JP2005193404A - Manufacturing method of flexible metal clad laminate - Google Patents

Manufacturing method of flexible metal clad laminate Download PDF

Info

Publication number
JP2005193404A
JP2005193404A JP2003435300A JP2003435300A JP2005193404A JP 2005193404 A JP2005193404 A JP 2005193404A JP 2003435300 A JP2003435300 A JP 2003435300A JP 2003435300 A JP2003435300 A JP 2003435300A JP 2005193404 A JP2005193404 A JP 2005193404A
Authority
JP
Japan
Prior art keywords
clad laminate
metal
film
metal foil
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003435300A
Other languages
Japanese (ja)
Other versions
JP4271563B2 (en
Inventor
Nagayasu Kaneshiro
永泰 金城
Takeshi Kikuchi
剛 菊池
Hiroyuki Tsuji
宏之 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2003435300A priority Critical patent/JP4271563B2/en
Publication of JP2005193404A publication Critical patent/JP2005193404A/en
Application granted granted Critical
Publication of JP4271563B2 publication Critical patent/JP4271563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving a manufacturing method of a flexible metal clad laminate excellent in dimensional stability. <P>SOLUTION: The manufacturing method of the flexible metal clad laminate includes at least a process (A) for obtaining a metal clad laminate by continuously laminating a metal foil on one side or both sides of a polyimide film through an adhesive layer while applying tension to the polyimide film in its MD direction and a process (B) for continuously heat-treating the metal clad laminate while applying tension lower than that in the process (A) to the metal clad laminate in its MD direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ポリイミドフィルムの片面または両面に、接着層を介して金属箔を貼り合わせて得られる寸法安定性に優れるフレキシブル金属張積層板に関する。   The present invention relates to a flexible metal-clad laminate excellent in dimensional stability obtained by bonding a metal foil to one or both sides of a polyimide film via an adhesive layer.

近年、エレクトロニクス製品の軽量化、小型化、高密度化にともない、各種プリント基板の需要が伸びているが、中でも、フレキシブル積層板(フレキシブルプリント配線板(FPC)等とも称する)の需要が特に伸びている。フレキシブル積層板は、絶縁性フィルム上に金属箔からなる回路が形成された構造を有している。   In recent years, the demand for various printed circuit boards has increased along with the reduction in weight, size and density of electronic products. In particular, the demand for flexible laminates (also referred to as flexible printed circuit boards (FPCs), etc.) has increased. ing. The flexible laminate has a structure in which a circuit made of a metal foil is formed on an insulating film.

上記フレキシブル積層板は、一般に、各種絶縁材料により形成され、柔軟性を有する絶縁性フィルムを基板とし、この基板の表面に、各種接着材料を介して金属箔を加熱・圧着することにより貼りあわせる方法により製造される。上記絶縁性フィルムとしては、ポリイミドフィルム等が好ましく用いられている。上記接着材料としては、エポキシ系、アクリル系等の熱硬化性接着剤が一般的に用いられている(これら熱硬化性接着剤を用いたFPCを以下、三層FPCともいう)。   The flexible laminate is generally formed of various insulating materials, and a flexible insulating film is used as a substrate, and a metal foil is bonded to the surface of the substrate by heating and pressure bonding via various adhesive materials. Manufactured by. A polyimide film or the like is preferably used as the insulating film. As the adhesive material, a thermosetting adhesive such as epoxy or acrylic is generally used (FPC using these thermosetting adhesives is hereinafter also referred to as three-layer FPC).

熱硬化性接着剤は比較的低温での接着が可能であるという利点がある。しかし今後、耐熱性、屈曲性、電気的信頼性といった要求特性が厳しくなることが予想される。このような要求に対応しうるFPCとして、絶縁性フィルムに直接金属層を設けたり、接着層に耐熱性の高い樹脂、例えば、熱可塑性ポリイミドを使用したFPC(以下、二層FPCともいう)が提案され、今後需要が伸びていくことが期待される。   Thermosetting adhesives have the advantage that they can be bonded at relatively low temperatures. However, it is expected that required characteristics such as heat resistance, flexibility and electrical reliability will become severe in the future. As an FPC that can meet such demands, there is an FPC (hereinafter also referred to as a two-layer FPC) in which a metal layer is directly provided on an insulating film, or a heat-resistant resin such as a thermoplastic polyimide is used for an adhesive layer. Proposed and expected to increase demand in the future.

二層FPCに用いるフレキシブル金属張積層板の作製方法としては、金属箔上にポリイミドの前駆体であるポリアミド酸を流延、塗布した後イミド化するキャスト法、スパッタ、メッキによりポリイミドフィルム上に直接金属層を設けるメタライジング法、耐熱性の高い接着シートを介してポリイミドフィルムと金属箔とを貼り合わせるラミネート法が挙げられる。この中で、ラミネート法は、対応できる金属箔の厚み範囲がキャスト法よりも広く、装置コストがメタライジング法よりも低いという点で優れている。ラミネートを行う装置としては、ロール状の材料を繰り出しながら連続的にラミネートする熱ロールラミネート装置またはダブルベルトプレス装置等が用いられている。上記の内、生産性の点から見れば、熱ロールラミネート法をより好ましく用いることができる。   As a method for producing a flexible metal-clad laminate for use in a two-layer FPC, a polyamic acid, which is a polyimide precursor, is cast on a metal foil, applied, and then casted directly onto a polyimide film by sputtering or plating. Examples thereof include a metallizing method for providing a metal layer and a laminating method for bonding a polyimide film and a metal foil through an adhesive sheet having high heat resistance. Among these, the lamination method is superior in that the thickness range of the metal foil that can be handled is wider than that of the casting method and the apparatus cost is lower than that of the metalizing method. As a device for laminating, a hot roll laminating device or a double belt press device for continuously laminating a roll-shaped material is used. Of these, the hot roll laminating method can be used more preferably from the viewpoint of productivity.

従来の三層FPCをラミネート法で作製する際、接着層に熱硬化性樹脂を用いていたため、ラミネート温度は200℃未満で行うことが可能であった(特許文献1参照)。これに対し、二層FPCは耐熱性の高い樹脂を接着層として用いるため、熱融着性を発現させるために200℃以上、場合によっては400℃近くの高温を加える必要がある。そのため、ラミネートされて得られたフレキシブル金属張積層板に残留歪みが発生し、エッチングして配線を形成する際や、部品を実装するために半田リフローを行う際に寸法変化となって現れる。   When a conventional three-layer FPC was produced by a laminating method, a thermosetting resin was used for the adhesive layer, so that the laminating temperature could be less than 200 ° C. (see Patent Document 1). On the other hand, since the two-layer FPC uses a resin having high heat resistance as an adhesive layer, it is necessary to apply a high temperature of 200 ° C. or higher, and in some cases, close to 400 ° C., in order to exhibit heat fusion. For this reason, residual distortion occurs in the flexible metal-clad laminate obtained by laminating and appears as a dimensional change when forming a wiring by etching, or when performing solder reflow to mount a component.

特にラミネート法は、ポリイミドフィルム上に接着層を設ける際に、金属箔を貼り合わせる際に連続的に加熱加圧を行うため、材料は張力がかけられた状態で加熱環境下に置かれることが多い。そのため、MD方向とTD方向で異なる熱応力が発生する。具体的には、張力のかかるMD方向には引張られる力が働き、逆にTD方向には縮む力が働く。その結果、フレキシブル積層板から金属箔をエッチングする際と、半田リフローを通して加熱する際にこの歪みが解放され、MD方向は収縮し、逆にTD方向は膨張してしまう。特に、接着剤層として熱可塑性ポリイミドを用いる場合には、その前駆体であるポリアミド酸を流延、塗布した後に連続的に加熱してイミド化を行い、金属箔と張り合わせるので、イミド化の際にも熱が加えられ、この挙動が顕著である。   In particular, in the laminating method, when an adhesive layer is provided on a polyimide film, the material is placed under a heating environment in a tensioned state because it is continuously heated and pressurized when the metal foil is bonded. Many. Therefore, different thermal stresses are generated in the MD direction and the TD direction. Specifically, a pulling force acts in the MD direction where tension is applied, and conversely, a shrinking force acts in the TD direction. As a result, when the metal foil is etched from the flexible laminate and when heated through solder reflow, this strain is released, the MD direction contracts, and conversely, the TD direction expands. In particular, when thermoplastic polyimide is used as the adhesive layer, the precursor polyamic acid is cast and applied, and then continuously heated to imidize and adhere to the metal foil. Heat is also applied, and this behavior is remarkable.

近年、電子機器の小型化、軽量化を達成するために、基板に設けられる配線は微細化が進んでおり、実装する部品も小型化、高密度化されたものが搭載される。そのため、微細な配線を形成した後の寸法変化が大きくなると、設計段階での部品搭載位置からずれて、部品と基板とが良好に接続されなくなるという問題が生じる。
そこで、ラミネート圧力の制御や、接着フィルムの張力制御により、寸法変化を抑える試みがなされている(特許文献2または3参照)。しかしながら、これらの手段により寸法変化は改善されるものの、まだ充分ではなく、更なる寸法変化の改善が求められている。
In recent years, in order to achieve miniaturization and weight reduction of electronic devices, wiring provided on a substrate has been miniaturized, and components to be mounted are mounted with miniaturization and high density. For this reason, if the dimensional change after forming the fine wiring is increased, there is a problem that the component and the board are not well connected due to deviation from the component mounting position in the design stage.
Therefore, attempts have been made to suppress dimensional changes by controlling the laminating pressure or controlling the tension of the adhesive film (see Patent Document 2 or 3). However, although the dimensional change is improved by these means, it is not sufficient yet, and further improvement of the dimensional change is demanded.

一方、フレキシブル金属箔積層体を熱処理することにより、寸法安定性を改善する方法が提案されている(特許文献4)。しかし、この場合の熱処理は、枚葉または、コア材に巻きつけた状態で行うことが必要であるとされており、特定の張力下で連続的に熱処理することについては記載がない。また、枚葉で熱処理した場合、寸法安定性改善の効果を大きく発揮させようとして温度を高くするとフレキシブル金属箔積層体の外観を損なったり、コア材に巻きつけてロール状で熱処理するとロールにしわが寄ったり巻き芯側と巻き外側で局率半径が異なるため寸法安定性の改善効果が異なるなどといった欠点を有している。
特開平9−199830号公報 特開2002−326308号公報 特開2002−326280号公報 特開2001−270035号公報
On the other hand, a method for improving the dimensional stability by heat-treating the flexible metal foil laminate has been proposed (Patent Document 4). However, it is said that the heat treatment in this case needs to be performed in a state of being wound around a sheet or a core material, and there is no description about performing the heat treatment continuously under a specific tension. Also, when heat treatment is performed on a single wafer, the appearance of the flexible metal foil laminate is impaired if the temperature is increased in order to exert the effect of improving the dimensional stability greatly, or the roll is wrinkled when wound around the core material and heat-treated in a roll shape. There are disadvantages such as the effect of improving the dimensional stability is different because the radius of curvature is different between the winding core side and the winding outer side.
JP-A-9-199830 JP 2002-326308 A JP 2002-326280 A JP 2001-270035 A

本発明は、上記の課題に鑑みてなされたものであって、その目的は、寸法安定性に優れるフレキシブル金属張積層板の製造方法を改善する方法を提供することにある。   This invention is made | formed in view of said subject, The objective is to provide the method of improving the manufacturing method of the flexible metal-clad laminated board which is excellent in dimensional stability.

本発明者らは、上記の課題に鑑み鋭意検討した結果、フレキシブル金属張積層板を特定条件で加熱する事により金属箔を除去する前後の寸法変化率ならびに金属箔除去後に250℃30分の熱処理前後の寸法変化率を改善できることを見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above-mentioned problems, the present inventors have conducted heat treatment at 250 ° C. for 30 minutes after removing the metal foil and the dimensional change rate before and after removing the metal foil by heating the flexible metal-clad laminate under specific conditions. The inventors have found that the dimensional change rate before and after can be improved and have completed the present invention.

即ち本発明は、 少なくとも下記工程を含むフレキシブル金属張積層板の製造方法に関する。
(A)ポリイミドフィルムの片面または両面に、接着層を介して、MD方向に張力をかけながら連続的に金属箔との張り合わせを行い金属張積層板を得る工程
(B)金属張積層板を(A)工程よりも低い張力をMD方向にかけながら連続的に熱処理する工程
さらに本発明は、(A)工程におけ金属層との張り合わせは、一対以上の金属ロールを有する熱ロールラミネート装置により行うことを特徴とする請求項1記載のフレキシブル金属張積層板の製造方法に関する。
That is, the present invention relates to a method for producing a flexible metal-clad laminate including at least the following steps.
(A) A process of obtaining a metal-clad laminate by continuously laminating with a metal foil while applying tension in the MD direction to one or both sides of a polyimide film via an adhesive layer (B) A) A step of continuously heat-treating while applying a lower tension in the MD direction than the step. Further, in the present invention, the bonding with the metal layer in the step (A) is performed by a hot roll laminator having a pair of metal rolls. The method for producing a flexible metal-clad laminate according to claim 1.

さらに本発明は、(B)工程における熱処理温度が、接着層のガラス転移温度以上ラミネート温度以下であることを特徴とする請求項1〜2記載のフレキシブル金属張積層板の製造方法に関する。   Furthermore, the present invention relates to the method for producing a flexible metal-clad laminate according to claim 1 or 2, wherein the heat treatment temperature in step (B) is not less than the glass transition temperature of the adhesive layer and not more than the laminate temperature.

さらに本発明は、接着層が熱可塑性ポリイミドを含有することを特徴とする請求項1〜3記載のフレキシブル金属張積層板の寸法安定性改善方法。   Furthermore, in the present invention, the adhesive layer contains a thermoplastic polyimide, and the method for improving the dimensional stability of a flexible metal-clad laminate according to any one of claims 1 to 3.

さらに本発明は、金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の熱処理を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.15〜+0.15の範囲にあることを特徴とする請求項1〜4に記載の製造方法により得られるフレキシブル金属張積層板に関する。   Further, according to the present invention, the dimensional change rate before and after removing the metal foil, and the total value of the dimensional change rate before and after performing heat treatment at 250 ° C. for 30 minutes after removing the metal foil are −0.15 in both the MD direction and the TD direction. It is in the range of-+ 0.15, It is related with the flexible metal-clad laminate obtained by the manufacturing method of Claims 1-4.

本発明によりフレキシブル金属張積層板、特にラミネート法により製造されたフレキシブルプリント基板の寸法安定性を改善することができる。具体的には、金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の熱処理を行う前後の寸法変化率小さくすることができ、従って、微細な配線を形成したFPC等にも好適に用いることが可能で、位置ずれ等の問題を改善できる。   According to the present invention, it is possible to improve the dimensional stability of a flexible metal-clad laminate, particularly a flexible printed circuit board manufactured by a laminating method. Specifically, the dimensional change rate before and after removing the metal foil, and the dimensional change rate before and after performing heat treatment at 250 ° C. for 30 minutes after removing the metal foil can be reduced. Etc., and problems such as misalignment can be improved.

本発明の実施の一形態について、以下に説明する。
本発明にかかるフレキシブル金属張積層板の製造方法は、少なくとも下記工程を含むフレキシブル金属張積層板の製造方法である。
(A)ポリイミドフィルムの片面または両面に、接着層を介して、MD方向に張力をかけながら連続的に金属箔との張り合わせを行い金属張積層板を得る工程
(B)金属張積層板を(A)工程よりも低い張力をMD方向にかけながら連続的に熱処理する工程
(A)工程
(A)工程では、ポリイミドフィルムの片面または両面に接着剤を介して連続的に金属箔との張り合わせを行う。
One embodiment of the present invention will be described below.
The method for producing a flexible metal-clad laminate according to the present invention is a method for producing a flexible metal-clad laminate including at least the following steps.
(A) A process of obtaining a metal-clad laminate by continuously laminating with a metal foil while applying tension in the MD direction to one or both sides of a polyimide film via an adhesive layer (B) A) The process of heat-treating continuously, applying the tension | tensile_strength lower than a process to MD direction.
(A) Step (A) In step (A), one side or both sides of a polyimide film are continuously bonded to a metal foil via an adhesive.

ポリイミドフィルムについて説明する。本発明に用いられるポリイミドフィルムはポリアミド酸を前駆体として用いて製造される。ポリアミド酸の製造方法としては公知のあらゆる方法を用いることができ、通常、芳香族テトラカルボン酸二無水物と芳香族ジアミンを、実質的等モル量を有機溶媒中に溶解させて反応させ、制御された温度条件下で、上記酸二無水物とジアミンの重合が完了するまで攪拌することによって製造される。これらのポリアミド酸溶液は通常5〜35wt%、好ましくは10〜30wt%の濃度で得られる。この範囲の濃度である場合に適当な分子量と溶液粘度を得る。   The polyimide film will be described. The polyimide film used in the present invention is manufactured using polyamic acid as a precursor. Any known method can be used as a method for producing the polyamic acid. Usually, aromatic tetracarboxylic dianhydride and aromatic diamine are reacted in a substantially equimolar amount dissolved in an organic solvent, and controlled. And stirring under the temperature conditions until the polymerization of the acid dianhydride and the diamine is completed. These polyamic acid solutions are usually obtained at a concentration of 5 to 35 wt%, preferably 10 to 30 wt%. When the concentration is in this range, an appropriate molecular weight and solution viscosity are obtained.

重合方法としてはあらゆる公知の方法およびそれらを組み合わせた方法を用いることができる。ポリアミド酸の重合における重合方法の特徴はそのモノマーの添加順序にあり、このモノマー添加順序を制御することにより得られるポリイミドの諸物性を制御することができる。従い、本発明においてポリアミド酸の重合にはいかなるモノマーの添加方法を用いても良い。代表的な重合方法として次のような方法が挙げられる。すなわち、
1)芳香族ジアミンを有機極性溶媒中に溶解し、これと実質的に等モルの芳香族テトラカルボン酸二無水物を反応させて重合する方法。
2)芳香族テトラカルボン酸二無水物とこれに対し過小モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る。続いて、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法。
3)芳香族テトラカルボン酸二無水物とこれに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る。続いてここに芳香族ジアミン化合物を追加添加後、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族テトラカルボン酸二無水物を用いて重合する方法。
4)芳香族テトラカルボン酸二無水物を有機極性溶媒中に溶解及び/または分散させた後、実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法。
5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンの混合物を有機極性溶媒中で反応させて重合する方法。
などのような方法である。これら方法を単独で用いても良いし、部分的に組み合わせて用いることもできる。
As the polymerization method, any known method and a combination thereof can be used. The characteristic of the polymerization method in the polymerization of polyamic acid is the order of addition of the monomers, and the physical properties of the polyimide obtained can be controlled by controlling the order of addition of the monomers. Therefore, in the present invention, any method of adding monomers may be used for the polymerization of polyamic acid. The following method is mentioned as a typical polymerization method. That is,
1) A method in which an aromatic diamine is dissolved in an organic polar solvent and this is reacted with a substantially equimolar amount of an aromatic tetracarboxylic dianhydride for polymerization.
2) An aromatic tetracarboxylic dianhydride is reacted with a small molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolymer having acid anhydride groups at both ends. Then, the method of superposing | polymerizing using an aromatic diamine compound so that an aromatic tetracarboxylic dianhydride and an aromatic diamine compound may become substantially equimolar in all the processes.
3) An aromatic tetracarboxylic dianhydride and an excess molar amount of the aromatic diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends. Subsequently, after adding an aromatic diamine compound here, using the aromatic tetracarboxylic dianhydride so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps. How to polymerize.
4) A method in which an aromatic tetracarboxylic dianhydride is dissolved and / or dispersed in an organic polar solvent and then polymerized using an aromatic diamine compound so as to be substantially equimolar.
5) A method of polymerizing by reacting a substantially equimolar mixture of aromatic tetracarboxylic dianhydride and aromatic diamine in an organic polar solvent.
And so on. These methods may be used singly or in combination.

本発明において、上記のいかなる重合方法を用いて得られたポリアミド酸を用いても良く、重合方法は特に限定されるのもではない。   In the present invention, the polyamic acid obtained by using any of the above polymerization methods may be used, and the polymerization method is not particularly limited.

本発明において、後述する剛直構造を有するジアミン成分を用いてプレポリマーを得る重合方法を用いることも好ましい。プレポリマー調整時に用いるジアミン成分が、剛直構造を有するジアミンからなるジアミンであると、弾性率が高く、吸湿膨張係数が小さいポリイミドフィルムが得やすくなる傾向にある。本方法においてプレポリマー調製時に用いる剛直構造を有するジアミンと酸二無水物のモル比は100:70〜100:99もしくは70:100〜99:100、さらには100:75〜100:90もしくは75:100〜90:100が好ましい。この比が上記範囲を下回ると弾性率および吸湿膨張係数の改善効果が得られにくく、上記範囲を上回ると線膨張係数が小さくなりすぎたり、引張伸びが小さくなるなどの弊害が生じることがある。   In this invention, it is also preferable to use the polymerization method which obtains a prepolymer using the diamine component which has a rigid structure mentioned later. When the diamine component used in preparing the prepolymer is a diamine composed of a diamine having a rigid structure, a polyimide film having a high elastic modulus and a small hygroscopic expansion coefficient tends to be easily obtained. In this method, the molar ratio of the diamine having a rigid structure used in preparing the prepolymer to the acid dianhydride is 100: 70 to 100: 99 or 70: 100 to 99: 100, and further 100: 75 to 100: 90 or 75: 100-90: 100 is preferable. When this ratio is less than the above range, it is difficult to obtain the effect of improving the elastic modulus and the hygroscopic expansion coefficient, and when it exceeds the above range, there are cases where the linear expansion coefficient becomes too small or the tensile elongation becomes small.

ここで、本発明にかかるポリアミド酸組成物に用いられる材料について説明する。
本発明において用いうる適当な酸二無水物は、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)及びそれらの類似物を含み、これらを単独または、任意の割合の混合物が好ましく用い得る。
Here, the material used for the polyamic acid composition concerning this invention is demonstrated.
Suitable acid dianhydrides that can be used in the present invention are pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid. Dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetra Carboxylic dianhydride, 4,4′-oxyphthalic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride , Bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) Ethane dianhydride, bis (2,3 -Dicarboxyphenyl) methane dianhydride, bis (3,4-dicarboxyphenyl) ethane dianhydride, oxydiphthalic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, p-phenylenebis (Trimellitic acid monoester acid anhydride), ethylene bis (trimellitic acid monoester acid anhydride), bisphenol A bis (trimellitic acid monoester acid anhydride) and the like, these alone or Any proportion of the mixture can be preferably used.

これら酸二無水物の中で特にはピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から選択される少なくとも一種を用いることが好ましい。   Among these acid dianhydrides, pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 4,4′-oxyphthalic dianhydride, 3,3 ′ It is preferable to use at least one selected from 4,4'-biphenyltetracarboxylic dianhydride.

またこれら酸二無水物の中で3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から選択される少なくとも一種を用いる場合の好ましい使用量は、全酸二無水物に対して、60mol%以下、好ましくは55mol%以下、更に好ましくは50mol%以下である。3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシフタル酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物から選択される少なくとも一種を用いる場合、その使用量がこの範囲を上回るとポリイミドフィルムのガラス転移温度が低くなりすぎたり、熱時の貯蔵弾性率が低くなりすぎて製膜そのものが困難になったりすることがあるため好ましくない。   Among these acid dianhydrides, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxyphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetra The preferred amount of use in the case of using at least one selected from carboxylic dianhydrides is 60 mol% or less, preferably 55 mol% or less, more preferably 50 mol% or less, based on the total acid dianhydrides. 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 4,4′-oxyphthalic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride When using at least one kind, if the amount used exceeds this range, the glass transition temperature of the polyimide film may become too low, or the storage elastic modulus at the time of heating may become too low, making film formation itself difficult. Therefore, it is not preferable.

また、ピロメリット酸二無水物を用いる場合、好ましい使用量は40〜100mol%、更に好ましくは45〜100mol%、特に好ましくは50〜100mol%である。ピロメリット酸二無水物をこの範囲で用いることによりガラス転移温度および熱時の貯蔵弾性率を使用または製膜に好適な範囲に保ちやすくなる。   Moreover, when using pyromellitic dianhydride, the preferable usage-amount is 40-100 mol%, More preferably, it is 45-100 mol%, Most preferably, it is 50-100 mol%. By using pyromellitic dianhydride in this range, the glass transition temperature and the storage elastic modulus at the time of heating can be easily maintained in a range suitable for use or film formation.

本発明にかかるポリアミド酸において使用し得る適当なジアミンとしては、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、ベンジジン、3,3’−ジクロロベンジジン、3,3‘−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、1,5−ジアミノナフタレン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、1,3−ジアミノベンゼン、1,2−ジアミノベンゼン、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン及びそれらの類似物などが挙げられる。   Suitable diamines that can be used in the polyamic acid according to the present invention include 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, 3,3′-dichlorobenzidine, and 3,3′-dimethylbenzidine. 2,2′-dimethylbenzidine, 3,3′-dimethoxybenzidine, 2,2′-dimethoxybenzidine, 4,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl Sulfone, 4,4′-oxydianiline, 3,3′-oxydianiline, 3,4′-oxydianiline, 1,5-diaminonaphthalene, 4,4′-diaminodiphenyldiethylsilane, 4,4 ′ -Diaminodiphenylsilane, 4,4'-diaminodiphenylethylphosphineoxy 4,4′-diaminodiphenyl N-methylamine, 4,4′-diaminodiphenyl N-phenylamine, 1,4-diaminobenzene (p-phenylenediamine), 1,3-diaminobenzene, 1,2-diamino Benzene, bis {4- (4-aminophenoxy) phenyl} sulfone, bis {4- (3-aminophenoxy) phenyl} sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3 -Bis (3-aminophenoxy) benzene, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone and its And La analogs thereof.

ジアミン成分として、剛直構造を有するジアミンと柔構造を有するアミンを併用することもでき、その場合の好ましい使用比率はモル比で80/20〜20/80、さらには70/30〜30/70、特には60/40〜30/70である。剛構造のジアミンの使用比率が上記範囲を上回ると得られるフィルムの引張伸びが小さくなる傾向にあり、またこの範囲を下回るとガラス転移温度が低くなりすぎたり、熱時の貯蔵弾性率が低くなりすぎて製膜が困難になるなどの弊害を伴う場合がある。     As the diamine component, a diamine having a rigid structure and an amine having a flexible structure can be used in combination, and the preferred use ratio in that case is 80/20 to 20/80, more preferably 70/30 to 30/70, in molar ratio. Particularly, it is 60/40 to 30/70. If the use ratio of the rigid diamine exceeds the above range, the tensile elongation of the resulting film tends to be small, and if it falls below this range, the glass transition temperature becomes too low or the storage modulus during heat decreases. In some cases, the film formation is difficult, and it may be harmful.

本発明において、剛直構造を有するジアミンとは、   In the present invention, the diamine having a rigid structure is

式中のR2は R2 in the formula is

で表される2価の芳香族基からなる群から選択される基であり、式中のR3は同一または異なってH−,CH3−、−OH、−CF3、−SO4、−COOH、−CO-NH2、Cl−、Br−、F−、及びCH3O−からなる群より選択される何れかの1つの基である)
で表されるものをいう。
And R 3 in the formula is the same or different and is H—, CH 3 —, —OH, —CF 3 , —SO 4 , —, or a group selected from the group consisting of divalent aromatic groups. Any one group selected from the group consisting of COOH, —CO—NH 2 , Cl—, Br—, F—, and CH 3 O—)
The one represented by

また、柔構造を有するジアミンとは、エーテル基、スルホン基、ケトン基、するふぃど基などの柔構造を有するジアミンであり、好ましくは、下記一般式(2)で表されるものである。   Further, the diamine having a flexible structure is a diamine having a flexible structure such as an ether group, a sulfone group, a ketone group, and a sulfido group, and is preferably represented by the following general formula (2). .

(式中のR4は、 (R 4 in the formula is

で表される2価の有機基からなる群から選択される基であり、式中のR5は同一または異なって、H−,CH3−、−OH、−CF3、−SO4、−COOH、−CO-NH2、Cl−、Br−、F−、及びCH3O−からなる群より選択される1つの基である。)
本発明において用いられるポリイミドフィルムは、上記の範囲の中で所望の特性を有するフィルムとなるように適宜芳香族酸二無水物および芳香族ジアミンの種類、配合比を決定して用いることにより得ることができる。
R 5 in the formula is the same or different and is H—, CH 3 —, —OH, —CF 3 , —SO 4 , —, or a group selected from the group consisting of divalent organic groups represented by One group selected from the group consisting of COOH, —CO—NH 2 , Cl—, Br—, F—, and CH 3 O—. )
The polyimide film used in the present invention is obtained by appropriately determining the type and blending ratio of the aromatic dianhydride and aromatic diamine so as to be a film having desired characteristics within the above range. Can do.

ポリアミド酸を合成するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒すなわちN,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルフォルムアミド、N,N−ジメチルアセトアミドが特に好ましく用い得る。   As the preferred solvent for synthesizing the polyamic acid, any solvent can be used as long as it dissolves the polyamic acid. However, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N- Examples thereof include methyl-2-pyrrolidone, and N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used.

また、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。   In addition, a filler can be added for the purpose of improving various film properties such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

フィラーの粒子径は改質すべきフィルム特性と添加するフィラーの種類によって決定されるため、特に限定されるものではないが、一般的には平均粒径が0.05〜100μm、好ましくは0.1〜75μm、更に好ましくは0.1〜50μm、特に好ましくは0.1〜25μmである。粒子径がこの範囲を下回ると改質効果が現れにくくなり、この範囲を上回ると表面性を大きく損なったり、機械的特性が大きく低下したりする可能性がある。また、フィラーの添加部数についても改質すべきフィルム特性やフィラー粒子径などにより決定されるため特に限定されるものではない。一般的にフィラーの添加量はポリイミド100重量部に対して0.01〜100重量部、好ましくは0.01〜90重量部、更に好ましくは0.02〜80重量部である。フィラー添加量がこの範囲を下回るとフィラーによる改質効果が現れにくく、この範囲を上回るとフィルムの機械的特性が大きく損なわれる可能性がある。フィラーの添加は、
1.重合前または途中に重合反応液に添加する方法
2.重合完了後、3本ロールなどを用いてフィラーを混錬する方法
3.フィラーを含む分散液を用意し、これをポリアミド酸有機溶媒溶液に混合する方法
などいかなる方法を用いてもよいが、フィラーを含む分散液をポリアミド酸溶液に混合する方法、特に製膜直前に混合する方法が製造ラインのフィラーによる汚染が最も少なくすむため、好ましい。フィラーを含む分散液を用意する場合、ポリアミド酸の重合溶媒と同じ溶媒を用いるのが好ましい。また、フィラーを良好に分散させ、また分散状態を安定化させるために分散剤、増粘剤等をフィルム物性に影響を及ぼさない範囲内で用いることもできる。
The particle size of the filler is not particularly limited because it is determined by the film characteristics to be modified and the kind of filler to be added, but generally the average particle size is 0.05 to 100 μm, preferably 0.1. It is -75 micrometers, More preferably, it is 0.1-50 micrometers, Most preferably, it is 0.1-25 micrometers. If the particle size is below this range, the modification effect is less likely to appear. If the particle size is above this range, the surface properties may be greatly impaired or the mechanical properties may be greatly deteriorated. Further, the number of added parts of the filler is not particularly limited because it is determined by the film properties to be modified, the filler particle diameter, and the like. Generally, the addition amount of the filler is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, and more preferably 0.02 to 80 parts by weight with respect to 100 parts by weight of the polyimide. If the amount of filler added is less than this range, the effect of modification by the filler hardly appears, and if it exceeds this range, the mechanical properties of the film may be greatly impaired. Addition of filler
1. 1. A method of adding to a polymerization reaction solution before or during polymerization 2. A method of kneading fillers using three rolls after the completion of polymerization. Any method such as preparing a dispersion containing filler and mixing it with a polyamic acid organic solvent solution may be used, but a method of mixing a dispersion containing filler with a polyamic acid solution, particularly immediately before film formation. This method is preferable because the contamination by the filler in the production line is minimized. When preparing a dispersion containing a filler, it is preferable to use the same solvent as the polymerization solvent for the polyamic acid. Further, in order to disperse the filler satisfactorily and stabilize the dispersion state, a dispersant, a thickener and the like can be used within a range not affecting the film physical properties.

これらポリアミド酸溶液からポリイミドフィルムを製造する方法については従来公知の方法を用いることができる。この方法には熱イミド化法と化学イミド化法が挙げられ、どちらの方法を用いてフィルムを製造してもかまわないが、化学イミド化法によるイミド化の方が本発明に好適に用いられる諸特性を有したポリイミドフィルムを得やすい傾向にある。   A conventionally well-known method can be used about the method of manufacturing a polyimide film from these polyamic-acid solutions. This method includes a thermal imidization method and a chemical imidization method, and either method may be used to produce a film, but the imidization by the chemical imidation method is more preferably used in the present invention. It tends to be easy to obtain a polyimide film having various characteristics.

また、本発明において特に好ましいポリイミドフィルムの製造工程は、
a)有機溶剤中で芳香族ジアミンと芳香族テトラカルボン酸二無水物を反応させてポリアミド酸溶液を得る工程、
b)上記ポリアミド酸溶液を含む製膜ドープを支持体上に流延する工程、
c)支持体上で加熱した後、支持体からゲルフィルムを引き剥がす工程、
d)更に加熱して、残ったアミド酸をイミド化し、かつ乾燥させる工程、
を含むことが好ましい。
In addition, the production process of the polyimide film particularly preferable in the present invention is as follows.
a) a step of reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride in an organic solvent to obtain a polyamic acid solution;
b) casting a film-forming dope containing the polyamic acid solution on a support;
c) a step of peeling the gel film from the support after heating on the support;
d) further heating to imidize and dry the remaining amic acid,
It is preferable to contain.

上記工程において無水酢酸等の酸無水物に代表される脱水剤と、イソキノリン、β−ピコリン、ピリジン等の第三級アミン類等に代表されるイミド化触媒とを含む硬化剤を用いても良い。   In the above step, a curing agent containing a dehydrating agent typified by an acid anhydride such as acetic anhydride and an imidation catalyst typified by a tertiary amine such as isoquinoline, β-picoline or pyridine may be used. .

以下本発明の好ましい一形態、化学イミド法を一例にとり、ポリイミドフィルムの製造工程を説明する。ただし、本発明は以下の例により限定されるものではない。   In the following, a preferred embodiment of the present invention, the chemical imide method, is taken as an example to describe the process for producing a polyimide film. However, the present invention is not limited to the following examples.

製膜条件や加熱条件は、ポリアミド酸の種類、フィルムの厚さ等により、変動し得る。
脱水剤及びイミド化触媒を低温でポリアミド酸溶液中に混合して製膜ドープを得る。引き続いてこの製膜ドープをガラス板、アルミ箔、エンドレスステンレスベルト、ステンレスドラムなどの支持体上にフィルム状にキャストし、支持体上で80℃〜200℃、好ましくは100℃〜180℃の温度領域で、30秒から10分間加熱することで脱水剤及びイミド化触媒を活性化することによって部分的に硬化及び/または乾燥した後支持体から剥離してポリアミド酸フィルム(以下、ゲルフィルムという)を得る。
ゲルフィルムは、ポリアミド酸からポリイミドへの硬化の中間段階にあり、自己支持性を有し、式(1)
(A−B)×100/B・・・・(1)
式(1)中
A,Bは以下のものを表す。
A:ゲルフィルムの重量
B:ゲルフィルムを450℃で20分間加熱した後の重量
から算出される揮発分含量は5〜500重量%の範囲、好ましくは5〜200重量%、より好ましくは5〜150重量%の範囲にある。この範囲のフィルムを用いることが好適である。上記範囲を外れると、焼成過程でフィルム破断、乾燥ムラによるフィルムの色調ムラ、特性ばらつき等の不具合が起こることがある。
脱水剤の好ましい量は、ポリアミド酸中のアミド酸ユニット1モルに対して、0.5〜5モル、好ましくは1.0〜4モルである。
また、イミド化触媒の好ましい量はポリアミド酸中のアミド酸ユニット1モルに対して、0.05〜3モル、好ましくは0.2〜2モルである。
脱水剤及びイミド化触媒が上記範囲を下回ると化学的イミド化が不十分で、焼成途中で破断したり、機械的強度が低下したりすることがある。また、これらの量が上記範囲を上回ると、イミド化の進行が早くなりすぎ、フィルム状にキャストすることが困難となることがあるため好ましくない。
The film forming conditions and heating conditions can vary depending on the type of polyamic acid, the thickness of the film, and the like.
A film forming dope is obtained by mixing a dehydrating agent and an imidization catalyst in a polyamic acid solution at a low temperature. Subsequently, this film-forming dope is cast into a film on a support such as a glass plate, an aluminum foil, an endless stainless steel belt, or a stainless drum, and the temperature on the support is 80 ° C. to 200 ° C., preferably 100 ° C. to 180 ° C. In the region, it is partially cured and / or dried by activating the dehydrating agent and imidization catalyst by heating for 30 seconds to 10 minutes, and then peeled off from the support to form a polyamic acid film (hereinafter referred to as gel film). Get.
The gel film is in the intermediate stage of curing from polyamic acid to polyimide, has self-supporting properties, and has the formula (1)
(AB) × 100 / B (1)
In formula (1), A and B represent the following.
A: Weight of gel film B: The volatile content calculated from the weight after heating the gel film at 450 ° C. for 20 minutes is in the range of 5 to 500% by weight, preferably 5 to 200% by weight, more preferably 5 to 5%. It is in the range of 150% by weight. It is preferable to use a film in this range. If outside the above range, defects such as film breakage, uneven color tone of the film due to uneven drying, and characteristic variations may occur during the baking process.
The preferable amount of the dehydrating agent is 0.5 to 5 mol, preferably 1.0 to 4 mol, relative to 1 mol of the amic acid unit in the polyamic acid.
Moreover, the preferable quantity of an imidation catalyst is 0.05-3 mol with respect to 1 mol of amic acid units in a polyamic acid, Preferably it is 0.2-2 mol.
If the dehydrating agent and the imidization catalyst are below the above ranges, chemical imidization may be insufficient, and may break during firing or mechanical strength may decrease. Moreover, when these amounts exceed the above range, the progress of imidization becomes too fast, and it may be difficult to cast into a film, which is not preferable.

前記ゲルフィルムの端部を固定して硬化時の収縮を回避して乾燥し、水、残留溶媒、残存転化剤及び触媒を除去し、そして残ったアミド酸を完全にイミド化して、本発明のポリイミドフィルムが得られる。   The end of the gel film is fixed to avoid shrinkage during curing, water, residual solvent, residual conversion agent and catalyst are removed, and the remaining amic acid is completely imidized to obtain the present invention. A polyimide film is obtained.

この時、最終的に400〜650℃の温度で5〜400秒加熱するのが好ましい。この温度より高い及び/または時間が長いと、フィルムの熱劣化が起こり問題が生じることがある。逆にこの温度より低い及び/または時間が短いと所定の効果が発現しないことがある。   At this time, it is preferable to finally heat at a temperature of 400 to 650 ° C. for 5 to 400 seconds. Above this temperature and / or for a long time, the film may suffer from thermal degradation and may cause problems. Conversely, if the temperature is lower than this temperature and / or the time is shorter, the predetermined effect may not be exhibited.

このようにして得られたポリイミドフィルムを、接着強度向上のためにあらゆる公知の表面処理を施してもよい。表面処理方法として、チタンまたはシランカップリング剤処理、コロナ放電処理、プラズマ処理等が挙げられる。   The polyimide film thus obtained may be subjected to any known surface treatment for improving the adhesive strength. Examples of the surface treatment method include titanium or silane coupling agent treatment, corona discharge treatment, and plasma treatment.

また、フィルム中に残留している内部応力を緩和させるためにフィルムを搬送するに必要最低限の張力下において加熱処理をすることもできる。好ましくは1〜50kg/m、さらに好ましくは1.5〜40kg/m、特に好ましくは2〜30kg/mである。この加熱処理はフィルム製造工程において行ってもよいし、また、別途この工程を設けても良い。加熱条件はフィルムの特性や用いる装置に応じて変動するため一概に決定することはできないが、一般的には200℃以上500℃以下、好ましくは250℃以上500℃以下、特に好ましくは300℃以上450℃以下の温度で、1〜300秒、好ましくは2〜250秒、特に好ましくは5〜200秒程度の熱処理により内部応力を緩和することができる。   Moreover, in order to relieve the internal stress remaining in the film, heat treatment can be performed under the minimum tension necessary for transporting the film. Preferably it is 1-50 kg / m, More preferably, it is 1.5-40 kg / m, Most preferably, it is 2-30 kg / m. This heat treatment may be performed in the film manufacturing process, or may be provided separately. The heating conditions vary depending on the characteristics of the film and the apparatus used, and therefore cannot be determined in general. The internal stress can be relaxed by heat treatment at a temperature of 450 ° C. or lower for 1 to 300 seconds, preferably 2 to 250 seconds, particularly preferably 5 to 200 seconds.

ポリイミドフィルムの諸特性の制御は、用いるモノマーの種類、重合時のモノマーの添加順序、選択するイミド化方法等により適宜制御することができるが、本発明において概ね以下の特性を有するように分子設計することが好ましい。
1.引張弾性率は4.0GPa以上、好ましくは4.5GPa以上、特に好ましくは5.0GPa以上
2.吸湿膨張係数は14ppm以下、好ましくは12ppm以下
3.線膨張係数は1〜20ppm、好ましくは5〜18ppm、
また、本発明においては市販のポリイミドフィルムを用いてもよく、例えば、アピカル(鐘淵化学工業社製)、カプトン(デュポン社製)、ユーピレックス(宇部興産社製)が挙げられる。
Control of various properties of the polyimide film can be appropriately controlled according to the type of monomer used, the order of addition of the monomers during polymerization, the imidization method to be selected, etc., but in the present invention, the molecular design generally has the following properties. It is preferable to do.
1. The tensile elastic modulus is 4.0 GPa or more, preferably 4.5 GPa or more, particularly preferably 5.0 GPa or more. 2. Hygroscopic expansion coefficient is 14 ppm or less, preferably 12 ppm or less. The linear expansion coefficient is 1-20 ppm, preferably 5-18 ppm,
In the present invention, a commercially available polyimide film may be used, and examples thereof include apical (manufactured by Kaneka Chemical Co., Ltd.), kapton (manufactured by DuPont), and upilex (manufactured by Ube Industries).

金属箔について説明する。本発明において使用する金属箔としては特に限定されるものではないが、電子機器・電気機器用途に本発明のフレキシブル金属張積層板を用いる場合には、例えば、銅若しくは銅合金、ステンレス鋼若しくはその合金、ニッケル若しくはニッケル合金(42合金も含む)、アルミニウム若しくはアルミニウム合金からなる箔を挙げることができる。一般的なフレキシブル金属張積層板では、圧延銅箔、電解銅箔といった銅箔が多用されるが、本発明においても好ましく用いることができる。なお、これらの金属箔の表面には、防錆層や耐熱層あるいは接着層が塗布されていてもよい。   The metal foil will be described. The metal foil used in the present invention is not particularly limited, but when the flexible metal-clad laminate of the present invention is used for electronic equipment / electric equipment, for example, copper or copper alloy, stainless steel or its Examples include foils made of alloys, nickel, nickel alloys (including 42 alloys), aluminum, or aluminum alloys. In general flexible metal-clad laminates, copper foil such as rolled copper foil and electrolytic copper foil is frequently used, but it can also be preferably used in the present invention. In addition, the antirust layer, the heat-resistant layer, or the contact bonding layer may be apply | coated to the surface of these metal foil.

本発明において、上記金属箔の厚みについては特に限定されるものではなく、その用途に応じて、十分な機能が発揮できる厚みであればよいが、一例をあげて説明すると、一般的には1〜35μm、さらには2〜25μm、特には3〜18μmが好ましい。金属箔の厚みがこの範囲を下回ると異方導電性フィルム等を用いた種々基板等への実装時に接続不良または接続信頼性の低下をきたしやすく、また、上記範囲を上回ると微細配線を形成させることが難しくなる傾向にある。また、この金属箔は厚めのものを用いてラミネートし、その後エッチング等公知の方法により薄くして用いることもできる。   In the present invention, the thickness of the metal foil is not particularly limited, and may be any thickness that can exhibit a sufficient function depending on the application. It is preferably -35 µm, more preferably 2-25 µm, particularly 3-18 µm. If the thickness of the metal foil is less than this range, connection failure or connection reliability is liable to decrease when mounted on various substrates using an anisotropic conductive film, etc., and if it exceeds the above range, fine wiring is formed. Tend to be difficult. The metal foil can be laminated using a thicker one, and then thinned by a known method such as etching.

接着層について説明する。本発明において用いられる接着層は、耐熱性の高い樹脂を含有する接着層を用いた場合に、特に発明の効果である寸法安定性を顕著に発現するが、もちろん、いかなる樹脂を用いてもかまわない。熱融着型の熱可塑性樹脂としては、ポリイミド系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリケトン系樹脂、ポリスルホン樹脂、ポリフェニレンエーテル樹脂、ポリオレフィン樹脂、ポリフェニレンスルフィド系樹脂、フッ素樹脂、ポリアリレート系樹脂、液晶ポリマー樹脂、などが挙げられ、絶縁信頼性、ラミネート加工性の面から熱可塑性ポリイミド樹脂を含有することが好ましい。また、熱硬化性樹脂としては、アクリル系樹脂、エポキシ系、変性エポキシ系、フェノール系、ビスマレイミド系、メタクリル系樹脂などが挙げられる。これらの樹脂は適宜組み合わせて用いることができる。     The adhesive layer will be described. The adhesive layer used in the present invention remarkably exhibits dimensional stability, which is an effect of the invention, particularly when an adhesive layer containing a resin having high heat resistance is used. Of course, any resin may be used. Absent. Examples of heat-sealable thermoplastic resins include polyimide resins, polyamide resins, polyester resins, polycarbonate resins, polyketone resins, polysulfone resins, polyphenylene ether resins, polyolefin resins, polyphenylene sulfide resins, fluororesins, poly resins Examples include arylate resins and liquid crystal polymer resins, and it is preferable to contain a thermoplastic polyimide resin in terms of insulation reliability and laminate processability. Examples of the thermosetting resin include acrylic resins, epoxy resins, modified epoxy resins, phenol resins, bismaleimide resins, and methacrylic resins. These resins can be used in appropriate combination.

上記熱可塑性ポリイミドとしては、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリエステルイミド等を好適に用いることができる。   As the thermoplastic polyimide, thermoplastic polyimide, thermoplastic polyamideimide, thermoplastic polyetherimide, thermoplastic polyesterimide, and the like can be suitably used.

なお、本発明における熱可塑性ポリイミドとは、ガラス転移温度を有し、かつ、圧縮モード(プローブ径3mmφ、荷重5g)の熱機械分析測定(TMA)において、10〜400℃(昇温速度:10℃/min)の温度範囲で永久圧縮変形を起こすものをいう。   The thermoplastic polyimide in the present invention has a glass transition temperature and is 10 to 400 ° C. (temperature increase rate: 10) in thermomechanical analysis (TMA) in compression mode (probe diameter 3 mmφ, load 5 g). That which causes permanent compression deformation in the temperature range of ° C / min).

また、既存の装置でラミネートが可能であり、かつ得られる金属張積層板の耐熱性を損なわないという点から考えると、本発明における熱可塑性ポリイミドは、150〜300℃の範囲にガラス転移温度(Tg)を有していることが好ましい。なお、Tgは動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値により求めることができる。   In view of the fact that lamination with an existing apparatus is possible and the heat resistance of the resulting metal-clad laminate is not impaired, the thermoplastic polyimide in the present invention has a glass transition temperature (150 to 300 ° C.). Tg) is preferred. In addition, Tg can be calculated | required from the value of the inflexion point of the storage elastic modulus measured with the dynamic viscoelasticity measuring apparatus (DMA).

本発明に用いられる熱可塑性ポリイミドの前駆体であるポリアミド酸については、特に限定されるわけではなく、あらゆるポリアミド酸を用いることができる。ポリアミド酸溶液の製造に関しても、前記原料および前記製造条件等を全く同様に用いることができる。   The polyamic acid that is a precursor of the thermoplastic polyimide used in the present invention is not particularly limited, and any polyamic acid can be used. Regarding the production of the polyamic acid solution, the raw materials and the production conditions can be used in exactly the same manner.

使用する原料を種々組み合わせることにより、諸特性を調節することができるが、一般に剛直構造のジアミン使用比率が大きくなるとガラス転移温度高くなる及び/又は熱時の貯蔵弾性率が大きくなり接着性・加工性が低くなるため好ましくない。剛直構造のジアミン比率は好ましくは40mol%以下、さらに好ましくは30mol%以下、特に好ましくは20mol%以下である。   Various characteristics can be adjusted by combining various raw materials to be used, but generally the glass transition temperature becomes higher and / or the storage elastic modulus during heating becomes higher when the ratio of rigid-structure diamine is increased. This is not preferable because the property is low. The diamine ratio of the rigid structure is preferably 40 mol% or less, more preferably 30 mol% or less, and particularly preferably 20 mol% or less.

また、必要に応じて無機あるいは有機物のフィラーを添加しても良く、フィラーの添加方法も前記方法を全く同様に用いることができる。   Further, if necessary, an inorganic or organic filler may be added, and the above method can be used in the same manner as the filler addition method.

上記ポリアミド酸溶液から接着層を設けるには、ポリイミドフィルム及び/又は金属箔上に流延して乾燥・イミド化して接着層を設ける方法、PETフィルムなどに流延したものをポリイミドフィルム及び/又は金属箔に転写して接着層を設ける方法、熱可塑性ポリイミドフィルムを形成して接着フィルムとして用いる方法等いかなる方法を用いてもよい。上記ポリアミド酸溶液に別の樹脂を溶解させてポリマーブレンドとして用いることもできる。ポリイミドフィルム上に流延、塗布する方法については特に限定されず、ダイコーター、リバースコーター、ブレードコーター等、既存の方法を使用することができる。塗布厚みについては特に限定されず、用途ごとに適宜厚みを調整すれば良いが、塗布厚みが厚くなりすぎるとキュアに要する時間が長くなるため生産性が落ちるなどの不具合が生じやすくなるため、イミド化後の厚みが10μm以下となるように塗布することが好ましい。   In order to provide an adhesive layer from the above polyamic acid solution, a method of providing an adhesive layer by casting on a polyimide film and / or a metal foil, drying and imidizing, a polyimide film and / or a cast film on a PET film, etc. Any method such as a method of transferring to a metal foil to provide an adhesive layer or a method of forming a thermoplastic polyimide film and using it as an adhesive film may be used. Another resin can be dissolved in the polyamic acid solution and used as a polymer blend. The method of casting and coating on the polyimide film is not particularly limited, and existing methods such as a die coater, a reverse coater, and a blade coater can be used. The coating thickness is not particularly limited, and may be adjusted appropriately for each application. However, if the coating thickness becomes too thick, the time required for curing becomes long, so that problems such as reduced productivity are likely to occur. It is preferable to apply so that the thickness after the formation becomes 10 μm or less.

一般に、ポリイミドはその前駆体であるポリアミド酸をイミド化することにより得られるが、イミド化には、熱イミド化法または化学イミド化法を単独または併用して用いられる。化学イミド化法において、脱水剤として例えば、脂肪族酸無水物、芳香族酸無水物、N,N’− ジアルキルカルボジイミド、ハロゲン化低級脂肪族、ハロゲン化低級脂肪酸無水物、アリールホスホン酸ジハロゲン化物、チオニルハロゲン化物、またはそれら2種以上の混合物が挙げられる。中でも入手の容易性、コストの点から、無水酢酸、無水プロピオン酸、無水ラク酸等の脂肪族酸無水物、またはそれら2種以上の混合物を好ましく用いることができる。 また、イミド化触媒として、例えば、脂肪族第三級アミン、芳香族第三級アミン、複素環式第三級アミン等が用いられる。中でも触媒としての反応性の点から、複素環式第三級アミンから選択されるものが特に好ましく用いられる。具体的にはキノリン、イソキノリン、β−ピコリン、ピリジン等が好ましく用いられる。   In general, a polyimide is obtained by imidizing a polyamic acid which is a precursor thereof. For imidization, a thermal imidization method or a chemical imidization method is used alone or in combination. In the chemical imidization method, examples of the dehydrating agent include aliphatic acid anhydrides, aromatic acid anhydrides, N, N′-dialkylcarbodiimides, halogenated lower aliphatics, halogenated lower fatty acid anhydrides, arylphosphonic acid dihalides, And thionyl halide, or a mixture of two or more thereof. Among these, from the viewpoint of easy availability and cost, aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic acid anhydride, or a mixture of two or more thereof can be preferably used. Moreover, as an imidation catalyst, an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine, etc. are used, for example. Among them, those selected from heterocyclic tertiary amines are particularly preferably used from the viewpoint of reactivity as a catalyst. Specifically, quinoline, isoquinoline, β-picoline, pyridine and the like are preferably used.

いずれの方法を用いても、加熱によるイミド化及び/又は乾燥が必要であり、この加熱温度はは高い方がイミド化が起こりやすいため、イミド化速度を速くすることができ、生産性の面で好ましい。但し、高すぎると熱可塑性ポリイミドが熱分解を起こす可能性がある。
一方、熱キュアの温度が低すぎると、イミド化が進みにくく、イミド化工程に要する時間が長くなってしまう。熱イミド化の温度は、熱可塑性ポリイミドのガラス転移温度〜ガラス転移温度+200℃の範囲内に設定することが好ましく、ガラス転移温度+50℃〜ガラス転移温度+150℃の範囲内に設定することがより好ましい。イミド化時間に関しては、実質的にイミド化および乾燥が完結するに十分な時間を取ればよく、一義的に限定されるものではないが、一般的には1〜600秒程度の範囲で適宜設定される。
Any method requires imidization and / or drying by heating, and the higher the heating temperature, the easier the imidization occurs. Is preferable. However, if it is too high, the thermoplastic polyimide may cause thermal decomposition.
On the other hand, if the temperature of the heat cure is too low, imidization is difficult to proceed, and the time required for the imidization process becomes long. The temperature of the thermal imidization is preferably set within the range of glass transition temperature to glass transition temperature + 200 ° C. of the thermoplastic polyimide, and more preferably set within the range of glass transition temperature + 50 ° C. to glass transition temperature + 150 ° C. preferable. As for the imidization time, it suffices to take a sufficient time for the imidization and drying to be substantially completed, and although it is not uniquely limited, generally it is appropriately set within a range of about 1 to 600 seconds. Is done.

上記温度範囲に変更する以外はポリイミドフィルムを製造する場合とまったく同様に行うことで熱可塑性ポリイミドフィルムを製造方法することができる。   Except changing to the said temperature range, the manufacturing method of a thermoplastic polyimide film can be performed by performing just like the case where a polyimide film is manufactured.

また、接着層の熔融流動性を改善する目的で、意図的にイミド化率を低くする及び/又は溶媒を残留させることもできる。   Further, for the purpose of improving the melt fluidity of the adhesive layer, it is possible to intentionally lower the imidization rate and / or leave the solvent.

また、溶剤可溶性のポリイミド溶液をポリイミドフィルム上に塗工して熱可塑性ポリイミド層を設けることもできる。   Alternatively, a thermoplastic polyimide layer can be provided by applying a solvent-soluble polyimide solution on the polyimide film.

本発明における接着層を介して金属箔とポリイミドフィルムを貼り合わせるには、例えば、一対以上の金属ロールを有する熱ロールラミネート装置或いはダブルベルトプレス(DBP)による連続処理を用いることができる。中でも、装置構成が単純であり保守コストの面で有利であるという点から、一対以上の金属ロールを有する熱ロールラミネート装置を用いることが好ましい。ここでいう「一対以上の金属ロールを有する熱ロールラミネート装置」とは、材料を加熱加圧するための金属ロールを有している装置であればよく、その具体的な装置構成は特に限定されるものではない。   In order to bond the metal foil and the polyimide film through the adhesive layer in the present invention, for example, a hot roll laminating apparatus having a pair of metal rolls or a continuous treatment by a double belt press (DBP) can be used. Among these, it is preferable to use a hot roll laminating apparatus having a pair of metal rolls because the apparatus configuration is simple and advantageous in terms of maintenance cost. The “heat roll laminating apparatus having a pair of metal rolls” herein may be an apparatus having a metal roll for heating and pressurizing a material, and the specific apparatus configuration is particularly limited. It is not a thing.

上記熱ラミネートを実施する手段の具体的な構成は特に限定されるものではないが、得られる積層板の外観を良好なものとするために、加圧面と金属箔との間に保護材料を配置することが好ましい。保護材料としては、熱ラミネート工程の加熱温度に耐えうるものであれば特に限定されず、非熱可塑性ポリイミドフィルム等の耐熱性プラスチック、銅箔、アルミニウム箔、SUS箔等の金属箔等を好適に用いることができる。中でも、耐熱性、再利用性等のバランスが優れる点から、非熱可塑性ポリイミドフィルムがより好ましく用いられる。また、厚みが薄いとラミネート時の緩衝ならびに保護の役目を十分に果たさなくなるため、保護材料の厚みは75μm以上であることが好ましい。   The specific configuration of the means for carrying out the thermal lamination is not particularly limited, but a protective material is disposed between the pressing surface and the metal foil in order to improve the appearance of the resulting laminate. It is preferable to do. The protective material is not particularly limited as long as it can withstand the heating temperature in the heat laminating process, and preferably a heat-resistant plastic such as a non-thermoplastic polyimide film, a metal foil such as a copper foil, an aluminum foil, or a SUS foil. Can be used. Among these, a non-thermoplastic polyimide film is more preferably used from the viewpoint of excellent balance between heat resistance and reusability. In addition, if the thickness is thin, the protective material does not sufficiently fulfill the role of buffering and protection at the time of lamination. Therefore, the thickness of the protective material is preferably 75 μm or more.

また、この保護材料は必ずしも1層である必要はなく、異なる特性を有する2層以上の多層構造でも良い。   Further, the protective material does not necessarily have to be a single layer, and may have a multilayer structure of two or more layers having different characteristics.

上記熱ラミネート手段における被積層材料の加熱方式は特に限定されるものではなく、例えば、熱循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。同様に、上記熱ラミネート手段における被積層材料の加圧方式も特に限定されるものではなく、例えば、油圧方式、空気圧方式、ギャップ間圧力方式等、所定の圧力を加えることができる従来公知の方式を採用した加圧手段を用いることができる。   The heating method of the material to be laminated in the heat laminating means is not particularly limited. For example, heating using a conventionally known method capable of heating at a predetermined temperature, such as a heat circulation method, a hot air heating method, an induction heating method, or the like. Means can be used. Similarly, the pressurization method of the material to be laminated in the heat laminating means is not particularly limited, and a conventionally known method capable of applying a predetermined pressure such as a hydraulic method, a pneumatic method, a gap pressure method, etc. The pressurizing means adopting can be used.

上記熱ラミネート工程における加熱温度、すなわちラミネート温度は、接着フィルムのガラス転移温度(Tg)+50℃以上の温度であることが好ましく、接着フィルムのTg+100℃以上がより好ましい。Tg+50℃以上の温度であれば、接着フィルムと金属箔とを良好に熱ラミネートすることができる。またTg+100℃以上であれば、ラミネート速度を上昇させてその生産性をより向上させることができる。   The heating temperature in the thermal laminating step, that is, the laminating temperature, is preferably a glass transition temperature (Tg) of the adhesive film + 50 ° C. or higher, and more preferably Tg + 100 ° C. or higher of the adhesive film. If it is Tg + 50 degreeC or more temperature, an adhesive film and metal foil can be heat-laminated favorably. Moreover, if it is Tg + 100 degreeC or more, the lamination speed | rate can be raised and the productivity can be improved more.

上述のような、耐熱性の高い樹脂を含有する接着層を用いた場合、ラミネート温度も高くする必要がある。たとえば、熱融着型の樹脂を用いた場合、接着層を構成する熱可塑性樹脂には少なくとも180℃以上のTgであることが好ましいので、更にその熱融着のためには200℃以上の熱ラミネート温度が必要となる。そのため、ラミネートされて得られたフレキシブル金属張積層板に残留歪みが発生し、エッチングして配線を形成する際や、部品を実装するために半田リフローを行う際に寸法変化となって現れる。従って、本発明においては、熱ラミネート温度が200℃以上、好ましくは℃以上である場合に、顕著にその効果を発現する。   When an adhesive layer containing a resin having high heat resistance as described above is used, it is necessary to increase the laminating temperature. For example, when a heat-sealing resin is used, it is preferable that the thermoplastic resin constituting the adhesive layer has a Tg of at least 180 ° C. or higher. Lamination temperature is required. For this reason, residual distortion occurs in the flexible metal-clad laminate obtained by laminating and appears as a dimensional change when forming a wiring by etching, or when performing solder reflow to mount a component. Therefore, in the present invention, when the heat laminating temperature is 200 ° C. or higher, preferably, or higher, the effect is remarkably exhibited.

上記熱ラミネート工程におけるラミネート速度は、0.5m/分以上であることが好ましく、1.0m/分以上であることがより好ましい。0.5m/分以上であれば十分な熱ラミネートが可能になり、1.0m/分以上であれば生産性をより一層向上することができる。   The laminating speed in the thermal laminating step is preferably 0.5 m / min or more, and more preferably 1.0 m / min or more. If it is 0.5 m / min or more, sufficient thermal lamination is possible, and if it is 1.0 m / min or more, productivity can be further improved.

上記熱ラミネート工程における圧力、すなわちラミネート圧力は、高ければ高いほどラミネート温度を低く、かつラミネート速度を速くすることができる利点があるが、一般にラミネート圧力が高すぎると得られる積層板の寸法変化が悪化する傾向がある。また、逆にラミネート圧力が低すぎると得られる積層板の金属箔の接着強度が低くなる。そのためラミネート圧力は、49〜490N/cm(5〜50kgf/cm)の範囲内であることが好ましく、98〜294N/cm(10〜30kgf/cm)の範囲内であることがより好ましい。この範囲内であれば、ラミネート温度、ラミネート速度およびラミネート圧力の三条件を良好なものにすることができ、生産性をより一層向上することができる。   The higher the pressure in the heat laminating step, that is, the laminating pressure, is advantageous in that the laminating temperature can be lowered and the laminating speed can be increased. There is a tendency to get worse. On the other hand, if the lamination pressure is too low, the adhesive strength of the metal foil of the laminate obtained is lowered. Therefore, the lamination pressure is preferably in the range of 49 to 490 N / cm (5 to 50 kgf / cm), and more preferably in the range of 98 to 294 N / cm (10 to 30 kgf / cm). Within this range, the three conditions of the lamination temperature, the lamination speed and the lamination pressure can be made favorable, and the productivity can be further improved.

また、ラミネート時のポリイミドフィルム張力は、0.01〜2N/cm、さらには0.02〜1.5N/cm、特には0.05〜1.0N/cmが好ましい。張力がこの範囲を下回ると外観の良好なフレキシブル金属張積層板を得ることが困難となる場合があり、またこの範囲を上回ると寸法安定性が劣る傾向にある。   The polyimide film tension during lamination is preferably 0.01 to 2 N / cm, more preferably 0.02 to 1.5 N / cm, and particularly preferably 0.05 to 1.0 N / cm. If the tension is below this range, it may be difficult to obtain a flexible metal-clad laminate with good appearance, and if it exceeds this range, the dimensional stability tends to be inferior.

本発明にかかるフレキシブル金属張積層板を得るためには、連続的に被積層材料を加熱しながら圧着する熱ラミネート装置を用いることが好ましいが、この熱ラミネート装置では、熱ラミネート手段の前段に、被積層材料を繰り出す被積層材料繰出手段を設けてもよいし、熱ラミネート手段の後段に、被積層材料を巻き取る被積層材料巻取手段を設けてもよい。これらの手段を設けることで、上記熱ラミネート装置の生産性をより一層向上させることができる。上記被積層材料繰出手段および被積層材料巻取手段の具体的な構成は特に限定されるものではなく、例えば、接着フィルムや金属箔、あるいは得られる積層板を巻き取ることのできる公知のロール状巻取機等を挙げることができる。   In order to obtain the flexible metal-clad laminate according to the present invention, it is preferable to use a thermal laminating apparatus that continuously press-bonds the material to be laminated while heating, but in this thermal laminating apparatus, before the thermal laminating means, A laminated material feeding means for feeding the laminated material may be provided, or a laminated material winding means for winding the laminated material may be provided after the thermal laminating means. By providing these means, the productivity of the thermal laminating apparatus can be further improved. The specific configuration of the laminated material feeding means and the laminated material winding means is not particularly limited, and for example, an adhesive film, a metal foil, or a known roll shape capable of winding up the obtained laminated plate A winder etc. can be mentioned.

さらに、保護材料を巻き取ったり繰り出したりする保護材料巻取手段や保護材料繰出手段を設けると、より好ましい。これら保護材料巻取手段・保護材料繰出手段を備えていれば、熱ラミネート工程で、一度使用された保護材料を巻き取って繰り出し側に再度設置することで、保護材料を再使用することができる。また、保護材料を巻き取る際に、保護材料の両端部を揃えるために、端部位置検出手段および巻取位置修正手段を設けてもよい。これによって、精度よく保護材料の端部を揃えて巻き取ることができるので、再使用の効率を高めることができる。なお、これら保護材料巻取手段、保護材料繰出手段、端部位置検出手段および巻取位置修正手段の具体的な構成は特に限定されるものではなく、従来公知の各種装置を用いることができる。     Furthermore, it is more preferable to provide a protective material winding means and a protective material feeding means for winding and feeding the protective material. If these protective material take-up means and protective material feeding means are provided, the protective material can be reused by winding the protective material once used in the thermal laminating step and installing it again on the pay-out side. . Further, when winding up the protective material, end position detecting means and winding position correcting means may be provided in order to align both ends of the protective material. As a result, the end portions of the protective material can be aligned and wound with high accuracy, so that the efficiency of reuse can be increased. The specific configurations of the protective material winding means, the protective material feeding means, the end position detecting means, and the winding position correcting means are not particularly limited, and various conventionally known devices can be used.

(B)工程
(B)工程では、(A)工程で得られた金属張積層板を(A)工程よりも低い張力をMD方向にかけながら連続的に熱処理する。
(B) Step (B) In the step (B), the metal-clad laminate obtained in the step (A) is continuously heat-treated while applying a lower tension in the MD direction than in the step (A).

(B)工程において熱処理する場合のMD方向の張力は、(A)工程における張力よりも低ければよいが、搬送性、巻き取り性に影響しない範囲で極力張力を小さくすることが好ましいく、少なくともラミネート時の張力の90%以下、好ましくは80%以下の張力で行うことが好ましい。張力がこの範囲を上回ると、寸法安定性の改善効果が発現しにくくなったり、寸法安定性のMD/TD(フィルムの幅方向)異方性が大きくなったりする。   The tension in the MD direction when the heat treatment is performed in the step (B) may be lower than the tension in the step (A), but it is preferable to reduce the tension as much as possible without affecting the transportability and the winding property. The tension is preferably 90% or less, preferably 80% or less of the tension during lamination. If the tension exceeds this range, the effect of improving the dimensional stability becomes difficult to develop, and the MD / TD (film width direction) anisotropy of the dimensional stability increases.

熱処理には、熱風循環方式、熱風加熱方式、誘導加熱方式等、所定の温度で加熱し得る従来公知の方式を採用した加熱手段を用いることができる。熱処理温度は接着層のガラス転移温度以上であり、ラミネート温度以下が好ましい。接着層のガラス転移温度以下であると寸法安定性の改善効果が得られにくい。また、ラミネート温度以上で熱処理した場合、フレキシブル金属張積層板の外観を損ないやすい傾向にある。   For the heat treatment, a heating means employing a conventionally known method capable of heating at a predetermined temperature, such as a hot air circulation method, a hot air heating method, an induction heating method, or the like can be used. The heat treatment temperature is not less than the glass transition temperature of the adhesive layer and is preferably not more than the lamination temperature. When the temperature is not higher than the glass transition temperature of the adhesive layer, it is difficult to obtain an effect of improving dimensional stability. Moreover, when it heat-processes above lamination temperature, it exists in the tendency for the external appearance of a flexible metal-clad laminated board to be impaired easily.

熱処理は(A)工程で得た金属積層板を得た後、巻き取り前に行っても良いし、一旦巻き取った後、熱処理をしてもよい。また、熱処理する際、200℃以上、特に250℃以上の温度で金属導体層が酸化を受けやすくなるので高温での熱処理は二酸化炭素、窒素などの不活性ガス雰囲気下で行うことが好ましい。   The heat treatment may be performed before winding after obtaining the metal laminate obtained in the step (A), or may be heat treated after winding. In addition, when the heat treatment is performed, the metal conductor layer is easily oxidized at a temperature of 200 ° C. or higher, particularly 250 ° C. or higher.

本発明にかかる製造方法により得られるフレキシブル金属張積層板においては、金属箔を完全に除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.10〜+0.10の範囲にあることが非常に好ましい。金属箔除去前後の寸法変化率は、エッチング工程前のフレキシブル金属張積層板における所定の寸法およびエッチング工程後の所定の寸法の差分と、上記エッチング工程前の所定の寸法との比で表される。加熱前後の寸法変化率は、エッチング工程後のフレキシブル金属張積層板における所定の寸法および加熱工程後の所定の寸法の差分と、上記加熱工程前の所定の寸法との比で表される。   In the flexible metal-clad laminate obtained by the manufacturing method according to the present invention, the dimensional change rate before and after completely removing the metal foil, and the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil. It is very preferable that the total value is in the range of -0.10 to +0.10 in both the MD direction and the TD direction. The rate of dimensional change before and after removal of the metal foil is expressed as a ratio between a difference between a predetermined dimension in the flexible metal-clad laminate before the etching process and a predetermined dimension after the etching process and a predetermined dimension before the etching process. . The dimensional change rate before and after heating is represented by a ratio between a difference between a predetermined dimension in the flexible metal-clad laminate after the etching process and a predetermined dimension after the heating process and a predetermined dimension before the heating process.

寸法変化率がこの範囲内から外れると、フレキシブル金属張積層板において、部品実装時の不良率が高くなる傾向にある。   If the dimensional change rate is out of this range, the defect rate at the time of component mounting tends to increase in the flexible metal-clad laminate.

上記寸法変化率の測定方法は特に限定されるものではなく、フレキシブル金属張積層板において、エッチングまたは加熱工程の前後に生じる寸法の増減を測定できる方法であれば、従来公知のどのような方法でも用いることができる。   The method for measuring the dimensional change rate is not particularly limited, and any method known in the art can be used as long as it can measure the increase or decrease in dimensions that occurs before and after the etching or heating process in the flexible metal-clad laminate. Can be used.

ここで、寸法変化率の測定は、MD方向、TD方向の双方について測定することが必須となる。連続的にイミド化ならびにラミネートする場合、MD方向およびTD方向では張力のかかり方が異なるため、熱膨張・収縮の度合いに差が現れ、寸法変化率も異なる。したがって、寸法変化率の小さい材料では、MD方向およびTD方向の双方ともに変化率が小さいことが要求される。本発明においては、フレキシブル金属張積層板の、金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の加熱を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.10〜+0.10の範囲にあることが非常に好ましい。   Here, it is essential to measure the dimensional change rate in both the MD direction and the TD direction. When imidizing and laminating continuously, the tension is different in the MD direction and the TD direction, so a difference appears in the degree of thermal expansion / contraction and the dimensional change rate is also different. Therefore, a material having a small dimensional change rate is required to have a low change rate in both the MD direction and the TD direction. In the present invention, the dimensional change rate before and after removing the metal foil of the flexible metal-clad laminate, and the total value of the dimensional change rate before and after heating at 250 ° C. for 30 minutes after removing the metal foil are MD direction, It is very preferable that the TD direction is in the range of -0.10 to +0.10.

なお、寸法変化率を測定する際の金属箔全面エッチング工程の具体的な条件は特に限定されるものではない。すなわち、金属箔の種類や厚みに応じてエッチング条件は異なるので、本発明において寸法変化率を測定する際のエッチング工程の条件は従来公知のどのような条件であってもよい。同様に、加熱工程においても、250℃で30分間加熱がなされれば良く、具体的な条件は特に限定されない。   In addition, the specific conditions of the metal foil whole surface etching process at the time of measuring a dimensional change rate are not specifically limited. That is, since the etching conditions differ depending on the type and thickness of the metal foil, the conditions of the etching process when measuring the dimensional change rate in the present invention may be any conventionally known conditions. Similarly, in the heating process, it is sufficient that heating is performed at 250 ° C. for 30 minutes, and specific conditions are not particularly limited.

以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。なお、合成例、実施例及び比較例における熱可塑性ポリイミドのガラス転移温度、フレキシブル積層板の寸法変化率、金属箔引き剥し強度の評価法は次の通りである。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples. In addition, the evaluation method of the glass transition temperature of the thermoplastic polyimide in a synthesis example, an Example, and a comparative example, the dimensional change rate of a flexible laminated board, and metal foil peeling strength is as follows.

(寸法変化率)
JIS C6481に基づいて、フレキシブル積層板に4つの穴を形成し、各穴のそれぞれの距離を測定した。次に、エッチング工程を実施してフレキシブル積層板から金属箔を除去した後に、20℃、60%RHの恒温室に24時間放置した。その後、エッチング工程前と同様に、上記4つの穴について、それぞれの距離を測定した。金属箔除去前における各穴の距離の測定値をD1とし、金属箔除去前における各穴の距離の測定値をD2として、次式により寸法変化率を求めた。
寸法変化率(%)={(D2−D1)/D1}×100
なお、上記寸法変化率は、MD方向及びTD方向の双方について測定した。
また、熱処理後の寸法変化率は、金属箔除去後における各穴の距離の測定値D2と、250℃、30分間熱処理した後の各穴の距離D3から次式により寸法変化率を求めた。
寸法変化率(%)={(D3−D2)/D2}×100
なお、各穴の距離測定は、23℃55%RHの環境下で12時間以上調湿したあとに測定した。
(金属箔の引き剥がし強度:接着強度)
JIS C6471の「6.5 引きはがし強さ」に従って、サンプルを作製し、5mm幅の金属箔部分を、180度の剥離角度、50mm/分の条件で剥離し、その荷重を測定した。
(弾性率)
弾性率の測定はASTM D882に準じて行った。
(線膨張係数)
50〜200℃の線膨張係数の測定は、セイコー電子(株)社製TMA120Cを用いて(サンプルサイズ 幅3mm、長さ10mm)、荷重3gで10℃/minで10℃〜400℃まで一旦昇温させた後、10℃まで冷却し、さらに10℃/minで昇温させて、2回目の昇温時の50℃及び200℃における熱膨張率から平均値として計算した。
(吸湿膨張係数)
吸湿膨張係数は、50℃30%Rhの環境下でのフィルム寸法(L1)を測定した後、湿度を変化させて50℃80%Rhの環境下でのフィルム寸法を測定し(L2)、下記式より算出する。
吸湿膨張係数(ppm)=(L1−L2)÷L1÷(80−30)×106
(動的粘弾性測定)
セイコー電子(株)社製DMS200を用いて(サンプルサイズ 巾9mm、長さ40mm)、周波数1、5、10Hzで昇温速度3℃/minで20〜400℃の温度範囲で測定した。温度に対して貯蔵弾性率をプロットした曲線の変曲点となる温度をガラス転移温度とした。
(熱可塑性の判定)
セイコー電子(株)社製TMA120Cを用いて圧縮モード(プローブ径3mmφ)、荷重5gで10℃/minで10℃〜400℃まで一旦昇温させた後、10℃まで冷却し、永久圧縮変形の有無を判定した。
(Dimensional change rate)
Based on JIS C6481, four holes were formed in the flexible laminate, and the distance of each hole was measured. Next, after carrying out an etching process to remove the metal foil from the flexible laminate, it was left in a temperature-controlled room at 20 ° C. and 60% RH for 24 hours. Then, each distance was measured about the said four holes similarly to the etching process front. The measured value of the distance of each hole before metal foil removal was set to D1, and the measured value of the distance of each hole before metal foil removal was set to D2, and the dimensional change rate was calculated | required by following Formula.
Dimensional change rate (%) = {(D2-D1) / D1} × 100
In addition, the said dimensional change rate was measured about both MD direction and TD direction.
Moreover, the dimensional change rate after heat processing calculated | required the dimensional change rate by following Formula from the measured value D2 of the distance of each hole after metal foil removal, and distance D3 of each hole after heat-processing for 30 minutes at 250 degreeC.
Dimensional change rate (%) = {(D3-D2) / D2} × 100
In addition, the distance measurement of each hole was measured after adjusting the humidity for 12 hours or more in an environment of 23 ° C. and 55% RH.
(Stripping strength of metal foil: Adhesive strength)
A sample was prepared according to “6.5 Peel Strength” of JIS C6471, and a 5 mm wide metal foil part was peeled off at a peeling angle of 180 degrees and 50 mm / min, and the load was measured.
(Elastic modulus)
The elastic modulus was measured according to ASTM D882.
(Linear expansion coefficient)
The linear expansion coefficient at 50 to 200 ° C. was measured by using TMA120C manufactured by Seiko Electronics Co., Ltd. (sample size: 3 mm width, 10 mm length), and the temperature was temporarily increased from 10 ° C. to 400 ° C. at a load of 3 g at 10 ° C./min. After heating, the temperature was cooled to 10 ° C., the temperature was further increased at 10 ° C./min, and the average value was calculated from the thermal expansion coefficients at 50 ° C. and 200 ° C. during the second temperature increase.
(Hygroscopic expansion coefficient)
The hygroscopic expansion coefficient was determined by measuring the film dimensions (L1) in an environment of 50 ° C. and 30% Rh, and then changing the humidity to measure the film dimensions in an environment of 50 ° C. and 80% Rh (L2). Calculate from the formula.
Hygroscopic expansion coefficient (ppm) = (L1−L2) ÷ L1 ÷ (80−30) × 10 6
(Dynamic viscoelasticity measurement)
Using DMS200 manufactured by Seiko Electronics Co., Ltd. (sample size: width 9 mm, length 40 mm), the frequency was 1, 5 and 10 Hz, and the temperature increase rate was 3 ° C./min. The temperature at which the inflection point of the curve in which the storage elastic modulus was plotted against the temperature was taken as the glass transition temperature.
(Judgment of thermoplasticity)
Using TMA120C manufactured by Seiko Electronics Co., Ltd., compression mode (probe diameter: 3 mmφ), 10 ° C / min at a load of 5 g, the temperature was once raised from 10 ° C to 400 ° C, cooled to 10 ° C, and subjected to permanent compression deformation The presence or absence was judged.

(参考例1;ポリイミドフィルムの製造)
10℃に冷却したN,N−ジメチルホルムアミド(DMF)231kgにp−フェニレンジアミン(p−PDA)3.75kgを溶解した後、ピロメリット酸二無水物(PMDA)7.50kgを添加し1時間撹拌して溶解させた。ここに4,4’−オキシジアニリン(ODA)20.85kgを溶解させた後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)8.17kgを添加し2時間撹拌して溶解させた。ここにさらにPMDA21.05kgを添加し1時間撹拌してPMDAを完全に溶解させた。
(Reference Example 1: Production of polyimide film)
After dissolving 3.75 kg of p-phenylenediamine (p-PDA) in 231 kg of N, N-dimethylformamide (DMF) cooled to 10 ° C., 7.50 kg of pyromellitic dianhydride (PMDA) was added for 1 hour. Stir to dissolve. After dissolving 20.85 kg of 4,4′-oxydianiline (ODA), 8.17 kg of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) was added for 2 hours. Stir to dissolve. To this, 21.05 kg of PMDA was further added and stirred for 1 hour to completely dissolve PMDA.

別途調製しておいたPMDAのDMF溶液(PMDA:DMF=0.91kg:12.1kg)を上記反応液に徐々に添加し、粘度が3000ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度19重量%、23℃での回転粘度が3400ポイズのポリアミド酸溶液を得た。(モル比:p−PDA/ODA/BPDA/PMDA=25/75/20/80)。
このポリアミド酸溶液に、無水酢酸/イソキノリン/DMF(重量比18.90/7.17/18.93)(アミド酸1モルに対して無水酢酸2.22モル、イソキノリン0.666モル)からなる硬化剤をポリアミド酸溶液に対して重量比50%で連続的にミキサーで攪拌しTダイから押出してダイの下20mmを走行しているステンレス製のエンドレスベルト上に流延した。この樹脂膜を130℃×100秒で加熱した後エンドレスベルトから自己支持性のゲル膜を引き剥がして(揮発分含量45重量%)テンタークリップに固定し、300℃×20秒、450℃×20秒、500℃×20秒で乾燥・イミド化させた後、プラズマ処理して17μmのポリイミドフィルムを得た。
弾性率 5.5GPa
吸湿膨張係数 10ppm
線膨張係数 18ppm(100〜200℃の平均値)
(参考例2;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを780g、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP)を115.6g加え、窒素雰囲気下で攪拌しながら、3,3’4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)を78.7g徐々に添加した。続いて、エチレンビス(トリメリット酸モノエステル酸無水物)(TMEG)を3.8g添加し、氷浴下で30分間撹拌した。2.0gのTMEGを20gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が3000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液を得た。
このポリアミド酸溶液を25μmPETフィルム(セラピールHP,東洋メタライジング社製)上に最終厚みが20μmとなるように流延し、120℃で5分間乾燥を行った。乾燥後の自己支持性フィルムをPETから剥離した後、金属製のピン枠に固定し、150℃で5分間、200℃で5分間、250℃で5分間、350℃で5分間乾燥を行い、単層シートを得た。この熱可塑性ポリイミドのガラス転移温度は240℃であった。また、熱可塑性の判定において、圧縮永久変形が生じたため熱可塑性を有していることがわかった。
A separately prepared DMF solution of PMDA (PMDA: DMF = 0.91 kg: 12.1 kg) was gradually added to the reaction solution, and the addition was stopped when the viscosity reached about 3000 poise. Stirring was performed for 1 hour to obtain a polyamic acid solution having a solid content of 19% by weight and a rotational viscosity at 23 ° C. of 3400 poise. (Molar ratio: p-PDA / ODA / BPDA / PMDA = 25/75/20/80).
This polyamic acid solution is composed of acetic anhydride / isoquinoline / DMF (weight ratio 18.90 / 7.17 / 18.93) (2.22 mol of acetic anhydride and 0.666 mol of isoquinoline with respect to 1 mol of amic acid). The curing agent was continuously stirred by a mixer at a weight ratio of 50% with respect to the polyamic acid solution, extruded from a T die, and cast on a stainless endless belt running 20 mm below the die. The resin film is heated at 130 ° C. for 100 seconds, and then the self-supporting gel film is peeled off from the endless belt (volatile content 45% by weight) and fixed to the tenter clip, 300 ° C. for 20 seconds, 450 ° C. × 20 After being dried and imidized at 500 ° C. for 20 seconds, plasma treatment was performed to obtain a 17 μm polyimide film.
Elastic modulus 5.5GPa
Hygroscopic expansion coefficient 10ppm
Linear expansion coefficient 18ppm (average value of 100-200 ° C)
(Reference Example 2: Synthesis of thermoplastic polyimide precursor)
780 g of DMF and 115.6 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) were added to a glass flask having a capacity of 2000 ml, and 3,3′4 while stirring under a nitrogen atmosphere. , 4'-biphenyltetracarboxylic dianhydride (BPDA) was gradually added. Subsequently, 3.8 g of ethylenebis (trimellitic acid monoester acid anhydride) (TMEG) was added and stirred for 30 minutes in an ice bath. A solution in which 2.0 g of TMEG was dissolved in 20 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 3000 poise, addition and stirring were stopped to obtain a polyamic acid solution.
This polyamic acid solution was cast on a 25 μm PET film (Therapy HP, manufactured by Toyo Metallizing Co., Ltd.) so as to have a final thickness of 20 μm, and dried at 120 ° C. for 5 minutes. After peeling off the dried self-supporting film from PET, it is fixed to a metal pin frame and dried at 150 ° C. for 5 minutes, 200 ° C. for 5 minutes, 250 ° C. for 5 minutes, 350 ° C. for 5 minutes, A single layer sheet was obtained. The glass transition temperature of this thermoplastic polyimide was 240 ° C. Further, in the determination of thermoplasticity, it was found that the thermoplastic has thermoplasticity due to the occurrence of permanent compression deformation.

(参考例3、フレキシブル銅張積層板(FCCL)の製造)
参考例2で得られたポリアミド酸溶液を固形分濃度10重量%になるまでDMFで希釈した後、参考例1で得られたポリイミドフィルムの両面に、熱可塑性ポリイミド層(接着層)の最終片面厚みが4μmとなるようにポリアミド酸を塗布した後、140℃で1分間加熱を行った。続いて、雰囲気温度390℃の遠赤外線ヒーター炉の中を20秒間通して加熱イミド化を行って、耐熱性接着フィルムを得た。得られた接着フィルムの両側に18μm圧延銅箔(BHY−22B−T,ジャパンエナジー社製)を、さらに銅箔の両側に保護材料(アピカル125NPI;鐘淵化学工業株式会社製)を用いて、ポリイミドフィルムの張力0.4N/cm、ラミネート温度360℃、ラミネート圧力196N/cm(20kgf/cm)、ラミネート速度1.5m/分の条件で連続的に熱ラミネートを行い、FCCLを作製した。このFCCLの特性を表1に示す。
(Reference Example 3, production of flexible copper clad laminate (FCCL))
After diluting the polyamic acid solution obtained in Reference Example 2 with DMF until the solid content concentration becomes 10% by weight, the final one side of the thermoplastic polyimide layer (adhesive layer) is formed on both sides of the polyimide film obtained in Reference Example 1 Polyamic acid was applied so that the thickness was 4 μm, and then heated at 140 ° C. for 1 minute. Subsequently, heat imidization was performed by passing through a far infrared heater furnace having an atmospheric temperature of 390 ° C. for 20 seconds to obtain a heat resistant adhesive film. By using 18 μm rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) on both sides of the obtained adhesive film, and further using a protective material (Apical 125 NPI; manufactured by Kaneka Chemical Co., Ltd.) on both sides of the copper foil, FCCL was prepared by continuous thermal lamination under the conditions of polyimide film tension 0.4 N / cm, laminating temperature 360 ° C., laminating pressure 196 N / cm (20 kgf / cm), laminating speed 1.5 m / min. Table 1 shows the characteristics of this FCCL.

(実施例1〜3、比較例1)
参考例1で得たFCCLを種々条件で窒素雰囲気下、熱風循環式オーブンを用いて連続的に熱処理した結果を表1に示す。
(Examples 1-3, Comparative Example 1)
Table 1 shows the results of continuously heat-treating the FCCL obtained in Reference Example 1 under various conditions in a nitrogen atmosphere using a hot air circulation oven.

(比較例2)
参考例1で得たFCCLを枚葉で、窒素雰囲気下で300℃2分間熱処理したところFCCLが波打ってしまい、外観のよいFCCLを得ることができなかった。
(Comparative Example 2)
When FCCL obtained in Reference Example 1 was heat treated at 300 ° C. for 2 minutes in a nitrogen atmosphere in a single wafer, FCCL wavy and FCCL with good appearance could not be obtained.

(比較例3)
厚み3mm、内径6インチのステンレス製の管に参考例1で得たFCCLを100巻きつけて窒素雰囲気下で360℃10分間熱処理したところ、巻き癖がついてしまいフラットなFCCLを得ることができなかった。
(Comparative Example 3)
When the FCCL obtained in Reference Example 1 was wound 100 times on a stainless steel tube with a thickness of 3 mm and an inner diameter of 6 inches and heat-treated at 360 ° C. for 10 minutes in a nitrogen atmosphere, the curl was attached and a flat FCCL could not be obtained. It was.

Claims (5)

少なくとも下記工程を含むフレキシブル金属張積層板の製造方法
(A)ポリイミドフィルムの片面または両面に、接着層を介して、MD方向に張力をかけながら連続的に金属箔との張り合わせを行い金属張積層板を得る工程
(B)金属張積層板を(A)工程よりも低い張力をMD方向にかけながら連続的に熱処理する工程
A method for producing a flexible metal-clad laminate including at least the following steps (A) A metal-clad laminate by continuously bonding with a metal foil while applying tension in the MD direction to one or both sides of a polyimide film via an adhesive layer Step of obtaining plate (B) Step of continuously heat-treating metal-clad laminate while applying lower tension in MD direction than step (A)
(A)工程におけ金属層との張り合わせは、一対以上の金属ロールを有する熱ロールラミネート装置により行うことを特徴とする請求項1記載のフレキシブル金属張積層板の製造方法。 The method for producing a flexible metal-clad laminate according to claim 1, wherein the bonding with the metal layer in the step (A) is performed by a hot roll laminator having a pair of metal rolls. (B)工程における熱処理温度が、接着層のガラス転移温度以上ラミネート温度以下であることを特徴とする請求項1〜2記載のフレキシブル金属張積層板の製造方法。 The method for producing a flexible metal-clad laminate according to claim 1 or 2, wherein the heat treatment temperature in step (B) is not less than the glass transition temperature of the adhesive layer and not more than the lamination temperature. 接着層が熱可塑性ポリイミドを含有することを特徴とする請求項1〜3記載のフレキシブル金属張積層板の寸法安定性改善方法。 The method for improving dimensional stability of a flexible metal-clad laminate according to claim 1, wherein the adhesive layer contains thermoplastic polyimide. 金属箔を除去する前後の寸法変化率、ならびに金属箔除去後に250℃、30分の熱処理を行う前後の寸法変化率の合計値が、MD方向、TD方向共に−0.15〜+0.15の範囲にあることを特徴とする請求項1〜4に記載の製造方法により得られるフレキシブル金属張積層板。

The dimensional change rate before and after removing the metal foil, and the total value of the dimensional change rate before and after performing heat treatment at 250 ° C. for 30 minutes after removing the metal foil is −0.15 to +0.15 in both the MD direction and the TD direction. The flexible metal-clad laminate obtained by the production method according to claim 1, wherein the laminate is in a range.

JP2003435300A 2003-12-26 2003-12-26 Method for producing flexible metal-clad laminate Expired - Lifetime JP4271563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435300A JP4271563B2 (en) 2003-12-26 2003-12-26 Method for producing flexible metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435300A JP4271563B2 (en) 2003-12-26 2003-12-26 Method for producing flexible metal-clad laminate

Publications (2)

Publication Number Publication Date
JP2005193404A true JP2005193404A (en) 2005-07-21
JP4271563B2 JP4271563B2 (en) 2009-06-03

Family

ID=34815454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435300A Expired - Lifetime JP4271563B2 (en) 2003-12-26 2003-12-26 Method for producing flexible metal-clad laminate

Country Status (1)

Country Link
JP (1) JP4271563B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137832A2 (en) * 2009-05-25 2010-12-02 Sk Energy Co., Ltd. Flexible metal-clad laminate and manufacturing method thereof
WO2016104297A1 (en) * 2014-12-26 2016-06-30 旭硝子株式会社 Method for producing laminate and method for manufacturing flexible printed board
JP2016141752A (en) * 2015-02-03 2016-08-08 住友化学株式会社 Polyarylate resin solution composition, production method of polyarylate resin film, polyarylate resin film, three-layer film, laminate, and printed circuit board
JPWO2017209060A1 (en) * 2016-06-03 2019-02-21 株式会社有沢製作所 Method for producing flexible metal-clad laminate
CN114761469A (en) * 2019-11-29 2022-07-15 聚酰亚胺先端材料有限公司 Polyimide film, method for preparing the same, and flexible metal foil laminate comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137832A2 (en) * 2009-05-25 2010-12-02 Sk Energy Co., Ltd. Flexible metal-clad laminate and manufacturing method thereof
WO2010137832A3 (en) * 2009-05-25 2011-03-03 Sk Energy Co., Ltd. Flexible metal-clad laminate and manufacturing method thereof
CN102438826A (en) * 2009-05-25 2012-05-02 Sk新技术株式会社 Flexible metal-clad laminate and manufacturing method thereof
WO2016104297A1 (en) * 2014-12-26 2016-06-30 旭硝子株式会社 Method for producing laminate and method for manufacturing flexible printed board
JPWO2016104297A1 (en) * 2014-12-26 2017-10-12 旭硝子株式会社 LAMINATED BOARD AND FLEXIBLE PRINTED BOARD MANUFACTURING METHOD
TWI678278B (en) * 2014-12-26 2019-12-01 日商Agc股份有限公司 Laminated board and manufacturing method of flexible printed circuit board
JP2016141752A (en) * 2015-02-03 2016-08-08 住友化学株式会社 Polyarylate resin solution composition, production method of polyarylate resin film, polyarylate resin film, three-layer film, laminate, and printed circuit board
JPWO2017209060A1 (en) * 2016-06-03 2019-02-21 株式会社有沢製作所 Method for producing flexible metal-clad laminate
JP2020104517A (en) * 2016-06-03 2020-07-09 株式会社有沢製作所 Method for manufacturing flexible metal-clad laminated plate
US10751977B2 (en) 2016-06-03 2020-08-25 Arisawa Mfg. Co., Ltd. Method for manufacturing flexible metal-clad laminated plate
CN114761469A (en) * 2019-11-29 2022-07-15 聚酰亚胺先端材料有限公司 Polyimide film, method for preparing the same, and flexible metal foil laminate comprising the same

Also Published As

Publication number Publication date
JP4271563B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP5613300B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP5069847B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JP5069846B2 (en) Novel polyimide film, adhesive film obtained using the same, and flexible metal-clad laminate
JPWO2006115258A1 (en) Novel polyimide film and its use
JP5064033B2 (en) Adhesive sheet and copper-clad laminate
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
JP4551094B2 (en) Adhesive film, flexible metal-clad laminate with improved dimensional stability obtained therefrom, and method for producing the same
JP5620093B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
JP4271563B2 (en) Method for producing flexible metal-clad laminate
JP4410021B2 (en) Method for producing flexible metal-clad laminate with improved productivity and flexible metal-clad laminate obtained thereby
JP2005199481A (en) Adhesive film and flexible metal clad laminated sheet enhanced in dimensional stability obtained therefrom
WO2005068193A1 (en) Adhesive film, flexible metal-clad laminate of enhanced dimensional stability obtained therefrom and process for producing the same
JP2005178242A (en) Method for producing flexible metal-clad laminated plate improved in dimensional stability
JP2005186574A (en) Method for manufacturing adhesive sheet, adhesive sheet and flexible metal clad laminated plate made by using the same
JP2005193542A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP2007098672A (en) One side metal-clad laminate
JP5918822B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability and flexible metal-clad laminate obtained thereby
JP2007050599A (en) Flexible metal-clad laminated plate excellent in dimensional stability and its production method
JP2005193541A (en) Manufacturing method of flexible metal clad laminated sheet enhanced in dimensional stability and flexible metal clad laminated sheet obtained thereby
JP4663976B2 (en) Method for producing flexible metal-clad laminate with improved dimensional stability
JP4838509B2 (en) Method for producing flexible metal-clad laminate
JP4516769B2 (en) Method for producing semi-additive metal-clad laminate and semi-additive metal-clad laminate obtained thereby
JP2005194395A (en) Adhesive film, and flexible metal-clad laminate obtained therefrom having improved dimensional stability
JP5355993B2 (en) Adhesive film
WO2006082828A1 (en) Isotropic adhesive film and flexible metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4271563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term