、銅エッチング後の距離を測定前にはサンプルを温度25℃、湿度60%の条件下にて90分間放置し、ポリイミドの吸水による影響を排除した。寸法変化率は、MD方向、TD方向それぞれ3枚ずつ測定した値を平均した。
(Measurement method of dimensional change rate)
A 12 μm electrolytic copper foil (3EC-M3S-HTE (K)) is placed on both sides of a long (255 mm wide) polyimide laminate, and protective materials (Apical 125 NPI: Kaneka) are placed on both sides, The heat lamination was performed using a machine under conditions of a lamination temperature of 360 ° C., a lamination pressure of 0.6 tons, and a lamination speed of 1.0 m / min to prepare a double-sided copper-clad board (FCCL). The obtained FCCL was cut into a size of 120 mm × 120 mm, holes of 1.0 mmφ in diameter were made at intervals of 80 mm at four corners of the FCCL, and the distance between the centers of the circles was measured before and after etching the entire copper surface. The dimensional change was measured using a CNC image processing measurement system under conditions of a temperature of 25 ° C. and a humidity of 60%. The distance before etching MD1 / TD1 and the distance after etching were MD2 / TD2, and the dimensional change was calculated by the following equation.
Dimensional change rate MD (%) = [(MD2-MD1) / MD1] × 100
Dimensional change rate TD (%) = [(TD2-TD1) / TD1] × 100
In addition, before measurement of the distance after copper etching, the sample was left for 90 minutes under conditions of temperature 25 ° C. and humidity 60% to eliminate the influence of water absorption of the polyimide. The dimensional change rate was obtained by averaging the values obtained by measuring three sheets in each of the MD direction and the TD direction.

<ポリイミド積層体の全内部歪みと寸法変化率の関係>
(ポリイミド積層体のサンプル調整)
(フィルム番号1)
幅1600mm、長さ1000mのポリイミド積層体から120mm×120mmのサイズのサンプルをフィルム端から1740mm入ったところから切り出した。
<Relationship between total internal strain and dimensional change of polyimide laminate>
(Sample preparation of polyimide laminate)
(Film number 1)
From a polyimide laminate having a width of 1600 mm and a length of 1000 m, a sample having a size of 120 mm × 120 mm was cut out from a position 1740 mm from the end of the film.

(フィルム番号2、3、4)
幅1600mm、長さ2000mのポリイミド積層体から図3の位置に従って、120mm×120mmのサイズのサンプルを3点(それぞれフィルム番号2、3、4とする)取得した。
(Film number 2, 3, 4)
From the polyimide laminate having a width of 1600 mm and a length of 2000 m, three samples with a size of 120 mm × 120 mm (film numbers 2, 3 and 4, respectively) were obtained according to the position of FIG.

(フィルム番号5、6、7、8、9、10)
幅1600mm、長さ3000mのポリイミド積層体の繰出しから10mの部位から図3の位置に従って、120mm×120mmのサイズのサンプルを3点(それぞれフィルム番号5、6、7とする)取得した。さらに2000m繰出した部位から図3の位置に従って、120mm×120mmのサイズのサンプルを3点(それぞれフィルム番号8、9、10とする)取得した。
(Film numbers 5, 6, 7, 8, 9, 10)
Three samples (film numbers 5, 6, and 7) of 120 mm × 120 mm were obtained from the site of 10 m from the feeding of the polyimide laminate having a width of 1,600 mm and a length of 3,000 m according to the position of FIG. Further, three samples of 120 mm × 120 mm in size were obtained (film numbers 8, 9 and 10, respectively) according to the position shown in FIG.

(フィルム番号11、12、13)
幅1600mm、長さ3000mのポリイミド積層体の繰出しから10mの部位から図3の位置に従って、120mm×120mmのサイズのサンプルを3点(それぞれフィルム番号11、12、13とする)取得した。
(Film numbers 11, 12, 13)
Three samples of 120 mm × 120 mm in size were obtained (film numbers 11, 12 and 13 respectively) according to the position of FIG. 3 from a site of 10 m from the feeding of a polyimide laminate having a width of 1600 mm and a length of 3000 m.

(ポリイミドフィルム積層体加熱収縮率の測定)
得られた120mm×120mmのサイズのサンプル(フィルム番号1〜13)のすべてについて、(ポリイミドフィルム積層体加熱収縮率の測定方法)記載の方法で、加熱収縮率を測定した。
(Measurement of heat shrinkage rate of polyimide film laminate)
About all the obtained samples (film numbers 1 to 13) of 120 mm × 120 mm size, the heat shrinkage was measured by the method described in (Measuring method of heat shrinkage of polyimide film laminate).

(寸法変化率の測定方法)
フィルム番号1(フィルムサイズ120mm×120mm)のフィルムMD方向を熱ロールラミネートの機械送り方向にセットして、ラミネート温度320℃、ラミネート圧力0.6トン、ラミネート速度1.0m/分の条件で熱ラミネートを行い、両面銅張り板(FCCL)を作製した(銅箔:3EC−M3S−HTE(K)、12μm)。ラミネート温度を360℃、380℃にして、上記と同様にしてFCCLを作製した。得られたFCCLの4隅に穴径1mmφの穴を80mm間隔で空け、円の中心間の距離を銅全面エッチング前後で測定した。寸法変化率の測定は温度25℃、湿度60%の条件下、CNC画像処理測定システムを使用して行った。エッチング前の距離MD1/TD1、エッチング後の距離をMD2/TD2とし、寸法変化率は下記の式により計算した。
寸法変化率MD(%)=[(MD2−MD1)/MD1]×100
寸法変化率TD(%)=[(TD2−TD1)/TD1]×100
なお、銅エッチング後の距離を測定前にはサンプルを温度25℃、湿度60%の条件下にて90分間放置し、ポリイミドの吸水による影響を排除した。寸法変化率は、MD、TDそれぞれ3枚ずつ測定した値を平均した。
(Measurement method of dimensional change rate)
The film MD direction of film No. 1 (film size 120 mm × 120 mm) is set in the machine feed direction of the heat roll laminate, and heat is applied at a lamination temperature of 320 ° C., a lamination pressure of 0.6 tons, and a lamination speed of 1.0 m / min. It laminated and produced the double-sided copper-clad board (FCCL) (copper foil: 3EC-M3S-HTE (K), 12 micrometers). FCCL was prepared in the same manner as described above, with laminating temperatures set to 360 ° C. and 380 ° C. Holes with a diameter of 1 mm were made at intervals of 80 mm at four corners of the obtained FCCL, and the distance between the centers of the circles was measured before and after etching the entire copper surface. The dimensional change was measured using a CNC image processing measurement system under conditions of a temperature of 25 ° C. and a humidity of 60%. The distance before etching MD1 / TD1 and the distance after etching were MD2 / TD2, and the dimensional change was calculated by the following equation.
Dimensional change rate MD (%) = [(MD2-MD1) / MD1] × 100
Dimensional change rate TD (%) = [(TD2-TD1) / TD1] × 100
In addition, before measurement of the distance after copper etching, the sample was left for 90 minutes under conditions of temperature 25 ° C. and humidity 60% to eliminate the influence of water absorption of the polyimide. The dimensional change rate was obtained by averaging the values obtained by measuring three sheets each of MD and TD.

フィルム番号1(フィルムサイズ120mm×120mm)のフィルムTD方向を熱ロールラミネートの機械送り方向にセットして、ラミネート温度320℃、ラミネート圧力0.6トン、ラミネート速度1.0m/分の条件で熱ラミネートを行い、両面銅張り板(FCCL)を作製した(銅箔:3EC−M3S−HTE(K)、12μm)。ラミネート温度を360℃、380℃にして、上記と同様にしてFCCLを作製した。得られたFCCLの4隅に穴径1mmφの穴を80mm間隔で空け、円の中心間の距離を銅全面エッチング前後で測定した。寸法変化率の測定は温度25℃、湿度60%の条件下、CNC画像処理測定システムを使用して行った。エッチング前の距離MD1/TD1、エッチング後の距離をMD2/TD2とし、寸法変化率は下記の式により計算した。
寸法変化率MD(%)=[(MD2−MD1)/MD1]×100
寸法変化率TD(%)=[(TD2−TD1)/TD1]×100
なお、銅エッチング後の距離を測定前にはサンプルを温度25℃、湿度60%の条件下にて90分間放置し、ポリイミドの吸水による影響を排除した。寸法変化率は、MD方向、TD方向それぞれ3枚ずつ測定した値を平均した。
The film TD direction of film No. 1 (film size 120 mm × 120 mm) is set in the machine feed direction of the heat roll laminate, and heat is applied at a lamination temperature of 320 ° C., a lamination pressure of 0.6 tons, and a lamination speed of 1.0 m / min. It laminated and produced the double-sided copper-clad board (FCCL) (copper foil: 3EC-M3S-HTE (K), 12 micrometers). FCCL was prepared in the same manner as described above, with laminating temperatures set to 360 ° C. and 380 ° C. Holes with a diameter of 1 mm were made at intervals of 80 mm at four corners of the obtained FCCL, and the distance between the centers of the circles was measured before and after etching the entire copper surface. The dimensional change was measured using a CNC image processing measurement system under conditions of a temperature of 25 ° C. and a humidity of 60%. The distance before etching MD1 / TD1 and the distance after etching were MD2 / TD2, and the dimensional change was calculated by the following equation.
Dimensional change rate MD (%) = [(MD2-MD1) / MD1] × 100
Dimensional change rate TD (%) = [(TD2-TD1) / TD1] × 100
In addition, before measurement of the distance after copper etching, the sample was left for 90 minutes under conditions of temperature 25 ° C. and humidity 60% to eliminate the influence of water absorption of the polyimide. The dimensional change rate was obtained by averaging the values obtained by measuring three sheets in each of the MD direction and the TD direction.

フィルム番号2〜13(フィルムサイズ120mm×120mm)のフィルムMD方向を熱ロールラミネートの機械送り方向にセットして、ラミネート温度360℃、ラミネート圧力0.6トン、ラミネート速度1.0m/分の条件で熱ラミネートを行い、両面銅張り板(FCCL)を作製した(銅箔:3EC−M3S−HTE(K)、12μm)。得られたFCCLの4隅に穴径1mmφの穴を80mm間隔で空け、円の中心間の距離を銅全面エッチング前後で測定した。寸法変化率の測定は温度25℃、湿度60%の条件下、CNC画像処理測定システムを使用して行った。エッチング前の距離MD1/TD1、エッチング後の距離をMD2/TD2とし、寸法変化率は下記の式により計算した。
寸法変化率MD(%)=[(MD2−MD1)/MD1]×100
寸法変化率TD(%)=[(TD2−TD1)/TD1]×100
なお、銅エッチング後の距離を測定前にはサンプルを温度25℃、湿度60%の条件下にて90分間放置し、ポリイミドの吸水による影響を排除した。寸法変化率は、MD、TDそれぞれ3枚ずつ測定した値を平均した。
The film MD direction of film numbers 2 to 13 (film size 120 mm × 120 mm) is set in the machine feed direction of the heat roll laminate, and the conditions of laminating temperature 360 ° C., laminating pressure 0.6 tons, laminating speed 1.0 m / min. The heat lamination was performed by this, and the double-sided copper clad board (FCCL) was produced (copper foil: 3EC-M3S-HTE (K), 12 micrometers). Holes with a diameter of 1 mm were made at intervals of 80 mm at four corners of the obtained FCCL, and the distance between the centers of the circles was measured before and after etching the entire copper surface. The dimensional change was measured using a CNC image processing measurement system under conditions of a temperature of 25 ° C. and a humidity of 60%. The distance before etching MD1 / TD1 and the distance after etching were MD2 / TD2, and the dimensional change was calculated by the following equation.
Dimensional change rate MD (%) = [(MD2-MD1) / MD1] × 100
Dimensional change rate TD (%) = [(TD2-TD1) / TD1] × 100
In addition, before measurement of the distance after copper etching, the sample was left for 90 minutes under conditions of temperature 25 ° C. and humidity 60% to eliminate the influence of water absorption of the polyimide. The dimensional change rate was obtained by averaging the values obtained by measuring three sheets each of MD and TD.

フィルム番号2〜13(フィルムサイズ120mm×120mm)のフィルムTD方向を熱ロールラミネートの機械送り方向にセットして、ラミネート温度360℃、ラミネート圧力0.6トン、ラミネート速度1.0m/分の条件で熱ラミネートを行い、両面銅張り板(FCCL)を作製した(銅箔:3EC−M3S−HTE(K)、12μm)。得られたFCCLの4隅に穴径1mmφの穴を80mm間隔で空け、円の中心間の距離を銅全面エッチング前後で測定した。寸法変化率の測定は温度25℃、湿度60%の条件下、CNC画像処理測定システムを使用して行った。エッチング前の距離MD1/TD1、エッチング後の距離をMD2/TD2とし、寸法変化率は下記の式により計算した。
寸法変化率MD(%)=[(MD2−MD1)/MD1]×100
寸法変化率TD(%)=[(TD2−TD1)/TD1]×100
なお、銅エッチング後の距離を測定前にはサンプルを温度25℃、湿度60%の条件下にて90分間放置し、ポリイミドの吸水による影響を排除した。寸法変化率は、MD方向、TD方向それぞれ3枚ずつ測定した値を平均した。
The film TD direction of film numbers 2 to 13 (film size 120 mm × 120 mm) is set in the machine feed direction of the heat roll laminate, and the conditions of laminating temperature 360 ° C., laminating pressure 0.6 tons, laminating speed 1.0 m / min. The heat lamination was performed by this, and the double-sided copper clad board (FCCL) was produced (copper foil: 3EC-M3S-HTE (K), 12 micrometers). Holes with a diameter of 1 mm were made at intervals of 80 mm at four corners of the obtained FCCL, and the distance between the centers of the circles was measured before and after etching the entire copper surface. The dimensional change was measured using a CNC image processing measurement system under conditions of a temperature of 25 ° C. and a humidity of 60%. The distance before etching MD1 / TD1 and the distance after etching were MD2 / TD2, and the dimensional change was calculated by the following equation.
Dimensional change rate MD (%) = [(MD2-MD1) / MD1] × 100
Dimensional change rate TD (%) = [(TD2-TD1) / TD1] × 100
In addition, before measurement of the distance after copper etching, the sample was left for 90 minutes under conditions of temperature 25 ° C. and humidity 60% to eliminate the influence of water absorption of the polyimide. The dimensional change rate was obtained by averaging the values obtained by measuring three sheets in each of the MD direction and the TD direction.

(熱ラミ歪みの測定)
ポリイミドフィルム積層体の加熱収縮率を測定後のサンプル(ガラス転移温度で30分間加熱して製膜歪みを除去したサンプル)のすべてについて、以下のようにして残留歪みを測定した。サンプルを用意し、図1に示すような穴あけ加工を施し、MD1/MD2/TD1/TD2の寸法を測定する。そのフィルムを360℃、0.6ton、1m/minの条件で銅箔(三井金属鉱業株式会社製 3EC−M3S−HTE(K)、12μm)とラミネートした後に、再度MD1/MD2/TD1/TD2の寸法を測定し、ラミネート前後の寸法変化率をMD方向(MD1とMD2の平均)およびTD方向(TD1とTD2の平均)について求める。これをラミネート温度が360℃のときの熱ラミ歪みとした。同様に、ラミネート温度を320℃とした場合、380℃とした場合についても熱ラミ歪みを測定した。
(Measurement of thermal lami distortion)
The residual strain was measured as follows for all the samples after measurement of the heat shrinkage of the polyimide film laminate (the samples after heating at the glass transition temperature for 30 minutes to remove the film formation distortion). Prepare a sample, perform drilling as shown in FIG. 1, and measure the dimensions of MD1 / MD2 / TD1 / TD2. The film was laminated with copper foil (3EC-M3S-HTE (K), 12 μm manufactured by Mitsui Mining & Smelting Co., Ltd.) under the conditions of 360 ° C., 0.6 ton, 1 m / min, and then the film was again subjected to MD1 / MD2 / TD1 / TD2 The dimensions are measured, and the percent dimensional change before and after lamination is determined for the MD direction (average of MD1 and MD2) and the TD direction (average of TD1 and TD2). This was taken as a heat laminant distortion at a lamination temperature of 360 ° C. Similarly, when the lamination temperature was 320 ° C., the thermal lami distortion was also measured when the lamination temperature was 380 ° C.

(熱ラミ歪みの計算)
熱ラミ歪みの測定実測値が、熱ラミネートによりポリイミド積層体にさらに蓄積される歪み分に相当する値として信頼できることを確認するため、以下の理論計算を行った。
幅270mm、厚み12μm、引張弾性率120GPa、弾性限界0.01%、CTE(100℃〜200℃)18ppmの銅箔を使用して熱ラミネートした場合の歪みを計算する。このとき、MD方向の銅箔の張力は50kgf(490N)であり、熱ロール温度360℃、熱ロール加圧ゾーン手前温度50℃、ポリイミドフィルム積層体のポアソン比0.3と仮定する。この場合、ラミ時に蓄積されるMD方向の歪みは、次のように計算できる。まず、MD方向引張り応力は490N/(270mm×0.12)≒151Mpaである。490Nを選んだのは、外観良好なFCCLを作製できる張力だと経験的にわかっているからである。次に、MD方向伸びは、151MPa/120000MPa≒0.0013(0.13%)として求められる。このとき、銅箔の弾性限界が0.10%であるので、実際の銅箔の伸び=0.13%−0.10%=0.03%である。伸びによる収縮なので+0.03と表す。これが銅箔に追従するポリイミドフィルム積層体に蓄積される歪みとなるが、これは上記実測値とよく一致する。なお、MD方向では、弾性率が温度により一定との仮定をおいているので、熱による膨張は無視する。
(Calculation of thermal lami distortion)
The following theoretical calculation was performed to confirm that the measured actual measurement value of thermal lami distortion can be relied on as a value corresponding to the amount of distortion further accumulated in the polyimide laminate by thermal lamination.
The strain in the case of heat lamination using a copper foil having a width of 270 mm, a thickness of 12 μm, a tensile elastic modulus of 120 GPa, an elastic limit of 0.01% and a CTE (100 ° C. to 200 ° C.) 18 ppm is calculated. At this time, the tension of the copper foil in the MD direction is 50 kgf (490 N), and it is assumed that the heat roll temperature is 360 ° C., the temperature before the heat roll pressure zone is 50 ° C., and the Poisson's ratio of the polyimide film laminate is 0.3. In this case, the strain in the MD direction accumulated during lamination can be calculated as follows. First, the tensile stress in the MD direction is 490 N / (270 mm × 0.12) ≒ 151 Mpa. 490 N was chosen because it is empirically known that it is a tension that can make a good-looking FCCL. Next, the elongation in the MD direction is determined as 151 MPa / 120,000 MPa ≒ 0.0013 (0.13%). At this time, since the elastic limit of the copper foil is 0.10%, the actual elongation of the copper foil is 0.13% −0.10% = 0.03%. It is expressed as +0.03 because it is contraction due to elongation. Although this becomes distortion accumulated in the polyimide film laminated body which follows copper foil, this corresponds with the said actual value well. In the MD direction, since the elastic modulus is assumed to be constant due to temperature, thermal expansion is ignored.

一方、TD方向に蓄積される歪みは、次のように計算できる。TD方向は、熱ラミネート時は熱膨張しようとするがラミネート装置により幅方向の寸法が固定されるため歪がたまる。すなわち、TD方向収縮=熱ロール加圧ゾーンでの銅箔温度上昇幅×銅箔の線膨張係数=(360℃(ラミ温度)50℃(ロールに入る直前の温度))×18×10−6=0.005(0.5%)で、実際のTD方向収縮=0.5%−0.1%(弾性限界)=0.4%となる。 On the other hand, distortion accumulated in the TD direction can be calculated as follows. In the TD direction, thermal expansion tends to occur during thermal lamination, but distortion occurs because the dimensions in the width direction are fixed by the laminating apparatus. That is, TD direction shrinkage = copper foil temperature rise width in heat roll pressure zone × linear expansion coefficient of copper foil = (360 ° C. (laminate temperature) 50 ° C. (temperature just before entering the roll)) × 18 × 10 −6 Actual compression in the TD direction = 0.5% −0.1% (elastic limit) = 0.4% at 0.005 (0.5%).

TD方向への収縮としてはさらに、MD方向への引き伸ばされることによってTD方向へ圧縮される分がありこれはMD方向への伸び×ポアソン比で計算できる。よって、0.03%(MD方向への伸び)×0.3=0.009%である。以上からトータルのTD方向収縮=0.4%+0.009%≒0.4%と計算でき、TD方向に収縮した結果の歪みなので−0.4と表現すると、上述の実測値とよく一致する。   Further, the shrinkage in the TD direction is a portion which is compressed in the TD direction by being stretched in the MD direction, and this can be calculated by an elongation in the MD direction x Poisson's ratio. Therefore, it is 0.03% (elongation in the MD direction) × 0.3 = 0.009%. From the above, it can be calculated that the total shrinkage in the TD direction = 0.4% + 0.009% ≒ 0.4%, and since it is the distortion as a result of shrinkage in the TD direction, the expression of −0.4 matches well with the above-mentioned measured value .

(銅箔エッチング後の寸法変化率の測定)
熱ロール歪みを測定したサンプルのMD1/MD2/TD1/TD2の寸法を(寸法変化率の測定方法)記載の方法に準じて測定した。ただし、連続的な積層体ではなく枚様サンプルを使用している点が異なっている。次いでエッチングにより銅箔を除去し、再度、MD1/MD2/TD1/TD2の寸法を測定した。
(Measurement of dimensional change rate after copper foil etching)
The dimensions of MD1 / MD2 / TD1 / TD2 of the sample for which the thermal roll distortion was measured were measured according to the method described in (Method of measuring dimensional change). However, it differs in that a sheet-like sample is used instead of a continuous laminate. Then, the copper foil was removed by etching, and the dimensions of MD1 / MD2 / TD1 / TD2 were measured again.

(全内部歪みと寸法変化率の関係)
上述のようにして求めたサンプルの加熱収縮率をポリイミド積層体の製膜歪みと熱ラミネート歪みを用いて、下記式(1)
製膜歪み+熱ラミ歪み=FCCL内のポリイミド積層体に残留する全内部歪み (1)により全内部歪みを求め、これと寸法変化率との関係を表1に纏めた。この結果から、銅箔エッチング後の寸法変化率をyとし、全内部歪みをxとすると、以下の関係式が得られた。
320℃ y=−0.0781x+0.046 (2)
360℃ y=−0.031x+0.0456 (3)
380℃ y=−0.0447x+0.0086 (4)
次に、枚葉でラミネートして測定したエッチング後の寸法変化率を長尺でラミネートして測定したエッチング後の寸法変化率に換算した(表2)。一般的に長尺でラミネートした場合と枚葉でラミネートした場合では寸法変化率が異なる。それは、長尺でラミネートした場合は、ラミネート時のフィルムにかかる張力などの影響あるからである。同一フィルムを枚葉、長尺でラミネートして、それぞれのエッチング後の寸法変化率をy、zとすると、式(5)(6)の関係性を確認できた。
MDz=0.9261×y+0.0323 (5)
TDz=0.5176×y+0.0337 (6)
式(2)(3)(4)を(5)(6)の関係から、銅箔エッチング後の長尺でラミネートした場合の寸法変化率zと全内部歪みxの関係式が得られた。寸法変化率zと全内部歪みxの値を図2にプロットした。
320℃ z=−0.485x+0.0597 (7)
360℃ z=−0.0319x+0.0383 (8)
380℃ z=−0.0323x+0.0366 (9)
各温度で、エッチング後の寸法変化率zが小さくなるような全内部歪みの範囲をまず求めた。好ましい全内部歪みから、式(1)をMD方向、TD方向に各々当てはめ、
MD方向の製膜歪み+MD方向の熱ラミ歪み=好ましい全内部歪み (10)
TD方向の製膜歪み+TD方向の熱ラミ歪み=好ましい全内部歪み (11)
の関係式から、各ラミネート温度において、寸法変化率を小さくする上でポリイミド積層体が持つべきMD方向の製膜歪み、TD方向の製膜歪みを求めた。これらの結果から、よく用いられるラミネート温度でFCCLを製造しても、寸法変化率の小さいFPCとなるようなポリイミドフィルム積層体の加熱収縮率を求めた。
(Relationship between total internal strain and dimensional change)
Using the film formation distortion and thermal lamination distortion of the polyimide laminate, the heat shrinkage ratio of the sample determined as described above was expressed by the following equation (1)
Film formation strain + thermal laminage strain = total internal strain (1) remaining in the polyimide laminate in FCCL The total internal strain was determined, and the relationship between this and the dimensional change was summarized in Table 1. From this result, assuming that the dimensional change rate after copper foil etching is y and the total internal strain is x, the following relational expression is obtained.
320 ° C y = -0.0781 x + 0.046 (2)
360 ° C. y = −0.031x + 0.0456 (3)
380 ° C. y = −0.0447x + 0.0086 (4)
Next, the dimensional change rate after etching measured by laminating on a single wafer was converted to the dimensional change rate after etching measured by laminating on a long sheet (Table 2). In general, the dimensional change is different between the case of laminating with a long strip and the case of laminating with a single leaf. That is because, in the case of long-length lamination, there are effects such as tension applied to the film at the time of lamination. Assuming that the same film is laminated on a sheet-by-sheet basis and in a long sheet, and the dimensional change rates after etching are y and z, the relationships of formulas (5) and (6) can be confirmed.
MDz = 0.9261 x y + 0.0323 (5)
TDz = 0.5176 × y + 0.0337 (6)
From the relationship of (5) and (6), the relationship between the dimensional change ratio z and the total internal strain x in the case of laminating with a length after copper foil etching was obtained from the relationships of (2) (3) (4). The values of dimensional change rate z and total internal strain x are plotted in FIG.
320 ° C z = -0.485x + 0.0597 (7)
360 ° C. z = −0.0319x + 0.0383 (8)
380 ° C. z = −0.0323x + 0.0366 (9)
At each temperature, a range of total internal strain such that the dimensional change rate z after etching was reduced was first determined. From the preferred total internal strain, apply equation (1) to the MD and TD directions respectively,
Film-forming strain in MD direction + heat laminant strain in MD direction = preferred total internal strain (10)
Film formation strain in the TD direction + thermal lamination strain in the TD direction = preferred total internal strain (11)
From the relational expression, the film formation distortion in the MD direction and the film formation distortion in the TD direction, which the polyimide laminate should have at each lamination temperature, are determined in order to reduce the dimensional change rate. From these results, the heat shrinkage of a polyimide film laminate was determined so as to be an FPC with a small dimensional change even when FCCL was manufactured at a commonly used laminating temperature.

各フィルムのラミネート温度(℃)、製膜歪み(加熱収縮率α(%)、熱ラミ歪みβ(%)、全内部歪み(銅箔ラミネート後に蓄積される歪み α+β(%)、銅箔エッチング後の寸法変化率(%)について、番号1〜4を表1に、番号5〜10を表2に、番号11〜13を表3に示す。   Lamination temperature (° C) of each film, film formation strain (heat shrinkage ratio α (%), thermal lami strain β (%), total internal strain (strain α + β (%) accumulated after copper foil lamination, copper foil after etching The dimensional change rates (%) of are shown in Tables 1 to 4 in Table 1, 5 to 10 in Table 2, and 11 to 13 in Table 3.

(実施例1)
10℃に冷却したN,N−ジメチルホルムアミド(DMF)546gに2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)46.43g溶解した。ここに3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)9.12g添加して溶解させた後、ピロメリット酸二無水物(PMDA)16.06g添加して30分攪拌し、熱可塑性ポリイミド前駆体ブロック成分を形成した。
この溶液にp−フェニレンジアミン(p−PDA)18.37gを溶解した後、PMDA37.67gを添加し1時間撹拌して溶解させた。さらにこの溶液に別途調製してあったPMDAのDMF溶液(PMDA1.85g/DMF24.6g)を注意深く添加し、粘度が3000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度約19重量%、23℃での回転粘度が3400ポイズのポリアミド酸溶液を得た。
Example 1
46.43 g of 2,2-bis (4-aminophenoxyphenyl) propane (BAPP) was dissolved in 546 g of N, N-dimethylformamide (DMF) cooled to 10 ° C. After 9.12 g of 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride (BTDA) was added and dissolved in it, 16.06 g of pyromellitic dianhydride (PMDA) was added for 30 minutes. Stir to form a thermoplastic polyimide precursor block component.
After 18.37 g of p-phenylenediamine (p-PDA) was dissolved in this solution, 37.67 g of PMDA was added and dissolved by stirring for 1 hour. Furthermore, a DMF solution (PMDA 1.85 g / DMF 24.6 g) prepared separately was carefully added to this solution, and the addition was stopped when the viscosity reached about 3000 poise. The mixture was stirred for 1 hour to obtain a polyamic acid solution having a solid concentration of about 19% by weight and a rotational viscosity of 3400 poise at 23 ° C.

このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.3/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比45%で添加し、連続的にミキサーで攪拌しTダイから押出してダイの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がして(揮発分含量30重量%)テンタークリップに固定し加熱炉に搬送し、250℃の熱風乾燥炉で30秒、400℃の熱風乾燥炉で30秒、500℃のIR炉で30秒、連続的に乾燥・イミド化させ、厚み17.0μmのポリイミドフィルムを得た。   An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.3 / 4.0) is added to this polyamic acid solution at a weight ratio of 45% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt running under 20 mm of the die. After heating this resin film at 130 ° C for 100 seconds, peel off the self-supporting gel film from the endless belt (30% by weight of volatile matter content), fix it on a tenter clip, convey it to the heating furnace and dry at 250 ° C. The film was continuously dried and imidated for 30 seconds in a furnace, in a hot air drying oven at 400 ° C. for 30 seconds, and in an IR furnace at 500 ° C. for 30 seconds, to obtain a polyimide film having a thickness of 17.0 μm.

(熱可塑性ポリイミド前駆体の合成)
10℃に冷却したDMF249gにBAPP29.8gを溶解した。ここにBPDA21.4gを添加して溶解させた後、30分攪拌しプレポリマーを形成した。さらにこの溶液に別途調製してあったBAPPのDMF溶液(BAPP1.57g/DMF31.4g)を注意深く添加し、粘度が1000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度約17重量%、23℃での回転粘度が1000ポイズのポリアミド酸溶液を得た。
(Synthesis of Thermoplastic Polyimide Precursor)
29.8 g of BAPP was dissolved in 249 g of DMF cooled to 10 ° C. After 21.4 g of BPDA was added thereto and dissolved, it was stirred for 30 minutes to form a prepolymer. Furthermore, a DMF solution (BAPP 1.57 g / DMF 31.4 g) of BAPP prepared separately was carefully added to this solution, and the addition was stopped when the viscosity reached about 1000 poise. The mixture was stirred for 1 hour to obtain a polyamic acid solution having a solid concentration of about 17% by weight and a rotational viscosity of 1000 poise at 23 ° C.

(ポリイミド積層体の作製)
熱可塑性ポリアミド酸溶液を固形分濃度10重量%になるまでDMFで希釈した後、非熱可塑性ポリイミドフィルム(17.0μm)の片面に最終片面厚みが4μmとなるようにポリアミド酸をコンマコーターで塗布し、140℃に設定した乾燥炉内を1分間通して加熱を行った。もう片面も同様に最終厚みが4μmとなうようにポリアミド酸を塗布した後、140℃に設定した乾燥炉内を1分間通して加熱を行った。続いて、雰囲気温度360℃の遠赤外線ヒーター炉の中を20秒間通して加熱イミド化を行って、総厚み25.0μmポリイミドフィルム積層体を得た。得られたフィルムの加熱収縮率および寸法変化率を測定した。加熱収縮率は、図3に示す三箇所から採取した。結果を表4に示す。
(Preparation of polyimide laminate)
After diluting the thermoplastic polyamic acid solution with DMF to a solid concentration of 10% by weight, apply a polyamic acid with a comma coater on one side of the non-thermoplastic polyimide film (17.0 μm) so that the final single side thickness becomes 4 μm. The heating was performed by passing through a drying oven set at 140 ° C. for 1 minute. The other side was similarly coated with a polyamic acid so that the final thickness would be 4 μm, and then heating was performed by passing through a drying oven set at 140 ° C. for 1 minute. Subsequently, heating imidization was performed by passing through a far infrared heater furnace having an atmosphere temperature of 360 ° C. for 20 seconds to obtain a polyimide film laminate having a total thickness of 25.0 μm. The heat shrinkage and dimensional change of the obtained film were measured. The heat shrinkage rate was sampled from three places shown in FIG. The results are shown in Table 4.

(実施例2)
10℃に冷却したN,N−ジメチルホルムアミド(DMF)546gに2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)46.43g溶解した。ここに3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)9.12g添加して溶解させた後、ピロメリット酸二無水物(PMDA)16.06g添加して30分攪拌し、熱可塑性ポリイミド前駆体ブロック成分を形成した。
この溶液にp−フェニレンジアミン(p−PDA)18.37gを溶解した後、PMDA37.67gを添加し1時間撹拌して溶解させた。さらにこの溶液に別途調製してあったPMDAのDMF溶液(PMDA1.85g/DMF24.6g)を注意深く添加し、粘度が3000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度約19重量%、23℃での回転粘度が3400ポイズのポリアミド酸溶液を得た。
(Example 2)
46.43 g of 2,2-bis (4-aminophenoxyphenyl) propane (BAPP) was dissolved in 546 g of N, N-dimethylformamide (DMF) cooled to 10 ° C. After 9.12 g of 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride (BTDA) was added and dissolved in it, 16.06 g of pyromellitic dianhydride (PMDA) was added for 30 minutes. Stir to form a thermoplastic polyimide precursor block component.
After 18.37 g of p-phenylenediamine (p-PDA) was dissolved in this solution, 37.67 g of PMDA was added and dissolved by stirring for 1 hour. Furthermore, a DMF solution (PMDA 1.85 g / DMF 24.6 g) prepared separately was carefully added to this solution, and the addition was stopped when the viscosity reached about 3000 poise. The mixture was stirred for 1 hour to obtain a polyamic acid solution having a solid concentration of about 19% by weight and a rotational viscosity of 3400 poise at 23 ° C.

このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.3/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比45%で添加し、連続的にミキサーで攪拌しTダイから押出してダイの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がして(揮発分含量45重量%)テンタークリップに固定し加熱炉に搬送し、350℃の熱風乾燥炉で30秒、400℃の熱風乾燥炉で30秒、500℃のIR炉で30秒、連続的に乾燥・イミド化させ、厚み17.0μmのポリイミドフィルムを得た。   An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.3 / 4.0) is added to this polyamic acid solution at a weight ratio of 45% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt running under 20 mm of the die. After heating this resin film at 130 ° C for 100 seconds, peel off the self-supporting gel film from the endless belt (volatile content 45% by weight), fix it on a tenter clip, convey it to the heating furnace, and dry at 350 ° C. The film was continuously dried and imidated for 30 seconds in a furnace, in a hot air drying oven at 400 ° C. for 30 seconds, and in an IR furnace at 500 ° C. for 30 seconds, to obtain a polyimide film having a thickness of 17.0 μm.

実施例1と同様に熱可塑性ポリイミド前駆体を両面に塗布、乾燥、イミド化を行い、ポリイミド積層体を作製した。得られたフィルムの加熱収縮率および寸法変化率を測定した。加熱収縮率は、図3に示す三箇所から採取した。結果を表4に示す。   A thermoplastic polyimide precursor was applied to both surfaces in the same manner as in Example 1, dried, and imidized to prepare a polyimide laminate. The heat shrinkage and dimensional change of the obtained film were measured. The heat shrinkage rate was sampled from three places shown in FIG. The results are shown in Table 4.

(比較例1)
10℃に冷却したN,N−ジメチルホルムアミド(DMF)546gに2,2−ビス(4−アミノフェノキシフェニル)プロパン(BAPP)46.43g溶解した。ここに3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)9.12g添加して溶解させた後、ピロメリット酸二無水物(PMDA)16.06g添加して30分攪拌し、熱可塑性ポリイミド前駆体ブロック成分を形成した。
この溶液にp−フェニレンジアミン(p−PDA)18.37gを溶解した後、PMDA37.67gを添加し1時間撹拌して溶解させた。さらにこの溶液に別途調製してあったPMDAのDMF溶液(PMDA1.85g/DMF24.6g)を注意深く添加し、粘度が3000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度約19重量%、23℃での回転粘度が3400ポイズのポリアミド酸溶液を得た。
(Comparative example 1)
46.43 g of 2,2-bis (4-aminophenoxyphenyl) propane (BAPP) was dissolved in 546 g of N, N-dimethylformamide (DMF) cooled to 10 ° C. After 9.12 g of 3,3 ', 4,4'-benzophenonetetracarboxylic acid dianhydride (BTDA) was added and dissolved in it, 16.06 g of pyromellitic dianhydride (PMDA) was added for 30 minutes. Stir to form a thermoplastic polyimide precursor block component.
After 18.37 g of p-phenylenediamine (p-PDA) was dissolved in this solution, 37.67 g of PMDA was added and dissolved by stirring for 1 hour. Furthermore, a DMF solution (PMDA 1.85 g / DMF 24.6 g) prepared separately was carefully added to this solution, and the addition was stopped when the viscosity reached about 3000 poise. The mixture was stirred for 1 hour to obtain a polyamic acid solution having a solid concentration of about 19% by weight and a rotational viscosity of 3400 poise at 23 ° C.

このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比2.0/0.3/4.0)からなるイミド化促進剤をポリアミド酸溶液に対して重量比45%で添加し、連続的にミキサーで攪拌しTダイから押出してダイの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がして(揮発分含量60重量%)テンタークリップに固定し加熱炉に搬送し、300℃の熱風乾燥炉で30秒、400℃の熱風乾燥炉で30秒、500℃のIR炉で30秒、連続的に乾燥・イミド化させ、厚み17.0μmのポリイミドフィルムを得た。   An imidation accelerator consisting of acetic anhydride / isoquinoline / DMF (weight ratio 2.0 / 0.3 / 4.0) is added to this polyamic acid solution at a weight ratio of 45% with respect to the polyamic acid solution, continuously The mixture was stirred by a mixer, extruded from a T-die, and cast on a stainless steel endless belt running under 20 mm of the die. After heating this resin film at 130 ° C for 100 seconds, peel off the self-supporting gel film from the endless belt (volatile content 60% by weight), fix it on a tenter clip, convey it to the heating furnace and dry it at 300 ° C. The film was continuously dried and imidated for 30 seconds in a furnace, in a hot air drying oven at 400 ° C. for 30 seconds, and in an IR furnace at 500 ° C. for 30 seconds, to obtain a polyimide film having a thickness of 17.0 μm.

実施例1と同様に熱可塑性ポリイミド前駆体を両面に塗布、乾燥、イミド化を行い、ポリイミド積層体を作製した。得られたフィルムの加熱収縮率および寸法変化率を測定した。得られたフィルムの加熱収縮率および寸法変化率を測定した。加熱収縮率は、図3に示す三箇所から採取した。結果を表4に示す。   A thermoplastic polyimide precursor was applied to both surfaces in the same manner as in Example 1, dried, and imidized to prepare a polyimide laminate. The heat shrinkage and dimensional change of the obtained film were measured. The heat shrinkage and dimensional change of the obtained film were measured. The heat shrinkage rate was sampled from three places shown in FIG. The results are shown in Table 4.

Claims (3)

非熱可塑性ポリイミドフィルムの少なくとも片面に、熱可塑性ポリイミド樹脂層を有するポリイミド積層体であって、該積層体はガラス転移点を有し、幅が150mm以上であり、かつ積層体のガラス転移温度におけるフィルムの長手方向の加熱収縮率α、ガラス転移温度におけるフィルムの幅方向の加熱収縮率βとしたとき、−2.1<α<0.1、−2.5<β<−0.5であり、かつ−0.1<α×β<6.0の範囲であることを特徴とする、ポリイミド積層体。   A polyimide laminate having a thermoplastic polyimide resin layer on at least one surface of a non-thermoplastic polyimide film, wherein the laminate has a glass transition point, a width of 150 mm or more, and the glass transition temperature of the laminate. Assuming that the heat shrinkage ratio α in the longitudinal direction of the film and the heat shrinkage ratio β in the width direction of the film at the glass transition temperature are: −2.1 <α <0.1, −2.5 <β <−0.5 A polyimide laminate characterized by being present and in the range of −0.1 <α × β <6.0. 前記ポリイミド積層体のガラス転移温度が100〜300℃であることを特徴とする、請求項1に記載のポリイミド積層体。   The glass transition temperature of the said polyimide laminated body is 100-300 degreeC, The polyimide laminated body of Claim 1 characterized by the above-mentioned. 前記ポリイミド積層体は、非熱可塑性ポリイミドフィルムの少なくとも片面に、熱可塑性ポリイミドの前駆体または熱可塑性ポリイミドの少なくともいずれか一つを含む溶液を塗布・乾燥して得られることを特徴とする、請求項1または2に記載のポリイミド積層体の製造方法。   The polyimide laminate is obtained by applying and drying a solution containing at least one of a thermoplastic polyimide precursor and a thermoplastic polyimide on at least one surface of a non-thermoplastic polyimide film. The manufacturing method of the polyimide laminated body as described in claim 1 or 2.
JP2016069660A 2016-03-30 2016-03-30 Long polyimide laminate and method for producing the same Pending JP2019093548A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016069660A JP2019093548A (en) 2016-03-30 2016-03-30 Long polyimide laminate and method for producing the same
PCT/JP2017/013311 WO2017170893A1 (en) 2016-03-30 2017-03-30 Long polyimide laminate and method for manufacturing same
TW106110790A TW201805168A (en) 2016-03-30 2017-03-30 Long polyimide laminate and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069660A JP2019093548A (en) 2016-03-30 2016-03-30 Long polyimide laminate and method for producing the same

Publications (1)

Publication Number Publication Date
JP2019093548A true JP2019093548A (en) 2019-06-20

Family

ID=59965893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069660A Pending JP2019093548A (en) 2016-03-30 2016-03-30 Long polyimide laminate and method for producing the same

Country Status (3)

Country Link
JP (1) JP2019093548A (en)
TW (1) TW201805168A (en)
WO (1) WO2017170893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239572A1 (en) * 2021-05-13 2022-11-17 株式会社村田製作所 Laminated substrate and antenna substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI377224B (en) * 2004-07-27 2012-11-21 Kaneka Corp Polyimide film having high adhesiveness and production method therefor
WO2006033324A1 (en) * 2004-09-24 2006-03-30 Kaneka Corporation Process for production of polyimide film having high adhesiveness
CN101258212B (en) * 2005-09-05 2012-12-12 株式会社钟化 Heat resistant adhesive sheet
JP4901509B2 (en) * 2007-01-31 2012-03-21 株式会社カネカ Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
JP2008188954A (en) * 2007-02-07 2008-08-21 Kaneka Corp Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239572A1 (en) * 2021-05-13 2022-11-17 株式会社村田製作所 Laminated substrate and antenna substrate

Also Published As

Publication number Publication date
TW201805168A (en) 2018-02-16
WO2017170893A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US8426548B2 (en) Polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
JP6971580B2 (en) Multilayer polyimide film and flexible metal-clad laminate
KR100958466B1 (en) Novel polyimide film and use thereof
JP2018145303A (en) Multilayer polyimide film
KR101096967B1 (en) Adhesive sheet and copper-clad laminate
JP2006306973A (en) New polyimide film, adhesive film given by using the same, and flexible metal clad sheet
JP6793232B2 (en) Rigid flexible board
JP5468913B2 (en) Multilayer polyimide film with resist and method for producing the same
KR101195719B1 (en) Adhesive film, flexible metal-clad laminate of enhanced dimensional stability obtained therefrom and process for producing the same
JP4551094B2 (en) Adhesive film, flexible metal-clad laminate with improved dimensional stability obtained therefrom, and method for producing the same
WO2017170893A1 (en) Long polyimide laminate and method for manufacturing same
JP2005199481A (en) Adhesive film and flexible metal clad laminated sheet enhanced in dimensional stability obtained therefrom
JP2007050599A (en) Flexible metal-clad laminated plate excellent in dimensional stability and its production method
JP4838509B2 (en) Method for producing flexible metal-clad laminate
JP2005193542A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP2005193404A (en) Manufacturing method of flexible metal clad laminate
JP2018126887A (en) Method for producing multilayered polyimide film
JP5355993B2 (en) Adhesive film
JP2007296729A (en) Flexible metal-clad laminate excellent in dimensional stability and its manufacturing method
JPWO2006082828A1 (en) Isotropic adhesive film and flexible metal-clad laminate
JP2007296730A (en) Flexible metal-clad laminate excellent in dimensional stability and its manufacturing method
JP2005166849A (en) Method for manufacturing flexible metal-lined laminate with dimensional stability improved, and the laminate manufactured by the same
JP2005335102A (en) Adhesive joining member enhanced in dimensional stability and flexible metal clad laminated sheet
JP2007296734A (en) Flexible metal clad laminate excellent in dimensional stability and its manufacturing method
JP2007296732A (en) Flexible metal clad laminate excellent in dimensional stability and its manufacturing method