本開示は、一般的に、電子パッケージに関する。そして、より特定的には、マイクロエレクトロメカニカルシステム(MEMS)パッケージに関する。
従来技術において知られるように、エレクトロメカニカルシステム(MEMS)は、電子的コンポーネントと機械的コンポーネントを組み合わせた、統合されたマイクロデバイスまたはシステムである。MEMSデバイスは、例えば、標準的な集積回路バッチ処理(batch processing)技術を使用して、製造され得る。MEMSデバイスの典型的なアプリケーションは、マイクロスケール(micro scale)において、検出すること、制御すること、および駆動すること、を含んでいる。そうしたMEMSデバイスは、マクロスケール(macro scale)における効果を生成するように、個別に、または、アレイにおいて機能してよい。
従来技術において、また、知られるように、多くのMEMSデバイスは、最高のパフォーマンスを達成するために密封された(hermetically sealed)環境を必要とする。これは、真空環境、制御された圧力環境、または、制御されたガス環境であってよい。パッケージ環境は、また、MEMSデバイスのために、保護と最適な動作環境も提供する。これらのMEMSの特定の例は、ボロメータ(bolometer)といった赤外線MEMS、ときどきマイクロボロメータとして参照されるもの、ジャイロと加速度計といった所定のイナーシャMEMS、および、移動ミラーアレイといった光学機械デバイス、を含んでいる。以前、MEMSデバイスは、MEMSデバイスウェファの製造とダイシング(dicing)の後で、真空対応(vacuum compatible)パッケージの中に個別にパッケージされてきた。しばしば、しかしながら、従来の金属またはセラミック製パッケージの中にMEMSデバイスをパッケージするコストは、デバイス製造コストの約10から100倍のオーダーであり得る。これは、パッケージにおいて真空が必要とされる場合に、特に真実である。
何年にもわたり、様々なタイプの赤外線検出器が開発されてきている。多くのものは、焦点面アレイ(focal plane array)をその上に有するサブストレートを含む。焦点面アレイは、各ピクセルに対してそれぞれが対応している複数の検出器エレメント(検出デバイス)を含んでいる。サブストレートは、検出器エレメントに電気的に接続されている集積回路を含む。読出し集積回路(ROIC)として一般的に知られているものであり、各検出器エレメントからの信号を統合し、そして、適切な調整と処理を用いてチップからの信号を多重化する(mutiplex)ために使用されるものである。
所定のマイクロエレクトロメカニカル(MEMS)デバイスの場合と同様に、ボロメータは、ベストのパフォーマンスのために、真空または他の制御された環境において密封される必要があり得る。ボロメータアレイのパッケージングのための典型的な要求は、延長された期間について高真空(high vacuum)を維持することが可能な信頼性のある密封シール、良好な赤外線透過を伴うIRウィンドウ材料の統合、および、高い歩留まり/低コストのパッケージング、を含んでいる。MEMSデバイスの信頼性とコストの両方は、選択されたカプセル化(パッケージング)に依存する。MEMSベースのボロメータについて、パッケージングは、チップレベルまたはウェファレベルにおいて行われてよい。このインスタンスにおけるパッケージングの一般的な方法は、保護的な、IR透過キャップウェファ、または、ウィンドウキャップウェファ(Window Cap Wafer、WCW)を製造(fabricate)し、そして、アクティブなIR検出器ボロメータ領域を含んでいる半導体サブストレート、または、デバイスウェファの露出された表面に対して、ダイシングの以前に、接合する。キャップウェファは、ときどき、ウィンドウまたはリッド(lid)構造としても参照されるが、キャビティと共にその中に形成される。キャップウェファがフリップ(flip)されて、デバイスウェファに対して接合されるとき、その中にあるMEMSデバイスを収容し、かつ、保護するための十分なクリアランスをキャビティが提供するようにである。米国特許第5701008号、タイトル”Integrated infrared microlens and gas molecule getter grating in a vacuum package”、発明者Ray他、1997年12月23日発行、において説明されているようにである。そこで説明されているように、そして、図1と図2を参照すると、パッケージアセンブリが示されており、望ましくはケイ素(silicon)である、半導体材料の読出し集積回路(ROIC)サブストレート2を有している。赤外線(IR)検出器アレイ14が、サブストレート2の上に配置され、そして、複数の個別の検出器エレメント6、ピクセルとしても呼ばれるもの、を含んでいる。図2は、検出器領域10において5×6直方体アレイの検出器ピクセル6だけを示しているが、典型的なIR集積回路は、一般的に、数百または千×数百または千ピクセル6までの平面IR検出器アレイを含んでいることが理解される。最も商業的なアプリケーションにおいて、IR検出器は、たいてい、非冷却(uncooled)であり、そして、IR放射によって検出器に対して加えられた熱から結果として生じる温度の増加を検知することによって、IR放射の強度を検出する。非冷却IR検出器の典型的なレイヤは、酸化バナジウム(VOx)マイクロボロメータ(MB)であり、そこでは、複数の個別の検出器が、従来の半導体製造プロセスによって、たいてい、ROICサブストレートの上にアレイで形成されている。MBアレイは、IR生成熱を検知することによってIR放射を検出し、そして、焦点面アレイ(FPA)またはセンサチップアセンブリ(SCA)とも呼ばれている。サブストレート2は、ボロメータによって生成された信号を処理するために使用される集積回路である。この場合に、ボロメータは、温度が変化するときに抵抗が変化するマイクロブリッジ抵抗である。入ってくる放射は、マイクロブリッジの温度の変化を生じさせる。ケイ素(Si)といった他の半導体材料が使用され得るが、VOxは、大部分の商業的なIR検出アプリケーションにおいて使用されている、一般的に利用可能であり、かつ、コスト効率が高いものである。
上記に参照された米国特許第5701008号において説明されるように、真空封止アセンブリは、検出器アレイを雰囲気から密封するために、IR検出器アレイを取り囲んでいる密封シール8を含んでいる。シール8は、例えば、インジウム、金−スズ、または、他の半田であってよく、シールの高さは、サブストレート2、もしくは、望ましくはウェファ10の上にシールが配置されるとき正確にコントロールされる。シール8は、第2サブストレート、キャップウェファ、ここではIR透過ウィンドウ、ここでは例えば、ケイ素、を支持している。ウェファレベルのパッケージングに伴い、ウィンドウウェファ10が、これもケイ素であるFPAウェファと一致する熱膨張率を有するようにである。ウェファ10は、上記に参照された米国特許第5701008号において説明されるように、既定の表面領域を有しているウェファ10の表面の規定の領域の上に形成された、ゲッター材料(gettering material)、図示なし、を含んでよい。
従来技術においても、また、知られるように、ウェファレベルパッケージング(WLP)は、従来のパッケージを取り除くことによって、MEMSのパッケージングの高いコストを取り扱うために開発されたものである。そうしたWLPパッケージの一つは、米国特許第6521477号、タイトル”Vacuum package fabrication of integrated circuit components”、発明者Gooch他、2003年2月18日発行、において説明されている。一つのWLPプロセスにおいて、接合されたウェファを生じるように、接合材料を使用して、2つのウェファが一緒に接合され得る。例えば、ウェファの一つは、半導体(例えば、ケイ素)デバイスであり、ウェファの検出器領域において検出器デバイスを有している。検出器領域は、他のウェファに対して接合された読出し集積回路(ROIC)に沿ってデバイスウェファの中央内部領域の中に配置されている。リッドウェファは、半田のシートメタルリングを使用して、デバイスウェファの検出器領域について配置される。半導体ウェファにおいてデバイスを成形した後で、ウェファは、窒化ケイ素またはオキシ窒化ケイ素(SiON)といった、薄いオーバーガラスレイヤを含んでいる。チタニウムのボトムレイヤを形成するために、従来のフォトリソグラフィック処理を使用して、シールリング金属が形成されて、ROICオーバーガラスに対するサブストレート接着レイヤとして働く。次に、拡散障壁として働く、ニッケル(Nickel)の中間レイヤの後に、酸化形成を抑制し、かつ、半田接合を強化するための金のレイヤが続く。その後に、「シールリング(”seal ring”)」として参照されるものである。同様なレイヤのセットがリッドウェファの上に形成され、デバイスとリッドウェファとの間の半田シールのための合せ面(mating surface)を提供する。シールリングの形成の後で、半田が、例えば金80%とスズ20%、デバイスとリッドウェファのいずれか、または、両方に対して適用される。
説明されたWLP技術が、効果的なパッケージを提供する一方で、発明者は、金スズ7半田と半導体デバイスウェファとの間の熱膨張率の差異のせいで、シールリングのエッジがデバイスまたはROCIウェファに接触するところである図3において示されるような高応力領域に応力が増大されることを確認した。これらの応力は、図3に示されるように、オーバーガラス、および、デバイスまたはROICウェファの下部構造において望まないクラック(crack)の成長を生じ得るものである。これらのクラックは、中間膜の誘電レイヤ(ILD)およびROICのILDにおける相互接続トレースを壊して故障を導き得る。
より特定的に、発明者は、従来技術において、シールリング金属スタック(約0.5μm厚)と半田(11μm厚まで)は、一致したエッジを有することを確認した。半田がその融解温度である摂氏約280度の下に冷えると、半田は、下部のシールリングおよびROICよりも早く収縮する(半田の熱膨張率(CTE)は約16ppm、ケイ素のCTEは約3ppm)。そして、半田は非常に堅く(金スズ半田は大きなヤング率を有する)、そうして、応力を緩和するように変形し得ない。半田レイヤの収縮は、半田ジョイントのエッジを引っ張る傾向があり、それが応力点rの原因であり、そして、ジョイントのエッジにおけるクラックを結果として生じる。シールリングの下部のチタニウム(Ti)部分の厚さを単純に増加させることは、応力についてほとんど効果が無い。なぜなら、いまだにシールリングの半田引っ張りと共に応力が残されており、結果として応力点を生じるからである。ROIC表面に付着している金属のエッジの半田ショートを終了し(terminating)、かつ、介在レイヤ(intervening layer)、例えば、チタニウム製の応力緩和バッファレイヤを提供することによって、ROIC表面上のローカライズされた領域へ応力を伝達する切り立ったエッジは、ROIC表面の上で終了し、そして、より延性のある材料を用いてカバーされる。発明者は、さらに、一致したエッジが除去されると、一つの実施例においては、応力緩和バッファレイヤを厚くすること、もしくは、別の実施例においては、チタニウム接合材料接着レイヤを厚くすること、のいずれかによって下部のチタニウムレイヤを厚くすることが、さらに、応力を低減することを確認した。しかし、一致したエッジが最初に除去された場合だけである。
本開示に従って、構造体が提供される。構造体は、サブストレート;サブストレートの表面部分の周りのサブストレートの表面部分の上に配置された金属リング;金属リングの上に配置された接合材料であり、内側および外側エッジを有している接合材料;を含む。そして、ここで、金属リングは、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。
一つの実施例において、金属リングの第1レイヤは、サブストレートの表面部分の上に配置された応力緩和バッファレイヤを含んでおり、第1レイヤは、既定の温度において表面部分の延性よりも高い延性を有しており、かつ、接合材料の幅より幅が広い。応力緩和バッファレイヤは、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。
一つの実施例において、応力緩和バッファレイヤは、サブストレートの表面部分の熱膨張率よりも大きく、かつ、接合材料の熱膨張率よりも小さな熱膨張率を有する。
一つの実施例において、金属リングの上面の外側領域は、上面に対する接合材料の接着を抑制する材料を含んでいる。そして、ここで、金属リングの部分は、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。
一つの実施例において、構造体は、金属リングの上面の上に接合材料マスキングレイヤを含んでいる。接合材料は、金属レイヤの上面の部分を露出しているマスキングレイヤにおけるウィンドウを通過しており、そして、ここで、接合材料の部分は、金属レイヤの上面の露出された部分の上へとウィンドウを通過している。
一つの実施例において、金属リングの部分は、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。
一つの実施例において、構造体は、リッドを含む。そして、ここで、接合材料は、サブストレートをリッドに対して接合している。
応力緩和バッファレイヤは、サブストレートに対して効果的に付着し、かつ、接合材料によっては濡れない(wetted)。さらに、応力緩和バッファレイヤは、応力緩和バッファレイヤに対して接合されたサブストレートの表面部分の熱膨張率(CTE)と半田又は接合材料のCTEとの望ましくは中間のCTEを有し、かつ、SiONおよびケイ素(Silicon)といった脆い材料の場合のように割れる代わりに、高応力の領域を局所的に生じる延性材料の特性を有している。典型的な応力緩和バッファレイヤ材料は、チタニウムである。
そうした構成を用いて、サブストレート、例えば、半導体ウェファと、接着レイヤとの間で生じた応力は、接合材料のエッジが半導体ウェファに接触するポイントから接合材料のエッジが応力緩和バッファレイヤに接触するポイントへシフトされ、そして、従って、半導体ウェファ及びあらゆる関連のオーバーガラス又は脆い材料から離れてシフトされる。従って、応力緩和バッファレイヤは、応力を低減するレイヤとして働き、高応力の領域を、脆いオーバーガラスから、より延性のある下部レイヤへシフトしている。
より特定的には、パッケージを形成するように2つのウェファを接合し、かつ、密封するために高い熱収縮率(thermal contraction rate)を有する半田を使用するときは、半田がその融解温度から冷却されると縮むので、半田ジョイントのエッジで下部半導体ウェファにおける高レベルの応力を引き起している。応力緩和バッファレイヤ1の使用は、半田ジョイントのエッジでの高応力領域を下部の脆い半導体ウェファから隔離する。半導体ウェファの延性よりも高レベルの延性、および、半田レイヤより低く、かつ、下部ウェファよりもなお高い熱収縮率を有している応力緩和バッファレイヤを間に置くことによるものである。従って、本開示により、高CTE半田または他の接合材料と、半導体構造体の上の脆いオーバーガラスとを統合することができる。さらに、本プロセスは、デバイスウェファ、リッド、または、両方について使用され得るものである。
用語リング形状(”ring−shaped”)は、スペースを取り囲んでいる形状を参照し、かつ、含むものであることが理解されるべきである。形状は、円形、長方形、正方形、楕円、であってよく、もしくは、曲がりくねった又は蛇行した形状といった、不規則な形状を有してよい。
本開示に係る一つまたはそれ以上の実施例の詳細は、添付の図面と以下の説明において明らかにされる。本開示に係る他の特徴、オブジェクト、および利点は、説明と図面から、および、請求項から明らかであろう。
図1は、従来技術に従った、IR検出器アレイについて真空パッケージの簡素化された断面斜視図である。
図2は、従来技術に従った、図1のアセンブリにおいて使用されているIR検出器アレイの簡素化された平面図である。
図3は、図2のIR検出器アレイの断面図であり、断面は従来技術に従った図2におけるライン3−3に沿ったものである。
図4は、本開示に従った、密封パッケージの断面の平面図であり、断面は図5におけるライン4−4に沿ったものである。
図5は、図4のパッケージの断面の側面図であり、断面は図4におけるライン5−5に沿ったものである。
図5Aは、図5の断面の側面図に係る拡大部分であり、拡大部分は図5において矢印5A−5Aにより囲まれているところである。
図6は、本開示の別の実施例に従った、密封パッケージの断面の側面である。
図6Aは、図6の断面の側面図に係る拡大部分であり、拡大部分は図6において矢印6A−6Aにより囲まれているところである。
様々な図面における類似の参照記号は、類似のエレメントを示している。
図4と図5をこれから参照すると、密封デバイス102のための密封パッケージ(hermetically sealed package)100が示されている。パッケージ100は、その中央領域において、デバイス102を有しているサブストレート104;デバイス102;キャップウェファ108(図5);および、金属リングのペア、ここでは例えば、マルチレイヤ金属リング、107DW金属リング、107CW;を含む。金属リング107DWは、サブストレート104の表面領域106の周りのサブストレート104の表面の上に配置されており、そして、他の金属リング107CWは、中央領域106の周りのキャップウェファ108の表面の上に配置されている。いくつかのアプリケーションにおいて、金属リング107CWは、必要とされないこともあることが理解されるべきである。金属リング107DWは、図5Aにおいてより明確に示されるように、サブストレート104の表面の上に、かつ、直接的に接触して配置されるリング形状の応力緩和バッファレイヤ109DW(より特定的には、サブストレート104のオーバーガラスレイヤ116上で、かつ、直接的に接触している);および、リング形状の応力緩和バッファレイヤ109DWの上面の上に、シールリング構造体110DW(図5);を含む。金属リング107CWは、中央領域106の周りのキャップウェファ108の表面の上にリング形状の応力緩和バッファレイヤ109CW;および、リング形状の応力緩和バッファレイヤ109CWの上面の上に、シールリング構造体110CW);を含む。接合材料118が、図5に示されるように、2つのシールリング構造体110DW、110CWの間に置かれている。従って、以下により詳しく説明されるように、リング形状の応力緩和バッファレイヤ109CWは、リングシール構造体110CWの下部材料(underlying material)であり、そして、リング形状の応力緩和バッファレイヤ109DWは、リングシール構造体110DWの下部材料である。応力緩和バッファレイヤ109CWと109DWそれぞれは、それぞれに、キャップウェファ108とデバイスウェファ(またはサブストレート104)のためのリング形状の接合材料の応力緩和バッファレイヤとして働くものである。
より特定的に、サブストレート104は、半導体デバイスウェファ112、ここでは例えば、ケイ素(silicon)、読出し専用集積回路ROICを提供するもの;ROICコンポーネントに対する金属製インターコネクト電気伝導性トレースを有するデバイスウェファ112の上面の上の、中間膜誘電レイヤ(ILD)114;および、示されるように、レイヤ114の上に置かれているオーバーガラスレイヤ116、を含む。示されるように、デバイス102は、ここでは例えば、赤外線(IR)検出器のアレイであり、ここでは例えば、ボロメータは、オーバーガラス116の上の中央領域106に配置されている。キャップウェファ108は、あらゆる赤外線透過材料であり、かつ、示されるように、デバイス102の上に配置されたキャビティを有し、そして、図示されていないが、ゲッター(getter)材料を含んでよい。
リング形状の応力緩和バッファレイヤ109DW、CWそれぞれは、説明されるべき理由のために、高い延性材料(ductile material)、ここでは例えば、チタニウムである。リング形状の応力緩和バッファレイヤ109DWは、上述のように、オーバーガラスレイヤ116の上に配置されている。2つのシールリング構造体110DWと110CWのそれぞれ一つは、それぞれに、オーバーガラス116とキャップウェファ108の上の応力緩和バッファレイヤ109の上に置かれた、より低い、サブストレート接着レイヤ122、ここでは例えば、チタニウム;示されるように、サブストレート接着レイヤ122の上に配置された、拡散障壁レイヤ124、ここでは例えば、ニッケル(Ni)または白金(Pt)であり、接合材料118がサブストレート接着レイヤ122の中に(または、インタラクションして)拡散することを防ぐためのもの;および、示されるように、拡散障壁レイヤ124の上に配置された、酸化ブロック/接合材料接着レイヤ126、ここでは例えば、金(Au)、酸化形成を防ぎ、かつ、半田濡れを促進するためのもの;を含む。
リング形状の応力緩和バッファレイヤ109CW、109DWのペアのうち各一つは、シールリング構造体110CW、110DW、それぞれに、および、接合材料118よりも幅が広いことに留意する。この実施例においては、リング形状の応力緩和バッファレイヤ109CW、109DWの内側および外側エッジ109a、109b、それぞれは、内側および外側の少なくとも一つを越えて、ここでは、シールリング構造体110CW、110DWの内側および外側エッジ110b両方を、それぞれに、長さLだけ越えて、シールリング構造体110CW、110DWのどちらかの側にステップ224を形成する。応力緩和バッファレイヤ109DWとシールリング構造体110DWについて、より明確に図5Aに示されるようにである。
より特定的には、この実施例において、オーバーガラス116は、ここでは例えば、2000オングストローム(Angstrom)厚のオキシ窒化ケイ素(SiON)であり、リング形状の応力緩和バッファレイヤ109DW、CWのそれぞれ一つは、ここでは例えば、500オングストロームより大きい厚みを有するチタニウムのレイヤであり、ここでは例えば、2500オングストローム厚である。ここでは例えば、リング形状の応力緩和バッファレイヤ109DW、CWのそれぞれ一つは、フォトリソグラフィックリフトオフ(lift−off)プロセスを使用して形成される。応力緩和レイヤ109DWの形成を考慮して、かつ、応力緩和レイヤ109CWが同様な方法において形成されることを認識すれば、リング形状の応力緩和バッファレイヤ109DWは、ここでは例えば、オーバーガラスレイヤ116の上に、フォトレジストのレイヤ、図示なし、を最初に形成することによって形成される。デバイスの領域の内側と外側のフォトレジストレイヤの領域には、リング形状の応力緩和バッファレイヤ109DWが残っており、そして、それにより、ウェファ表面のリング形状領域を残して、そこにリング形状の応力緩和バッファレイヤ109DWが形成され、露出される。次に、ウェファの表面全体が、蒸着(evaporation)または物理気相蒸着(PVD)プロセスのいずれかを使用してチタニウムを用いてコーティングされる。チタニウムの一部分は、パターン化されたフォトレジストの上にデポジットされるようになり、そして、他の部分は、ウェファの露出されたリング形状部分の上にデポジットされることに留意する。その後に、フォトレジストがウェファからリフトオフされ、それによって、フォトレジストの上のチタニウムの部分が取り除かれ、そして、ウェファ上にリング形状の応力緩和バッファレイヤ109DWが残される。材料は、また、フォトリソグラフィプロセスの必要性なしに、メカニカルマスクを使用しても製造され得る。次に、別のリフトオフプロセスがシールリング構造体110DWを形成するために使用される。ここでは、蒸着または物理気相蒸着(PVD)プロセスのいずれかを使用してデポジットされた、例えば、2000オングストローム厚を有するチタニウムである。蒸着または物理気相蒸着(PVD)プロセスのいずれかを使用してデポジットされた、2500オングストローム厚を有するニッケル、および、蒸着または物理気相蒸着(PVD)プロセスのいずれかを使用してデポジットされた、2500オングストローム厚を有する金が、後に続く。リング形状の応力緩和バッファレイヤ109DWの幅は、ここでは300マイクロメートルの範囲であること、リング形状のシールリング構造体110DWの幅は、ここでは例えば、リング形状の応力緩和バッファレイヤ109DWの幅より狭く(200マイクロメート)、そして、リング形状の応力緩和バッファレイヤ109DWの内側および外側エッジ109a、109bから、それぞれに、セットバック(set back)していること、に留意する。ここでは例えば、シールリング構造体110DWの内側および外側エッジ110a、110b、それぞれは、長さLだけそれぞれセットバックされており、ここでは例えば、リング形状の応力緩和バッファレイヤ109DWの内側および外側エッジ110a、110bから、それぞれに、50マイクロメートルである。図5Aに示されるように、ステップ224を形成するためである。ここでは例えば、50マイクロメートル幅のステップ224が形成される。結果として、接合材料118、例えば半田(ここでは例えば、金/スズ(ここでは例えば、金80%、スズ20%))の切り立ったエッジが、リング形状の応力緩和バッファレイヤ109DWのエッジからセットバックされ、そして、サブストレート104とキャップウェファ108の表面の上に、それぞれに、持ち上げられる。結果として、図3において説明された高応力点はシフトされる(オーバーレイヤ116から離れて持ち上げられる)。そして、応力緩和バッファレイヤ109DWが、高応力点のパス(path)の中に効果的に挿入され、それにより、脆いSiONオーバーガラスレイヤ116における応力を低減している。応力緩和バッファレイヤ109DWは、室温(摂氏20−23度)またはリッド108がサブストレート118に対して接合されるときのパッケージ100の温度といった、既定の温度においてSiONオーバーガラスレイヤ166の延性よりも高い延性を有すること、および、応力緩和バッファレイヤ109DW、半田118とサブストレート118との間に挿入されたもの、の熱膨張率(Coefficient of Thermal Expansion、CTE)は、半田のCTE値とオーバーガラスレイヤ116のCTE値との間の値であること、に留意する。応力緩和バッファレイヤ109DWがSiONオーバーガラスレイヤ116に比べてより高い延性を有していることにより、局所的な変形の小さなレベルについて、さらに、脆いSiONオーバーガラスレイヤ116における応力を低減することができる。
結果として、高応力点SPは、脆いSiONレイヤ116(図3で置かれていたところ)の外に、かつ、より延性のある応力緩和バッファレイヤ109DWの中へシフトされている。応力緩和バッファレイヤ109DWの切り立った端に関連する応力点は、下部サブストレート104の熱膨張率により近いCTEを有する応力緩和バッファレイヤ109DWのおかげで、延性を増加している応力緩和バッファレイヤ109DWの相対的な薄さ(ここでは例えば、2500オングストローム)と組み合わされて、取るに足らないポイントまで低減されている。加えて、小さいステップ224(図5)は、空気に曝された後で酸化チタンで表面が仕上がるので、いくらか半田を嫌い、そして、従って、ジョイントからの溶融半田118の拡がりに対抗するための半田ダム(solder dam)として働く。つまり、109CWと109DWの表面は、酸化チタンへと素早く酸化されるチタニウムであり、そして、酸化チタンは、接合材料118による接着を抑制する材料である。
AuSn(金スズ)半田の熱膨張率(CTE)=16ppm/Kであり、Ti(チタン)のCTE≒8.5ppm/華氏度(degree Kelvin)、Silicon(ケイ素)のCTE≒2.6ppm/華氏度、そして、SiON(オキシ窒化ケイ素)のCTE≒2ppm/華氏度、であることに留意する。リング形状の応力緩和バッファレイヤ109DWは、リング形状の応力緩和バッファレイヤ109DWに接合されているサブストレートの表面部分のCTE(つまり、オーバーガラスレイヤ116(2ppm/華氏度))と、シールリング構造体110DWの上の接合材料118のCTE(16ppm/K)との間(概ね、それらの中間の)熱膨張率(CTE)(≒8.5ppm/華氏度)を有することに留意する。
従って、金スズ半田118とケイ素との間のCTEの差異が非常に大きいこと(6倍)であることに留意する。これらは、応力問題を生じている2つの主要な材料である。半田は、半田の溶融状態から冷える際に、付着されているケイ素よりも6倍以上収縮することを欲するのである。応力緩和バッファレイヤ109DWは、オーバーガラスレイヤ116のCTEと、半田または接合材料118のCTEとの望ましくは中間の熱膨張率(CTE)を有すること、そして、オキシ窒化ケイ素およびケイ素といった脆い材料の場合のように割れる代わりに、延性応力緩和バッファレイヤ109DWは、高応力の領域を局所的に生じることができること、に留意する。応力緩和バッファレイヤ109CWは、シリコンキャップウェファ108の延性よりも高い延性を有すること、および、応力緩和バッファレイヤ109CWの熱膨張率(CTE)は、半田118とシリコンキャップウェファ108との間に挿入されていることにも、また、留意する。
図6をこれから参照すると、本開示の別の実施例に従った、密封パッケージ100’が示されている。ここで、シールリング構造体110DW’は、チタニウムサブストレート接着/拡散障壁レイヤ122’(図6A)を有しており、実際には、レイヤ122’は、拡散障壁レイヤ122と応力緩和レイヤ109DWからなっている。従って、サブストレート接着/拡散障壁レイヤ122’は、実際には、概ね4000オングストローム厚のレイヤにまで厚くされたチタニウムであり、サブストレート接着レイヤ122および応力緩和レイヤ109DWの2つの目的を果たしている。半田マーク150、ここでは例えば、チタニウムまたは窒化チタンは、接合材料接着レイヤ126の下部分を露出するように、フォトリソグラフィックエッチングプロセスまたはリフトオフリソグラフィを使用して、そこに形成されたウィンドウを有している。半田マスク150のためにチタニウムが使用される場合には、チタニウムが素早く酸化チタンへと酸化されること、および、酸化チタンは、接合材料118の付着を抑制するものであることに留意する。同様に、窒化チタンは、接合材料118の付着を抑制するものである。
接合材料118、ここでは例えば、半田は、ウィンドウの中へ、接合材料接着レイヤ126の露出された部分の上にデポジットされる。シール材料116は、金属リング107DW’より狭いことに留意する。金属リングは、ここにおいて、シールリング構造体110DW’と半田マーク150を含んでおり、示されるように、接合材料118のエッジを金属リング107DW’のエッジからセットバックさせる。このセットバックは、図5と図5Aに関連して上述したステップ224と同等に半田ダムを形成することにも留意する。同様な構造が、この例において、キャップウェファ108の上の金属リングについて使用されることが理解されるべきである。
本開示に従った構造体は、サブストレート;サブストレートの表面部分の周りのサブストレートの表面部分上に配置された金属リング;内側および外側エッジを有している、金属リングの上に配置された接合材料;を含んでおり、そして、金属リングは、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっていることが、これから正しく理解されるべきである。以下の特徴の一つまたはそれ以上は、独立したもの、または、別の特徴と組み合わされたものを含んでよい。ここで、金属リングの第1レイヤは、サブストレートの表面部分の上に配置された応力緩和バッファレイヤを含んでおり、第1レイヤは、既定の温度において表面部分よりも高い延性を有しており、かつ、接合材料の幅より幅が広く、応力緩和バッファレイヤは、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。ここで、応力緩和バッファレイヤは、サブストレートの表面部分の熱膨張率よりも大きく、かつ、接合材料の熱膨張率よりも小さな熱膨張率を有する。ここで、金属リングの上面の領域は、上面に対する接合材料の接着を抑制する材料を含んでおり、そして、金属リングの部分は、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。本構造体は、金属リングの上面の上に接合材料マスキングレイヤを含んでおり、接合材料は、金属レイヤの上面の部分を露出しているマスキングレイヤにおけるウィンドウを通過しており、そして、ここで、接合材料の部分は、金属レイヤの上面の露出された部分の上へウィンドウを通過する。ここで、金属リングの部分は、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。本構造体は、リッドと、サブストレート上に配置されたデバイスとを含み、そして、ここで、接合材料は、サブストレートをリッドに対して接合している。ここで、応力緩和バッファレイヤは、サブストレートの表面部分の熱膨張率よりも大きく、かつ、接合材料の熱膨張率よりも小さな熱膨張率を有する。本構造体は、上面の上に接合材料マスキングレイヤを含んでいる。金属リングの上面の上に接合材料マスキングレイヤを含んでおり、接合材料は、金属レイヤの上面の部分を露出しているマスキングレイヤにおけるウィンドウを通過しており、そして、ここで、接合材料の部分は、金属レイヤの上面の露出された部分の上へウィンドウを通過する。ここで、応力緩和バッファレイヤは、サブストレートの表面部分の上に配置され、かつ、直接的に接触している。ここで、金属リングの第1レイヤは、サブストレートの表面部分の上に配置された応力緩和バッファレイヤを含んでいる。ここで、金属リングの第1レイヤは、チタニウムである。ここで、金属リングの第1レイヤは、銅またはアルミニウムである。ここで、サブストレートの上側面は、オキシ窒化ケイ素である。ここで、サブストレートは、ケイ素を含む。ここで、金属リングの第1レイヤは、500オングストロームより大きな厚さを有するチタニウムである。
本開示に従った構造体は、以下を含むことも正しく理解されるべきである。本構造体は、サブストレート;応力緩和バッファレイヤ;応力緩和バッファレイヤの上に、かつ、サブストレートの表面部分の周りに配置されたシールリングを含む。ここで、応力緩和バッファレイヤは、既定の温度においてサブストレートの表面部分の延性よりも高い延性を有している。接合材料が、シールリングの上に配置されており、接合材料は内側および外側エッジを有している。そして、ここで、応力緩和バッファレイヤは、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。さらに、リング形状の応力緩和レイヤは、サブストレートの表面部分の熱膨張率(CTE)とシールリング上の接合材料のCTEとの間のCTEを有してよい。
本開示に従った構造体は、以下を含むことも正しく理解されるべきである。本構造体は、サブストレート;サブストレートの上に配置されたデバイス;デバイスの周りで、サブストレートの上に配置されたシールリング;シールリングの上の配置された接合材料;接合材料とサブストレートとの間に配置されたレイヤであり、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっているレイヤ;リッド;とを含み、接合材料は、サブストレートをリッドに対して接合することである。さらに、レイヤは、サブストレートの表面部分の熱膨張率(CTE)とシールリング上の接合材料のCTEとの間のCTEを有するものである。
本開示に従ったパッケージは、以下を含むことも正しく理解されるべきである。本パッケージは、サブストレート;パッケージの表面上に配置されたデバイス;デバイスの周りで、サブストレートの表面部分の上に配置された金属リング;リッド;金属リングの相対する端に配置された接合材料;を含むことである。ここで、金属リングは、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっており、かつ、接合材料は、リッドをサブストレートに対して接合するものである。以降の特徴のうち一つまたはそれ以上を、独立に、または、別の特徴と組み合わせて含んでよい。特徴は、金属リングの第1レイヤは、サブストレートの表面部分の上に配置された応力緩和バッファレイヤを含み、第1レイヤは、既定の温度において表面部分の延性よりも高い延性を有しており、かつ、接合材料の幅より幅が広く、応力緩和バッファレイヤは、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている、ことである。ここで、応力緩和バッファレイヤは、サブストレートの表面部分の熱膨張率よりも大きく、かつ、接合材料の熱膨張率よりも小さな熱膨張率を有するものである。ここで、金属リングの上面の領域は、上面に対する接合材料の接着を抑制する材料を含み、かつ、金属リングの部分は、接合材料の内側および外側エッジのうち少なくとも一つを越えて横方向に拡がっている。パッケージは、金属リングの上面の上に接合材料マスキングレイヤを含み、接合材料は、金属レイヤの上面の部分を露出しているマスキングレイヤにおけるウィンドウを通過しており、かつ、接合材料の部分は、金属レイヤの上面の露出された部分の上へウィンドウを通過するものである。
本開示に係る数多くの実施例が説明されてきた。それでもなお、様々な変更が、本開示の精神および範囲から逸脱することなくなされ得ることが理解されよう。例えば、密封されたパッケージは、多種多様なデバイスのために使用され得る。これらに限定されるわけではなく、ボロメータといった赤外線MEMS、ときどきマイクロボロメータとして参照されるもの、および、ジャイロと加速度計といった所定のイナーシャMEMS、パッケージに対する接合専用デバイス、非撤退(non−evacuated)アプリケーション(DLPのようなもの)または真空パッケージにおけるウェファ接合MEMS、を含むものである。さらに、他の材料が、応力緩和バッファレイヤ109DW及び/又は109CWのために使用されてよい。例えば、銅またはアルミニウムといったものである。さらに、他の材料が、サブストレート接着レイヤ122のために使用されてよい。例えば、TiNといったものである。この場合、TiとNiの両方は、製造プロセスの異なる段階について拡散障壁として動作する。さらに、他の材料が、接合材料のために使用されてよい。例えば、CuSnといったものである。さらに、なおも、他のオーバーガラス材料が使用されてよい。例えば、SiNといったものである。従って、他の実施例は、以降の請求項の範囲内のものである。