JP2019091076A - Substrate treatment apparatus - Google Patents

Substrate treatment apparatus Download PDF

Info

Publication number
JP2019091076A
JP2019091076A JP2019028051A JP2019028051A JP2019091076A JP 2019091076 A JP2019091076 A JP 2019091076A JP 2019028051 A JP2019028051 A JP 2019028051A JP 2019028051 A JP2019028051 A JP 2019028051A JP 2019091076 A JP2019091076 A JP 2019091076A
Authority
JP
Japan
Prior art keywords
scale
encoder
value
encoder head
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019028051A
Other languages
Japanese (ja)
Other versions
JP6665957B2 (en
Inventor
正和 堀
Masakazu Hori
堀  正和
義昭 鬼頭
Yoshiaki Kito
義昭 鬼頭
鈴木 智也
Tomoya Suzuki
智也 鈴木
智行 渡辺
Tomoyuki Watanabe
智行 渡辺
洋祐 林田
Yosuke Hayashida
洋祐 林田
加藤 正紀
Masanori Kato
正紀 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JP2019091076A publication Critical patent/JP2019091076A/en
Application granted granted Critical
Publication of JP6665957B2 publication Critical patent/JP6665957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/36Forming the light into pulses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Advancing Webs (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

To correct errors generated on a scale for detecting a position when detecting a position in a circumferential direction of a cylindrical member.SOLUTION: The substrate treatment apparatus comprises: a rotating drum; a treatment part; a first encoder head; a second encoder head; a third encoder head arranged so as to face scale marks in a third direction obtained by rotating by an angle of θs in a circumferential direction to a second direction, the third direction being between a first direction and the second direction about the circumferential direction, and for reading the scale marks; and a storage part for sequentially storing a measured value ΔMs calculated by ΔMs=(Cm1+Cm4)/2-Cm5 at every rotation of a definite angle α of the scale marks, let the first read value by the first encoder be Cm1, the second read value of the second encoder be Cm4, and the third read value of the third encoder be Cm5, to store error information about pitch errors over a whole circumference of the scale marks.SELECTED DRAWING: Figure 25

Description

本発明は、基板処理装置に関する。   The present invention relates to a substrate processing apparatus.

フォトリソグラフィ工程で用いられる露光装置において、下記特許文献に開示されているような、円筒状又は円柱状のマスクを用いて基板を露光する露光装置が知られている(例えば、特許文献1)。   As an exposure apparatus used in a photolithography process, an exposure apparatus which exposes a substrate using a cylindrical or cylindrical mask as disclosed in the following patent documents is known (for example, Patent Document 1).

板状のマスクを用いる場合のみならず、円筒状又は円柱状のマスクを用いて基板を露光する場合においても、マスクのパターンの像を基板に良好に投影露光するために、特許文献1には、円筒状のマスクにおけるパターン形成面の所定領域に、パターンに対して所定の位置関係で位置情報取得用のマーク(スケール、アライメントマーク等)を形成し、エンコーダシステムでスケールを検出することにより、パターン形成面の周方向(又は回転軸方向)におけるパターンの位置情報を取得する構成が記載されている。   Not only in the case of using a plate-like mask but also in the case of exposing a substrate using a cylindrical or cylindrical mask, Patent Document 1 discloses that the image of the pattern of the mask is well projected onto the substrate. By forming a mark (scale, alignment mark, etc.) for obtaining positional information in a predetermined positional relationship with respect to the pattern in a predetermined area of the pattern formation surface of the cylindrical mask, and detecting the scale with an encoder system, A configuration for acquiring positional information of a pattern in a circumferential direction (or a rotational axis direction) of a pattern formation surface is described.

また、円筒状のマスクを用いて可撓性の長尺シート基板に連続的に露光するために、長尺のシート基板を送りローラに巻き付けて支持し、その送りローラに巻き付いたシート基板に円筒マスクを接近させ、送りローラと円筒マスクとを回転させることで、量産性の高いデバイス製造(露光処理)を可能とする露光装置も提案されている(例えば、特許文献2参照)。   In addition, in order to continuously expose a flexible long sheet substrate using a cylindrical mask, the long sheet substrate is wound around a feed roller and supported, and the sheet substrate wound around the feed roller is cylindrically attached. There has also been proposed an exposure apparatus which makes it possible to manufacture a device with high mass productivity (exposure process) by bringing a mask close to each other and rotating a feed roller and a cylindrical mask (see, for example, Patent Document 2).

特開平7−153672号公報JP-A-7-153672 特開平8−213305号公報JP-A-8-213305

上述したような送りローラ等の円筒部材の曲面にある被処理物体(シート基板)に処理を施す処理装置では、円筒部材の周方向における位置を精度よく検出することが求められる。特許文献1のように、位置情報取得用のマーク(スケール)を円筒状のマスクの外周面に刻設する場合でも、スケールの目盛の製造誤差又は温度による伸縮等により、エンコーダ計測の結果に誤差が生じ、円筒部材の周方向における位置の検出精度が低下する可能性がある。   In a processing apparatus for processing an object to be processed (sheet substrate) on a curved surface of a cylindrical member such as a feed roller as described above, it is required to accurately detect the circumferential position of the cylindrical member. Even when marks (scales) for acquiring position information are engraved on the outer peripheral surface of a cylindrical mask as in Patent Document 1, errors in encoder measurement results due to manufacturing errors of scale marks or expansion or contraction due to temperature, etc. As a result, the detection accuracy of the position of the cylindrical member in the circumferential direction may be reduced.

本発明の態様は、円筒部材の周方向における位置を検出するにあたって、位置検出用の目盛に発生した誤差を補正することを目的とする。   The aspect of this invention aims at correcting the error which generate | occur | produced in the graduation for position detection, in detecting the position in the circumferential direction of a cylindrical member.

本発明の第1の態様に従えば、可撓性を有する長尺のシート基板を長尺方向に搬送して、前記シート基板に所定の処理を施す基板処理装置であって、中心線から一定半径で円筒状に湾曲した外周面で前記シート基板を支持すると共に、前記中心線の回りに回転して前記シート基板を長尺方向に搬送する回転ドラムと、前記シート基板の前記回転ドラムの外周面で支持された周方向の範囲内の特定位置で、前記シート基板に処理を施す処理部と、前記回転ドラムが回転する周方向に沿って環状に設けられ、前記回転ドラムと共に前記中心線の回りに回転して、前記シート基板の周方向における位置変化をエンコーダ計測する為のスケール目盛と、周方向の第1の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第1エンコーダヘッドと、前記第1の方位に対して周方向に角度θqだけ回転した第2の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第2エンコーダヘッドと、周方向に関して前記第1の方位と前記第2の方位との間であって、前記第2の方位に対して周方向に角度θsだけ回転した第3の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第3エンコーダヘッドと、前記第1エンコーダヘッドによる第1読み取り値をCm1、前記第2エンコーダヘッドによる第2読み取り値をCm4、前記第3エンコーダヘッドによる第3読み取り値をCm5としたとき、ΔMs=(Cm1+Cm4)/2−Cm5で算出される計測値ΔMsを、前記スケール目盛の一定角度αの回転毎に逐次記憶し、前記スケール目盛の全周に渡るピッチ誤差に関する誤差情報を記憶する記憶部と、を備える基板処理装置が提供される。   According to a first aspect of the present invention, there is provided a substrate processing apparatus for transporting a flexible long sheet substrate in a longitudinal direction and performing predetermined processing on the sheet substrate, wherein the processing is performed at a constant distance from the center line. A rotary drum for supporting the sheet substrate by a cylindrically curved outer peripheral surface with a radius and for conveying the sheet substrate in the longitudinal direction by rotating around the center line, and the outer periphery of the rotary drum for the sheet substrate A processing unit for processing the sheet substrate at a specific position within a circumferential range supported by a surface, and a ring provided along the circumferential direction in which the rotating drum rotates, and the centerline with the rotating drum A scale scale for encoder measurement of a positional change in the circumferential direction of the sheet substrate, and the first scale in the circumferential direction are arranged to face the scale scale, and the scale scale is read. 1 encoder head, a second encoder head arranged to face the scale graduation in a second orientation rotated by an angle θ q in the circumferential direction with respect to the first orientation, and reading the scale graduation in the circumferential direction Are arranged between the first orientation and the second orientation, and face the scale in a third orientation rotated by an angle .theta.s in the circumferential direction with respect to the second orientation. A third encoder head for reading the scale mark, a first reading value by the first encoder head is Cm1, a second reading value by the second encoder head is Cm4, and a third reading value by the third encoder head is Cm5. And the measured value .DELTA.Ms calculated by .DELTA.Ms = (Cm1 + Cm4) / 2-Cm5 is successively removed for each rotation of the fixed angle .alpha. Stored, a storage unit for storing the error information about the pitch error over the entire circumference of the scale graduation, a substrate processing apparatus including a is provided.

本発明の態様によれば、円筒部材の周方向における位置を検出するにあたって、位置検出用の目盛に発生した誤差を補正することができる。   According to the aspect of the present invention, when detecting the position in the circumferential direction of the cylindrical member, it is possible to correct the error generated in the scale for position detection.

図1は、実施形態に係る基板処理装置(露光装置)の全体構成を示す模式図である。FIG. 1 is a schematic view showing the overall configuration of a substrate processing apparatus (exposure apparatus) according to the embodiment. 図2は、図1における照明領域及び投影領域の配置を示す模式図である。FIG. 2 is a schematic view showing the arrangement of the illumination area and the projection area in FIG. 図3は、図1の基板処理装置(露光装置)に適用される投影光学系の構成を示す模式図である。FIG. 3 is a schematic view showing a configuration of a projection optical system applied to the substrate processing apparatus (exposure apparatus) of FIG. 図4は、図1の基板処理装置(露光装置)に適用される第2ドラム部材(回転ドラム)の斜視図である。FIG. 4 is a perspective view of a second drum member (rotary drum) applied to the substrate processing apparatus (exposure apparatus) of FIG. 図5は、図1の基板処理装置(露光装置)に適用される検出プローブと読み取り装置との関係を説明するための斜視図である。FIG. 5 is a perspective view for explaining the relationship between a detection probe and a reader applied to the substrate processing apparatus (exposure apparatus) of FIG. 図6は、実施形態に係るエンコーダスケール円盤と読み取り装置との位置を、回転中心線と直交する面内で見た説明図である。FIG. 6 is an explanatory view in which the positions of the encoder scale disk and the reading device according to the embodiment are viewed in a plane orthogonal to the rotation center line. 図7は、スケールの目盛を模式的に表した拡大図である。FIG. 7 is an enlarged view schematically showing the scale scale. 図8は、スケールとエンコーダヘッドとの位置関係を示す模式図である。FIG. 8 is a schematic view showing the positional relationship between the scale and the encoder head. 図9は、スケールの目盛ピッチ誤差を補正する手順を示すフローチャートである。FIG. 9 is a flowchart showing a procedure for correcting scale pitch error. 図10は、外周面に目盛を有するスケール円盤とエンコーダヘッドとの関係を示す図である。FIG. 10 is a diagram showing the relationship between a scale disk having a scale on the outer peripheral surface and an encoder head. 図11は、補正マップの一例を示す図である。FIG. 11 is a diagram showing an example of the correction map. 図12は、一対のエンコーダヘッドからこれらの読み取り値を取得する際のタイミングを示す概念図である。FIG. 12 is a conceptual diagram showing the timing when obtaining these readings from a pair of encoder heads. 図13は、一対のエンコーダヘッドからこれらの読み取り値を取得する際のタイミングを示す概念図である。FIG. 13 is a conceptual diagram showing timings when obtaining these read values from a pair of encoder heads. 図14は、スケールの誤差を補正する手順を示すフローチャートである。FIG. 14 is a flow chart showing the procedure for correcting the scale error. 図15は、エンコーダスケール円盤の真円度を調整する真円度調整機構を説明するための説明図である。FIG. 15 is an explanatory view for explaining a roundness adjusting mechanism for adjusting the roundness of the encoder scale disc. 図16は、エンコーダスケール円盤の真円度を調整する真円度調整機構を説明するための説明図である。FIG. 16 is an explanatory view for explaining a roundness adjusting mechanism for adjusting the roundness of the encoder scale disc. 図17は、基板処理装置(露光装置)の第1変形例を示す模式図である。FIG. 17 is a schematic view showing a first modified example of the substrate processing apparatus (exposure apparatus). 図18は、基板処理装置(露光装置)の第1変形例に係るエンコーダスケール円盤を回転中心線方向に見た、読み取り装置の位置を説明するための説明図である。FIG. 18 is an explanatory view for explaining the position of the reading device when the encoder scale disk according to the first modification of the substrate processing apparatus (exposure apparatus) is viewed in the direction of the rotation center line. 図19は、基板処理装置(露光装置)の第2変形例の全体構成を示す模式図である。FIG. 19 is a schematic view showing an entire configuration of a second modified example of the substrate processing apparatus (exposure apparatus). 図20は、基板処理装置(露光装置)の第3変形例の全体構成を示す模式図である。FIG. 20 is a schematic view showing an entire configuration of a third modified example of the substrate processing apparatus (exposure apparatus). 図21は、基板処理装置(露光装置)の第4変形例の全体構成を示す模式図である。FIG. 21 is a schematic view showing an entire configuration of a fourth modified example of the substrate processing apparatus (exposure apparatus). 図22は、先の図4〜6、図10及び図16〜21の各々で示したエンコーダヘッドによる目盛の実際の読み取り動作を簡単に説明するための信号波形図である。FIG. 22 is a signal waveform diagram for briefly describing the actual reading operation of the scale by the encoder head shown in each of FIGS. 4 to 6 and FIG. 10 and FIGS. 図23は、スケール円盤の側端面に目盛を形成する場合の構成を、先の図6と同様に回転中心線が延びる方向から見た図である。FIG. 23 is a view of the configuration in the case of forming a scale on the side end face of the scale disk, as seen in the direction in which the rotation center line extends, as in FIG. 図24は、図23の構成を、設置方位線と回転中心線とを含む面で破断したA−A’矢視断面図である。FIG. 24 is a cross-sectional view taken along the line A-A 'in which the configuration of FIG. 図25は、先の図6と同様に、スケール円盤とエンコーダヘッドとの配置をXZ面内で見た図である。FIG. 25 is a view of the arrangement of the scale disc and the encoder head in the XZ plane, as in FIG. 図26は、実施形態に係る基板処理装置(露光装置)を用いてデバイスを製造するデバイス製造方法の手順を示すフローチャートである。FIG. 26 is a flowchart showing the procedure of a device manufacturing method for manufacturing a device using the substrate processing apparatus (exposure apparatus) according to the embodiment.

本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下に記載の実施形態により本発明が限定されるものではない。以下の実施形態では、1種類のデバイスを製造するための各種の処理を、基板に対して連続して施す、いわゆる、ロール・ツー・ロール(Roll to Roll)方式に用いる露光装置として説明する。また、以下においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部の位置関係について説明する。一例として、水平面内の所定方向をX軸方向、水平面内においてX軸方向と直交する方向をY軸方向、X軸方向及びY軸方向のそれぞれと直交する方向(すなわち鉛直方向)をZ軸方向とする。   A mode (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiments described below. In the following embodiments, various processing for manufacturing one type of device will be described as an exposure apparatus used in a so-called roll-to-roll method in which a substrate is continuously subjected. Further, in the following, an XYZ orthogonal coordinate system is set, and the positional relationship of each part will be described with reference to this XYZ orthogonal coordinate system. As an example, a predetermined direction in the horizontal plane is the X axis direction, a direction orthogonal to the X axis direction in the horizontal plane is the Y axis direction, a direction orthogonal to each of the X axis direction and the Y axis direction (ie vertical direction) the Z axis direction I assume.

図1は、実施形態に係る基板処理装置(露光装置)の全体構成を示す模式図である。図2は、図1における照明領域及び投影領域の配置を示す模式図である。図3は、図1の基板処理装置(露光装置)に適用される投影光学系の構成を示す模式図である。図1に示すように、基板処理装置11は、露光装置(処理部)EXと、シート基板の搬送装置(以下、適宜、搬送装置と称する)9とを含む。露光装置EXは、搬送装置9により基板P(シート、フィルム等)を供給されている。例えば、図示しない供給ロールから引き出された可撓性(フレキシブル)の長尺のシートの基板Pが、順次、前工程用の基板処理装置を経て、基板処理装置(露光装置)11で処理され、搬送装置9により後工程用の基板処理装置に送出された後に、回収ロールに巻き上げられるデバイス製造システムがある。このように、基板処理装置11は、デバイス製造システム(フレキシブル・ディスプレイの製造ライン)の一部として使用され得る。   FIG. 1 is a schematic view showing the overall configuration of a substrate processing apparatus (exposure apparatus) according to the embodiment. FIG. 2 is a schematic view showing the arrangement of the illumination area and the projection area in FIG. FIG. 3 is a schematic view showing a configuration of a projection optical system applied to the substrate processing apparatus (exposure apparatus) of FIG. As shown in FIG. 1, the substrate processing apparatus 11 includes an exposure apparatus (processing unit) EX and a sheet substrate conveyance apparatus (hereinafter, appropriately referred to as a conveyance apparatus) 9. The exposure apparatus EX is supplied with a substrate P (sheet, film or the like) by the transport device 9. For example, the substrate P of a long sheet of flexible sheet drawn out from a supply roll (not shown) is sequentially processed by the substrate processing apparatus (exposure apparatus) 11 through the substrate processing apparatus for the preprocess. There is a device manufacturing system which is wound up on a recovery roll after being delivered to the substrate processing apparatus for the post process by the transport apparatus 9. Thus, the substrate processing apparatus 11 can be used as part of a device manufacturing system (a manufacturing line of flexible displays).

基板処理装置11としての露光装置EXは、いわゆる走査露光装置であり、円筒マスクDMの回転と可撓性の基板Pの送りとを同期して駆動させつつ、円筒マスクDMに形成されているパターンの像を、投影倍率が等倍(×1)の投影光学系PL(PL1〜PL6)を介して基板Pに投影する。なお、図1に示す露光装置EXは、XYZ直交座標系のY軸を、円筒マスクDMを構成する第1ドラム部材21の回転中心線AX1と平行に設定している。同様に、基板Pの長尺方向の一部を円筒状に指示する円筒部材としての第2ドラム部材22の回転中心線AX2は、XYZ直交座標系のY軸と平行に設定されている。   The exposure apparatus EX as the substrate processing apparatus 11 is a so-called scanning exposure apparatus, and a pattern formed on the cylindrical mask DM while synchronously driving the rotation of the cylindrical mask DM and the feeding of the flexible substrate P. Is projected onto the substrate P via a projection optical system PL (PL1 to PL6) having a projection magnification of 1 × (× 1). The exposure apparatus EX shown in FIG. 1 sets the Y axis of the XYZ orthogonal coordinate system in parallel with the rotation center line AX1 of the first drum member 21 constituting the cylindrical mask DM. Similarly, the rotation center line AX2 of the second drum member 22 as a cylindrical member for instructing a part of the substrate P in the longitudinal direction in a cylindrical shape is set parallel to the Y axis of the XYZ orthogonal coordinate system.

図1に示すように、露光装置EXは、マスク保持装置12、照明機構IU、投影光学系PL及び制御装置14を備える。露光装置EXは、マスク保持装置12に保持された円筒マスクDMを回転移動(旋回移動)させるとともに、搬送装置9によって基板Pを搬送する。照明機構IUとともにマスク保持装置12に保持された円筒マスクDMの一部(照明領域IR)を、照明光束EL1によって均一な明るさで照明する。投影光学系PLは、円筒マスクDM上の照明領域IRにおけるパターンの像を、搬送装置9によって搬送されている基板Pの一部(投影領域PA)に投影する。円筒マスクDMの移動に伴って、照明領域IRに配置される円筒マスクDM上の部位が変化する。また基板Pの移動に伴って、投影領域PAに配置される基板P上の部位が変化する。このようにすることで、円筒マスクDMの表面に形成された所定のパターン(マスクパターン)の像が、投影光学系PL(PL1〜PL6)を介して基板Pの円筒状の表面に投影される。制御装置14は、露光装置EXの各部を制御し、各部に処理を実行させる。また、本実施形態において、制御装置14は、搬送装置9を制御する。   As shown in FIG. 1, the exposure apparatus EX includes a mask holding device 12, an illumination mechanism IU, a projection optical system PL, and a control device 14. The exposure apparatus EX rotationally moves (pivots) the cylindrical mask DM held by the mask holding device 12 and conveys the substrate P by the conveying device 9. A part (illumination region IR) of the cylindrical mask DM held by the mask holding device 12 together with the illumination mechanism IU is illuminated by the illumination light beam EL1 with uniform brightness. The projection optical system PL projects an image of a pattern in the illumination area IR on the cylindrical mask DM onto a portion (projection area PA) of the substrate P being transported by the transport device 9. As the cylindrical mask DM moves, the portion on the cylindrical mask DM arranged in the illumination region IR changes. Further, with the movement of the substrate P, the portion on the substrate P arranged in the projection area PA changes. By doing this, an image of a predetermined pattern (mask pattern) formed on the surface of the cylindrical mask DM is projected onto the cylindrical surface of the substrate P via the projection optical system PL (PL1 to PL6). . The control device 14 controls each part of the exposure apparatus EX to cause each part to execute processing. Further, in the present embodiment, the control device 14 controls the transport device 9.

制御装置14は、上述したデバイス製造システムの複数の基板処理装置を統括して制御する上位制御装置の一部又は全部であってもよい。また、制御装置14は、上位制御装置に制御され、かつ上位制御装置とは別の装置であってもよい。制御装置14は、例えば、コンピュータシステムを含む。コンピュータシステムは、例えば、CPU(Central Processing Unit)、各種メモリーやOS(Operating System)及び周辺機器等のハードウェアを含む。基板処理装置11の各部の動作シーケンス及びパラメータ等は、コンピュータプログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータシステムが読み出して実行することによって、各種処理が行われる。   The control device 14 may be part or all of a higher-level control device that centrally controls the plurality of substrate processing devices of the device manufacturing system described above. Further, the control device 14 may be controlled by the host control device, and may be a device different from the host control device. The controller 14 includes, for example, a computer system. The computer system includes, for example, hardware such as a central processing unit (CPU), various memories, an operating system (OS), and peripheral devices. The operation sequence and parameters of each part of the substrate processing apparatus 11 are stored in a computer readable recording medium in the form of a computer program, and the computer system reads and executes this program to perform various processes.

コンピュータシステムは、インターネット又はイントラネットシステムに接続可能な場合、ホームページ提供環境(あるいは表示環境)も含む。また、コンピュータ読み取り可能な記録媒体は、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体及びコンピュータシステムに内蔵されるハードディスク等の記憶装置を含む。コンピュータ読み取り可能な記録媒体は、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にコンピュータプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリーのように、一定時間プログラムを保持しているものも含む。また、コンピュータプログラムは、基板処理装置11の機能の一部を実現するためのものでもよく、基板処理装置11の機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものでもよい。上位制御装置は、制御装置14と同様に、コンピュータシステムを利用して実現することができる。   The computer system also includes a home page providing environment (or display environment) when it can connect to the Internet or an intranet system. Further, the computer readable recording medium includes a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM and the like, and a storage device such as a hard disk built in a computer system. A computer-readable recording medium holds a computer program dynamically for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line, It also includes programs that hold programs for a certain period of time, such as volatile memory in the computer system that becomes the server or client of the case. The computer program may be for realizing a part of the functions of the substrate processing apparatus 11, or may be one which can realize the functions of the substrate processing apparatus 11 in combination with a program already recorded in the computer system. The host control device can be realized using a computer system, similarly to the control device 14.

図1に示すように、マスク保持装置12は、円筒マスクDMを保持する第1ドラム部材21、第1ドラム部材21を支持するガイドローラ23、制御装置14の制御指令により第1駆動部26が第1ドラム部材21を駆動する駆動ローラ24及び第1ドラム部材21の位置を検出する第1検出器25を備える。   As shown in FIG. 1, the mask holding device 12 includes a first drum member 21 for holding the cylindrical mask DM, a guide roller 23 for supporting the first drum member 21, and a first drive unit 26 according to control commands of the control device 14 A drive roller 24 for driving the first drum member 21 and a first detector 25 for detecting the position of the first drum member 21 are provided.

第1ドラム部材21は、所定の軸となる回転中心線AX1(以下、適宜第1中心軸AX1ともいう)から一定の半径で湾曲した曲面を有する円筒部材であって、回転中心線AX1の周りを回転する。第1ドラム部材21は、円筒マスクDMの照明領域IRが配置される第1面P1を有し、その第1面P1は、線分(母線)を、この線分に平行な第1中心軸AX1周りに回転して形成される円筒面である。円筒面は、例えば、円筒の外周面又は円柱の外周面等である。第1ドラム部材21は、例えばガラス又は石英等で製造され、一定の肉厚を有する円筒状であり、その外周面(円筒面)が第1面P1となる。すなわち、本実施形態において、円筒マスクDMの照明領域IRは、回転中心線AX1から一定の半径r1を持つ円筒面状に湾曲している。このように、第1ドラム部材21は、回転中心線AX1から一定半径で湾曲した曲面(所定曲率の円筒面)を有している。   The first drum member 21 is a cylindrical member having a curved surface which is curved at a constant radius from a rotation center line AX1 (hereinafter, appropriately referred to as a first center axis AX1 as well) having a predetermined axis, and around the rotation center line AX1. Rotate. The first drum member 21 has a first surface P1 on which the illumination region IR of the cylindrical mask DM is disposed, and the first surface P1 has a line segment (genome) as a first central axis parallel to the line segment It is a cylindrical surface formed by rotating around AX1. The cylindrical surface is, for example, an outer peripheral surface of a cylinder, an outer peripheral surface of a cylinder, or the like. The first drum member 21 is made of, for example, glass or quartz and has a cylindrical shape with a certain thickness, and the outer peripheral surface (cylindrical surface) is the first surface P1. That is, in the present embodiment, the illumination region IR of the cylindrical mask DM is curved in a cylindrical surface shape having a constant radius r1 from the rotation center line AX1. As described above, the first drum member 21 has a curved surface (cylindrical surface with a predetermined curvature) curved at a constant radius from the rotation center line AX1.

円筒マスクDMは、例えば平坦性が高い短冊状の極薄ガラス板(例えば厚さ100μm〜500μm)の一方の面に、クロム等の遮光層でパターンを形成した透過型の平面状シートマスクとして作成される。マスク保持装置12は、極薄ガラス板による円筒マスクDMを第1ドラム部材21の外周面の曲面に倣って湾曲させ、この曲面に巻き付けた(貼り付けた)状態で使用される。円筒マスクDMは、パターンが形成されていないパターン非形成領域を有し、パターン非形成領域が第1ドラム部材21に取り付けられている。円筒マスクDMは、第1ドラム部材21に対して取り付け及び取り外しが可能である。   The cylindrical mask DM is formed, for example, as a transmission-type flat sheet mask in which a pattern is formed by a light shielding layer such as chromium on one surface of a strip-like ultrathin glass plate (for example, 100 μm to 500 μm thick) having high flatness. Be done. The mask holding device 12 is used in a state in which a cylindrical mask DM made of an ultrathin glass plate is curved according to the curved surface of the outer peripheral surface of the first drum member 21 and wound (pasted) on this curved surface. The cylindrical mask DM has a non-patterned area where no pattern is formed, and the non-patterned area is attached to the first drum member 21. The cylindrical mask DM is attachable to and detachable from the first drum member 21.

なお、円筒マスクDMを極薄ガラス板で構成し、その円筒マスクDMを透明円筒母材による第1ドラム部材21に巻き付ける代わりに、第1ドラム部材21を、石英等の透明円筒母材で製造し、その外周面に直接クロム等の遮光層によるマスクパターンを描画形成してもよい。この場合も、第1ドラム部材21が円筒マスクDMのパターンの支持部材として機能する。   Instead of winding the cylindrical mask DM on the first drum member 21 of a transparent cylindrical base material, the first drum member 21 is manufactured of a transparent cylindrical base material such as quartz instead of forming the cylindrical mask DM with an extremely thin glass plate. Alternatively, a mask pattern of a light shielding layer such as chromium may be drawn and formed directly on the outer peripheral surface thereof. Also in this case, the first drum member 21 functions as a support member for the pattern of the cylindrical mask DM.

第1検出器25は、第1ドラム部材21の回転位置を光学的に検出するもので、例えばロータリーエンコーダ等で構成される。エンコーダはアブソリュート形式であってもインクリメント形式であってもよい。第1検出器25は、検出した第1ドラム部材21の回転位置を示す情報、例えば、後述するエンコーダヘッドからの2相信号等を制御装置14に出力する。電動モーター等のアクチュエータを含む第1駆動部26は、制御装置14から入力される制御信号に従って、駆動ローラ24を回転させるためのトルク及び回転速度を調整する。制御装置14は、第1検出器25による検出結果に基づいて第1駆動部26を制御することによって、第1ドラム部材21の回転位置を制御する。そして、制御装置14は、第1ドラム部材21に保持されている円筒マスクDMの回転位置と回転速度の一方又は双方を制御する。   The first detector 25 optically detects the rotational position of the first drum member 21 and is constituted of, for example, a rotary encoder or the like. The encoder may be absolute or incremental. The first detector 25 outputs information indicating the detected rotational position of the first drum member 21, for example, a two-phase signal from an encoder head described later, to the control device 14. The first drive unit 26 including an actuator such as an electric motor adjusts torque and rotation speed for rotating the drive roller 24 according to a control signal input from the control device 14. The control device 14 controls the rotational position of the first drum member 21 by controlling the first drive unit 26 based on the detection result of the first detector 25. Then, the control device 14 controls one or both of the rotational position and the rotational speed of the cylindrical mask DM held by the first drum member 21.

搬送装置9は、駆動ローラDR4、第1ガイド部材31、基板Pの投影領域PAが配置される第2面P2を形成する第2ドラム部材22、第2ガイド部材33、駆動ローラDR4、DR5、第2検出器35及び第2駆動部36を備える。   The transport device 9 includes a drive roller DR4, a first guide member 31, and a second drum member 22 forming a second surface P2 on which the projection area PA of the substrate P is disposed, a second guide member 33, drive rollers DR4, DR5, A second detector 35 and a second drive unit 36 are provided.

本実施形態において、基板Pの搬送経路の上流、すなわち、基板Pの搬送(移動)方向とは反対側から駆動ローラDR4へ搬送されてきた基板Pは、駆動ローラDR4を経由して第1ガイド部材31へ搬送される。第1ガイド部材31を経由した基板Pは、半径r2の円筒状又は円柱状の第2ドラム部材22の表面に支持されて、第2ガイド部材33へ搬送される。第2ガイド部材33を経由した基板Pは、搬送経路の下流へ搬送される。なお、第2ドラム部材22の回転中心線AX2と、駆動ローラDR4、DR5の各回転中心線とは、いずれもY軸と平行になるように設定される。   In the present embodiment, the substrate P transported to the drive roller DR4 from the upstream side of the transport path of the substrate P, that is, the side opposite to the transport (movement) direction of the substrate P is a first guide via the drive roller DR4. It is conveyed to the member 31. The substrate P having passed through the first guide member 31 is supported by the surface of a cylindrical or cylindrical second drum member 22 with a radius r 2, and is conveyed to the second guide member 33. The substrate P having passed through the second guide member 33 is transported to the downstream of the transport path. The rotation center line AX2 of the second drum member 22 and the rotation center lines of the drive rollers DR4 and DR5 are both set parallel to the Y axis.

第1ガイド部材31及び第2ガイド部材33は、例えば、基板Pの搬送方向に移動することによって、搬送経路において基板Pに働く搬送方向のテンション等を調整する。また、第1ガイド部材31(及び駆動ローラDR4)と第2ガイド部材33(及び駆動ローラDR5)とは、例えば、基板Pの幅方向(基板Pの搬送方向と直交する方向であり、Y方向)に移動可能とすることによって、第2ドラム部材22の外周に巻き付く基板PのY方向の位置等を調整することができる。なお、搬送装置9は、投影光学系PLの投影領域PAに沿って基板Pを搬送可能であればよく、搬送装置9の構成は適宜変更することができる。   The first guide member 31 and the second guide member 33 adjust the tension or the like in the transport direction acting on the substrate P in the transport path by moving in the transport direction of the substrate P, for example. The first guide member 31 (and the drive roller DR4) and the second guide member 33 (and the drive roller DR5) are, for example, the width direction of the substrate P (the direction orthogonal to the transport direction of the substrate P). By setting the position of the substrate P wound around the outer periphery of the second drum member 22 in the Y direction, etc. can be adjusted. In addition, the conveyance apparatus 9 should just be able to convey the board | substrate P along the projection area | region PA of the projection optical system PL, and the structure of the conveyance apparatus 9 can be changed suitably.

第2ドラム部材22は、所定の軸となる回転中心線AX2(以下、適宜第2中心軸AX2ともいう)から一定の半径で湾曲した曲面(所定曲率の円筒面)を有する円筒部材であって、第2中心軸AX2の周りを回転する回転ドラムである。第2ドラム部材22は、第2面(支持面)P2を形成する。第2面P2は、投影光学系PLからの結像光束が投射される基板Pの一部分であって、投影領域PAを含む部分を円弧状(円筒状)に支持する。本実施形態において、第2ドラム部材22は、搬送装置9の一部であるとともに、露光対象の基板Pを支持する支持部材(基板ステージ)を兼ねている。すなわち、第2ドラム部材22は、露光装置EXの一部であってもよい。このように、第2ドラム部材22は、その回転中心線AX2(第2中心軸AX2)の周りに回転可能であり、基板Pは、第2ドラム部材22上の外周面(円筒面)に倣って円筒面状に湾曲し、湾曲した基板Pの一部に投影領域PAが配置される。このため、基板Pは、半径r2の円筒面のうちの投影領域PAを含む周面部分では旋回移動することになる。   The second drum member 22 is a cylindrical member having a curved surface (cylindrical surface with a predetermined curvature) curved at a constant radius from a rotation center line AX2 (hereinafter, also referred to as a second center axis AX2 as appropriate) serving as a predetermined axis. , And a rotary drum that rotates around a second central axis AX2. The second drum member 22 forms a second surface (supporting surface) P2. The second surface P2 is a portion of the substrate P onto which the imaging light beam from the projection optical system PL is projected, and supports a portion including the projection area PA in an arc shape (cylindrical shape). In the present embodiment, the second drum member 22 is a part of the transfer device 9 and also serves as a support member (substrate stage) for supporting the substrate P to be exposed. That is, the second drum member 22 may be a part of the exposure apparatus EX. Thus, the second drum member 22 is rotatable around its rotation center line AX2 (second center axis AX2), and the substrate P follows the outer peripheral surface (cylindrical surface) on the second drum member 22. The projection area PA is disposed on a part of the substrate P which is curved in a cylindrical surface shape and curved. For this reason, the substrate P is pivotally moved on the circumferential surface portion including the projection area PA in the cylindrical surface of the radius r2.

本実施形態において、第2ドラム部材22は、電動モーター等のアクチュエータを含む第2駆動部36から供給されるトルクによって回転する。第2検出器35は、例えばロータリーエンコーダ等で構成され、第2ドラム部材22の回転位置を光学的に検出する。第2検出器35は、検出した第2ドラム部材22の回転位置を示す情報(例えば、後述するエンコーダヘッドEN1、EN2、EN3、EN4、EN5からの2相信号等)を制御装置14に出力する。第2駆動部36は、制御装置14から供給される制御信号に従って、第2ドラム部材22を回転させるトルク及び回転速度を調整する。制御装置14は、第2検出器35による検出結果に基づいて第2駆動部36を制御することによって、第2ドラム部材22の回転位置を制御し、第1ドラム部材21(円筒マスクDM)と第2ドラム部材22とを同期移動(同期回転)させる。なお、第2検出器35の詳細については後述する。   In the present embodiment, the second drum member 22 is rotated by the torque supplied from the second drive unit 36 including an actuator such as an electric motor. The second detector 35 is formed of, for example, a rotary encoder, and optically detects the rotational position of the second drum member 22. The second detector 35 outputs information indicating the detected rotational position of the second drum member 22 (for example, two-phase signals from encoder heads EN1, EN2, EN3, EN4, and EN5 described later) to the control device 14 . The second drive unit 36 adjusts the torque and the rotational speed for rotating the second drum member 22 in accordance with the control signal supplied from the control device 14. The control device 14 controls the rotational position of the second drum member 22 by controlling the second drive unit 36 based on the detection result of the second detector 35, and the first drum member 21 (cylindrical mask DM) and the like. The second drum member 22 is synchronously moved (synchronously rotated). The details of the second detector 35 will be described later.

露光装置EXは、いわゆるマルチレンズ方式の投影光学系PLを搭載することを想定した露光装置である。投影光学系PLは、円筒マスクDMのパターンにおける一部の像を投影する複数の投影モジュールを備える。例えば、図1では、円筒マスクDMの回転中心線AX1と第2ドラム部材22の第2中心軸AX2とを含み、YZ平面と平行な中心面P3に対して左側(基板Pの搬送方向とは反対側)に3台の投影モジュール(投影光学系)PL1、PL3、PL5がY方向に一定間隔で配置され、中心面P3の右側(基板Pの搬送方向側)にも3つの投影モジュール(投影光学系)PL2、PL4、PL6がY方向に一定間隔で配置される。   The exposure apparatus EX is an exposure apparatus on which it is assumed that a so-called multi-lens type projection optical system PL is mounted. The projection optical system PL includes a plurality of projection modules that project an image of a portion of the pattern of the cylindrical mask DM. For example, in FIG. 1, with respect to a center plane P3 parallel to the YZ plane, including the rotation center line AX1 of the cylindrical mask DM and the second center axis AX2 of the second drum member 22, Three projection modules (projection optical systems) PL1, PL3 and PL5 are arranged at regular intervals in the Y direction on the opposite side), and three projection modules (projections on the transport direction side of the substrate P) on the right side of the central plane P3. Optical systems) PL2, PL4, and PL6 are arranged at regular intervals in the Y direction.

このようなマルチレンズ方式の露光装置EXでは、複数の投影モジュールPL1〜PL6によって露光された領域(投影領域PA1〜PA6)のY方向における端部を走査によって互いに重ね合わせることによって、所望のパターンの全体像を投影する。このような露光装置EXは、円筒マスクDM上のパターンのY方向における寸法が大きくなり、必然的にY方向の幅が大きな基板Pを扱う必要性が生じた場合でも、投影モジュールPLと、投影モジュールPLに対応する照明機構IU側のモジュールとをY方向に増設するだけでよいので、容易に表示パネルサイズ(基板Pの幅)の大型化に対応できるという利点がある。   In such a multi-lens exposure apparatus EX, the end portions in the Y direction of the areas (projection areas PA1 to PA6) exposed by the plurality of projection modules PL1 to PL6 are overlapped with each other by scanning to obtain a desired pattern. Project the whole picture. In such an exposure apparatus EX, even if the dimension in the Y direction of the pattern on the cylindrical mask DM becomes large and the necessity of handling the substrate P having a large width in the Y direction inevitably arises, the projection module PL and the projection Since it is only necessary to add the module on the illumination mechanism IU side corresponding to the module PL in the Y direction, there is an advantage of being able to easily cope with the enlargement of the display panel size (width of the substrate P).

なお、露光装置EXは、マルチレンズ方式でなくてもよい。例えば、基板Pの幅方向の寸法がある程度小さい場合等に、露光装置EXは、1台の投影モジュールによってパターンの全幅の像を基板Pに投影してもよい。また、複数の投影モジュールPL1〜PL6は、それぞれ、1個のデバイスに対応するパターンを投影してもよい。すなわち、露光装置EXは、複数個のデバイス用のパターンを、複数の投影モジュールによって並行して投影してもよい。   The exposure apparatus EX may not be a multi-lens system. For example, when the dimension in the width direction of the substrate P is somewhat small, the exposure apparatus EX may project an image of the entire width of the pattern onto the substrate P by one projection module. In addition, each of the plurality of projection modules PL1 to PL6 may project a pattern corresponding to one device. That is, the exposure apparatus EX may project patterns for a plurality of devices in parallel by a plurality of projection modules.

照明機構IUは、光源装置13及び照明光学系を備える。照明光学系は、複数の投影モジュールPL1〜PL6の各々に対応してY軸方向に並んだ複数(例えば6つ)の照明モジュールILを備える。光源装置13は、例えば水銀ランプ等のランプ光源、レーザーダイオード、発光ダイオード(LED)等の固体光源又は気体レーザ光源を含む。光源装置が射出する照明光は、例えばランプ光源から射出される輝線(g線、h線、i線)、KrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)等である。光源装置13から射出された照明光は、照度分布が均一化されて、例えば光ファイバー等の導光部材を介して、複数の照明モジュールILに振り分けられる。   The illumination mechanism IU includes the light source device 13 and an illumination optical system. The illumination optical system includes a plurality (for example, six) of illumination modules IL aligned in the Y-axis direction corresponding to each of the plurality of projection modules PL1 to PL6. The light source device 13 includes, for example, a lamp light source such as a mercury lamp, a solid state light source such as a laser diode or a light emitting diode (LED), or a gas laser light source. The illumination light emitted from the light source device is, for example, a bright line (g line, h line, i line) emitted from a lamp light source, far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (Wavelength 193 nm) or the like. The illumination light emitted from the light source device 13 has a uniform illuminance distribution, and is distributed to the plurality of illumination modules IL via a light guide member such as an optical fiber, for example.

複数の照明モジュールILのそれぞれは、レンズ等の複数の光学部材を含む。本実施形態において、光源装置13から出射して複数の照明モジュールILのいずれかを通る光を照明光束EL1と称する。複数の照明モジュールILのそれぞれは、例えばインテグレータ光学系、ロッドレンズ、フライアイレンズ等を含み、均一な照度分布の照明光束EL1によって照明領域IRを照明する。本実施形態において、複数の照明モジュールILは、円筒マスクDMの内側に配置されている。複数の照明モジュールILのそれぞれは、円筒マスクDMの内側から円筒マスクDMの外周面に形成されたマスクパターンの各照明領域IRを照明する。   Each of the plurality of illumination modules IL includes a plurality of optical members such as a lens. In the present embodiment, light emitted from the light source device 13 and passing through any of the plurality of illumination modules IL is referred to as an illumination light flux EL1. Each of the plurality of illumination modules IL includes, for example, an integrator optical system, a rod lens, a fly's eye lens, and the like, and illuminates the illumination region IR with the illumination light beam EL1 of uniform illuminance distribution. In the present embodiment, the plurality of illumination modules IL are disposed inside the cylindrical mask DM. Each of the plurality of illumination modules IL illuminates each illumination area IR of the mask pattern formed on the outer peripheral surface of the cylindrical mask DM from the inside of the cylindrical mask DM.

図2は、本実施形態における照明領域IR及び投影領域PAの配置を示す図である。なお、図2には、第1ドラム部材21に配置された円筒マスクDM上の照明領域IRを−Z側から見た平面図(図2中の左側の図)と、第2ドラム部材22に配置された基板P上の投影領域PAを+Z側から見た平面図(図2中の右側の図)とが図示されている。図2中の符号Xsは、第1ドラム部材21(円筒マスクDM)又は第2ドラム部材22の回転方向(移動方向)を示す。   FIG. 2 is a diagram showing the arrangement of the illumination area IR and the projection area PA in the present embodiment. In FIG. 2, a plan view of the illumination area IR on the cylindrical mask DM disposed on the first drum member 21 as viewed from the −Z side (the left side in FIG. 2) and the second drum member 22 The top view (figure on the right side in FIG. 2) which looked at projection area PA on the board | substrate P arrange | positioned from the + Z side is shown in figure. The code | symbol Xs in FIG. 2 shows the rotation direction (movement direction) of the 1st drum member 21 (cylindrical mask DM) or the 2nd drum member 22. As shown in FIG.

複数の照明モジュールILは、それぞれ、円筒マスクDM上の第1から第6照明領域IR1〜IR6を照明する。例えば、第1照明モジュールILは、第1照明領域IR1を照明し、第2照明モジュールILは第2照明領域IR2を照明する。   The plurality of illumination modules IL respectively illuminate the first to sixth illumination areas IR1 to IR6 on the cylindrical mask DM. For example, the first illumination module IL illuminates the first illumination area IR1, and the second illumination module IL illuminates the second illumination area IR2.

第1照明領域IR1は、Y方向に細長い台形状の領域として説明するが、投影光学系(投影モジュール)PLのように、中間像面を形成する投影光学系の場合は、その中間像の位置に台形開口を有する視野絞り板を配置できる。このため、第1照明領域IR1は、その台形開口を包含する長方形の領域としてもよい。第3照明領域IR3及び第5照明領域IR5は、それぞれ、第1照明領域IR1と同様の形状の領域であり、Y軸方向に一定間隔を空けて配置されている。また、第2照明領域IR2は、中心面P3に関して第1照明領域IR1と対称的な台形状(又は長方形)の領域である。第4照明領域IR4及び第6照明領域IR6は、それぞれ、第2照明領域IR2と同様の形状の領域であり、Y軸方向に一定間隔を空けて配置されている。   Although the first illumination area IR1 is described as a trapezoidal area elongated in the Y direction, in the case of a projection optical system that forms an intermediate image plane like the projection optical system (projection module) PL, the position of the intermediate image And a field stop plate having a trapezoidal opening. Therefore, the first illumination area IR1 may be a rectangular area including the trapezoidal opening. The third illumination region IR3 and the fifth illumination region IR5 are regions of the same shape as the first illumination region IR1, respectively, and are arranged at constant intervals in the Y-axis direction. Further, the second illumination area IR2 is a trapezoidal (or rectangular) area symmetrical to the first illumination area IR1 with respect to the central plane P3. The fourth illumination region IR4 and the sixth illumination region IR6 are regions of the same shape as the second illumination region IR2, respectively, and are arranged at constant intervals in the Y-axis direction.

図2に示すように、第1から第6照明領域IR1〜IR6のそれぞれは、第1面P1の周方向に沿って見た場合に、Y軸方向に隣り合う台形状の照明領域の斜辺部の三角部が重なるように(オーバーラップするように)配置されている。そのため、例えば、第1ドラム部材21の回転によって第1照明領域IR1を通過する円筒マスクDM上の第1領域A1は、第1ドラム部材21の回転によって第2照明領域IR2を通過する円筒マスクDM上の第2領域A2と一部重複する。   As shown in FIG. 2, when viewed along the circumferential direction of the first surface P1, each of the first to sixth illumination regions IR1 to IR6 is an oblique side portion of a trapezoidal illumination region adjacent in the Y-axis direction Are arranged so that their triangles overlap. Therefore, for example, the first area A1 on the cylindrical mask DM passing the first illumination area IR1 by the rotation of the first drum member 21 passes the second illumination area IR2 by the rotation of the first drum member 21. It partially overlaps with the upper second area A2.

本実施形態において、円筒マスクDMは、パターンが形成されているパターン形成領域A3と、パターンが形成されていないパターン非形成領域A4とを含む。パターン非形成領域A4は、パターン形成領域A3を枠状に囲むように配置されており、照明光束EL1を遮光する特性を有する。円筒マスクDMのパターン形成領域A3は、第1ドラム部材21の回転にともなって移動方向Xsに移動し、パターン形成領域A3のうちのY軸方向における各部分領域は、第1から第6照明領域IR1〜IR6のいずれかを通過する。すなわち、第1〜第6照明領域IR1〜IR6は、パターン形成領域A3のY軸方向の全幅をカバーするように配置されている。   In the present embodiment, the cylindrical mask DM includes a pattern formation area A3 in which a pattern is formed and a pattern non-formation area A4 in which a pattern is not formed. The non-pattern formation area A4 is disposed to surround the pattern formation area A3 in a frame shape, and has a characteristic of shielding the illumination light beam EL1. The pattern formation area A3 of the cylindrical mask DM moves in the moving direction Xs along with the rotation of the first drum member 21, and the partial areas in the Y axis direction of the pattern formation area A3 are the first to sixth illumination areas Pass one of IR1 to IR6. That is, the first to sixth illumination areas IR1 to IR6 are arranged to cover the full width of the pattern formation area A3 in the Y-axis direction.

図1に示すように、Y軸方向に並ぶ複数の投影モジュールPL1〜PL6のそれぞれは、第1〜第6照明モジュールILのそれぞれと1対1で対応しており、対応する照明モジュールILによって照明される照明領域IR内に現れる円筒マスクDMの部分的なパターンの像を、基板P上の各投影領域PAに投影する。例えば、第1投影モジュールPL1は、第1照明モジュールILに対応し、第1照明モジュールILによって照明される第1照明領域IR1(図2参照)における円筒マスクDMのパターンの像を、基板P上の第1投影領域PA1に投影する。第3投影モジュールPL3、第5投影モジュールPL5は、それぞれ、第3〜第5照明モジュールILと対応している。第3投影モジュールPL3及び第5投影モジュールPL5は、Y軸方向から見ると、第1投影モジュールPL1と重なる位置に配置されている。   As shown in FIG. 1, each of the plurality of projection modules PL1 to PL6 aligned in the Y-axis direction corresponds to each of the first to sixth illumination modules IL on a one-to-one basis, and illumination is performed by the corresponding illumination modules IL. An image of a partial pattern of the cylindrical mask DM appearing in the illumination area IR to be projected is projected onto each projection area PA on the substrate P. For example, the first projection module PL1 corresponds to the first illumination module IL, and the image of the pattern of the cylindrical mask DM in the first illumination area IR1 (see FIG. 2) illuminated by the first illumination module IL is displayed on the substrate P On the first projection area PA1 of the The third projection module PL3 and the fifth projection module PL5 correspond to the third to fifth illumination modules IL, respectively. The third projection module PL3 and the fifth projection module PL5 are disposed at positions overlapping with the first projection module PL1 when viewed from the Y-axis direction.

また、第2投影モジュールPL2は、第2照明モジュールILに対応し、第2照明モジュールILによって照明される第2照明領域IR2(図2参照)における円筒マスクDMのパターンの像を、基板P上の第2投影領域PA2に投影する。第2投影モジュールPL2は、Y軸方向から見ると、第1投影モジュールPL1に対して中心面P3を挟んで対称的な位置に配置されている。   Further, the second projection module PL2 corresponds to the second illumination module IL, and the image of the pattern of the cylindrical mask DM in the second illumination area IR2 (see FIG. 2) illuminated by the second illumination module IL is displayed on the substrate P. To the second projection area PA2 of When viewed in the Y-axis direction, the second projection module PL2 is disposed at a symmetrical position with respect to the first projection module PL1 across the central plane P3.

第4投影モジュールPL4、第6投影モジュールPL6は、それぞれ、第4、第6照明モジュールILと対応して配置され、第4投影モジュールPL4及び第6投影モジュールPL6は、Y軸方向から見て、第2投影モジュールPL2と重なる位置に配置されている。このような配置により、奇数番の第1投影領域PA1、第3投影領域PA3及び第5投影領域PA5は、中心面P3から−X方向に一定量ずれて、Y軸方向に一列に並んで配置される。偶数番の第2投影領域PA2、第4投影領域PA4及び第6投影領域PA6は、中心面P3から+X方向に一定量ずれて、Y軸方向に一列に並んで配置される。   The fourth projection module PL4 and the sixth projection module PL6 are respectively disposed in correspondence with the fourth and sixth illumination modules IL, and the fourth projection module PL4 and the sixth projection module PL6 are viewed from the Y-axis direction, It is arrange | positioned in the position which overlaps with 2nd projection module PL2. With such an arrangement, the odd-numbered first projection area PA1, the third projection area PA3, and the fifth projection area PA5 are arranged in a line in the Y-axis direction with a certain amount of deviation from the central plane P3 in the -X direction. Be done. The even-numbered second projection area PA2, the fourth projection area PA4, and the sixth projection area PA6 are arranged in a line in the Y-axis direction at a predetermined distance from the center plane P3 in the + X direction.

本実施形態において、照明機構IUの各照明モジュールILから円筒マスクDM上の各照明領域IR1〜IR6に達する光を照明光束EL1とする。また、各照明領域IR1〜IR6中に現れる円筒マスクDMのパターンに応じた強度分布変調を受けて各投影モジュールPL1〜PL6に入射して各投影領域PA1〜PA6に達する光を、結像光束EL2とする。そして、各投影領域PA1〜PA6に達する結像光束EL2のうち、投影領域PA1〜PA6の各中心点を通る主光線は、図1に示すように、第2ドラム部材22の第2中心軸AX2から見て、中心面P3を挟んで周方向で角度θの位置(特定位置)にそれぞれ配置される。   In the present embodiment, the light reaching each of the illumination areas IR1 to IR6 on the cylindrical mask DM from the illumination modules IL of the illumination mechanism IU is referred to as an illumination luminous flux EL1. In addition, the light beams subjected to intensity distribution modulation according to the pattern of the cylindrical mask DM appearing in the respective illumination areas IR1 to IR6 and incident on the respective projection modules PL1 to PL6 to reach the respective projection areas PA1 to PA6 I assume. Then, among the imaging light beams EL2 reaching the projection areas PA1 to PA6, the chief ray passing through the center points of the projection areas PA1 to PA6 is the second central axis AX2 of the second drum member 22, as shown in FIG. From the center plane P3 in the circumferential direction (specific position).

第1から第6投影領域PA1〜PA6のそれぞれは、第2中心軸AX2に平行な方向において隣り合う投影領域(奇数番目と偶数番目)同士の端部(台形の三角部分)が、第2面P2の周方向において重なるように配置されている。そのため、例えば、第2ドラム部材22の回転によって第1投影領域PA1を通過する基板P上の第3領域A5は、第2ドラム部材22の回転によって第2投影領域PA2を通過する基板P上の第4領域A6と一部重複する。第1投影領域PA1と第2投影領域PA2は、第3領域A5と第4領域A6が重複する領域での露光量が、重複しない領域の露光量と実質的に同一となるように、それぞれの形状等が設定されている。   In each of the first to sixth projection areas PA1 to PA6, end portions (trapezoidal triangle portions) of projection areas (odd-numbered and even-numbered) adjacent in the direction parallel to the second central axis AX2 They are arranged to overlap in the circumferential direction of P2. Therefore, for example, the third area A5 on the substrate P passing the first projection area PA1 by the rotation of the second drum member 22 is on the substrate P passing the second projection area PA2 by the rotation of the second drum member 22. It partially overlaps with the fourth area A6. The first projection area PA1 and the second projection area PA2 are arranged such that the exposure amount in the area where the third area A5 and the fourth area A6 overlap is substantially the same as the exposure amount in the non-overlapping area. The shape etc. are set.

次に、本実施形態の投影光学系PLの詳細構成について図3を参照して説明する。なお、本実施形態において、第2投影モジュールPL2〜第5投影モジュールPL5のそれぞれは、第1投影モジュールPL1と同様の構成である。このため、投影光学系PLを代表して、第1投影モジュールPL1の構成について説明し、第2投影モジュールPL2〜第5投影モジュールPL5のそれぞれの説明は省略する。   Next, the detailed configuration of the projection optical system PL of the present embodiment will be described with reference to FIG. In the present embodiment, each of the second to fifth projection modules PL2 to PL5 has the same configuration as that of the first projection module PL1. Therefore, as a representative of the projection optical system PL, the configuration of the first projection module PL1 will be described, and the description of each of the second to fifth projection modules PL2 to PL5 will be omitted.

図3に示す第1投影モジュールPL1は、第1照明領域IR1に配置された円筒マスクDMのパターンの像を中間像面P7に結像する第1光学系41と、第1光学系41が形成した中間像の少なくとも一部を基板Pの第1投影領域PA1に再結像する第2光学系42と、中間像が形成される中間像面P7に配置された第1視野絞り43とを備える。   In the first projection module PL1 shown in FIG. 3, the first optical system 41 for forming an image of the pattern of the cylindrical mask DM disposed in the first illumination region IR1 on the intermediate image plane P7 and the first optical system 41 are formed. A second optical system 42 for re-forming at least a part of the intermediate image on the first projection area PA1 of the substrate P, and a first field stop 43 disposed on an intermediate image plane P7 on which the intermediate image is formed .

また、第1投影モジュールPL1は、フォーカス補正光学部材44、像シフト補正光学部材45、ローテーション補正機構46及び倍率補正用光学部材47を備えている。フォーカス補正光学部材44は、基板P上に形成されるマスクのパターン像(以下、投影像という)のフォーカス状態を微調整するフォーカス調整装置である。また、像シフト補正光学部材45は、投影像を像面内で微少に横シフトさせるシフト調整装置である。倍率補正用光学部材47は、投影像の倍率を微少補正するシフト調整装置である。ローテーション補正機構46は、投影像を像面内で微少回転させるシフト調整装置である。   The first projection module PL1 further includes a focus correction optical member 44, an image shift correction optical member 45, a rotation correction mechanism 46, and a magnification correction optical member 47. The focus correction optical member 44 is a focus adjustment device that finely adjusts the focus state of a pattern image (hereinafter referred to as a projection image) of a mask formed on the substrate P. Further, the image shift correction optical member 45 is a shift adjustment device which slightly shifts the projected image laterally in the image plane. The magnification correction optical member 47 is a shift adjustment device that slightly corrects the magnification of the projected image. The rotation correction mechanism 46 is a shift adjustment device that slightly rotates the projected image in the image plane.

円筒マスクDMのパターンからの結像光束EL2は、第1照明領域IR1から法線方向(D1)に出射し、フォーカス補正光学部材44を通って像シフト補正光学部材45に入射する。像シフト補正光学部材45を透過した結像光束EL2は、第1光学系41の要素である第1偏向部材50の第1反射面(平面鏡)p4で反射され、第1レンズ群51を通って瞳位置に配置される第1凹面鏡52で反射され、再び第1レンズ群51を通って第1偏向部材50の第2反射面(平面鏡)p5で反射されて、第1視野絞り43に入射する。第1視野絞り43を通った結像光束EL2は、第2光学系42の要素である第2偏向部材57の第3反射面(平面鏡)p8で反射され、第2レンズ群58を通って瞳位置に配置される第2凹面鏡59で反射され、再び第2レンズ群58を通って第2偏向部材57の第4反射面(平面鏡)p9で反射されて、倍率補正用光学部材47に入射する。倍率補正用光学部材47から出射した結像光束EL2は、基板P上の第1投影領域PA1に入射し、第1照明領域IR1内に現れるパターンの像が第1投影領域PA1に等倍(×1)で投影される。   The imaging light beam EL2 from the pattern of the cylindrical mask DM is emitted from the first illumination region IR1 in the normal direction (D1), passes through the focus correction optical member 44, and is incident on the image shift correction optical member 45. The imaging light beam EL 2 transmitted through the image shift correction optical member 45 is reflected by the first reflection surface (plane mirror) p 4 of the first deflection member 50 which is an element of the first optical system 41, and passes through the first lens group 51. The light is reflected by the first concave mirror 52 disposed at the pupil position, is reflected again by the second reflection surface (plane mirror) p5 of the first deflection member 50 through the first lens group 51, and is incident on the first field stop 43 . The imaging light beam EL2 having passed through the first field stop 43 is reflected by the third reflection surface (plane mirror) p8 of the second deflection member 57 which is an element of the second optical system 42, and passes through the second lens group 58 It is reflected by the second concave mirror 59 disposed at the position, is reflected again by the fourth reflecting surface (planar mirror) p9 of the second deflection member 57 through the second lens group 58, and enters the magnification correction optical member 47. . The image forming light beam EL2 emitted from the magnification correction optical member 47 is incident on the first projection area PA1 on the substrate P, and the image of the pattern appearing in the first illumination area IR1 is equal-magnified in the first projection area PA1 (× Projected in 1).

図1に示す円筒マスクDMの半径をr1とし、第2ドラム部材22に巻き付いた基板Pの円筒状の表面における半径をr2として、半径r1と半径r2とを等しくした場合、各投影モジュールPL1〜PL6のマスク側における結像光束EL2の主光線は、円筒マスクDMの中心軸AX1を通るように傾けられる。その傾き角は、基板P側における結像光束EL2の主光線の傾き角度θ(中心面P3に対して±θ)と同じになる。   Assuming that the radius of the cylindrical mask DM shown in FIG. 1 is r1 and the radius of the cylindrical surface of the substrate P wound around the second drum member 22 is r2, the radius r1 and the radius r2 are equal, each projection module PL1 to PL1 The chief ray of the imaging light beam EL2 on the mask side of PL6 is inclined to pass through the central axis AX1 of the cylindrical mask DM. The inclination angle is the same as the inclination angle θ (± θ with respect to the center plane P3) of the principal ray of the imaging light beam EL2 on the substrate P side.

上述した傾き角度θを与えるため、図3に示した、光軸AX3に対する第1偏向部材50の第1反射面p4の角度θ1を45°よりもΔθ1だけ小さくし、光軸AX4に対する第2偏向部材57の第4反射面p9の角度θ4を45°よりもΔθ4だけ小さくする。Δθ1とΔθ4とは、図1中に示した角度θに対して、Δθ1=Δθ4=θ/2の関係に設定される。   In order to give the inclination angle θ described above, the angle θ1 of the first reflecting surface p4 of the first deflection member 50 with respect to the optical axis AX3 shown in FIG. 3 is smaller than 45 ° by Δθ1 and the second deflection with respect to the optical axis AX4 The angle θ4 of the fourth reflection surface p9 of the member 57 is smaller than 45 ° by Δθ4. Δθ1 and Δθ4 are set to the relationship of Δθ1 = Δθ4 = θ / 2 with respect to the angle θ shown in FIG.

図4は、図1の基板処理装置(露光装置)に適用される第2ドラム部材22(回転ドラム)の斜視図である。図5は、図1の基板処理装置(露光装置)に適用される検出プローブと読み取り装置との関係を説明するための斜視図である。図6は、実施形態に係るエンコーダスケール円盤と読み取り装置との位置を、回転中心線AX2と直交するXZ面内で見た説明図である。なお、図4においては、便宜上、第2から第4投影領域PA2〜PA4のみを図示し、第1、第5、第6投影領域PA1、PA5、PA6の図示を省略している。   FIG. 4 is a perspective view of a second drum member 22 (rotary drum) applied to the substrate processing apparatus (exposure apparatus) of FIG. FIG. 5 is a perspective view for explaining the relationship between a detection probe and a reader applied to the substrate processing apparatus (exposure apparatus) of FIG. FIG. 6 is an explanatory view of the positions of the encoder scale disk and the reader according to the embodiment as viewed in the XZ plane orthogonal to the rotation center line AX2. In FIG. 4, for convenience, only the second to fourth projection areas PA2 to PA4 are illustrated, and the first, fifth, and sixth projection areas PA1, PA5, and PA6 are not illustrated.

図1に示す第2検出器35は、第2ドラム部材22の位置(より具体的には回転位置)を光学的に検出するものであって、図4から図6に示すようにスケール部材としての高真円度のエンコーダスケール円盤(円盤)SDと、読み取り部としてのエンコーダヘッドEN1、EN2、EN3、EN4、EN5を含む。   The second detector 35 shown in FIG. 1 optically detects the position of the second drum member 22 (more specifically, the rotational position), and as a scale member as shown in FIG. 4 to FIG. And an encoder scale disk (disk) SD of high circularity, and encoder heads EN1, EN2, EN3, EN4, EN5 as reading units.

エンコーダスケール円盤SDは、第2ドラム部材22の回転軸STと直交する第2ドラム部材22の一方の端部に固定されている。このため、エンコーダスケール円盤SDは、回転中心線AX2周りに回転軸STとともに一体的に回転する。エンコーダスケール円盤SDは、第2ドラム部材22の両方の端部に固定されていてもよい。すなわち、エンコーダスケール円盤SDは、第2ドラム部材22の少なくとも一方の端部に固定されていればよい。   The encoder scale disc SD is fixed to one end of the second drum member 22 orthogonal to the rotation axis ST of the second drum member 22. For this reason, the encoder scale disk SD rotates integrally with the rotation axis ST around the rotation center line AX2. The encoder scale disc SD may be fixed to both ends of the second drum member 22. That is, the encoder scale disc SD may be fixed to at least one end of the second drum member 22.

エンコーダスケール円盤SDの外周面には、第2ドラム部材22(円筒部材)の周方向における位置又は位置変化量を検出するための位置検出用の目盛としてのスケール(刻線)GPが複数刻設されている。以下において、スケールGPを、適宜、目盛GPと称する。エンコーダスケール円盤SDの、スケールGPが刻設されている部分は、スケール部である。複数の目盛GPは、第2ドラム部材22が回転する方向に沿って、例えば20μmピッチの格子線が環状に配列され、かつ第2ドラム部材22とともに回転軸ST(第2中心軸AX2)の周囲を回転する。   On the outer peripheral surface of the encoder scale disc SD, a plurality of scale (division lines) GP as a scale for position detection for detecting the position or the amount of change in position of the second drum member 22 (cylindrical member) in the circumferential direction It is done. Hereinafter, the scale GP is appropriately referred to as a scale GP. The portion of the encoder scale disc SD where the scale GP is engraved is a scale portion. In the plurality of graduations GP, grid lines with a pitch of, for example, 20 μm are annularly arranged along the direction in which the second drum member 22 rotates, and with the second drum member 22 around the rotation axis ST (second central axis AX2) Rotate.

エンコーダヘッドEN1、EN2、EN3、EN4、EN5は、回転軸ST(第2回転中心線AX2)から見て目盛GPの周囲に、目盛GPと一定のギャップで対向して配置される。各エンコーダヘッドEN1〜EN5は、目盛GPに計測ビームを投射し、目盛GPで反射したビーム(回折光)を光電検出する非接触式のセンサーである。また、各エンコーダヘッドEN1〜EN5は、第2ドラム部材22の回転軸ST(第2回転中心線AX2)から見ると、スケール円盤SDの周方向において、互いに異なる方位(角度位置)に配置されている。   The encoder heads EN1, EN2, EN3, EN4, and EN5 are disposed around the graduation GP as opposed to the graduation GP with a constant gap as viewed from the rotation axis ST (the second rotation center line AX2). Each encoder head EN1 to EN5 is a non-contact type sensor that projects a measurement beam on a scale GP and photoelectrically detects a beam (diffracted light) reflected by the scale GP. The encoder heads EN1 to EN5 are arranged in different azimuths (angular positions) in the circumferential direction of the scale disc SD when viewed from the rotation axis ST (second rotation center line AX2) of the second drum member 22. There is.

各エンコーダヘッドEN1〜EN5は、目盛GPの接線方向(XZ面内)における変位の変動に対して計測感度(検出感度)を有する読み取り装置である。図4に示すように、各エンコーダヘッドEN1〜EN5の設置方位(回転中心線AX2を中心としたXZ面内での角度方向)を設置方位線Le1、Le2、Le3、Le4、Le5で表す場合、図6に示すように、設置方位線Le1、Le2が、中心面P3に対して角度±θ°になるように、エンコーダヘッドEN1、EN2が配置される。なお、本実施形態では、一例として角度θは15°とするが、これに限定されるものではない。   Each of the encoder heads EN1 to EN5 is a reading device having measurement sensitivity (detection sensitivity) with respect to variation in displacement in the tangential direction (in the XZ plane) of the scale GP. As shown in FIG. 4, when the installation azimuths (angular directions in the XZ plane around the rotation center line AX2) of the encoder heads EN1 to EN5 are represented by installation azimuth lines Le1, Le2, Le3, Le4, and Le5, As shown in FIG. 6, the encoder heads EN1 and EN2 are arranged such that the installation azimuth lines Le1 and Le2 are at an angle ± θ ° with respect to the central plane P3. In the present embodiment, the angle θ is 15 ° as an example, but is not limited to this.

図3に示す投影モジュールPL1〜PL6は、基板Pを被処理物体とし、基板Pにパターン像となる光束を照射して露光処理を施す処理部でもある。このことから、露光装置EXは、奇数番の投影モジュールPL1、PL3、PL5からなる第1処理部と、偶数番の投影モジュールPL2、PL4、PL6からなる第2処理部とを備え、基板Pに対して第1処理部と第2処理部の各々からの結像光束EL2の主光線(例えば、投影領域PAの中心点を通る主光線)が、XZ面内で見たときに、基板Pに垂直に入射する。そのように、主光線が基板Pに入射する位置を、基板Pに処理(ここでは結像光束の照射)を施す特定位置とする。   The projection modules PL1 to PL6 illustrated in FIG. 3 are also processing units that use the substrate P as an object to be processed, and irradiate the substrate P with a light beam as a pattern image to perform an exposure process. From this, the exposure apparatus EX includes a first processing unit including odd-numbered projection modules PL1, PL3, and PL5, and a second processing unit including even-numbered projection modules PL2, PL4, and PL6. In contrast, when the chief ray of the imaging light beam EL2 from each of the first processing unit and the second processing unit (for example, the chief ray passing through the central point of the projection area PA) is viewed in the XZ plane, It is incident vertically. As such, the position where the chief ray is incident on the substrate P is taken as the specific position where the substrate P is to be treated (here, the irradiation of the imaging light flux).

特定位置は、第2ドラム部材22の第2中心軸AX2から見て、第2ドラム部材22の外周面に支持された基板Pにおいて、中心面P3から周方向に角度±θの位置に設定されている。図4及び図6に示すように、エンコーダヘッドEN1の設置方位線Le1は、奇数番目の投影モジュールPL1、PL3、PL5の各投影領域(投影視野)PA1、PA3、PA5の中心点を通る主光線の中心面P3に対する傾き角度θと一致するように配置される。同様に、エンコーダヘッドEN2の設置方位線Le2は、偶数番目の投影モジュールPL2、PL4、PL6の各投影領域(投影視野)PA2、PA4、PA6の中心点を通る主光線の中心面P3に対する傾き角度θと一致するように配置される。このため、エンコーダヘッドEN1、EN2は、各特定位置と第2中心軸AX2とを結ぶ方向に位置する目盛GP上の目盛を読み取ることになる。   The specific position is set at a position of an angle ± θ in the circumferential direction from the center plane P3 on the substrate P supported on the outer peripheral surface of the second drum member 22 when viewed from the second central axis AX2 of the second drum member 22 ing. As shown in FIGS. 4 and 6, the installation azimuth line Le1 of the encoder head EN1 is a chief ray passing through the center points of the projection areas (projection fields) PA1, PA3 and PA5 of the odd-numbered projection modules PL1, PL3 and PL5. Is arranged so as to coincide with the inclination angle θ with respect to the central plane P3. Similarly, the installation azimuth line Le2 of the encoder head EN2 is an inclination angle of the chief ray passing through the central points of the projection areas (projection fields) PA2, PA4 and PA6 of the even-numbered projection modules PL2, PL4 and PL6 with respect to the central plane P3. It is arranged to coincide with θ. For this reason, the encoder heads EN1 and EN2 read the graduations on the graduation GP located in the direction connecting each specific position and the second central axis AX2.

エンコーダヘッドEN4は、エンコーダヘッドEN1よりも基板Pの搬送方向の上流側、つまり露光位置(投影領域)の手前に配置されている。そして、エンコーダヘッドEN4は、設置方位線Le4上に配置される。設置方位線Le4は、エンコーダヘッドEN1の設置方位線Le1を、基板Pの搬送方向の上流側に向かって回転中心線AX2の軸周りにほぼ90°回転した位置にある。また、エンコーダヘッドEN5は、設置方位線Le5上に配置される。設置方位線Le5は、エンコーダヘッドEN2の設置方位線Le2を、基板Pの搬送方向の上流側に向かって回転中心線AX2の軸周りにほぼ90°回転した位置にある。   The encoder head EN4 is disposed upstream of the encoder head EN1 in the transport direction of the substrate P, that is, in front of the exposure position (projection area). And encoder head EN4 is arrange | positioned on installation azimuth line Le4. The installation azimuth line Le4 is at a position where the installation azimuth line Le1 of the encoder head EN1 is rotated approximately 90 ° around the axis of the rotation center line AX2 toward the upstream side of the transport direction of the substrate P. Also, the encoder head EN5 is disposed on the installation azimuth line Le5. The installation azimuth line Le5 is at a position where the installation azimuth line Le2 of the encoder head EN2 is rotated approximately 90 ° around the axis of the rotation center line AX2 toward the upstream side in the transport direction of the substrate P.

先に例示したように、奇数番の投影領域PA1、PA3、PA5の中心を通る結像光束EL2の主光線と、偶数番の投影領域PA2、PA4、PA6の中心を通る結像光束EL2の主光線との中心面P3に対する傾き角度±θを15°とした場合、設置方位線Le1と設置方位線Le2とのXZ面内での開き角は30°となる。そのため、設置方位線Le4と設置方位線Le5とのXZ面内での開き角も、ほぼ30°となる。   As exemplified above, the principal ray of the imaging light flux EL2 passing through the centers of the odd-numbered projection areas PA1, PA3 and PA5, and the main light of the imaging light flux EL2 passing through the centers of the even-numbered projection areas PA2, PA4 and PA6. When the inclination angle ± θ with respect to the central plane P3 with the light beam is 15 °, the opening angle in the XZ plane of the installation azimuth line Le1 and the installation azimuth line Le2 is 30 °. Therefore, the opening angle in the XZ plane of the installation azimuth line Le4 and the installation azimuth line Le5 is also approximately 30 °.

エンコーダヘッドEN4及びEN5を上述したように配置することで、目盛GPを読み取るエンコーダヘッドEN4、EN5が配置される設置方位線Le4、Le5の方向が、XZ面内かつ回転中心線AX2から見たときに、基板Pに対して結像光束EL2の主光線が基板Pの特定位置に入射する方向とほぼ直交することになる。このため、回転軸STを支持する軸受(ベアリング)の僅かなガタ(2μm〜3μm程度)によって第2ドラム部材22がZ方向にシフトした場合でも、このシフトによって投影領域PA1〜PA6内で発生し得る結像光束EL2に沿う方向に関する位置誤差を、エンコーダヘッドEN1、EN2によって高精度に計測することができる。   When the directions of the installation azimuth lines Le4 and Le5 where the encoder heads EN4 and EN5 for reading the graduation GP are disposed by arranging the encoder heads EN4 and EN5 as viewed from the rotation center line AX2 in the XZ plane The direction in which the chief ray of the imaging light beam EL2 enters the specific position of the substrate P with respect to the substrate P is substantially orthogonal to the direction. Therefore, even if the second drum member 22 is shifted in the Z direction by a slight rattle (about 2 μm to 3 μm) of a bearing that supports the rotation shaft ST, this shift occurs in the projection areas PA1 to PA6 due to this shift. Position errors in a direction along the imaging light beam EL2 to be obtained can be measured with high accuracy by the encoder heads EN1 and EN2.

また、エンコーダヘッドEN3は、設置方位線Le3上に配置される。設置方位線Le3は、エンコーダヘッドEN2の設置方位線Le2が回転中心線AX2の軸周りにほぼ120°回転し、かつエンコーダヘッドEN4の設置方位線Le4が回転中心線AX2の軸周りに、設置方位線Le2の回転方向とは反対方向にほぼ120°回転した位置に設定される。すなわち、XZ面内で見たとき、回転中心線AX2から延びる3本の設置方位線Le2、Le3、Le4は、ほぼ120°の間隔で設定される。   Also, the encoder head EN3 is disposed on the installation azimuth line Le3. In the installation azimuth line Le3, the installation azimuth line Le2 of the encoder head EN2 rotates approximately 120 ° around the axis of the rotation center line AX2, and the installation azimuth line Le4 of the encoder head EN4 rotates around the axis of the rotation center line AX2. It is set to a position rotated approximately 120 ° in the direction opposite to the direction of rotation of the line Le2. That is, when viewed in the XZ plane, the three installation azimuth lines Le2, Le3 and Le4 extending from the rotation center line AX2 are set at an interval of approximately 120 °.

スケール部材であるエンコーダスケール円盤SDは、例えば、低熱膨張率の金属、ガラス又はセラミックス等を母材とする。エンコーダスケール円盤SDは、計測の分解能を高めるために、なるべく大きな直径(例えば直径20cm以上)になるように作られる。図4では、第2ドラム部材22の直径に対してエンコーダスケール円盤SDの直径は小さく図示されているが、第2ドラム部材22の外周面のうち、基板Pが巻き付けられる外周面の直径と、エンコーダスケール円盤SDの目盛GPの直径とを揃える(ほぼ一致させる)ことで、いわゆる、計測アッベ誤差をさらに小さくすることができる。   The encoder scale disc SD, which is a scale member, uses, for example, a metal having a low coefficient of thermal expansion, glass, or a ceramic as a base material. The encoder scale disc SD is made as large as possible (for example, 20 cm or more in diameter) in order to increase the resolution of measurement. In FIG. 4, the diameter of the encoder scale disc SD is illustrated to be smaller than the diameter of the second drum member 22, but of the outer peripheral surface of the second drum member 22, the diameter of the outer peripheral surface on which the substrate P is wound; The measurement Abbe error can be further reduced by making the diameters of the graduations GP of the encoder scale disc SD uniform (approximately the same).

エンコーダスケール円盤SDの周方向に刻設される目盛GPの最小ピッチは、エンコーダスケール円盤SDを加工する目盛刻線装置等の性能によって制限されている。このため、エンコーダスケール円盤SDの直径を大きくすれば、それに応じて最小ピッチに対応した角度計測分解能を高めることができる。目盛GPを読み取るエンコーダヘッドEN1、EN2が配置される設置方位線Le1、Le2の方向を、回転中心線AX2から見たときに、基板Pに対して結像光束EL2の主光線が基板Pに入射する方向と同一にすることにより、例えば、回転軸STを支持する軸受(ベアリング)の僅かなガタ(2μm〜3μm程度)によって第2ドラム部材22がX方向にシフトした場合でも、このシフトによって投影領域PA1〜PA6内で発生し得る基板Pの送り方向(Xs)に関する位置誤差を、エンコーダヘッドEN1、EN2によって高精度に計測することが可能となる。   The minimum pitch of the graduations GP engraved in the circumferential direction of the encoder scale disc SD is limited by the performance of a graduation line device or the like for processing the encoder scale disc SD. Therefore, if the diameter of the encoder scale disk SD is increased, the angle measurement resolution corresponding to the minimum pitch can be increased accordingly. The principal ray of the imaging light beam EL2 enters the substrate P with respect to the substrate P when the directions of the installation azimuth lines Le1 and Le2 in which the encoder heads EN1 and EN2 reading the graduation GP are arranged are viewed from the rotation center line AX2. For example, even if the second drum member 22 is shifted in the X direction by a slight backlash (about 2 .mu.m to 3 .mu.m) of a bearing that supports the rotation shaft ST, projection is performed by this shift. It is possible to measure with high accuracy the encoder head EN1 or EN2 for a positional error in the feed direction (Xs) of the substrate P that may occur in the areas PA1 to PA6.

図5に示すように、第2ドラム部材22の曲面に支持される基板Pの一部分に、図1に示す投影光学系PLにより投影されたマスクパターンの一部分の像と基板Pとを相対的に位置合せ(アライメント)するために、基板Pに予め形成されたアライメントマーク等を検出する複数のアライメント顕微鏡AMG1、AMG2が設けられている。アライメント顕微鏡AMG1、AMG2は、第2ドラム部材22の周囲に配置されるパターン検出装置である。アライメント顕微鏡AMG1、AMG2は、基板P上に離散又は連続して形成された特定パターンを検出するための検出プローブである。この検出プローブによる検出領域は、上述した特定位置よりも基板Pの搬送方向の上流側に配置される。   As shown in FIG. 5, the image of the portion of the mask pattern projected by the projection optical system PL shown in FIG. 1 is relative to the substrate P on the portion of the substrate P supported by the curved surface of the second drum member 22. In order to align (alignment), a plurality of alignment microscopes AMG1 and AMG2 for detecting alignment marks and the like formed in advance on the substrate P are provided. The alignment microscopes AMG1 and AMG2 are pattern detection devices disposed around the second drum member 22. The alignment microscopes AMG1 and AMG2 are detection probes for detecting a specific pattern formed discretely or continuously on the substrate P. The detection area by the detection probe is disposed upstream of the above-described specific position in the transport direction of the substrate P.

図5に示すように、アライメント顕微鏡AMG1、AMG2は、Y軸方向(基板Pの幅方向)に一列に並んだ複数(例えば4つ)の検出プローブを有している。アライメント顕微鏡AMG1、AMG2は、第2ドラム部材22のY軸方向における両側端の検出プローブで、基板Pの幅方向における両端付近に形成されたアライメントマークを常時観察又は検出することができる。そして、アライメント顕微鏡AMG1、AMG2は、第2ドラム部材22のY軸方向(基板Pの幅方向)における両側端以外の検出プローブで、例えば、基板P上に長尺方向に沿って複数形成される表示パネルのパターン形成領域の間における余白部等に形成されるアライメントマークを観察又は検出することができる。   As shown in FIG. 5, the alignment microscopes AMG1 and AMG2 have a plurality of (for example, four) detection probes arranged in a line in the Y-axis direction (the width direction of the substrate P). The alignment microscopes AMG1 and AMG2 are detection probes at both ends of the second drum member 22 in the Y-axis direction, and can always observe or detect alignment marks formed near both ends in the width direction of the substrate P. The alignment microscopes AMG1 and AMG2 are detection probes other than both side ends in the Y-axis direction (the width direction of the substrate P) of the second drum member 22. For example, a plurality of alignment microscopes AMG1 and AMG2 are formed on the substrate P along the longitudinal direction. It is possible to observe or detect an alignment mark formed in a margin or the like between the pattern formation areas of the display panel.

図5に示すように、アライメント顕微鏡AMG1、AMG2による基板P上の各観察領域の中心(検出中心)を通り、第2中心軸AX2と直交する線を観察方位線AM1、AM2とする。この場合、4つのアライメント顕微鏡AMG1の各観察方位線AM1はY軸方向に平行に並び、同様に、4つのアライメント顕微鏡AMG2の各観察方位線AM2はY軸方向に平行に並ぶ。   As shown in FIG. 5, lines passing through the centers (detection centers) of the observation areas on the substrate P by the alignment microscopes AMG1 and AMG2 and orthogonal to the second central axis AX2 are taken as observation azimuth lines AM1 and AM2. In this case, each observation azimuth line AM1 of the four alignment microscopes AMG1 is parallel to the Y axis direction, and similarly, each observation azimuth line AM2 of the four alignment microscopes AMG2 is parallel to the Y axis direction.

図5及び図6に示すように、XZ面内で見たとき、エンコーダヘッドEN4の設置方位線Le4は、4つのアライメント顕微鏡AMG1の各観察方位線AM1と同じ方位に設定される。また、エンコーダヘッドEN5の設置方位線Le5は、4つのアライメント顕微鏡AMG2の各観察方位線AM2と同じ方位に設定される。   As shown in FIGS. 5 and 6, when viewed in the XZ plane, the installation azimuth line Le4 of the encoder head EN4 is set to the same azimuth as each observation azimuth line AM1 of the four alignment microscopes AMG1. Further, the installation direction line Le5 of the encoder head EN5 is set to the same direction as each observation direction line AM2 of the four alignment microscopes AMG2.

このように、アライメント顕微鏡AMG1、AMG2の各検出プローブは、第2中心軸AX2から見て第2ドラム部材22の周囲に配置される。そして、アライメント顕微鏡AMG1、AMG2の検出プローブは、エンコーダヘッドEN4、EN5が配置された位置と第2中心軸AX2とを結ぶ方向(設置方位線Le4、Le5)が、第2中心軸AX2とアライメント顕微鏡AMG1、AMG2の検出中心とを結ぶ方向と一致するよう配置されている。なお、アライメント顕微鏡AMG1、AMG2の各観察領域(検出中心)に対応したエンコーダヘッドEN4、EN5及び投影モジュールPL1〜PL6の各投影領域PA1〜PA6に対応したエンコーダEN1、EN2が配置される回転中心線AX2周り方向の位置は、図6に示す、基板Pが第2ドラム部材22に接触し始めるシート進入領域IAと、第2ドラム部材22から基板Pが外れるシート離脱領域OAとの間に設定される。   Thus, the detection probes of the alignment microscopes AMG1 and AMG2 are disposed around the second drum member 22 as viewed from the second central axis AX2. The detection probes of the alignment microscopes AMG1 and AMG2 have a direction (installation orientation Le4 and Le5) connecting the position at which the encoder heads EN4 and EN5 are arranged and the second central axis AX2 with the second central axis AX2 and the alignment microscope It is arranged to coincide with the direction connecting the detection centers of AMG1 and AMG2. In addition, a rotation center line on which encoder heads EN4 and EN5 corresponding to respective observation areas (detection centers) of alignment microscopes AMG1 and AMG2 and encoders EN1 and EN2 corresponding to projection areas PA1 to PA6 of projection modules PL1 to PL6 are arranged. The position in the circumferential direction of AX2 is set between a sheet entry area IA where the substrate P starts to contact the second drum member 22 and a sheet detachment area OA where the substrate P is released from the second drum member 22, as shown in FIG. Ru.

アライメント顕微鏡AMG1、AMG2は、露光位置(投影領域PA)の手前に配置されている。アライメント顕微鏡AMG1、AMG2は、例えば、基板PのY方向の端部付近に形成されたアライメントマーク(数十μm〜数百μm角内の領域に形成)の像を、基板Pが所定速度で送られている状態で、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子等により高速に画像検出(サンプリング)するものである。そのサンプリングが行われた瞬間に、制御装置14は、エンコーダヘッドEN4によって逐次計測されるエンコーダスケール円盤SDの回転角度位置を記憶(ラッチ)することにより、基板P上のマーク位置と第2ドラム部材22の回転角度位置との対応関係が求められる。   The alignment microscopes AMG1 and AMG2 are arranged in front of the exposure position (projection area PA). In the alignment microscopes AMG1 and AMG2, for example, the substrate P sends an image of an alignment mark (formed in a region of several tens of μm to several hundreds of μm square) formed near the end of the substrate P in the Y direction. In this state, image detection (sampling) is performed at high speed by an imaging element such as a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). At the moment when the sampling is performed, the control device 14 stores (latches) the rotational angle position of the encoder scale disc SD sequentially measured by the encoder head EN4 so that the mark position on the substrate P and the second drum member The correspondence with the 22 rotational angle positions is obtained.

アライメント顕微鏡AMG1で検出したマークを、後続のアライメント顕微鏡AMG2でも検出するようにすると、基板Pの伸縮や第2ドラム部材22上での僅かな滑りを計測することもできる。アライメント顕微鏡AMG1がマークをサンプリングしたときに、エンコーダヘッドEN4によって計測される角度位置Φa1と、アライメント顕微鏡AMG2が同じマークをサンプリングしたときに、エンコーダヘッドEN5によって計測される角度位置Φa2とを記憶する。   If the mark detected by the alignment microscope AMG1 is also detected by the subsequent alignment microscope AMG2, the expansion and contraction of the substrate P and a slight slip on the second drum member 22 can also be measured. When the alignment microscope AMG1 samples a mark, the angular position aa1 measured by the encoder head EN4 and the angular position aa2 measured by the encoder head EN5 when the alignment microscope AMG2 samples the same mark are stored.

なお、2つのエンコーダヘッドEN4、EN5(及びEN1、EN2、EN3)の各々に接続されて、角度位置に対応した計測値を出力するアップダウンカウンター(計数器)は、例えば、スケール円盤SDの外周面に刻設された原点マーク(不図示)が特定のエンコーダヘッド(EN1〜EN5のいずれか1つ)によって検出された瞬間又は任意の時間に、同時にゼロリセットされているものとする。このようにして求めた角度位置Φa1とΦa2の差分値を、予め精密に較正されている2つのアライメント顕微鏡AMG1、AMG2の設置方位線Le4、Le5の開き角Φ0と比較する。そして、差分値(Φa1−Φa2)と開き角Φ0との間に誤差が生じている場合は、シート進入領域IAとシート離脱領域OAとの間で、基板Pが第2ドラム部材22上で僅かに滑っている又は送り方向(周方向)に伸縮している可能性がある。   Note that the up / down counter (counter) connected to each of the two encoder heads EN4 and EN5 (and EN1, EN2, and EN3) and outputting a measurement value corresponding to the angular position is, for example, the outer periphery of the scale disk SD. It is assumed that an origin mark (not shown) engraved on the surface is simultaneously reset to zero at an instant or an arbitrary time detected by a specific encoder head (any one of EN1 to EN5). The difference value between the angular positions aa1 and aa2 thus obtained is compared with the opening angle 00 of the azimuth lines Le4 and Le5 of the two alignment microscopes AMG1 and AMG2 which are precisely calibrated in advance. When there is an error between the difference value (.PHI.a1 -.PHI.a2) and the opening angle .PHI.0, the substrate P is slightly on the second drum member 22 between the sheet entry area IA and the sheet detachment area OA. It may slip or may extend or contract in the feed direction (circumferential direction).

一般に、パターニング時の位置誤差は、基板P上に形成されるデバイスパターンの微細度及び重ね合わせ精度に応じて決まるが、例えば、下地のパターン層に対して10μm幅の線条パターンを正確に重ね合わせ露光するためには、その数分の一以下の誤差、すなわち、基板P上の寸法に換算して、±2μm程度の位置誤差しか許されないことになる。このような高精度な計測を実現するためには、各アライメント顕微鏡AMG1、AMG2によるマーク画像の計測方向(XZ面内における第2ドラム部材22の外周接線方向)と、各エンコーダヘッドEN4、EN5の計測方向(XZ面内での目盛GPの外周接線方向)とを、許容角度誤差内で揃えておく必要がある。   Generally, the positional error at the time of patterning is determined according to the fineness and overlay accuracy of the device pattern formed on the substrate P. For example, a linear pattern of 10 μm width is accurately superimposed on the underlying pattern layer In order to perform combined exposure, only an error of a fraction or less, that is, a position error of about ± 2 μm in terms of the dimension on the substrate P is permitted. In order to realize such high-accuracy measurement, the measurement direction of the mark image by each alignment microscope AMG1 and AMG2 (the tangential direction of the second drum member 22 in the XZ plane) and the encoder heads EN4 and EN5. It is necessary to align with the measurement direction (peripheral tangent direction of the scale GP in the XZ plane) within the allowable angle error.

上述したように、エンコーダヘッドEN4、EN5は、アライメント顕微鏡AMG1、AMG2による基板P上のアライメントマークの計測方向(第2ドラム部材22の円周面の接線方向)と一致するように配置されている。このため、アライメント顕微鏡AMG1、AMG2による基板P(マーク)の位置検出時(画像サンプリング時)に、第2ドラム部材22(エンコーダスケール円盤SD)が、XZ面内において設置方位線Le4又はLe5と直交した周方向(接線方向)にシフトした場合でも、第2ドラム部材22のシフトを加味した高精度な位置計測が可能となる。   As described above, the encoder heads EN4 and EN5 are arranged to coincide with the measurement direction of the alignment mark on the substrate P by the alignment microscopes AMG1 and AMG2 (the tangential direction of the circumferential surface of the second drum member 22). . Therefore, at the time of position detection of the substrate P (mark) by the alignment microscopes AMG1 and AMG2 (at the time of image sampling), the second drum member 22 (encoder scale disc SD) is orthogonal to the installation azimuth Le4 or Le5 in the XZ plane. Even in the case of shifting in the circumferential direction (tangential direction), highly accurate position measurement can be performed in consideration of the shift of the second drum member 22.

また、目盛GPの目盛ピッチが常に一定であれば、回転に速度ムラがないとして、エンコーダヘッドEN1、EN2、EN3、EN4、EN5の各読み値の変化間隔(カウンターへのアップダウンパルスの発生時間)は一定となる。しかし、エンコーダスケール円盤SDを第2ドラム部材22に取り付ける際におけるエンコーダスケール円盤SDの変形、エンコーダヘッドEN1、EN2、EN3、EN4、EN5を取り付ける際の位置(チルト)誤差、エンコーダスケール円盤SDの製造時の精度、取り付け時の偏心等といった影響等によって、目盛GPには固有の誤差(目盛自体のピッチ誤差、偏心及び変形等によるピッチムラ等)が生じ得る。また、目盛GPには、基板処理装置11の運転中等における温度変化に起因するエンコーダスケール円盤SDの伸縮等のように、常時変動する要素による固有誤差も生じ得る。本実施形態では、上述したような原因で発生する目盛GPの固有誤差に伴う計測誤差を求める。そして、得られた計測誤差に基づいて目盛GPの固有誤差分を補正するための補正マップ(補正量データ)を作成し、複数のエンコーダヘッドEN1〜EN5の各読み取り値(実計測値)を、補正マップに基づいて補正し、目盛GPの固有誤差による計測誤差分を相殺又は低減した計測を行うようにする。   In addition, if the scale pitch of scale GP is always constant, it is assumed that there is no speed unevenness in rotation, the change interval of each reading value of encoder heads EN1, EN2, EN3, EN4, EN5 (generation time of up / down pulse to counter) ) Is constant. However, deformation of the encoder scale disc SD when attaching the encoder scale disc SD to the second drum member 22, position (tilt) error when attaching the encoder heads EN1, EN2, EN3, EN4 and EN5, manufacture of the encoder scale disc SD An inherent error (pitch error of the scale itself, pitch unevenness due to eccentricity, deformation, etc.) may occur on the scale GP due to the accuracy of the time, the eccentricity at the time of attachment, etc. In addition, an inherent error may also occur in the scale GP, such as expansion and contraction of the encoder scale disc SD due to a temperature change during operation of the substrate processing apparatus 11 or the like. In the present embodiment, a measurement error associated with the inherent error of the scale GP that occurs due to the above-described cause is obtained. Then, based on the obtained measurement error, a correction map (correction amount data) for correcting the inherent error of the scale GP is created, and the respective read values (actual measurement values) of the plurality of encoder heads EN1 to EN5 are The correction is made on the basis of the correction map so that the measurement is made to cancel or reduce the measurement error due to the inherent error of the scale GP.

本実施形態において、目盛GPの目盛のピッチ誤差及びピッチムラ等に起因する計測誤差の補正マップ作成は、円筒部材としての第2ドラム部材22と同軸に取り付けられた状態のスケール円盤SDの外周に配置された複数のエンコーダヘッドの実計測値に基づいて実行される。ここでは、第1読み取り部としてのエンコーダヘッドEN4と、第2読み取り部としてのエンコーダヘッドEN5と、補正部及びマップ作成部としての制御装置14とによって、補正マップが作成される。本実施形態では、便宜上、エンコーダヘッドEN4を第1読み取り部とし、エンコーダヘッドEN5を第2読み取り部とするが、第1読み取り部及び第2読み取り部は、予め取り付け角度間隔が判っている少なくとも2ヶ所のエンコーダヘッドであればよい。   In this embodiment, the correction map of the measurement error caused by the pitch error and pitch unevenness of the scale of the scale GP is disposed on the outer periphery of the scale disc SD mounted coaxially with the second drum member 22 as a cylindrical member. It is executed based on the actual measured values of the plurality of encoder heads. Here, the correction map is created by the encoder head EN4 as the first reading unit, the encoder head EN5 as the second reading unit, and the control device 14 as the correction unit and the map creation unit. In the present embodiment, for convenience, the encoder head EN4 is used as a first reading unit, and the encoder head EN5 is used as a second reading unit. However, the first reading unit and the second reading unit have at least two attachment angle intervals known in advance. It may be any encoder head.

補正部としての制御装置14は、エンコーダヘッドEN4による読み取り値(カウンターによる計数値m4とする)とエンコーダヘッドEN5よる読み取り値(カウンターによる計数値m5とする)との差分値(m4−m5)、又はエンコーダヘッドEN4とエンコーダヘッドEN5との角度間隔に対応した既定値(例えばその間の目盛の本数に対応した値で、K45とする)から差分値(m4−m5)を引いた差分値(K45−m4−m5)に基づいて、目盛GPの一周分にわたって発生している目盛のピッチ誤差を、例えば目盛GPの原点位置からの所定角度位置毎に求める。そして、制御装置14は、目盛GPの一周分の目盛ピッチ誤差のデータを補正マップとして記憶するとともに、その補正マップに基づいて、エンコーダヘッドEN4の読み取り値、エンコーダヘッドEN5の読み取り値又は他のエンコーダヘッドEN1〜EN3の各読み取り値を補正する。   The control device 14 as the correction unit is a difference value (m4-m5) between a read value by the encoder head EN4 (counted by the counter m4) and a read value by the encoder head EN5 (counted by the counter m5) Alternatively, a difference value (K45−) obtained by subtracting a difference value (m4-m5) from a predetermined value (for example, a value corresponding to the number of graduations between them, K45) corresponding to the angular interval between encoder head EN4 and encoder head EN5. Based on m4 to m5), a pitch error of the graduation occurring over one circumference of the graduation GP is determined, for example, at predetermined angular positions from the origin position of the graduation GP. Then, the control device 14 stores data of scale pitch error for one rotation of the scale GP as a correction map, and based on the correction map, the read value of the encoder head EN4, the read value of the encoder head EN5 or another encoder The read values of the heads EN1 to EN3 are corrected.

図7は、目盛GPの目盛を模式的に表した拡大図である。図8は、目盛GPとエンコーダヘッドEN4、EN5との位置関係を示す模式図である。図7に示すように、目盛GPの目盛は、例えば、立ち上がり部GPaと立ち下がり部GPbとを有する凸部GPtと、隣接する凸部GPtの間の凹部GPUとの繰り返しで構成される。本実施形態においては、1つの凸部GPtと1つの凹部GPUとが目盛GPの一単位、すなわち目盛の1ピッチであるとする。説明を簡単にするため、各エンコーダヘッドEN1〜EN5は、目盛の立ち上がり部GPaを読み取ったとき、アップパルスUを出力し、立ち下がり部GPbを読み取ったときにダウンパルスDを出力するものとする。   FIG. 7 is an enlarged view schematically showing the scale of the scale GP. FIG. 8 is a schematic view showing the positional relationship between the scale GP and the encoder heads EN4 and EN5. As shown in FIG. 7, the scale of the scale GP is configured by, for example, repeating a convex portion GPt having a rising portion GPa and a falling portion GPb and a concave portion GPU between the adjacent convex portions GPt. In the present embodiment, it is assumed that one protrusion GPt and one recess GPU are one unit of the scale GP, that is, one pitch of the scale. To simplify the description, each encoder head EN1 to EN5 outputs an up pulse U when reading the rising portion GPa of the scale and outputs a down pulse D when reading the falling portion GPb. .

目盛GPの目盛は、その立ち上がり部GPaから隣接する目盛GPの立ち上がり部GPaまでの距離SS1又はその立ち下がり部GPbから隣接する目盛の立ち下がり部GPbまでの距離SS2が、目盛同士のピッチ(間隔)になる。エンコーダスケール円盤SDの設計時に定められた目盛ピッチをSSとすると、目盛GPが正確に製造されていれば、目盛GP上のどの部分においても、距離SS1又はSS2は目盛ピッチSSと一致してくる。   The scale of the scale GP is the distance SS1 from the rising portion GPa to the rising portion GPa of the adjacent scale GP or the distance SS2 from the falling portion GPb to the falling portion GPb of the adjacent scale )become. Assuming that the graduation pitch defined at the time of design of the encoder scale disk SD is SS, the distance SS1 or SS2 will coincide with the graduation pitch SS at any part on the graduation GP, provided that the graduation GP is accurately manufactured. .

そのため、目盛GPが図7の矢印Rで示す方向に移動したとき、エンコーダヘッドENが出力するパルスで見れば、2個のアップパルスUと1個のダウンパルスUとが出力された場合、あるいは2個のダウンパルスDと1個のアップパルスUとが出力された場合に、エンコーダスケール円盤SD(図6参照)の外周面(目盛GP)が目盛ピッチSS分だけ移動(回転)したことになる。エンコーダヘッドENが出力するパルスの種類を区別しなければ、3個のパルスが検出される度に、エンコーダスケール円盤SDの外周部が目盛ピッチSS分だけ移動したことになる。   Therefore, when the scale GP moves in the direction indicated by the arrow R in FIG. 7, if two up pulses U and one down pulse U are output, as seen by the pulses output by the encoder head EN, or When two down pulses D and one up pulse U are output, the outer peripheral surface (scale GP) of the encoder scale disc SD (see FIG. 6) moves (rotates) by the scale pitch SS. Become. If the type of pulse output from the encoder head EN is not distinguished, the outer peripheral portion of the encoder scale disc SD is moved by the scale pitch SS each time three pulses are detected.

なお、実際のエンコーダ計測では、エンコーダヘッドから2相信号(sin波、cos波)を発生させ、この2相信号に基づいて、目盛ピッチSSをさらに細分化するような内挿信号処理が行われる。このため、デジタルカウンタによって実際に計数されるアップパルスU及びダウンパルスDは、目盛ピッチSSを数分の一〜数十分の一に等分した位置毎に発生する。   In actual encoder measurement, interpolation signal processing is performed to generate a two-phase signal (sin wave, cos wave) from the encoder head and further subdivide the graduation pitch SS based on the two-phase signal. . For this reason, the up pulse U and the down pulse D which are actually counted by the digital counter are generated at each position obtained by equally dividing the graduation pitch SS into a few to a few tenths.

図8は、スケール円盤SDの外周部に設けられた目盛GPの複数の目盛を直線的に並べて模式的に表したものである。図8では、エンコーダスケール円盤SDの外周部に設けられた目盛GPが矢印Rで示す方向へ移動するものとする。第1読み取り部としてのエンコーダヘッドEN4と、第2読み取り部としてのエンコーダヘッドEN5とが、目盛GPの移動方向に向かってこの順序で配置されている。2個のエンコーダヘッドEN4、EN5は、目盛GPから見ると、相対的に、目盛GPの移動方向とは反対方向に移動する。   FIG. 8 schematically shows a plurality of graduations of the graduations GP provided on the outer peripheral portion of the scale disc SD, arranged linearly. In FIG. 8, it is assumed that the graduation GP provided on the outer peripheral portion of the encoder scale disc SD moves in the direction indicated by the arrow R. An encoder head EN4 as a first reading unit and an encoder head EN5 as a second reading unit are arranged in this order in the moving direction of the scale GP. The two encoder heads EN4 and EN5 move relatively in the direction opposite to the moving direction of the scale GP when viewed from the scale GP.

図6に示したように、一対のエンコーダヘッドEN4、EN5は、エンコーダヘッドEN4と第2中心軸AX2とを結ぶ線(設置方位線Le4)とエンコーダヘッドEN5と第2中心軸AX2とを結ぶ線(設置方位線Le5)とのなす中心角(エンコーダ取付角度)がθsである。また、図8に示すように、一対のエンコーダヘッドEN4、EN5がエンコーダスケール円盤SDの表面で目盛GPを読み取る位置の、目盛GPの周長方向における直線距離(ヘッド間距離)はXSである。   As shown in FIG. 6, the pair of encoder heads EN4 and EN5 is a line connecting the encoder head EN4 and the second central axis AX2, a line connecting the encoder head EN4 and the second central axis AX2, and a line connecting the encoder head EN5 and the second central axis AX2. The central angle (encoder attachment angle) formed with (the installation orientation line Le5) is θs. Further, as shown in FIG. 8, the linear distance (the distance between the heads) in the circumferential direction of the scale GP at the position where the pair of encoder heads EN4 and EN5 read the scale GP on the surface of the encoder scale disc SD is XS.

一対のエンコーダヘッドEN4、EN5は、基板処理装置11のフレーム等に取り付けられると、エンコーダ取付角度θs及びヘッド間距離XSは一定である。上述したように、エンコーダスケール円盤SDの変形、エンコーダスケール円盤SDの製造時の精度、取り付け時の偏心、温度変化に起因するエンコーダスケール円盤SDの伸縮等によって、目盛ピッチSSはエンコーダスケール円盤SDの周方向において、必ずしも一定ではない。例えば、極めて模式的に説明すると、図8に示すように、目盛GP上の領域a、c、dにおいては、1つのエンコーダ取付角度θs及び1つのヘッド間距離XSの間に立ち上がり部GPaと立ち下がり部GPbとを一組として、3個の目盛GPが存在する。しかしながら、領域bは2.5個、領域eは6個の目盛GPが存在する。   When the pair of encoder heads EN4 and EN5 are attached to the frame or the like of the substrate processing apparatus 11, the encoder attachment angle θs and the inter-head distance XS are constant. As described above, the scale pitch SS is equal to that of the encoder scale disc SD due to the deformation of the encoder scale disc SD, the manufacturing accuracy of the encoder scale disc SD, the eccentricity at the time of mounting, and the expansion and contraction of the encoder scale disc SD due to temperature change. In the circumferential direction, it is not necessarily constant. For example, as schematically shown in FIG. 8, in the areas a, c, d on the scale GP, the rising portion GPa stands between the one encoder mounting angle θs and the one head-to-head distance XS in the regions a, c, d. There are three graduations GP with one set of the falling portion GPb. However, there are 2.5 areas b and 6 graduations GP.

図8に示す例では、目盛ピッチSSが設計値の場合、例えば、1つのエンコーダ取付角度θs及び1つのヘッド間距離XSの間には、規定数(この例では3個)の目盛GPが存在するものとする。実際には、上述した目盛GPの誤差要因によって、1つのエンコーダ取付角度θs及び1つのヘッド間距離XSの間に存在する目盛GPの数は、前述した規定数から増減してしまう。図8中の領域aは、目盛ピッチがSSaであるが、領域bでは目盛GPの数が規定数よりも少ないため、領域bの目盛ピッチSSbは、領域aの目盛ピッチSSaよりも大きくなる。また、領域eは目盛GPの数が規定数よりも多いため、領域eの目盛ピッチSSeは、目盛ピッチSSaよりも小さくなる。   In the example shown in FIG. 8, when the scale pitch SS is a design value, for example, between a single encoder attachment angle θs and one head-to-head distance XS, a specified number (three in this example) of scale GPs exist It shall be. In practice, the number of graduations GP existing between one encoder attachment angle θs and one head-to-head distance XS may increase or decrease from the above-described prescribed number due to the error factor of the graduations GP described above. In the area a in FIG. 8, the scale pitch is SSa, but in the area b, the scale pitch SSb of the area b is larger than the scale pitch SSa of the area a because the number of scales GP is smaller than the specified number. In addition, since the number of graduations GP in the region e is larger than the specified number, the graduation pitch SSe of the region e is smaller than the graduation pitch SSa.

例えば、設計上の目盛ピッチSSが100であり、設計上のヘッド間距離XSが300であるとする。図8の領域a、c、dは、エンコーダヘッドEN4、EN5が目盛GPを読み取った各値(カウンターによる計数)に基づいて算出される実ヘッド間距離Xは300である。これは設計上のヘッド間距離XSと一致する。これに対して、図8の領域bは、エンコーダヘッドEN4、EN5が読み取った各値(カウンターによる計数値)に基づいて算出される実ヘッド間距離Xが250となり、領域eは、エンコーダヘッドEN4、EN5の読み取り値(カウンターによる計数値)に基づく実ヘッド間距離Xが600となる。   For example, it is assumed that the design graduation pitch SS is 100 and the design head-to-head distance XS is 300. In the areas a, c, and d in FIG. 8, the actual head-to-head distance X calculated based on the respective values (counts by the counter) obtained by reading the scale GP by the encoder heads EN4 and EN5 is 300. This corresponds to the design distance between heads XS. On the other hand, in the area b of FIG. 8, the actual inter-head distance X calculated based on the values (count values by the counter) read by the encoder heads EN4 and EN5 is 250, and the area e is the encoder head EN4. The actual head-to-head distance X based on the read value (count value by the counter) of EN5 is 600.

このように、設計上のヘッド間距離XSと実ヘッド間距離Xとの違いは、目盛GPの目盛ピッチ誤差に起因するものである。一対のエンコーダヘッドEN4、EN5を装置に固定した後、装置を一定温度の環境中に設置すれば、ヘッド間距離XSは変化しない。このため、例えば、エンコーダヘッドEN4、EN5の固定後におけるヘッド間距離XSを基準として、エンコーダヘッドEN4、EN5の読み取り値から求められる目盛GPの目盛ピッチ誤差のマップ(1周360°の角度位置毎の誤差量又は誤差の補正量)を作成する。そのマップの作成後は、エンコーダヘッドEN4、EN5(又は他のヘッドEN1〜EN3)によるスケールGPの読み取り値(カウンターの計数値)に基づいて、その角度位置に対応した誤差量又は補正量をマップから呼び出して逐次補正すれば、スケールGPの周長方向の移動距離誤差をリアルタイムに補正することができる。   Thus, the difference between the head-to-head distance XS and the actual head-to-head distance X in design is due to the scale pitch error of the scale GP. After fixing the pair of encoder heads EN4 and EN5 to the device, if the device is installed in a constant temperature environment, the distance between heads XS does not change. Therefore, for example, a map of scale pitch errors of the scale GP obtained from the read values of the encoder heads EN4 and EN5 based on the inter-head distance XS after fixing the encoder heads EN4 and EN5 (every angular position of 360 °) Create an error amount or an error correction amount) of After creating the map, map the amount of error or correction corresponding to the angular position based on the read value (count value of the counter) of the scale GP by the encoder head EN4, EN5 (or other heads EN1 to EN3) Can be corrected in real time by correcting the movement distance error of the scale GP in the circumferential direction.

実際の目盛ピッチ誤差及び目盛GPの移動距離誤差を補正する場合、例えば、目盛GPに誤差がない場合の目盛ピッチSS、設計上のヘッド間距離XS及び実ヘッド間距離Xを用い、さらに目盛GPに誤差が発生した場合における実際の目盛ピッチ(実目盛ピッチ)SSrは、例えば式(1)から求められる。実目盛ピッチSSrを用いることにより、目盛GPの誤差を補正し、結果として目盛GPの移動距離の誤差を補正することもできる。
SSr=SS×XS/X・・(1)
When correcting the actual graduation pitch error and the movement distance error of the graduation GP, for example, the graduation pitch SS when there is no error in the graduation GP, the designed head distance XS and the actual head distance X, and further the graduation GP The actual scale pitch (actual scale pitch) SSr in the case where an error occurs in is calculated from, for example, equation (1). By using the actual scale pitch SSr, the error of the scale GP can be corrected, and as a result, the error of the moving distance of the scale GP can be corrected.
SSr = SS × XS / X (1)

また、一対のエンコーダヘッドEN4、EN5が読み取った、ヘッド間距離XSの間に存在する目盛GPの数(計測目盛線)NSに基づいて目盛GPの誤差を補正し、目盛GPの移動距離誤差を補正してもよい。ヘッド間距離XSの間に存在する目盛線の数NSは、一対のエンコーダヘッドEN4、EN5から得られるアップパルスU及びダウンパルスDのカウンターによる計数値によって求めることもできる。計測目盛線NSを用いた場合、実目盛ピッチSSrは、ヘッド間距離XSを含む式(2)で求めることができる。
SSr=XS/NS・・(2)
Further, the error of the scale GP is corrected based on the number (scale lines of measurement) NS of the scale GP existing between the head distance XS read by the pair of encoder heads EN4 and EN5, and the movement distance error of the scale GP is It may be corrected. The number NS of the scale lines existing between the head distance XS can also be determined by the count value of the up pulse U and the down pulse D counter obtained from the pair of encoder heads EN4 and EN5. When the measuring graduation line NS is used, the actual graduation pitch SSr can be obtained by the equation (2) including the distance between heads XS.
SSr = XS / NS · · · (2)

目盛ピッチの誤差及び目盛GPの移動距離の誤差は、円筒部材の位置検出装置が有する補正部としての制御装置14が、例えば、式(1)又は式(2)を用いた演算によって、一対のエンコーダヘッドEN4、EN5の読み取り値に対する補正量として適用する。このため、制御装置14を備える円筒部材の位置検出装置及び基板処理装置11は、目盛GPが設けられるエンコーダスケール円盤SDの変形等によって目盛ピッチSSに誤差が生じても、誤差マップ又は補正マップを使うことで、ほぼリアルタイムにその誤差を補正することができるので、エンコーダスケール円盤SD及び第2ドラム部材22について、精度のよい位置計測(周方向における位置計測)が実現できる。次に、目盛ピッチの誤差及び移動距離の誤差の補正について説明する。   The error of the scale pitch and the error of the movement distance of the scale GP can be determined by the control device 14 as the correction unit of the position detection device of the cylindrical member, for example, by calculation using equation (1) or (2). It is applied as a correction amount to the reading value of the encoder heads EN4 and EN5. For this reason, the position detection device of the cylindrical member provided with the control device 14 and the substrate processing device 11 can use the error map or the correction map even if an error occurs in the scale pitch SS due to the deformation of the encoder scale disc SD provided with the scale GP. Since the error can be corrected substantially in real time by using it, it is possible to realize highly accurate position measurement (position measurement in the circumferential direction) for the encoder scale disc SD and the second drum member 22. Next, the correction of the scale pitch error and the movement distance error will be described.

図9は、スケールの目盛ピッチ誤差を補正する手順を示すフローチャートである。図10は、外周面に目盛を有するスケール円盤SDとエンコーダヘッドEN4、EN5との関係を示す図である。図11は、補正マップの一例を示す図である。目盛GPの目盛ピッチ誤差を補正する場合、図10に示すように、一対のエンコーダヘッドEN4、EN5のヘッド間距離XSを予め計測しておき、制御装置14が有する記憶部に記憶させる。ヘッド間距離XSは、一対のエンコーダヘッドEN4、EN5がエンコーダスケール円盤SDの外周面で目盛GPを読み取る位置で求められる。一対のエンコーダヘッドEN4、EN5が目盛GPを読み取る位置は、エンコーダスケール円盤SDが真円であり、かつ回転中心線AX2に対してエンコーダスケール円盤SDが偏心していない状態での位置とすることができる。この場合、図10に示すように、回転中心線AX2からエンコーダスケール円盤SDの設計値の半径(中心から外周面までの距離)raで湾曲した曲面Pd(目盛GPの目盛面)上で、一対のエンコーダヘッドEN4、EN5のヘッド間距離XSが計測される。図10に示す例において、エンコーダスケール円盤SDの目盛GPは、矢印Rで示す方向、すなわち、エンコーダヘッドEN4からエンコーダヘッドEN5に向かって回転(旋回)する。   FIG. 9 is a flowchart showing a procedure for correcting scale pitch error. FIG. 10 is a view showing the relationship between the scale disk SD having a scale on the outer peripheral surface and the encoder heads EN4 and EN5. FIG. 11 is a diagram showing an example of the correction map. When correcting the scale pitch error of the scale GP, as shown in FIG. 10, the inter-head distance XS of the pair of encoder heads EN4 and EN5 is measured in advance and stored in the storage unit of the control device 14. The head-to-head distance XS is obtained at a position where the pair of encoder heads EN4 and EN5 read the graduation GP on the outer peripheral surface of the encoder scale disc SD. The position where the pair of encoder heads EN4 and EN5 read the scale GP can be a position where the encoder scale disc SD is a true circle and the encoder scale disc SD is not eccentric to the rotation center line AX2. . In this case, as shown in FIG. 10, on the curved surface Pd (the scale surface of the scale GP) curved at the radius (the distance from the center to the outer peripheral surface) ra of the design value of the encoder scale disk SD from the rotation center line AX2. The head distance XS between the encoder heads EN4 and EN5 is measured. In the example shown in FIG. 10, the graduation GP of the encoder scale disc SD rotates (pivots) in the direction indicated by the arrow R, that is, from the encoder head EN4 toward the encoder head EN5.

図9に示すように、ステップS101において、図1に示す基板処理装置11の処理が開始されていない場合(ステップS101、No)、目盛GP等の補正は実行しない。ステップS101において、基板処理装置11の処理が開始され、スケール円盤SDが安定に回転している場合(ステップS101、Yes)、ステップS102において、制御装置14は、所定のタイミングでエンコーダヘッドEN4、EN5からこれらの読み取り値(カウンターの計数値)を取得する。所定のタイミングで取得とは、例えば、エンコーダスケール円盤SDの目盛GPが回転中心線AX2を中心として所定の角度α(度)だけ回転する毎に、制御装置14がエンコーダヘッドEN4、EN5の各読み取り値を取得すること、すなわち各カウンターの計数値をラッチして記憶することをいう。以下、角度αを、適宜、回転角度αということもある。エンコーダスケール円盤SDが等角速度(等周速度)で回転している場合、所定の時間t毎に制御装置14が両方のエンコーダヘッドEN4、EN5の各読み取り値を取得してもよい。この例において、α(度)は、360の約数が好ましいが、角度αはこれに限定されるものではない。角度αは、目盛ピッチ誤差の傾向(誤差の振れ幅や周方向の変化率)に応じて決められる。   As shown in FIG. 9, when the process of the substrate processing apparatus 11 shown in FIG. 1 is not started in step S101 (step S101, No), the correction of the scale GP or the like is not performed. In step S101, when the processing of the substrate processing apparatus 11 is started and the scale disk SD is rotating stably (Yes in step S101), in step S102, the control device 14 performs encoder heads EN4 and EN5 at predetermined timing. Get these readings (Count value of counter) from. Acquisition at a predetermined timing means, for example, that the control device 14 reads each of the encoder heads EN4 and EN5 each time the graduation GP of the encoder scale disk SD rotates by a predetermined angle α (degrees) around the rotation center line AX2. Obtaining a value, ie, latching and storing the count value of each counter. Hereinafter, the angle α may be referred to as a rotation angle α as appropriate. When the encoder scale disc SD is rotating at an equal angular velocity (equal circumferential speed), the control device 14 may acquire the read values of both encoder heads EN4 and EN5 every predetermined time t. In this example, α (degree) is preferably a divisor of 360, but the angle α is not limited to this. The angle α is determined according to the tendency of the scale pitch error (the swing width of the error or the rate of change in the circumferential direction).

エンコーダスケール円盤SDが等角速度で回転している場合、制御装置14は、時間t毎に両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する。制御装置14が、所定の角度α毎に両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する場合、例えば、エンコーダスケール円盤SDの回転角度検出手段を用意する。そして、制御装置14は、エンコーダスケール円盤SDが角度αだけ回転したことを回転角度検出手段が検出したタイミング毎に、両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する。また、両方のエンコーダヘッドEN4、EN5のいずれか一方を回転角度検出手段としても用いてもよい。例えば、エンコーダヘッドEN4を回転角度検出手段として用いた場合、制御装置14は、エンコーダスケール円盤SDが角度αだけ回転したことをエンコーダヘッドEN4が検出したタイミング毎に、両方のエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する。エンコーダスケール円盤SDが角度αだけ回転したことは、例えば、エンコーダヘッドEN4が、回転角度αに相当する目盛GPの数を検出し、これに対応するパルス数を出力することで検出できる。   If the encoder scale disc SD is rotating at a constant angular velocity, the controller 14 obtains these readings from both encoder heads EN4, EN5 every time t. When the control device 14 obtains these read values from both encoder heads EN4 and EN5 at predetermined angles α, for example, a rotation angle detection means of the encoder scale disc SD is prepared. Then, the control device 14 acquires these read values from both encoder heads EN4 and EN5 at each timing when the rotation angle detection means detects that the encoder scale disk SD has rotated by the angle α. Also, either one of both encoder heads EN4 and EN5 may be used as a rotation angle detection means. For example, when the encoder head EN4 is used as the rotation angle detection means, the control device 14 detects both the encoder heads EN4 and EN5 at every timing when the encoder head EN4 detects that the encoder scale disc SD has rotated by the angle α. Get these readings. The rotation of the encoder scale disk SD by the angle α can be detected, for example, by the encoder head EN4 detecting the number of graduations GP corresponding to the rotation angle α and outputting the number of pulses corresponding thereto.

次に、ステップS103に進み、制御装置14は、ステップS102で取得した読み取り値に基づき、目盛GPの補正値としての実目盛ピッチSSrを求める。例えば、上述した式(2)を用いて実目盛ピッチSSrを求める場合、制御装置14は、エンコーダヘッドEN4、EN5の読み取り値から、計測スケール数NSを求める。計測スケール数NSは、エンコーダヘッドEN4による目盛GPの数の読み取り値NSaと、エンコーダヘッドEN5による目盛GPの数の読み取り値NSbとの差分(NSa−NSb)である。そして、制御装置14は、自身の記憶部に記憶したヘッド間距離XSを読み出して、式(2)から実目盛ピッチSSrを求める。実目盛ピッチSSrが、角度α(度)の範囲における目盛GPの間隔の補正値となる。なお、上述した式(2)を用いて実目盛ピッチSSrを求める場合は、計測スケール数NSと目盛GPに誤差がない場合の目盛ピッチSSとの積から計測エンコーダ間距離Xを求め、ヘッド間距離XS、目盛ピッチSS及び計測エンコーダ間距離Xから計測スケール数NSを求めればよい。   Next, in step S103, the control device 14 obtains an actual scale pitch SSr as a correction value of the scale GP based on the read value acquired in step S102. For example, in the case of obtaining the actual scale pitch SSr using the above-mentioned equation (2), the control device 14 obtains the measurement scale number NS from the read values of the encoder heads EN4 and EN5. The measurement scale number NS is a difference (NSa−NSb) between the reading value NSa of the number of graduations GP by the encoder head EN4 and the reading value NSb of the number of graduations GP by the encoder head EN5. Then, the control device 14 reads the head-to-head distance XS stored in its own storage unit, and obtains the actual scale pitch SSr from the equation (2). The actual scale pitch SSr is a correction value of the interval of the scale GP in the range of the angle α (degrees). When the actual scale pitch SSr is determined using the above-mentioned equation (2), the measurement encoder distance X is determined from the product of the measurement scale number NS and the scale pitch SS when there is no error in the scale GP. The number of measurement scales NS may be obtained from the distance XS, the scale pitch SS, and the distance X between measurement encoders.

計測スケール数NSは、例えば、次のようにして求めることができる。エンコーダスケール円盤SDが有する複数の目盛GPの基準となる位置(スケール基準位置)GPbを、エンコーダヘッドEN4が読み取ったとき、制御装置14は、エンコーダヘッドEN4をリセット(エンコーダヘッドEN4のZ相による0点リセット)してから、エンコーダヘッドEN4が検出した目盛GPの数を計数する。次に、エンコーダヘッドEN5がスケール基準位置GPbを読み取ったとき、制御装置14は、エンコーダヘッドEN5をリセット(エンコーダヘッドEN5のZ相による0点リセット)する。そして、制御装置14は、エンコーダヘッドEN5が0にリセットされたときにおけるエンコーダヘッドEN4の目盛GPの数を取得し、エンコーダヘッドEN5がスケール基準位置GPbを読み取ったときにおける目盛GPの数、すなわち0との差分を求める。この差分が、計測スケール数NSである。これ以降において、制御装置14は、エンコーダヘッドEN4、EN5による目盛GPの計数を継続するとともに、所定の角度α又は所定の時間t毎に両方のエンコーダヘッドEN4、EN5の読み取り値の計数値(目盛GPの計数値)を取得し、その差分を求め、これを所定の角度α又は所定の時間tにおける計測スケール数NSとする。この例において、エンコーダスケール円盤SDが1周すると、スケール基準位置GPbは元の位置に戻るが、このとき、エンコーダヘッドEN4、EN5の各々に接続されたカウンターはリセットしなくてもよいし、リセットしてもよい。   The measurement scale number NS can be determined, for example, as follows. When the encoder head EN4 reads a reference position (scale reference position) GPb of a plurality of graduations GP of the encoder scale disc SD, the control device 14 resets the encoder head EN4 (0 due to the Z phase of the encoder head EN4). After point reset), the number of graduations GP detected by the encoder head EN4 is counted. Next, when the encoder head EN5 reads the scale reference position GPb, the control device 14 resets the encoder head EN5 (0 point reset by the Z phase of the encoder head EN5). Then, the control device 14 obtains the number of graduations GP of the encoder head EN4 when the encoder head EN5 is reset to 0, and the number of graduations GP when the encoder head EN5 reads the scale reference position GPb, ie 0 Find the difference with. This difference is the number of measurement scales NS. After this, the control device 14 continues counting the scale GP by the encoder heads EN4 and EN5, and counts the readings of both encoder heads EN4 and EN5 at a predetermined angle α or a predetermined time t The count value of GP) is acquired, the difference is determined, and this is taken as the measurement scale number NS at the predetermined angle α or the predetermined time t. In this example, when the encoder scale disc SD makes one rotation, the scale reference position GPb returns to the original position, but at this time, the counters connected to each of the encoder heads EN4 and EN5 may not be reset, You may

ステップS103で、ある角度αにおける実目盛ピッチSSr(目盛GPの補正値に相当)が求められたら、ステップS104において、制御装置14は、その角度αと対応付けて図11に示す補正マップTBcに記述する。例えば、補正マップTBcのNo.2には、角度2×αと、それに対応する実目盛ピッチSSr2(=XS/NS2)とが記述される。補正マップTBcは、制御装置14の記憶部に記憶されている。制御装置14は、複数の目盛GPの全周(エンコーダスケール円盤SDの全周)にわたって実目盛ピッチSSrを求める。制御装置14は、基板処理装置11の処理中において、エンコーダヘッドEN4とエンコーダヘッドEN5との少なくとも一方が検出したエンコーダスケール円盤SDの角度に対応した補正値、すなわち実目盛ピッチSSrを補正マップTBcから読み出して、目盛GPの誤差を補正する。図6に示すように、基板処理装置11が3以上のエンコーダヘッドEN1、EN2、EN3、EN4、EN5を有する場合、制御装置14は、エンコーダヘッドEN4、EN5以外についても、補正マップTBcを用いて目盛GPの誤差を補正してもよい。次に、ステップS105に進み、基板処理装置11の処理が終了していない場合には(ステップS105、No)、制御装置14は、ステップS102〜ステップS104を継続し、基板処理装置11の処理が終了した場合には(ステップS105、Yes)、制御装置14は、目盛GP等の補正を終了する。   When the actual graduation pitch SSr (corresponding to the correction value of the graduation GP) at a certain angle α is obtained in step S103, the control device 14 associates the correction scale TBc shown in FIG. 11 with the angle α in step S104. Describe. For example, No. 1 of the correction map TBc. In 2, an angle 2 × α and a corresponding actual scale pitch SSr2 (= XS / NS2) are described. The correction map TBc is stored in the storage unit of the control device 14. The controller 14 determines the actual scale pitch SSr over the entire circumference of the plurality of graduations GP (the entire circumference of the encoder scale disc SD). The control device 14 corrects the correction value corresponding to the angle of the encoder scale disc SD detected by at least one of the encoder head EN4 and the encoder head EN5 during processing of the substrate processing apparatus 11, that is, the actual scale pitch SSr from the correction map TBc. Read out and correct the error of scale GP. As shown in FIG. 6, when the substrate processing apparatus 11 has three or more encoder heads EN1, EN2, EN3, EN4 and EN5, the control device 14 also uses the correction map TBc for other than the encoder heads EN4 and EN5. The error of the graduation GP may be corrected. Next, the process proceeds to step S105, and when the processing of the substrate processing apparatus 11 is not completed (No at step S105), the control device 14 continues the steps S102 to S104, and the processing of the substrate processing apparatus 11 If it has ended (Step S105, Yes), the control device 14 ends the correction of the scale GP and the like.

上記例では、基板処理装置11の処理中、すなわち、処理部が基板に対して所定の処理(例えば、露光処理)を施しているときに、制御装置14は、複数の目盛GPの間隔が見かけ上、一定になるように補正する。このようにすることで、基板処理装置11の稼働中に発生した目盛GPの誤差、すなわち読み取りスケール間隔の誤差をリアルタイムで補正できるので、基板処理装置11の処理の精度が向上する。   In the above-described example, during processing of the substrate processing apparatus 11, that is, when the processing unit is performing predetermined processing (for example, exposure processing) on the substrate, the control device 14 has an appearance that the intervals of the plurality of graduations GP are apparent. Correct the above to be constant. By doing this, it is possible to correct in real time the error of the scale GP generated during the operation of the substrate processing apparatus 11, that is, the error of the reading scale interval, so that the processing accuracy of the substrate processing apparatus 11 is improved.

円盤SDが1周、すなわち、エンコーダヘッドEN4の位置にあったスケール基準位置GPbがエンコーダヘッドEN4の位置に戻ってくると、全周分の目盛GPの補正値として、実目盛ピッチSSrが求められる。制御装置14は、以後も円盤SDが1周する毎に同様に目盛GPを補正してもよいし、円盤SDが1周した後は目盛GPの補正を終了し、所定のタイミング(例えば、所定時間が経過した後又は所定の温度変化があった場合等)で目盛GPの補正を再開してもよい。前者のようにすると、補正マップTBcを随時更新するため、エンコーダスケール円盤SD及び目盛GPの短時間における変形又は寸法変化等にも迅速に対応できる。後者のようにすると、補正マップTBcの更新頻度を抑制できるので、その分、制御装置14のハードウェア資源を有効に利用できる。   When the disk SD performs one rotation, that is, when the scale reference position GPb at the position of the encoder head EN4 returns to the position of the encoder head EN4, the actual scale pitch SSr is determined as the correction value of the scale GP for the entire circumference. . After that, the controller 14 may similarly correct the scale GP every time the disc SD makes one revolution, and after the disc SD makes one revolution, the correction of the scale GP ends and predetermined timing (for example, a predetermined time) The correction of the scale GP may be resumed after a lapse of time or when a predetermined temperature change occurs. In the former case, since the correction map TBc is updated as needed, it is possible to rapidly cope with deformation or dimensional change of the encoder scale disc SD and the scale GP in a short time. In the latter case, the frequency of updating the correction map TBc can be suppressed, and accordingly, the hardware resources of the control device 14 can be used effectively.

制御装置14がエンコーダヘッドEN4、EN5からこれらの読み取り値を取得する際に、取得のタイミングが短いほど又はエンコーダヘッドEN4、EN5の間隔が小さいほど、目盛GPの補正精度が向上する。エンコーダヘッドEN4、EN5の間隔は、エンコーダヘッドEN4、EN5の大きさ及びその他の部品配置との兼ね合い等から、ある程度の制約を受ける。このため、エンコーダヘッドEN4、EN5からこれらの読み取り値を取得する際のタイミングを短くする方が、汎用性は高くなるという利点がある。   When the control device 14 acquires these read values from the encoder heads EN4 and EN5, the correction accuracy of the scale GP improves as the acquisition timing is shorter or the interval between the encoder heads EN4 and EN5 is smaller. The distance between the encoder heads EN4 and EN5 is subject to a certain degree of restriction from the balance between the size of the encoder heads EN4 and EN5 and the arrangement of other components. Therefore, shortening the timing when acquiring these read values from the encoder heads EN4 and EN5 has an advantage that versatility is enhanced.

図12、図13は、一対のエンコーダヘッドからこれらの読み取り値を取得する際のタイミングを示す概念図である。上述した例では、エンコーダスケール円盤SDの複数の目盛GPが回転中心線AX2を中心として所定の回転角度α(度)だけ回転する毎に、制御装置14がエンコーダヘッドEN4、EN5からこれらの読み取り値を取得した。このときの回転角度α(度)を、360の約数とした場合、エンコーダスケール円盤SDが複数回転している間、エンコーダヘッドEN4、EN5は毎周同じ位置を読み取ることになる(図12参照)。この場合、目盛GPの補正精度を向上させるためには、所定の回転角度αを小さくする必要があるが、装置の制約等から無闇に回転角度αを小さくすることはできない。   12 and 13 are conceptual diagrams showing timings when obtaining these read values from the pair of encoder heads. In the example described above, the control device 14 reads these readings from the encoder heads EN4 and EN5 each time the plurality of graduations GP of the encoder scale disk SD rotates by the predetermined rotation angle α (degrees) about the rotation center line AX2. I got When the rotation angle α (degree) at this time is a divisor of 360, while the encoder scale disk SD rotates a plurality of times, the encoder heads EN4 and EN5 read the same position every circumference (see FIG. 12). ). In this case, in order to improve the correction accuracy of the scale GP, it is necessary to reduce the predetermined rotation angle α, but due to the restriction of the device, etc., it is not possible to reduce the rotation angle α in darkness.

本実施形態において、複数の目盛GPを有するエンコーダスケール円盤SDが回転体(連続体)なので、必ずしも1周毎の周期性を担保しないでも、エンコーダヘッドEN4、EN5を用いて連続的に測定が可能である。このため、例えば、回転角度α(度)を360度の約数とならない数とすることにより、エンコーダスケール円盤SDが複数回転した場合における、エンコーダヘッドEN4、EN5の読取位置の周期性を崩すことができる。特に、α(度)を360度の約数とならない数かつ素数とすることにより、前述した周期性をより効果的に崩すことができる。その結果、所定の回転角度αが大きくても、複数の目盛GP(エンコーダスケール円盤SD)が周回を重ねる毎に発生するズレ量が微小となるため、結果としてエンコーダヘッドEN4、EN5による目盛GPの測定間隔を小さくすることができる(図13参照)。   In this embodiment, since the encoder scale disc SD having a plurality of graduations GP is a rotating body (continuous body), continuous measurement can be performed using the encoder heads EN4 and EN5 without necessarily securing the periodicity for each rotation. It is. Therefore, for example, by setting the rotation angle α (degree) not to be a divisor of 360 degrees, the periodicity of the reading position of the encoder heads EN4 and EN5 is broken when the encoder scale disc SD rotates a plurality of times. Can. In particular, by setting α (degree) to a number and a prime number that does not become a divisor of 360 degrees, the periodicity described above can be broken more effectively. As a result, even if the predetermined rotation angle α is large, the amount of displacement generated each time the multiple graduations GP (encoder scale disk SD) repeat laps becomes small, and as a result, the graduations GP by the encoder heads EN4 and EN5 The measurement interval can be reduced (see FIG. 13).

例えば、角度αを10度〜35度程度の間で360度の約数とならない値とするのがよいが、360/αの値が小数点以下1桁〜4桁程度、好ましくは小数点以下1桁〜4桁で割り切れるような値としてもよい。一例として、角度αを11度、17度、19度、23度等の素数とした場合、360/αは小数点以下4桁でも割り切れない。一方、角度αを12.5度、16度、25度、28.8度のいずれかにした場合、360/αは小数点以下1桁で割り切れる。角度αを19.2度、32.0度とした場合、360/αは小数点以下2桁で割り切れる。角度αを12.8度とした場合、360/αは小数点以下3桁で割り切れる。さらに角度αを25.6度とした場合、360/αは小数点以下4桁で割り切れる。なお、回転角度αが10度〜35度の間で、約数(360/αが整数)となる角度は、10度、12度、14.4度、15度、18度、20度、22.5度、24度、30度である。また、回転角度αは1度〜10度の範囲であっても構わないが、360/αが整数となるような約数を避ける場合、回転角度αは7度、9度となる。なお、必要とする誤差補正の分解能によっては、回転角度αを1度未満、例えば0.5度毎にエンコーダヘッドEN4、EN5の各々による読み取り値の差分を求めて、ピッチ誤差のマップを作成してもよい。   For example, the angle α may be a value that does not become a divisor of 360 degrees between about 10 degrees and 35 degrees, but the value of 360 / α is about one to four decimal places, preferably one decimal place The value may be divisible by 4 digits. As an example, when the angle α is a prime number such as 11 degrees, 17 degrees, 19 degrees, 23 degrees, 360 / α can not be divided even by four digits after the decimal point. On the other hand, when the angle α is any one of 12.5 degrees, 16 degrees, 25 degrees, and 28.8 degrees, 360 / α is divisible by one decimal place. When the angle α is 19.2 degrees and 32.0 degrees, 360 / α is divisible by two decimal places. When the angle α is 12.8 degrees, 360 / α is divisible by three decimal places. Further, when the angle α is 25.6 degrees, 360 / α is divisible by 4 decimal places. In addition, the angle which becomes a divisor (360 / α is an integer) when the rotation angle α is between 10 degrees and 35 degrees is 10 degrees, 12 degrees, 14.4 degrees, 15 degrees, 18 degrees, 20 degrees, 22 .5 degrees, 24 degrees, 30 degrees. Although the rotation angle α may be in the range of 1 degree to 10 degrees, when avoiding a divisor such that 360 / α is an integer, the rotation angle α is 7 degrees and 9 degrees. Depending on the resolution of the required error correction, the rotation angle α is less than 1 degree, for example, 0.5 degrees, and the difference between the read values by each of the encoder heads EN4 and EN5 is obtained to create a map of the pitch error. May be

図14は、スケールの誤差を補正する手順を示すフローチャートである。図14に示す例は、エンコーダスケール円盤SDの複数の目盛GPが回転中心線AX2を中心として所定の角度α(度)だけ回転する毎に一対のエンコーダヘッドEN4、EN5がこれらを読み取る場合において、回転角度αを360の約数でない素数とした場合の処理手順を示している。この例において、回転角度αは、例えば、7度、11度等とすることができる。   FIG. 14 is a flow chart showing the procedure for correcting the scale error. In the example shown in FIG. 14, each of the plurality of graduations GP of the encoder scale disc SD rotates by a predetermined angle α (degrees) around the rotation center line AX 2 when the pair of encoder heads EN 4 and EN 5 read them. The processing procedure in the case where the rotation angle α is a prime which is not a divisor of 360 is shown. In this example, the rotation angle α may be, for example, 7 degrees, 11 degrees, or the like.

ステップS201〜ステップS204は、α(度)を360の約数とした上述の例におけるステップS101〜ステップS104と同様なので、説明を省略する。ステップS205において、制御装置14は、補正値を求め始めてからエンコーダスケール円盤SDが規定の回転数まで回転していない場合(ステップS205、No)、ステップS202〜ステップS205を繰り返す。ステップS205において、制御装置14は、補正値を求め始めてからエンコーダスケール円盤SDが規定の回転数まで回転した場合(ステップS205、Yes)、ステップS206に進む。ステップS206は、α(度)を360の約数とした上述の例におけるステップS105と同様なので説明を省略する。ステップS205における規定の回転数は2回転以上であればよいが、規定の回転数が大きくなるに従って、目盛GPの補正精度を向上させる効果は小さくなる。このため、2回転以上の適切な範囲で規定の回転数を設定することが好ましい。   Steps S201 to S204 are similar to steps S101 to S104 in the above-described example in which α (degree) is a divisor of 360, and thus the description will be omitted. In step S205, when the encoder scale disk SD has not rotated to the prescribed rotation number since the control device 14 starts obtaining the correction value (No in step S205), the steps S202 to S205 are repeated. In step S205, when the encoder scale disc SD has rotated to a prescribed rotational speed since the control device 14 starts obtaining the correction value (step S205, Yes), the process proceeds to step S206. Step S206 is the same as step S105 in the above-described example in which α (degree) is a divisor of 360, and therefore the description thereof is omitted. The specified number of rotations in step S205 may be two or more, but as the specified number of rotations increases, the effect of improving the correction accuracy of the scale GP decreases. For this reason, it is preferable to set a prescribed number of rotations within an appropriate range of two or more rotations.

次に、エンコーダヘッドEN4、EN5の配置について説明する。図6に示すように、第1読み取り部としてのエンコーダヘッドEN4及び第2読み取り部としてのエンコーダヘッドEN5は、処理部としての露光装置EX(図1参照)よりも円筒部材としての第2ドラム部材22の回転方向とは反対側に配置されることが好ましい。より具体的には、第2ドラム部材22に支持された基板Pが露光装置EXによって露光処理される部分よりも、第2ドラム部材22の回転方向とは反対側に配置されることが好ましい。すなわち、第2ドラム部材22に支持された基板Pが露光装置EXによって露光処理される部分よりも前の二箇所で目盛GPを読み取り、補正値を求める。図6に示す例において、第2ドラム部材22の回転方向は、エンコーダヘッドEN4からエンコーダヘッドEN5へ向かう方向である。エンコーダヘッドEN4、EN5をこのように配置することで、目盛GPが補正された後における第2ドラム部材22の周方向における位置情報を用いて処理(この例では露光処理)の制御にフィードバックすることができるので、処理の精度が向上する。   Next, the arrangement of the encoder heads EN4 and EN5 will be described. As shown in FIG. 6, the encoder head EN4 as the first reading unit and the encoder head EN5 as the second reading unit are the second drum members as cylindrical members rather than the exposure apparatus EX (see FIG. 1) as the processing unit. It is preferable to arrange on the opposite side to the rotation direction of 22. More specifically, it is preferable that the substrate P supported by the second drum member 22 be disposed on the opposite side of the rotation direction of the second drum member 22 than the portion to be exposed by the exposure apparatus EX. That is, the scale GP is read at two places before the portion where the substrate P supported by the second drum member 22 is subjected to the exposure processing by the exposure apparatus EX, and the correction value is obtained. In the example shown in FIG. 6, the rotation direction of the second drum member 22 is the direction from the encoder head EN4 toward the encoder head EN5. By arranging the encoder heads EN4 and EN5 in this manner, feedback to control of processing (exposure processing in this example) is performed using positional information in the circumferential direction of the second drum member 22 after the graduation GP is corrected. Processing accuracy is improved.

本実施形態においては、エンコーダヘッドEN4、EN5の両方を基板Pが露光装置EXによって露光処理される部分よりも、第2ドラム部材22の回転方向とは反対側に配置しているが、一方を露光処理される部分に配置してもよい。例えば、エンコーダヘッドEN5を第1読み取り部とし、エンコーダヘッドEN1を第2読み取り部とし、両者の読み取り値の差分に基づいて目盛GPの補正値を求めてもよい。   In the present embodiment, both of the encoder heads EN4 and EN5 are disposed on the side opposite to the rotation direction of the second drum member 22 than the portion where the substrate P is exposed by the exposure apparatus EX. You may arrange | position to the part by which exposure processing is carried out. For example, the encoder head EN5 may be a first reading unit, the encoder head EN1 may be a second reading unit, and the correction value of the scale GP may be obtained based on the difference between the read values of the two.

また、本実施形態では、アライメント顕微鏡AMG1、AMG2は、エンコーダヘッドEN4、EN5に対応した位置に配置されているので、基板Pの表面における変化をアライメント顕微鏡AMG1、AMG2で計測することにより、処理位置における基板Pの変化を予測して、処理時に補正することもできる。さらに、エンコーダヘッドEN4、EN5に加え、これらとは異なる位置、例えば、処理位置に配置されているエンコーダヘッドEN1、EN2の少なくとも一方を用いて、回転中心線AX2の振れ(回転中心線AX2と直交する方向における動き)、真円度(形状歪み)又は第2ドラム部材22の偏心等を計測し、その計測値に基づいて処理の補正をすることもできる。   Further, in the present embodiment, since the alignment microscopes AMG1 and AMG2 are arranged at positions corresponding to the encoder heads EN4 and EN5, the processing position is obtained by measuring the change in the surface of the substrate P with the alignment microscopes AMG1 and AMG2. It is also possible to predict the change in the substrate P at the time of correction and correct it during processing. Further, in addition to the encoder heads EN4 and EN5, deflection of the rotation center line AX2 (orthogonal to the rotation center line AX2) is performed using at least one of the encoder heads EN1 and EN2 arranged at different positions, for example, processing positions. Motion in the direction of movement, roundness (shape distortion), eccentricity of the second drum member 22 or the like may be measured, and the process may be corrected based on the measured value.

回転中心線AX2の振れ又は第2ドラム部材22の偏心等を計測する場合、処理位置(露光処理の位置)に対してエンコーダヘッドEN4、EN5とは反対側に配置されている第3読み取り部としてのエンコーダヘッドEN3(図6参照)を、エンコーダヘッドEN4、EN5とともに用いることが好ましい。このようにすると、処理位置の前後で、回転中心線AX2の振れ等の計測結果を比較し、中間値を回転中心線AX2の振れに対する補正値とすることができる。また、処理位置を挟んで前後に配置されたエンコーダヘッドEN4、EN5とエンコーダヘッドEN3とを用いて回転中心線AX2の振れ等を計測し、その計測値に基づいて補正することにより、回転中心線AX2の振れ等を補正する際の精度が向上する。エンコーダヘッドEN3を第3読み取り部として用いる場合、エンコーダヘッドEN5と回転中心線AX2とを結ぶ直線(設置方位線Le5)とエンコーダヘッドEN3と回転中心線AX2とを結ぶ直線(設置方位線Le3)とのなす角度は、図6に示す210度に限定されるものではなく、エンコーダヘッドEN3が処理位置側にあってもよい。   In the case of measuring the deflection of the rotation center line AX2 or the eccentricity of the second drum member 22 or the like, as a third reading unit disposed on the opposite side to the encoder heads EN4 and EN5 with respect to the processing position (position of exposure processing) The encoder head EN3 (see FIG. 6) is preferably used together with the encoder heads EN4 and EN5. In this way, measurement results such as shake of the rotation center line AX2 can be compared before and after the processing position, and an intermediate value can be used as a correction value for the shake of the rotation center line AX2. In addition, the shake or the like of the rotation center line AX2 is measured using encoder heads EN4 and EN5 and the encoder head EN3 arranged at the front and back of the processing position, and the rotation center line is corrected based on the measured values. The accuracy in correcting the shake of AX2 is improved. When the encoder head EN3 is used as a third reading unit, a straight line connecting the encoder head EN5 and the rotation center line AX2 (placement line Le5) and a straight line connecting the encoder head EN3 and the rotation center line AX2 (placement line Le3) The angle formed by is not limited to 210 degrees shown in FIG. 6, and the encoder head EN3 may be on the processing position side.

第1読み取り部としてのエンコーダヘッドEN4及び第2読み取り部としてのエンコーダヘッドEN5に加え、第3読み取り部としてのエンコーダヘッドEN3を用いる場合、エンコーダスケール円盤SDの周方向におけるエンコーダヘッドEN4とエンコーダヘッドEN5との間隔は、エンコーダヘッドEN5とエンコーダヘッドEN3との間隔よりも小さいことが好ましい。エンコーダヘッドEN4とエンコーダヘッドEN5との間隔を狭くすることで、目盛GPの補正精度を向上させることができる。また、エンコーダヘッドEN5とエンコーダヘッドEN3との間隔を広くすることで、第2ドラム部材22の偏心等を検出する際の感度を向上させることができる。   When using the encoder head EN3 as the third reading unit in addition to the encoder head EN4 as the first reading unit and the encoder head EN5 as the second reading unit, the encoder head EN4 and the encoder head EN5 in the circumferential direction of the encoder scale disc SD It is preferable that the distance between them be smaller than the distance between the encoder head EN5 and the encoder head EN3. By narrowing the distance between the encoder head EN4 and the encoder head EN5, the correction accuracy of the scale GP can be improved. Further, by widening the distance between the encoder head EN5 and the encoder head EN3, the sensitivity at the time of detecting the eccentricity or the like of the second drum member 22 can be improved.

次に、第1読み取り部としてのエンコーダヘッドEN4と第2読み取り部としてのエンコーダヘッドEN5とを配置する間隔について説明する。エンコーダヘッドEN4とエンコーダヘッドEN5とは、エンコーダヘッドEN4と回転中心線AX2とを結ぶ線(設置方位線Le4)とエンコーダヘッドEN5と回転中心線AX2とを結ぶ線(設置方位線Le5)とのなす中心角であるエンコーダ取付角度θsが、90度、180度及び270度以外の角度となるように配置されることが好ましい。このようにすることで、2個のエンコーダヘッドEN4、EN5で、回転中心線AX2の振れ又は第2ドラム部材22の偏心等を検出することもできる。さらに、エンコーダ取付角度θsは、45度以内が好ましく、かつ120度、240度以外の角度となることが好ましい。このようにすることで、2個のエンコーダヘッドEN4、EN5で、回転中心線AX2の振れ又は第2ドラム部材22の偏心等を検出しつつ、目盛GPの補正精度も向上する。次に、基板処理装置11がエンコーダスケール円盤SDの真円度を調整する機構を有している場合について説明する。   Next, the intervals at which the encoder head EN4 as the first reading unit and the encoder head EN5 as the second reading unit are arranged will be described. The encoder head EN4 and the encoder head EN5 are formed by a line (installation azimuth line Le4) connecting the encoder head EN4 and the rotation center line AX2 and a line (installation azimuth line Le5) connecting the encoder head EN5 and the rotation center line AX2. It is preferable that the encoder attachment angle θs, which is a central angle, be arranged to be an angle other than 90 degrees, 180 degrees, and 270 degrees. By doing this, it is possible to detect the swing of the rotation center line AX2, the eccentricity of the second drum member 22, and the like by the two encoder heads EN4 and EN5. Further, the encoder attachment angle θs is preferably 45 degrees or less, and is preferably an angle other than 120 degrees and 240 degrees. By doing this, the correction accuracy of the scale GP is improved while detecting the swing of the rotation center line AX2, the eccentricity of the second drum member 22, and the like with the two encoder heads EN4 and EN5. Next, the case where the substrate processing apparatus 11 has a mechanism for adjusting the roundness of the encoder scale disc SD will be described.

図15及び図16は、エンコーダスケール円盤の真円度を調整する真円度調整機構を説明するための説明図である。上述した図4及び図5では、第2ドラム部材22の直径に対してエンコーダスケール円盤SDの直径は小さく図示されているが、第2ドラム部材22の外周面のうち、基板Pが巻き付けられる外周面の直径と、エンコーダスケール円盤SDの目盛GPの直径とを揃える(ほぼ一致させる)ことが好ましい。このようにすることで、いわゆる、計測アッベ誤差をさらに小さくすることができる。この場合、露光装置EXは、図13に示すようなエンコーダスケール円盤SDの真円度を調整する真円度調整機構Csを備えることが好ましい。   FIG.15 and FIG.16 is explanatory drawing for demonstrating the roundness adjustment mechanism which adjusts the roundness of an encoder scale disc. In FIG. 4 and FIG. 5 described above, although the diameter of the encoder scale disc SD is illustrated to be smaller than the diameter of the second drum member 22, the outer periphery of the outer peripheral surface of the second drum member 22 around which the substrate P is wound It is preferable that the diameter of the surface and the diameter of the graduation GP of the encoder scale disc SD be made to coincide (approximately match). By doing this, the so-called measurement Abbe error can be further reduced. In this case, the exposure apparatus EX preferably includes a roundness adjusting mechanism Cs for adjusting the roundness of the encoder scale disc SD as shown in FIG.

スケール部材であるエンコーダスケール円盤SDは円環状の部材である。目盛GPを外周面に有するエンコーダスケール円盤SDは、第2ドラム部材22の第2中心軸AX2と直交する第2ドラム部材22の少なくとも一方の端部に固定されている。エンコーダスケール円盤SDは、第2中心軸AX2の周方向に沿ってエンコーダスケール円盤SDに設けられた溝Scを、溝Scと同半径でかつ第2中心軸AX2の周方向に沿って第2ドラム部材22に設けられた溝Dcに対向させている。そして、エンコーダスケール円盤SDは、溝Scと溝Dcとの間に転動体(例えば、球)等の軸受部材SBを介在させている。   The encoder scale disc SD, which is a scale member, is an annular member. An encoder scale disc SD having a scale GP on the outer peripheral surface is fixed to at least one end of the second drum member 22 orthogonal to the second central axis AX2 of the second drum member 22. The encoder scale disc SD has a groove Sc provided on the encoder scale disc SD along the circumferential direction of the second central axis AX2, and has a radius equal to that of the groove Sc and a second drum along the circumferential direction of the second central axis AX2. The groove Dc provided in the member 22 is opposed to the groove Dc. The encoder scale disc SD interposes a bearing member SB such as a rolling element (for example, a ball) between the groove Sc and the groove Dc.

真円度調整機構Csは、エンコーダスケール円盤SDの内周側に備えられ、調整部材60と、押圧部材PPとを含む。そして、真円度調整機構Csは、例えば設置方位線Le4と平行な方向である、第2中心軸AX2から目盛GPに向かう方向の押圧力を可変できる押圧機構を、回転中心線AX2を中心とする周方向に所定のピッチで複数(例えば、8箇所)備えている。調整部材60は、押圧部材PPを挿通し、エンコーダスケール円盤SDの雌ネジ部FP3及び第2ドラム部材22の雌ネジ部FP4にねじ込まれる雄ねじ部61と、押圧部材PPに接触するヘッド部62とを有する。押圧部材PPは、エンコーダスケール円盤SDの端部に周方向に沿ってエンコーダスケール円盤SDよりも半径の小さい円環状の固定板である。エンコーダスケール円盤SDは、第2ドラム部材22の周方向に向かって、複数の締結部材、すなわち雄ねじ部61及びヘッド部62を含む調整部材60によって、第2ドラム部材22の少なくとも一方の端部に固定される。   The roundness adjusting mechanism Cs is provided on the inner peripheral side of the encoder scale disc SD, and includes an adjusting member 60 and a pressing member PP. The roundness adjusting mechanism Cs is, for example, a pressing mechanism capable of changing the pressing force in the direction from the second central axis AX2 toward the scale GP, which is a direction parallel to the installation azimuth Le4. A plurality of (for example, eight places) are provided at a predetermined pitch in the circumferential direction. The adjusting member 60 has a male screw 61 inserted through the pressing member PP and screwed into the female screw FP3 of the encoder scale disc SD and the female screw FP4 of the second drum member 22, and a head 62 contacting the pressing member PP. Have. The pressing member PP is an annular fixed plate having a smaller radius than the encoder scale disc SD along the circumferential direction at the end of the encoder scale disc SD. The encoder scale disc SD is mounted on at least one end of the second drum member 22 in the circumferential direction of the second drum member 22 by the adjustment members 60 including a plurality of fastening members, that is, the male screw 61 and the head 62. It is fixed.

設置方位線Le4をエンコーダスケール円盤SDの内周側に延長した先には、エンコーダスケール円盤SDの内周側、かつ第2中心軸AX2と平行かつ第2中心軸AX2を含む断面において傾斜面FP2が形成されている。傾斜面FP2は、第2中心軸AX2に近づくにつれて、第2中心軸AX2と平行な方向の厚みが薄くなるような傾斜面である。押圧部材PPには、第2中心軸AX2に近づくにつれて第2中心軸AX2と平行な方向の厚みが厚くなるような傾斜面FP1が形成されている。そして、押圧部材PPは、エンコーダスケール円盤SDに対して、傾斜面FP2と傾斜面FP1とが対向するように調整部材60で固定されている。   At the point where the installation azimuth line Le4 is extended to the inner peripheral side of the encoder scale disk SD, the inclined surface FP2 is a cross section parallel to the second central axis AX2 and including the second central axis AX2 on the inner peripheral side of the encoder scale disk SD. Is formed. The inclined surface FP2 is an inclined surface in which the thickness in the direction parallel to the second central axis AX2 decreases as the second central axis AX2 is approached. An inclined surface FP1 is formed on the pressing member PP such that the thickness in the direction parallel to the second central axis AX2 increases as the second central axis AX2 is approached. The pressing member PP is fixed by the adjusting member 60 so that the inclined surface FP2 and the inclined surface FP1 face the encoder scale disc SD.

真円度調整機構Csは、調整部材60の雄ねじ部61をエンコーダスケール円盤SDの雌ネジ部FP3にねじ込むことにより、押圧部材PPの傾斜面FP1の押圧力が傾斜面FP2に伝達され、エンコーダスケール円盤SDの内側から外周側に向けて微少量弾性変形する。逆に、雄ねじ部61を反対側に回転させることにより、押圧部材PPの傾斜面FP1の抑制された押圧力が傾斜面FP2に伝達され、エンコーダスケール円盤SDの外周側から内側に向けて微少量弾性変形する。   By screwing the male screw portion 61 of the adjusting member 60 into the female screw portion FP3 of the encoder scale disk SD, the pressing force of the inclined surface FP1 of the pressing member PP is transmitted to the inclined surface FP2 by the roundness adjusting mechanism Cs. A small amount of elastic deformation occurs from the inner side to the outer peripheral side of the disc SD. Conversely, by rotating the male screw portion 61 to the opposite side, the suppressed pressing force of the inclined surface FP1 of the pressing member PP is transmitted to the inclined surface FP2, and a small amount is directed inwardly from the outer peripheral side of the encoder scale disc SD. Elastically deform.

真円度調整機構Csは、回転中心線AX2を中心とする周方向に所定のピッチで複数備える調整部材60において、雄ねじ部61を操作することにより、目盛GPの周方向の径を微少量調整することができる。また、真円度調整機構Csは、上述した設置方位線Le1〜Le5上にある目盛GPを微小変形させることができるので、目盛GPの周方向の径を高精度に調整することができる。従って、エンコーダスケール円盤SDの真円度に応じて、適切な位置の調整部材60を操作することにより、エンコーダスケール円盤SDの目盛GPの真円度を高めたり、回転中心線AX2に対する微少偏心誤差を低減させたりして、第2ドラム部材22に対する回転方向の位置検出精度を向上させることができる。なお、真円度調整機構Csが調整する調整量は、エンコーダスケール円盤SDの直径又は調整部材60の半径位置によって異なるが、最大でも数μm程度である。   The roundness adjustment mechanism Cs adjusts the circumferential diameter of the scale GP by a small amount by operating the male screw portion 61 in the adjustment member 60 provided with a plurality of predetermined pitches in the circumferential direction around the rotation center line AX2 can do. Further, since the roundness adjusting mechanism Cs can minutely deform the graduation GP on the installation azimuth lines Le1 to Le5 described above, the diameter of the graduation GP in the circumferential direction can be adjusted with high accuracy. Therefore, by operating the adjustment member 60 at an appropriate position according to the roundness of the encoder scale disc SD, the roundness of the scale GP of the encoder scale disc SD can be increased, or a slight eccentricity error with respect to the rotation center line AX2. The position detection accuracy in the rotational direction with respect to the second drum member 22 can be improved. The adjustment amount adjusted by the roundness adjustment mechanism Cs varies depending on the diameter of the encoder scale disc SD or the radial position of the adjustment member 60, but is at most about several μm.

図16に示すように、エンコーダスケール円盤SDは、8個の調整部材60によって第2ドラム部材22に固定されている。この場合、第1読み取り部としてのエンコーダヘッドEN4と第2読み取り部としてのエンコーダヘッドEN5とは、エンコーダヘッドEN4と第2中心軸AX2とエンコーダヘッドEN5との中心角であるエンコーダ取付角度θsが、隣接する調整部材60と第2中心軸AX2とがなす中心角βよりも小さくなるように配置されることが好ましい。   As shown in FIG. 16, the encoder scale disc SD is fixed to the second drum member 22 by eight adjustment members 60. In this case, the encoder mounting angle θs, which is a central angle between the encoder head EN4, the second central axis AX2, and the encoder head EN5, is the encoder head EN4 as the first reading unit and the encoder head EN5 as the second reading unit. It is preferable to arrange so that it may become smaller than central angle (beta) which the adjacent adjustment member 60 and 2nd central axis AX2 make.

エンコーダスケール円盤SDは、調整部材60によって第2ドラム部材22に固定されるので、調整部材60の近傍では変形が発生する可能性がある。上述したように、θs<βとすることで、エンコーダヘッドEN4、EN5は、隣接する調整部材60間における変形に起因する目盛GPの誤差を確実に検出することができる。その結果、目盛GPの補正精度が向上する。次に、基板処理装置(露光装置)の変形例を説明する。   Since the encoder scale disc SD is fixed to the second drum member 22 by the adjustment member 60, deformation may occur in the vicinity of the adjustment member 60. As described above, by setting θs <β, the encoder heads EN4 and EN5 can reliably detect the error of the graduation GP due to the deformation between the adjacent adjustment members 60. As a result, the correction accuracy of the scale GP is improved. Next, a modified example of the substrate processing apparatus (exposure apparatus) will be described.

(基板処理装置(露光装置)の第1変形例)
図17は、基板処理装置(露光装置)の第1変形例を示す模式図である。図18は、基板処理装置(露光装置)の第1変形例に係るエンコーダスケール円盤を回転中心線方向に見た、読み取り装置の位置を説明するための説明図である。上述した実施形態においては、基板Pを支持する第2ドラム部材22の周方向における位置を検出する場合を例とした。これに限定されるものではなく、本変形例の露光装置EX1のように、円筒マスクDMを保持する第1ドラム部材21の周方向における位置を検出する場合も、一対のエンコーダヘッドを用いて第1ドラム部材21の周方向における位置を検出するための目盛GP(目盛)の誤差を補正することができる。
(First modified example of substrate processing apparatus (exposure apparatus))
FIG. 17 is a schematic view showing a first modified example of the substrate processing apparatus (exposure apparatus). FIG. 18 is an explanatory view for explaining the position of the reading device when the encoder scale disk according to the first modification of the substrate processing apparatus (exposure apparatus) is viewed in the direction of the rotation center line. In the embodiment described above, the case where the position in the circumferential direction of the second drum member 22 supporting the substrate P is detected is taken as an example. The present invention is not limited to this, and as in the exposure apparatus EX1 of the present modification, also in the case of detecting the position in the circumferential direction of the first drum member 21 holding the cylindrical mask DM, using the pair of encoder heads The error of the scale GP (scale) for detecting the position of the drum member 21 in the circumferential direction can be corrected.

露光装置EX1が有するエンコーダスケール円盤SDは、第2ドラム部材22の回転軸AX2と直交する第2ドラム部材22の両端部に固定されている。目盛GPは、両方のエンコーダスケール円盤SDの外周面に設けられている。このため、目盛GPは、第2ドラム部材22の両端部に配置されている。それぞれの目盛GPを読み取るエンコーダヘッドEN1〜EN5は、第2ドラム部材22の両端部側にそれぞれ配置されている。   The encoder scale disc SD included in the exposure apparatus EX1 is fixed to both ends of the second drum member 22 orthogonal to the rotation axis AX2 of the second drum member 22. The graduations GP are provided on the outer circumferential surface of both encoder scale discs SD. For this reason, the graduations GP are disposed at both ends of the second drum member 22. Encoder heads EN <b> 1 to EN <b> 5 for reading the respective graduations GP are respectively disposed on both end sides of the second drum member 22.

上述した実施形態で説明した第1検出器25(図1参照)は、第1ドラム部材21の回転位置を光学的に検出するものであって、高真円度のエンコーダスケール円盤(スケール部材)SDと、読み取り装置であるエンコーダヘッドEH1、EH2、EH3、EH4、EH5を含む。エンコーダスケール円盤SDは、第1ドラム部材21の回転軸と直交する第1ドラム部材21の少なくとも1つの端部(図16では両端部)に固定されている。このため、エンコーダスケール円盤SDは、回転中心線AX1周りに回転軸STとともに一体的に回転する。エンコーダスケール円盤SDの外周面には、目盛GPMが刻設されている。エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、回転軸STMから見て目盛GPの周囲に配置されている。エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、目盛GPMと対向配置され、目盛GPMを非接触で読み取ることができる。また、エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、第1ドラム部材21の周方向の異なる位置に配置されている。第1ドラム部材21は、エンコーダヘッドEH4からエンコーダヘッドEH5に向かって回転する。   The first detector 25 (see FIG. 1) described in the above embodiment optically detects the rotational position of the first drum member 21 and is an encoder scale disc (scale member) of high roundness. It includes an SD and encoder heads EH1, EH2, EH3, EH4 and EH5 as reading devices. The encoder scale disc SD is fixed to at least one end (both ends in FIG. 16) of the first drum member 21 orthogonal to the rotation axis of the first drum member 21. Thus, the encoder scale disc SD rotates integrally with the rotation axis ST around the rotation center line AX1. A scale GPM is engraved on the outer peripheral surface of the encoder scale disc SD. The encoder heads EH1, EH2, EH3, EH4, EH5 are arranged around the graduation GP as viewed from the rotation axis STM. The encoder heads EH1, EH2, EH3, EH4 and EH5 are disposed opposite to the graduation GPM, and can read the graduation GPM without contact. The encoder heads EH1, EH2, EH3, EH4, and EH5 are disposed at different positions in the circumferential direction of the first drum member 21. The first drum member 21 rotates from the encoder head EH4 toward the encoder head EH5.

エンコーダヘッドEH1、EH2、EH3、EH4、EH5は、目盛GPMの接線方向(XZ面内)における変位の変動に対して計測感度(検出感度)を有する読み取り装置である。図17に示すように、エンコーダヘッドEH1、EH2の設置方位(回転中心線AX1を中心としたXZ面内での角度方向)を設置方位線Le11、Le12で表すと、この設置方位線Le11、Le12が、中心面P3に対して角度±θ°になるように、各エンコーダヘッドEH1、EH2を配置する。そして、設置方位線Le11、Le12は、図1に示す照明光束EL1の回転中心線AX1を中心としたXZ面内での角度方向と一致している。ここで、処理部である照明機構IUは、被処理物体である円筒マスクDM上の所定のパターン(マスクパターン)に照明光束EL1を透過させる処理を行う。これにより、投影光学系PLは、円筒マスクDM上の照明領域IRにおけるパターンの像を、搬送装置によって搬送されている基板Pの一部(投影領域PA)に投影することができる。   The encoder heads EH1, EH2, EH3, EH4, and EH5 are reading devices having measurement sensitivity (detection sensitivity) with respect to displacement variations in the tangential direction (in the XZ plane) of the scale GPM. As shown in FIG. 17, when the installation azimuths (angular directions in the XZ plane around the rotation center line AX1) of the encoder heads EH1 and EH2 are represented by installation azimuths Le11 and Le12, the installation azimuths Le11 and Le12. The encoder heads EH1 and EH2 are disposed such that the angle .theta. The installation azimuth lines Le11 and Le12 coincide with the angular direction in the XZ plane centering on the rotation center line AX1 of the illumination light flux EL1 shown in FIG. Here, the illumination mechanism IU, which is a processing unit, performs a process of transmitting the illumination light beam EL1 through a predetermined pattern (mask pattern) on the cylindrical mask DM, which is an object to be processed. Thereby, the projection optical system PL can project the image of the pattern in the illumination area IR on the cylindrical mask DM onto a part (projection area PA) of the substrate P being transported by the transport device.

エンコーダヘッドEH4は、第1ドラム部材21の中心面P3に対して回転方向の後方側に向かってエンコーダヘッドEH1の設置方位線Le11を回転中心線AX1の軸周りに、ほぼ90°回転した設置方位線Le14上に設定される。また、エンコーダヘッドEH5は、第1ドラム部材21の中心面P3に対して回転方向の後方側に向かってエンコーダヘッドEH2の設置方位線Le12を回転中心線AX1の軸周りにほぼ90°回転した設置方位線Le15上に設定される。ここで、ほぼ90°とは、90°±γとする場合、γの範囲は、上述した実施形態と同一である。   The encoder head EH4 rotates by approximately 90 degrees about the axis of the rotation center line AX1 of the installation azimuth line Le11 of the encoder head EH1 toward the rear side in the rotational direction with respect to the center plane P3 of the first drum member 21 It is set on line Le14. Further, the encoder head EH5 is installed by rotating the installation direction line Le12 of the encoder head EH2 about the axis of the rotation center line AX1 toward the rear side in the rotational direction about the center plane P3 of the first drum member 21 It is set on the azimuth line Le15. Here, in the case where approximately 90 ° is 90 ° ± γ, the range of γ is the same as that of the embodiment described above.

また、エンコーダヘッドEH3は、エンコーダヘッドEH2の設置方位線Le12を回転中心線AX1の軸周りにほぼ120°回転し、かつエンコーダヘッドEH4を回転中心線AX1の軸周りにほぼ120°回転した設置方位線Le13上に設定される。本実施形態における第1ドラム部材21の周囲に配置されたエンコーダヘッドEH1、EH2、EH3、EH4、EH5の配置は、上述した実施形態における、第2ドラム部材22の周囲に配置されたエンコーダヘッドEN1、EN2、EN3、EN4、EN5と、鏡像反転した関係にある。   Further, the encoder head EH3 rotates the installation azimuth line Le12 of the encoder head EH2 by approximately 120 ° around the axis of the rotation center line AX1, and rotates the encoder head EH4 approximately 120 ° around the axis of the rotation center line AX1. It is set on line Le13. The arrangement of the encoder heads EH1, EH2, EH3, EH4 and EH5 arranged around the first drum member 21 in the present embodiment is the encoder head EN1 arranged around the second drum member 22 in the embodiment described above. , EN2, EN3, EN4, and EN5 are mirror images of each other.

上述したように、露光装置EX1は、円筒部材である第2ドラム部材22と、目盛GPと、露光装置EX1の処理部である投影モジュールPL1〜PL6と、目盛GPを読み取る第1読み取り装置であるエンコーダヘッドEN4、EN5と、目盛GPを読み取る第2読み取り装置であるエンコーダヘッドEN1、EN2と、を備える。   As described above, the exposure apparatus EX1 is a first reading apparatus that reads the scale GP, the second drum member 22 which is a cylindrical member, the scale GP, the projection modules PL1 to PL6 which are the processing units of the exposure apparatus EX1. The encoder heads EN4 and EN5 and encoder heads EN1 and EN2 which are second reading devices for reading the graduation GP.

第1ドラム部材21は、所定の軸である第1中心軸AX1から一定半径で湾曲した曲面を有し、かつ第1中心軸AX1周りを回転する。目盛GPMは、第1ドラム部材21の周方向に沿って環状に配列され、かつ第1ドラム部材21とともに第1中心軸AX1の周囲を回転する。露光装置EX1の処理部である照明機構IUは、第2中心軸AX2から見て第1ドラム部材21の内部に配置され、第1ドラム部材21の周方向のうち特定位置における曲面にある基板P(被処理物体)に対して2つの照明光束EL1を透過させる処理を行う。そして、エンコーダヘッドEH4、EH5は、第1中心軸AX1から見て目盛GPMの周囲に配置され、かつ第1中心軸AX1を中心に、前述した特定位置を第1中心軸AX1周りにほぼ90度回転した位置に配置され、目盛GPMを読み取る。エンコーダヘッドEH1、EH2は、前述した特定位置の目盛GPMを読み取る。そして、露光装置EX1は、エンコーダヘッドEH4、EH5の読み取り値に基づき、第1ドラム部材21に取り付けられているエンコーダスケール円盤SDの外周部に設けられる目盛GPMの誤差(ピッチ誤差)を補正する。このため、露光装置EX1は、精度よく第1ドラム部材21の周方向における位置を計測し、第2ドラム部材22の曲面にある被処理物体、つまり基板Pに処理を施すことができる。上述したように、本実施形態において、エンコーダヘッドEH4、EH5の読み取り値に基づき誤差が補正される場合、具体的には露光装置EXの制御装置14は、エンコーダヘッドEH4の読み取り値とエンコーダヘッドEH5の読み取り値との差分に基づき、ピッチ誤差を補正する。しかしながら、第1ドラム部材21の目盛GPMの周囲に、エンコーダヘッドEH4、EH5のいずれかと近い設置角度で他のエンコーダヘッドが設けられる場合は、エンコーダヘッドEH4、EH5の両読み取り値の直接的な差分計算に限らず、エンコーダヘッドEH4、EH5と他のエンコーダヘッドとの3つのエンコーダヘッドの各読み取り値に基づく演算によってピッチ誤差を求めることも可能である。3つのエンコーダヘッドによるピッチ誤差の計測については、後で詳細に説明する。   The first drum member 21 has a curved surface curved at a constant radius from a first central axis AX1 which is a predetermined axis, and rotates around the first central axis AX1. The graduations GPM are annularly arranged along the circumferential direction of the first drum member 21 and rotate with the first drum member 21 around the first central axis AX1. The illumination mechanism IU, which is a processing unit of the exposure apparatus EX1, is a substrate P which is disposed inside the first drum member 21 as viewed from the second central axis AX2 and which has a curved surface at a specific position in the circumferential direction of the first drum member 21. A process of transmitting the two illumination light beams EL1 to (object to be processed) is performed. The encoder heads EH4 and EH5 are disposed around the scale GPM when viewed from the first central axis AX1, and the above-mentioned specific position is approximately 90 degrees around the first central axis AX1 around the first central axis AX1. It is placed at the rotated position and reads the tick mark GPM. The encoder heads EH1 and EH2 read the graduation GPM at the specific position described above. Then, the exposure apparatus EX1 corrects an error (pitch error) of the scale GPM provided on the outer peripheral portion of the encoder scale disc SD attached to the first drum member 21 based on the read values of the encoder heads EH4 and EH5. Therefore, the exposure apparatus EX1 can measure the position of the first drum member 21 in the circumferential direction with high accuracy, and process the object to be processed on the curved surface of the second drum member 22, that is, the substrate P. As described above, in the present embodiment, when the error is corrected based on the read values of the encoder heads EH4 and EH5, specifically, the control device 14 of the exposure apparatus EX includes the read value of the encoder head EH4 and the encoder head EH5. The pitch error is corrected on the basis of the difference from the read value of. However, when another encoder head is provided around the graduation GPM of the first drum member 21 at an installation angle close to either of the encoder heads EH4 and EH5, a direct difference between the readings of the encoder heads EH4 and EH5 Not limited to the calculation, it is also possible to obtain the pitch error by calculation based on the readings of the three encoder heads of the encoder heads EH4 and EH5 and the other encoder heads. The measurement of pitch errors by the three encoder heads will be described in detail later.

(基板処理装置(露光装置)の第2変形例)
図19は、基板処理装置(露光装置)の第2変形例の全体構成を示す模式図である。露光装置EX2は、図示しない光源装置が、円筒マスクDMに照明される照明光束EL1を出射する。光源装置の光源から出射された照明光束EL1を照明モジュールILに導き、照明光学系が複数設けられている場合、光源からの照明光束EL1を複数に分離し、複数の照明光束EL1を複数の照明モジュールILに導く。
(Second Modified Example of Substrate Processing Apparatus (Exposure Apparatus))
FIG. 19 is a schematic view showing an entire configuration of a second modified example of the substrate processing apparatus (exposure apparatus). In the exposure apparatus EX2, a light source device (not shown) emits an illumination light beam EL1 illuminated on the cylindrical mask DM. The illumination light beam EL1 emitted from the light source of the light source device is guided to the illumination module IL, and when a plurality of illumination optical systems are provided, the illumination light beam EL1 from the light source is split into a plurality of illumination lights EL1 Lead to the module IL.

光源装置から出射された照明光束EL1は、偏光ビームスプリッタSP1、SP2に入射する。偏光ビームスプリッタSP1、SP2では、照明光束EL1の分離によるエネルギーロスを抑制するため、入射された照明光束EL1がすべて反射するような光束にすることが好ましい。ここで、偏光ビームスプリッタSP1、SP2は、S偏光の直線偏光となる光束を反射し、P偏光の直線偏光となる光束を透過する。このため、光源装置は、偏光ビームスプリッタSP1、SP2に入射する照明光束EL1が直線偏光(S偏光)の光束となる照明光束EL1を第1ドラム部材21に出射する。これにより、光源装置は、波長及び位相が揃った照明光束EL1を出射する。   The illumination light beam EL1 emitted from the light source device is incident on the polarization beam splitters SP1 and SP2. In the polarization beam splitters SP1 and SP2, in order to suppress the energy loss due to the separation of the illumination light beam EL1, it is preferable to use a light flux that reflects all the incident illumination light flux EL1. Here, the polarization beam splitters SP1 and SP2 reflect light fluxes to be linearly polarized light of S polarization and transmit light fluxes to be linear polarized light of P polarization. For this reason, the light source device emits, to the first drum member 21, the illumination light flux EL1 in which the illumination light flux EL1 incident on the polarization beam splitters SP1 and SP2 is a light flux of linear polarization (S polarization). Thereby, the light source device emits the illumination light flux EL1 whose wavelength and phase are aligned.

偏光ビームスプリッタSP1、SP2は、光源からの照明光束EL1を反射する一方で、円筒マスクDMで反射された投影光束EL2を透過している。換言すれば、照明光学モジュールILMからの照明光束EL1は、偏光ビームスプリッタSP1、SP2に反射光束として入射し、円筒マスクDMからの投影光束EL2は、偏光ビームスプリッタSP1、SP2に透過光束として入射する。   The polarization beam splitters SP1 and SP2 reflect the illumination light beam EL1 from the light source, while transmitting the projection light beam EL2 reflected by the cylindrical mask DM. In other words, the illumination beam EL1 from the illumination optical module ILM enters the polarization beam splitters SP1 and SP2 as a reflected beam, and the projection beam EL2 from the cylindrical mask DM enters the polarization beam splitters SP1 and SP2 as a transmitted beam. .

このように処理部である照明モジュールILは、被処理物体である円筒マスクDM上の所定のパターン(マスクパターン)に照明光束EL1を反射させる処理を行う。これにより、投影光学系PLは、円筒マスクDM上の照明領域IRにおけるパターンの像を、搬送装置によって搬送されている基板Pの一部(投影領域)に投影することができる。   As described above, the illumination module IL, which is the processing unit, performs a process of reflecting the illumination light beam EL1 on a predetermined pattern (mask pattern) on the cylindrical mask DM, which is the object to be processed. Thereby, the projection optical system PL can project the image of the pattern in the illumination area IR on the cylindrical mask DM onto a part (projection area) of the substrate P being transported by the transport device.

このような円筒マスクDMの曲面の表面に照明光束EL1を反射させる所定のパターン(マスクパターン)を設ける場合、このマスクパターンとともに、曲面に目盛GPmを設けることもできる。この目盛GPmをマスクパターンと同時に形成した場合には、マスクパターンと同じ精度で目盛GPmが形成される。このため、目盛GPmを検出する曲面検出プローブGS1、GS2で、目盛GPmのマークの像を高速かつ高精度にサンプリングすることができる。このサンプリングが行われた瞬間に、第1ドラム部材21の回転角度位置と目盛GPmとの対応関係が求められ、逐次計測される第1ドラム部材21の回転角度位置を記憶することができる。   When a predetermined pattern (mask pattern) for reflecting the illumination light beam EL1 is provided on the surface of the curved surface of such a cylindrical mask DM, a scale GPm can be provided on the curved surface along with the mask pattern. When this graduation GPm is formed simultaneously with the mask pattern, the graduation GPm is formed with the same accuracy as the mask pattern. Therefore, the image of the mark of the graduation GPm can be sampled at high speed and with high accuracy by the curved surface detection probes GS1 and GS2 that detect the graduation GPm. At the moment when this sampling is performed, the correspondence between the rotational angle position of the first drum member 21 and the scale GPm is determined, and the rotational angle position of the first drum member 21 measured sequentially can be stored.

円筒マスクDM側のエンコーダヘッドEH4、EH5は、目盛GPmを読み取る。そして、露光装置EX2は、エンコーダヘッドEH4、EH5の読み取り値の差分に基づき、円筒マスクDMの表面に設けられている目盛GPmの誤差を補正する。このため、露光装置EX2は、精度よく円筒マスクDMの周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。   The encoder heads EH4 and EH5 on the cylindrical mask DM side read the graduation GPm. Then, the exposure apparatus EX2 corrects the error of the graduation GPm provided on the surface of the cylindrical mask DM based on the difference between the read values of the encoder heads EH4 and EH5. Therefore, the exposure apparatus EX2 can measure the position of the cylindrical mask DM in the circumferential direction with high accuracy, and process the substrate P on the curved surface of the second drum member 22.

第2ドラム部材22側のエンコーダヘッドEN4、EN5は、第2ドラム部材22に取り付けられたエンコーダスケール円盤SDの目盛GPdを読み取る。そして、露光装置EX2は、エンコーダヘッドEN4、EN5の読み取り値の差分に基づき、エンコーダスケール円盤SDの表面に設けられている目盛GPdの誤差を補正する。このため、露光装置EX2は、精度よく第2ドラム部材22の周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。   The encoder heads EN4 and EN5 on the second drum member 22 side read the graduation GPd of the encoder scale disc SD attached to the second drum member 22. Then, the exposure apparatus EX2 corrects the error of the scale GPd provided on the surface of the encoder scale disc SD based on the difference between the read values of the encoder heads EN4 and EN5. Therefore, the exposure apparatus EX2 can measure the position of the second drum member 22 in the circumferential direction with high accuracy, and process the substrate P on the curved surface of the second drum member 22.

(基板処理装置(露光装置)の第3変形例)
図20は、基板処理装置(露光装置)の第3変形例の全体構成を示す模式図である。露光装置EX3は、図示しない光源装置からの露光用ビームを入射するポリゴン走査ユニットPO1、PO2を備え、ポリゴン走査ユニットPOが基板P上の1次元の走査ラインに沿って強度変調されるスポット光を走査する。基板処理装置が有する露光装置EX3は、円筒マスクDMがなくても特定位置における基板Pに露光光を照射し、所定のパターンを描画することができる。
(Third Modification of Substrate Processing Apparatus (Exposure Apparatus))
FIG. 20 is a schematic view showing an entire configuration of a third modified example of the substrate processing apparatus (exposure apparatus). The exposure apparatus EX3 includes polygon scanning units PO1 and PO2 to which an exposure beam from a light source device (not shown) is incident, and the polygon scanning unit PO performs spot light intensity-modulated along the one-dimensional scanning line on the substrate P Scan. The exposure apparatus EX3 included in the substrate processing apparatus can irradiate a substrate P at a specific position with exposure light and draw a predetermined pattern even without the cylindrical mask DM.

露光装置EX3の第2ドラム部材22側のエンコーダヘッドEN4、EN5は、第2ドラム部材22に取り付けられたエンコーダスケール円盤SDの目盛GPdを読み取る。そして、露光装置EX2は、エンコーダヘッドEN4、EN5の読み取り値の差分に基づき、エンコーダスケール円盤SDの表面に設けられている目盛GPdの誤差を補正する。このため、露光装置EX2は、精度よく第2ドラム部材22の周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。   The encoder heads EN4 and EN5 on the second drum member 22 side of the exposure apparatus EX3 read the graduation GPd of the encoder scale disc SD attached to the second drum member 22. Then, the exposure apparatus EX2 corrects the error of the scale GPd provided on the surface of the encoder scale disc SD based on the difference between the read values of the encoder heads EN4 and EN5. Therefore, the exposure apparatus EX2 can measure the position of the second drum member 22 in the circumferential direction with high accuracy, and process the substrate P on the curved surface of the second drum member 22.

図20(及び図19)のように、第2ドラム部材22側のエンコーダヘッドEN4、EN5は、周方向に2列のアライメント顕微鏡AMG1、AMG2が配置されるために、その各々に対応して配置された。しかしながら、アライメント顕微鏡AMG1、AMG2のうち、例えばアライメント顕微鏡AMG2(及び対応するエンコーダヘッドEN5)のみしか配置されない場合もある。そのような場合でも、エンコーダヘッドEN4を設けておくのがよい。アライメント顕微鏡AMG2(及び対応するエンコーダヘッドEN5)のみしか配置されず、その近傍に回転角度αでエンコーダヘッドEN4が設置できない場合、露光位置に対応して配置したエンコーダヘッドEN1、EN2を用いて、スケール円盤SDのスケールGPdのピッチ誤差や偏心等の誤差マップを作成してもよい。   As shown in FIG. 20 (and FIG. 19), the encoder heads EN4 and EN5 on the second drum member 22 side are arranged corresponding to each of two rows of alignment microscopes AMG1 and AMG2 in the circumferential direction. It was done. However, among the alignment microscopes AMG1 and AMG2, for example, only the alignment microscope AMG2 (and the corresponding encoder head EN5) may be arranged. Even in such a case, it is preferable to provide an encoder head EN4. When only the alignment microscope AMG2 (and the corresponding encoder head EN5) is disposed and the encoder head EN4 can not be installed at the rotation angle α in the vicinity thereof, using the encoder heads EN1 and EN2 disposed corresponding to the exposure position An error map such as a pitch error or eccentricity of the scale GPd of the disk SD may be created.

さらに、2つのエンコーダヘッドEN4、EN5を使って求めたスケールGPdのピッチ誤差及び偏心等の少なくとも1つの誤差マップと、2つのエンコーダヘッドEN1、EN2を使って求めたスケールGPdのピッチ誤差及び偏心等の少なくとも一つの誤差マップとを比較して、両方の誤差マップに大きな違いが存在するか否かを検証し、許容値以上の違いが生じているときは、誤差マップを再度作成し直すことで、誤差マップの精度及び信頼性を向上させることができる。   Furthermore, at least one error map such as pitch error and eccentricity of scale GPd obtained using two encoder heads EN4 and EN5, pitch error and eccentricity of scale GPd obtained using two encoder heads EN1 and EN2, etc. By comparing with at least one error map of, and verifying whether there is a big difference between both error maps, if there is a difference more than the tolerance value, re-create the error map , Error map accuracy and reliability can be improved.

(基板処理装置(露光装置)の第4変形例)
図21は、基板処理装置(露光装置)の第4変形例の全体構成を示す模式図である。露光装置EX4は、いわゆるプロキシミティ露光を基板Pに施す基板処理装置である。露光装置EX4は、円筒マスクDMと、第2ドラム部材22との隙間を微小に設定して、照明機構IUが直接基板Pに照明光束EL1を照射し、非接触露光する。本実施形態において、第2ドラム部材22は、電動モーター等のアクチュエータを含む第2駆動部36から供給されるトルクによって回転する。第2駆動部36の回転方向と逆周りとなるように、例えば磁気歯車で連結された駆動ローラMGGが第1ドラム部材21を駆動する。第2駆動部36は、第2ドラム部材22を回転するとともに、駆動ローラMGGと第1ドラム部材21とを回転させ、第1ドラム部材21(円筒マスクDM)と第2ドラム部材22とを同期移動(同期回転)させる。
(Fourth Modified Example of Substrate Processing Apparatus (Exposure Apparatus))
FIG. 21 is a schematic view showing an entire configuration of a fourth modified example of the substrate processing apparatus (exposure apparatus). The exposure apparatus EX4 is a substrate processing apparatus which subjects the substrate P to so-called proximity exposure. The exposure device EX4 sets the gap between the cylindrical mask DM and the second drum member 22 minutely, and the illumination mechanism IU directly irradiates the substrate P with the illumination light flux EL1 to perform non-contact exposure. In the present embodiment, the second drum member 22 is rotated by the torque supplied from the second drive unit 36 including an actuator such as an electric motor. For example, a driving roller MGG coupled by a magnetic gear drives the first drum member 21 so as to be reverse to the rotation direction of the second driving unit 36. The second drive unit 36 rotates the second drum member 22 and rotates the drive roller MGG and the first drum member 21 to synchronize the first drum member 21 (cylindrical mask DM) with the second drum member 22. Move (synchronize).

また、露光装置EX4は、基板Pに対して結像光束EL2の主光線が基板Pに入射する特定位置の目盛GPの位置PX6を検出するエンコーダヘッドEN6を備えている。ここで、第2ドラム部材22の外周面のうち基板Pが巻き付けられる外周面の直径と、エンコーダスケール円盤SDの目盛GPの直径とを揃えているので、位置PX6は、第2中心軸AX2から見て上述した特定位置と一致する。そして、エンコーダヘッドEN7は、基板Pの送り方向の後方側に向かってエンコーダヘッドEN6の設置方位線Le6を回転中心線AX2の軸周りに、ほぼ90°回転した設置方位線Le7上に設定される。   The exposure apparatus EX4 further includes an encoder head EN6 that detects the position PX6 of the scale GP at a specific position where the principal ray of the imaging light beam EL2 enters the substrate P with respect to the substrate P. Here, since the diameter of the outer peripheral surface of the outer peripheral surface of the second drum member 22 to which the substrate P is wound and the diameter of the scale GP of the encoder scale disc SD are equalized, the position PX6 is from the second central axis AX2 It looks and matches the specific position mentioned above. The encoder head EN7 is set on the installation direction line Le7 rotated approximately 90 ° around the axis of the rotation center line AX2 of the installation direction line Le6 of the encoder head EN6 toward the rear side in the feed direction of the substrate P .

露光装置EX4は、例えば、エンコーダヘッドEN3を第1読み取り部とし、エンコーダヘッドEN7を第2読み取り部とする。エンコーダヘッドEN3、EN7は、第2ドラム部材22に取り付けられたエンコーダスケール円盤SDの目盛GPdを読み取る。制御装置14は、エンコーダヘッドEN3、EN7の読み取り値の差分に基づき、エンコーダスケール円盤SDの表面に設けられている目盛GPdの誤差を補正する。このため、露光装置EX4は、精度よく第2ドラム部材22の周方向における位置を計測し、第2ドラム部材22の曲面にある基板Pに処理を施すことができる。エンコーダヘッドEN3、EN7は、エンコーダヘッドEN3と第2中心軸AX2とを結ぶ線(設置方位線Le3)とエンコーダヘッドEN7と第2中心軸AX2とを結ぶ線(設置方位線Le7)とのなすエンコーダ取付角度θsを90度未満、好ましくは45度以下としてもよい。   The exposure apparatus EX4 sets, for example, an encoder head EN3 as a first reading unit and an encoder head EN7 as a second reading unit. The encoder heads EN3 and EN7 read the graduation GPd of the encoder scale disc SD attached to the second drum member 22. The controller 14 corrects the error of the graduation GPd provided on the surface of the encoder scale disc SD based on the difference between the readings of the encoder heads EN3 and EN7. Therefore, the exposure apparatus EX4 can measure the position of the second drum member 22 in the circumferential direction with high accuracy, and process the substrate P on the curved surface of the second drum member 22. The encoder heads EN3 and EN7 are encoders formed by a line connecting the encoder head EN3 and the second central axis AX2 (installation azimuth Le3) and a line connecting the encoder head EN7 and the second central axis AX2 (installation azimuth Le7) The mounting angle θs may be less than 90 degrees, preferably 45 degrees or less.

上述した実施形態及び基板処理装置(露光装置)の第1変形例〜第4変形例は、基板処理装置として露光装置を例示している。基板処理装置としては、露光装置に限られず、処理部がインクジェットのインク滴下装置により被処理物体である基板Pにパターンを印刷する装置であってもよい。また、処理部は、検査装置であってもよい。   The above-described embodiment and the first to fourth modifications of the substrate processing apparatus (exposure apparatus) exemplify the exposure apparatus as the substrate processing apparatus. The substrate processing apparatus is not limited to the exposure apparatus, and the processing unit may be an apparatus that prints a pattern on the substrate P, which is an object to be processed, by an ink drop apparatus of inkjet. Also, the processing unit may be an inspection device.

ところで、先の図7、図8を用いたエンコーダヘッドEN4、EN5による目盛GPの読み取り動作の説明では、目盛GPの1つの目盛の立ち上がり部GPaを読み取ったとき、アップパルスUを出力し、立ち下がり部GPbを読み取ったときにダウンパルスDを出力するものとし、隣接した2つの立ち上がり部GPa間の間隔、又は隣接した立ち下がり部GPb間の間隔を、目盛GPのピッチSSとした。しかしながら、実際のエンコーダ計測システムは、例えば、特開平9−196702号公報に開示されているように、信号発生部(エンコーダヘッド)から出力される2相信号(90度の位相差を持つ正弦波信号及び余弦波信号)を、内挿回路やコンパレータ等によって、目盛GPの実寸のピッチSSを数分の一〜数十分の一に細分化した間隔でアップパルスU及びダウンパルスDを発生するように構成される。   By the way, in the explanation of the reading operation of the scale GP by the encoder heads EN4 and EN5 using FIG. 7 and FIG. 8 above, when the rising portion GPa of one scale of the scale GP is read, the up pulse U is output to stand up The down pulse D is output when the falling portion GPb is read, and the interval between two adjacent rising portions GPa or the interval between adjacent falling portions GPb is set as the pitch SS of the scale GP. However, in an actual encoder measurement system, as disclosed in, for example, Japanese Patent Laid-Open No. 9-196702, a sine wave having a phase difference of 90 degrees is output from a signal generator (encoder head). The up pulse U and the down pulse D are generated at intervals obtained by dividing the actual size pitch SS of the scale GP into a few to a few tenths of a signal and a cosine wave signal) by an interpolation circuit, a comparator or the like. Configured as.

図22は、先の図4〜6、図10及び図16〜21の各々で示したエンコーダヘッドEN1〜EN7、EH1〜EH5による目盛GP(GPd、GPM)の実際の読み取り動作を簡単に説明するための信号波形図である。図22に示されるように、エンコーダヘッドEN1〜EN7、EH1〜EH5の各々は、90度の位相差を有する2つの計測信号(ここでは矩形波で表す)EcA、EcBを出力する。計測信号EcA、EcBの1周期は目盛GPのピッチSSの1/nに対応している。n(整数)はエンコーダヘッド内の光学的な読み取り形態によって異なるが、例えば、1、2、4、8、・・・等の倍数系列のいずれかの値に設定される。通常のエンコーダ計測システムでは、スケール円盤SDが順方向に回転し、目盛GPがエンコーダヘッドに対して常に一方向に移動している間は、計測信号EcA、EcBに基づいて内挿化されたアップパルス信号EcUが生成され続ける。スケール円盤SDが逆転した場合は、その時点から、計測信号EcA、EcBに基づいて内挿化されたダウンパルス信号が生成され続ける。   FIG. 22 briefly illustrates the actual reading operation of the scale GP (GPd, GPM) by the encoder heads EN1 to EN7 and EH1 to EH5 shown in FIGS. 4 to 6 and 10 and 16 to 21 respectively. Is a signal waveform diagram for As shown in FIG. 22, each of the encoder heads EN1 to EN7 and EH1 to EH5 outputs two measurement signals EcA and EcB (represented here by rectangular waves) having a phase difference of 90 degrees. One cycle of the measurement signals EcA and EcB corresponds to 1 / n of the pitch SS of the scale GP. Although n (integer) differs depending on the optical reading form in the encoder head, it is set to any value of a multiple sequence such as 1, 2, 4, 8,. In a normal encoder measurement system, while the scale disk SD rotates in the forward direction and the scale GP is always moved in one direction with respect to the encoder head, interpolation up is performed based on the measurement signals EcA and EcB. The pulse signal EcU continues to be generated. If the scale disk SD is reversed, a down pulse signal interpolated based on the measurement signals EcA and EcB continues to be generated from that time.

図22では、計測信号EcA、EcBの1周期を8分割した間隔でパルスを発生するようなアップパルス信号EcU(又はダウンパルス信号EcD)を送出する処理回路が使われる。計数器としてのアップダウンカウンターは、アップパルス信号EcUが入力されるときは、そのパルス数を逐次カウントアップし、ダウンパルス信号EcDが入力されるときは、そのパルス数を逐次カウントダウンする。ここで、例えば、計測信号EcA、EcBの1周期が、目盛GPの実寸のピッチSSの1/8に対応するものとすると、アップダウンカウンターは、スケール円盤SD(目盛GP)のスケール面が順方向に1ピッチSSだけ移動する間、アップパルス信号EcUの64パルス分を計数することになる。従って、目盛GPのピッチSSが20μmの場合、アップダウンカウンターによる1ピッチ分の計数値の増分は64になり、エンコーダ計測システムとしての計測分解能(信号EcUの1パルス当りの移動量)は、0.3125μm(20μm/64)となる。このように、エンコーダ計測システムとしての計測分解能は、目盛GPのピッチSSの実寸を数分の一〜数十分の一程度に内挿補間して微細化されるため、ピッチSSの誤差は、その内挿補間の程度に応じた精度で求められる。   In FIG. 22, a processing circuit is used which transmits an up pulse signal EcU (or down pulse signal EcD) which generates a pulse at intervals obtained by dividing one cycle of the measurement signals EcA and EcB into eight. When the up pulse signal EcU is input, the up / down counter as a counter sequentially counts up the number of pulses, and when the down pulse signal EcD is input, the number of pulses is sequentially counted down. Here, for example, assuming that one cycle of the measurement signals EcA and EcB corresponds to 1/8 of the actual pitch SS of the scale GP, the up-down counter is the scale surface of the scale disc SD (scale GP) in order While moving in the direction by one pitch SS, 64 pulses of the up pulse signal EcU are counted. Therefore, when the pitch SS of the graduation GP is 20 μm, the increment of the count value of one pitch by the up / down counter is 64, and the measurement resolution (the amount of movement per signal EcU of the signal EcU) of the encoder measurement system is 0. 3125 μm (20 μm / 64). As described above, the measurement resolution as the encoder measurement system is refined by interpolating the actual size of the pitch SS of the scale GP to a few to a few tenths, so the error of the pitch SS is It can be obtained with accuracy according to the degree of the interpolation.

なお、スケール円盤SDのスケール面の周長距離(直径×π)を有限の目盛本数(格子本数)で割った値とする場合、実際の目盛GPのピッチSSの実寸は20μmに対して端数を伴う場合もある。これに対して、計測分解能が切りのよい値(例えば、0.25μm)になるようにピッチSSを設定し、そのピッチSSでスケール円盤SDのスケール面の周長距離が所定精度内で割り切れるように、スケール面の直径を設定するようにしてもよい。   In addition, when it is set as a value obtained by dividing the circumferential long distance (diameter × π) of the scale surface of the scale disk SD by a finite number of graduations (number of lattices), the actual size of the pitch SS of the graduations GP is a fraction with respect to 20 μm. May accompany. On the other hand, the pitch SS is set so that the measurement resolution has a good value (for example, 0.25 μm) so that the circumferential long distance of the scale surface of the scale disk SD can be divided within the predetermined accuracy. The diameter of the scale surface may be set.

ところで、スケール円盤SD等のスケール面には、目盛GPとともに、スケール円盤SDの1回転の原点となる原点マークが刻設されており、エンコーダヘッドEN1〜EN7の各々は、その原点マークを検出すると、その瞬間に原点信号(パルス)EcZを出力する。アップダウンカウンターは、原点信号EcZに応答して、それまでの計数値をゼロにリセットしてから、再びアップパルス信号EcU(又はダウンパルス信号EcD)のパルス数の計数を継続する。従って、エンコーダヘッドEN1〜EN7の各々に対応して設けられるアップダウンカウンターの各々は、原点信号EcZを受けた瞬間を基準(ゼロ点)として、アップパルス信号EcU(又はダウンパルス信号EcD)のパルス数を加算(又は減算)している。   By the way, on the scale surface such as the scale disk SD, an origin mark which is the origin of one rotation of the scale disk SD is engraved along with the scale GP, and each of the encoder heads EN1 to EN7 detects the origin mark At that moment, the origin signal (pulse) EcZ is output. In response to the origin signal EcZ, the up / down counter continues counting of the number of pulses of the up pulse signal EcU (or the down pulse signal EcD) after resetting the count value so far to zero. Therefore, each of the up / down counters provided corresponding to each of the encoder heads EN1 to EN7 is a pulse of the up pulse signal EcU (or down pulse signal EcD) with reference to the instant (zero point) at which the origin signal EcZ is received. The numbers are added (or subtracted).

以上のことから、例えば、エンコーダヘッドEN4とエンコーダヘッドEN5との各々による計測値の差分によって目盛GPのピッチ誤差を求める際は、スケール円盤SD(第2ドラム部材22)が図11〜図13で説明したように、角度αだけ回転する度に、エンコーダヘッドEN4に対応したアップダウンカウンターの計数値と、エンコーダヘッドEN5に対応したアップダウンカウンターの計数値との差分をデジタル的に演算するだけでよい。また、角度αは、エンコーダヘッドEN4とエンコーダヘッドEN5とのいずれか一方(あるいは他の1つのエンコーダヘッドでもよい)に対応したアップダウンカウンターの計数値が、角度α分に対応した一定値だけ増加(又は減少)したか否かを判定することで検知できる。   From the above, for example, when obtaining the pitch error of the graduation GP by the difference between the measurement values of each of the encoder head EN4 and the encoder head EN5, the scale disc SD (second drum member 22) is as shown in FIGS. As described above, it is only necessary to digitally calculate the difference between the count value of the up / down counter corresponding to the encoder head EN4 and the count value of the up / down counter corresponding to the encoder head EN5 each time it rotates by the angle α. Good. In addition, the count value of the up / down counter corresponding to one of the encoder head EN4 and the encoder head EN5 (or one other encoder head) may be increased by a fixed value corresponding to the angle α. It can be detected by determining whether (or decreased).

(変形例1)
以上の実施形態及び変形例では、エンコーダ計測システムを構成する目盛GPは、回転体としてのスケール円盤SD及び第2ドラム部材22の少なくとも一方の円筒状の外周面に刻設されていた。しかしながら、スケール円盤SD及び第2ドラム部材22の少なくとも一方の回転中心線AX2と垂直な側端面に、円周方向に沿って所定ピッチで目盛GPを形成してもよい。図23は、そのようにスケール円盤SDの側端面に目盛GPを形成する場合の構成を、先の図6と同様に回転中心線AX2が延びる方向(Y軸方向)から見た図であり、図24は、図23の構成を、設置方位線Le4と回転中心線AX2とを含む面で破断したA−A’矢視断面図である。
(Modification 1)
In the above embodiment and modification, the scale GP which constitutes the encoder measurement system is engraved on the cylindrical outer peripheral surface of at least one of the scale disc SD as the rotating body and the second drum member 22. However, the graduation GP may be formed at a predetermined pitch along the circumferential direction on the side end face perpendicular to the rotation center line AX2 of at least one of the scale disc SD and the second drum member 22. FIG. 23 is a view of the configuration in the case of forming the graduation GP on the side end face of the scale disc SD as seen from the direction (Y-axis direction) in which the rotation center line AX2 extends as in FIG. FIG. 24 is a cross-sectional view taken along the line AA 'of FIG. 23 taken along a plane including the installation direction line Le4 and the rotation center line AX2.

図23において、リング状のスケール円盤SDは、第2ドラム部材22の側端面の8箇所に、調整部材(ネジ)60で取り付けられている。調整部材(ネジ)60の取り付け角度βは、ここでは45°になる。スケール円盤SDのXZ面と平行な側面には、回転中心線AX2から半径raの円周上に沿って、一定ピッチSSの目盛GPと原点マークZsとが形成されている。エンコーダヘッドEN4、EN5は、図24に示されるように、目盛GPと一定のギャップで対向するようにY軸方向に向けて配置される。図23に示されるように、エンコーダヘッドEN4の読取位置RP4は、半径ra上であって、且つ設置方位線Le4上に設定される。エンコーダヘッドEN5の読取位置RP5は、半径ra上であって、且つ設置方位線Le5上に設定される。半径raは、図24に示されるように、第2ドラム部材22の基板Pを密着支持する外周面22sの半径である。従って、リング状のスケール円盤SDの最大径は、半径raよりも少し大きく設定される。このように、スケール円盤SDとエンコーダヘッドEN4、EN5とを配置することで、計測時のアッベ誤差を最小にすることができる。図23及び図24のリング状のスケール円盤SDに対する他のエンコーダヘッド(EN1〜EN3、EN6〜EN7)も、ヘッドEN4、EN5と同様に計測のアッベ条件を満たすように配置される。   In FIG. 23, the ring-shaped scale disc SD is attached to eight places on the side end face of the second drum member 22 by adjustment members (screws) 60. The mounting angle β of the adjustment member (screw) 60 is now 45 °. On the side surface parallel to the XZ plane of the scale disk SD, a scale GP with a constant pitch SS and an origin mark Zs are formed along the circumference from the rotation center line AX2 to the radius ra. The encoder heads EN4 and EN5 are arranged in the Y-axis direction so as to face the scale GP with a constant gap, as shown in FIG. As shown in FIG. 23, the reading position RP4 of the encoder head EN4 is set on the radius ra and on the installation azimuth line Le4. The reading position RP5 of the encoder head EN5 is set on the radius ra and on the installation azimuth Le5. The radius ra is a radius of the outer peripheral surface 22s which closely supports the substrate P of the second drum member 22, as shown in FIG. Therefore, the maximum diameter of the ring-shaped scale disc SD is set to be slightly larger than the radius ra. By arranging the scale disc SD and the encoder heads EN4 and EN5 in this manner, the Abbe error during measurement can be minimized. The other encoder heads (EN1 to EN3 and EN6 to EN7) for the ring-shaped scale disc SD in FIG. 23 and FIG. 24 are also arranged to satisfy the Abbe conditions of measurement, similarly to the heads EN4 and EN5.

(変形例2)
以上の実施形態及び変形例では、目盛GPのピッチ誤差の計測のために、互いに近くに配置された2つのエンコーダヘッド(例えばエンコーダヘッドEN4、EN5)の各々の計測値の差分値を、スケール円盤SD(第2ドラム部材22)が角度α(α<θs)だけ回転する度に記憶して、スケール円盤SDの全周分のピッチ誤差に関するマップを作成するとした。その場合、マップの精度を高めるためには、2つのエンコーダヘッド(例えばエンコーダヘッドEN4、EN5)の各々のスケール面上での読取位置(図23中のRP4、RP5に相当)が成す角度θsをできる限り小さくすることが好ましい。しかしながら、エンコーダヘッドEN4、EN5の外形形状及び寸法、又はアライメント顕微鏡AMG1、AMG2の配置によって決まる設置方位線Le4、Le5間の角度によって、角度θsを十分に小さくできないことがある。
(Modification 2)
In the above embodiment and modifications, the difference between the measurement values of each of two encoder heads (for example, encoder heads EN4 and EN5) arranged close to each other for measurement of the pitch error of the scale GP is a scale disk. Each time SD (the second drum member 22) rotates by an angle α (α <θs) is stored, and a map relating to the pitch error of the entire circumference of the scale disk SD is created. In that case, in order to improve the map accuracy, the angle θs formed by the reading position (corresponding to RP4 and RP5 in FIG. 23) on the scale surface of each of the two encoder heads (for example, encoder heads EN4 and EN5) It is preferable to make it as small as possible. However, the angle θs may not be reduced sufficiently depending on the external shape and dimensions of the encoder heads EN4 and EN5 or the angle between the orientation lines Le4 and Le5 determined by the arrangement of the alignment microscopes AMG1 and AMG2.

そこで、変形例2では、例えば、先の実施形態においてピッチ誤差計測に使用された2つのエンコーダヘッドEN4、EN5とともに、その近くに配置されるエンコーダヘッドEN1(又はEN2)を加えた3つ以上のエンコーダヘッドの各々による計測値を使って、ピッチ誤差マップをさらに微細化する。図25は、先の図6と同様に、スケール円盤SD(ここではリング状)とエンコーダヘッドEN1、EN2、EN4、EN5との配置をXZ面内で見た図であり、ここでは、スケール円盤SDの外周面に沿って、目盛GPと原点マークZsが形成されている。また、スケール円盤SDは、周方向の16ヶ所で調整部材(ネジ)60で第2ドラム部材22の側端面に固定されているものとする。従って、調整部材(ネジ)60の取付け角度βは、22.5°となる。   Therefore, in the second modification, for example, three or more encoder heads EN1 (or EN2) disposed in the vicinity are added together with the two encoder heads EN4 and EN5 used for pitch error measurement in the previous embodiment. The measurements from each of the encoder heads are used to further refine the pitch error map. FIG. 25 is a view of the arrangement of the scale disk SD (here, ring-shaped) and the encoder heads EN1, EN2, EN4, and EN5 in the XZ plane, as in FIG. A scale GP and an origin mark Zs are formed along the outer peripheral surface of the SD. In addition, the scale disc SD is fixed to the side end surface of the second drum member 22 by the adjustment member (screw) 60 at 16 places in the circumferential direction. Accordingly, the mounting angle β of the adjustment member (screw) 60 is 22.5 °.

図25に示されるように、奇数番の露光位置に対応した設置方位線Le1上に読取位置が設定されるエンコーダヘッドEN1と、偶数番の露光位置に対応した設置方位線Le2上に読取位置が設定されるエンコーダヘッドEN2とは、XZ面内では、中心面P3に対して角度±θで配置される。また、エンコーダヘッドEN4、EN5の各々の読取位置を通る設置方位線Le4、Le5がなす角度θsは、θs>βの関係になっている。さらに、エンコーダヘッドEN1の読取位置を通る設置方位線Le1と、エンコーダヘッドEN4の読取位置を通る設置方位線Le4とのなす角度をθqとする。また、エンコーダヘッドEN1、EN2、EN4、EN5の各々に対応して設けられるアップダウンカウンターの計数値を、それぞれCm1、Cm2、Cm4、Cm5とする。   As shown in FIG. 25, the encoder head EN1 has a reading position set on the installation azimuth line Le1 corresponding to the odd-numbered exposure position, and the reading position on the installation azimuth line Le2 corresponding to the even-numbered exposure position. The encoder head EN2 to be set is disposed at an angle ± θ with respect to the central plane P3 in the XZ plane. Further, the angles θs formed by the installation azimuth lines Le4 and Le5 passing through the reading positions of the encoder heads EN4 and EN5 are in a relationship of θs> β. Further, an angle between the installation azimuth line Le1 passing through the reading position of the encoder head EN1 and the installation azimuth line Le4 passing through the reading position of the encoder head EN4 is taken as θq. Further, the count values of the up / down counters provided corresponding to the encoder heads EN1, EN2, EN4, and EN5 are respectively Cm1, Cm2, Cm4, and Cm5.

図25に示されるスケール円盤SD(第2ドラム部材22)が、XZ面内で時計周りに回転する場合、スケール円盤SDのスケール面に形成された原点マークZsは、エンコーダヘッドEN4、EN5、EN1、EN2の順番で、各読取位置を横切っていく。従って、原点マークZsがエンコーダヘッドEN4の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm4がゼロリセットされ、原点マークZsがエンコーダヘッドEN5の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm5がゼロリセットされ、原点マークZsがエンコーダヘッドEN1の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm1がゼロリセットされ、原点マークZsがエンコーダヘッドEN2の読取位置を横切った瞬間に、対応するアップダウンカウンターの計数値Cm2がゼロリセットされる。スケール円盤SDが時計周りに回転する場合、4つのアップダウンカウンターの全てがゼロリセットされた後の各計数値Cm1、Cm2、Cm4、Cm5は、常にCm2<Cm1<Cm5<Cm4の関係になっている。   When the scale disk SD (second drum member 22) shown in FIG. 25 rotates clockwise in the XZ plane, the origin mark Zs formed on the scale surface of the scale disk SD is the encoder head EN4, EN5, EN1. , And in the order of EN2, the respective reading positions are crossed. Therefore, at the moment when the origin mark Zs crosses the reading position of the encoder head EN4, the corresponding up / down counter count value Cm4 is reset to zero and the moment when the origin mark Zs crosses the reading position of the encoder head EN5 The count value Cm5 of the up / down counter is reset to zero, and at the moment the origin mark Zs crosses the reading position of the encoder head EN1, the count value Cm1 of the corresponding up / down counter is reset to zero, and the origin mark Zs is of the encoder head EN2. At the moment when the reading position is crossed, the count value Cm2 of the corresponding up / down counter is reset to zero. When the scale disk SD rotates clockwise, the count values Cm1, Cm2, Cm4, and Cm5 after all the four up / down counters are reset to zero always have a relationship of Cm2 <Cm1 <Cm5 <Cm4. There is.

そこで、3つのエンコーダヘッドEN1(計数値Cm1)、EN4(計数値Cm4)、及びEN5(計数値Cm5)を用いてピッチ誤差を求めて、誤差マップ(補正マップ)を作成する場合は、スケール円盤SD(第2ドラム部材22)が一定角度α(α<β<θs)だけ回転する度に、以下の式(1)によって、単位角度α毎のピッチ誤差に関連した計測値ΔMsを求める。この計測値ΔMsは、先の図11中に示された目盛GPの本数NSに相当するものであるが、実際は、図22に示されるアップパルス(又はダウンパルス)EcUのパルスの計数値となる。
ΔMs=(Cm4+Cm1)/2−Cm5 ・・・式(1)
Therefore, in the case of creating an error map (correction map) by obtaining pitch errors using three encoder heads EN1 (count value Cm1), EN4 (count value Cm4), and EN5 (count value Cm5), a scale disk Every time the SD (second drum member 22) rotates by a fixed angle α (α <β <θs), a measured value ΔMs related to a pitch error for each unit angle α is obtained by the following equation (1). Although this measured value ΔMs corresponds to the number NS of the graduations GP shown in FIG. 11 described above, it is actually the count value of pulses of the up pulse (or down pulse) EcU shown in FIG. .
ΔMs = (Cm4 + Cm1) / 2-Cm5 formula (1)

この式(1)において、(Cm4+Cm1)/2の計算値は、図25に示されるように、エンコーダヘッドEN4の読取位置RP4とエンコーダヘッドEN1の読取位置RP1との中間点となる角度位置に設定される仮想的な設置方位線Leiに、エンコーダヘッドの読取位置RPiが設定されたときに得られると予想される計数値を表している。従って、式(1)又は後述する(2)で得られる計測値ΔMsは、仮想的なエンコーダヘッドによる読取位置RPiでの計数値Cmi(計算上の値)と、エンコーダヘッドEN5の読取位置RP5での計数値Cm5との差分となる。その計測値ΔMsを単位角度α毎に、360度分求めることによって、スケール円盤SD等のスケール(目盛GP)のピッチ誤差マップ、あるいはピッチ誤差補正マップが作成できる。   In this equation (1), the calculated value of (Cm4 + Cm1) / 2 is set to an angular position that is an intermediate point between the reading position RP4 of the encoder head EN4 and the reading position RP1 of the encoder head EN1, as shown in FIG. The virtual installation azimuth line Lei indicates the count value expected to be obtained when the reading position RPi of the encoder head is set. Therefore, the measured value ΔMs obtained by the equation (1) or (2) described later is the count value Cmi (calculated value) at the reading position RPi by the virtual encoder head and the reading position RP5 of the encoder head EN5. The difference with the count value Cm5 of A pitch error map or a pitch error correction map of a scale (scale GP) such as the scale disk SD can be created by obtaining the measurement value ΔMs for 360 degrees for each unit angle α.

ところで、図25に示されるような配置の場合、原点マークZsがエンコーダヘッドEN4の読取位置RP4とエンコーダヘッドEN1の読取位置RP1との間を通過している期間では、計数値Cm4や計測値Cm5がゼロリセットされた後なので、3つの計数値Cm1、Cm4、Cm5の連続性が担保されない可能性がある。その期間では、計数値Cm1、Cm4、Cm5(絶対値)の大小関係が、Cm4<Cm1<Cm5、あるいはCm5<Cm4<Cm1になっている。そこで、ゼロリセット時から次のゼロリセット時までの間にアップダウンカウンターで計数される最大の計数値(固定値)をCmfとし、角度α毎に、各エンコーダヘッドEN1、EN4、EN5に対応した計数値Cm1、Cm4、Cm5を読み込む際に、原点マークZsがエンコーダヘッドEN4の読取位置RP4とエンコーダヘッドEN5の読取位置RP5との間にあるときは、アップダウンカウンターの計数値Cm4に最大計数値Cmfを加えた新たな計数値Cm4’を、式(1)中の計数値Cm4の代わりに用いればよい。同様に、原点マークZsがエンコーダヘッドEN5の読取位置RP5とエンコーダヘッドEN1の読取位置RP1との間にあるときは、アップダウンカウンターの計数値Cm4、Cm5の各々に最大計数値Cmfを加えた新たな計数値Cm4’、Cm5’を、式(1)中の計数値Cm4、Cm5の代わりに用いればよい。   By the way, in the case of the arrangement as shown in FIG. 25, the count value Cm4 or the measurement value Cm5 is measured in a period in which the origin mark Zs passes between the reading position RP4 of the encoder head EN4 and the reading position RP1 of the encoder head EN1. Is after being reset to zero, there is a possibility that the continuity of the three count values Cm1, Cm4, and Cm5 can not be secured. In that period, the magnitude relationship between the count values Cm1, Cm4, and Cm5 (absolute value) is Cm4 <Cm1 <Cm5, or Cm5 <Cm4 <Cm1. Therefore, the maximum count value (fixed value) counted by the up-down counter from the time of zero reset to the time of the next zero reset is Cmf, and corresponds to each encoder head EN1, EN4, EN5 for each angle α. When reading the count values Cm1, Cm4 and Cm5, when the origin mark Zs is between the read position RP4 of the encoder head EN4 and the read position RP5 of the encoder head EN5, the maximum count value of the count value Cm4 of the up / down counter A new count Cm4 'to which Cmf is added may be used instead of the count Cm4 in the equation (1). Similarly, when the origin mark Zs is between the reading position RP5 of the encoder head EN5 and the reading position RP1 of the encoder head EN1, the maximum count Cmf is added to each of the counts Cm4 and Cm5 of the up / down counter. The count values Cm4 'and Cm5' may be used instead of the count values Cm4 and Cm5 in the equation (1).

変形例2の場合、第1読み取り部は、2つのエンコーダヘッドEN1、EN4(あるいは1つのエンコーダヘッドEN5)を含んで構成され、第2読み取り部は、1つのエンコーダヘッドEN5(あるいは2つのエンコーダヘッドEN1、EN4)を含んで構成される。以上の構成において、角度θsと角度θqを適当な関係に設定すると、仮想的な読取位置RPiと読取位置RP5とがなす角度を、調整部材(ネジ)60の取付け角度β(図25では22.5°)よりも小さくすることができ、調整部材60による真円度、偏心等の調整後に残留するスケール円盤SDのスケール面の僅かな変形によるピッチ誤差(ピッチムラ)を、角度β以下のスパンで詳細に計測することができる。   In the second modification, the first reading unit includes two encoder heads EN1 and EN4 (or one encoder head EN5), and the second reading unit includes one encoder head EN5 (or two encoder heads). It comprises EN1 and EN4). In the above configuration, when the angle θs and the angle θq are set to an appropriate relationship, the angle formed between the virtual reading position RPi and the reading position RP5 is the attachment angle β of the adjustment member (screw) 60 (22. in FIG. 25). The pitch error (pitch unevenness) due to slight deformation of the scale surface of the scale disc SD remaining after adjustment of roundness, eccentricity, etc. by the adjustment member 60 can be made smaller than 5 °) with a span of angle β or less It can be measured in detail.

また、以上のようにスケール面上に仮想的な読取位置RPiを設定する方法では、例えば、図25に示される2つのエンコーダヘッドEN4、EN1の各読取位置RP4、RP1の中間点に設定される仮想的な第1の読取位置RPiで求まる計算上の計数値と、2つのエンコーダヘッドEN5、EN2の各読取位置RP5、RP2の中間点に設定される仮想的な第2の読取位置RPiで求まる計算上の計数値との差分によって、ピッチ誤差を求めてもよい。その場合の単位角度α毎の計測値ΔMsは、以下の式(2)によって計算される。
ΔMs=(Cm4+Cm1)/2−(Cm5+Cm2)/2 ・・・式(2)
Further, in the method of setting the virtual reading position RPi on the scale surface as described above, for example, it is set at the midpoint between the reading positions RP4 and RP1 of the two encoder heads EN4 and EN1 shown in FIG. Calculated from the calculated count value obtained at the virtual first reading position RPi and the virtual second reading position RPi set at the midpoint between the reading positions RP5 and RP2 of the two encoder heads EN5 and EN2. The pitch error may be determined by the difference from the calculated count value. The measurement value ΔMs for each unit angle α in that case is calculated by the following equation (2).
ΔMs = (Cm4 + Cm1) / 2- (Cm5 + Cm2) / 2 Formula (2)

(デバイス製造方法)
図26は、実施形態に係る基板処理装置(露光装置)を用いてデバイスを製造するデバイス製造方法の手順を示すフローチャートである。このデバイス製造方法では、まず、例えば有機EL等の自発光素子による表示パネルの機能・性能設計を行い、必要な回路パターンや配線パターンをCAD等で設計する(ステップS201)。次いで、CAD等で設計された各種レイヤー毎のパターンに基づいて、必要なレイヤー分の円筒マスクDMを製作する(ステップS202)。また、表示パネルの基材となる可撓性の基板P(樹脂フィルム、金属箔膜、プラスチック等)が巻かれた供給用ロールFR1を準備しておく(ステップS203)。なお、このステップS203で用意しておくロール状の基板Pは、必要に応じてその表面を改質したもの、下地層(例えばインプリント方式による微小凹凸)を事前形成したもの、光感応性の機能膜や透明膜(絶縁材料)を予めラミネートしたもの、でもよい。
(Device manufacturing method)
FIG. 26 is a flowchart showing the procedure of a device manufacturing method for manufacturing a device using the substrate processing apparatus (exposure apparatus) according to the embodiment. In this device manufacturing method, first, function / performance design of a display panel by self-light emitting elements such as organic EL is performed, and necessary circuit patterns and wiring patterns are designed by CAD (step S201). Next, based on the pattern of each of the various layers designed by CAD or the like, a cylindrical mask DM for the necessary layer is manufactured (step S202). In addition, a supply roll FR1 on which a flexible substrate P (a resin film, a metal foil film, a plastic or the like) to be a base material of the display panel is wound is prepared (step S203). The roll-like substrate P prepared in step S203 has its surface modified as necessary, a base layer (for example, minute unevenness by imprint method) formed in advance, photosensitive material It may be a laminate of a functional film or a transparent film (insulating material) in advance.

次いで、基板P上に表示パネルデバイスを構成する電極や配線、絶縁膜、TFT(薄膜半導体)等によって構成されるバックプレーン層を形成するとともに、そのバックプレーンに積層されるように、有機EL等の自発光素子による発光層(表示画素部)が形成される(ステップS204)。このステップS204には、先の各実施形態で説明した露光装置EX、EX2、EX3、EX4を用いて、フォトレジスト層を露光する従来のフォトリソグラフィ工程も含まれるが、フォトレジストの代わりに感光性シランカップリング材を塗布した基板Pをパターン露光して表面に親撥水性によるパターンを形成する露光工程、光感応性の触媒層をパターン露光し無電解メッキ法によって金属膜のパターン(配線、電極等)を形成する湿式工程又は銀ナノ粒子を含有した導電性インク等によってパターンを描画する印刷工程、等による処理も含まれる。   Next, on the substrate P, a backplane layer composed of electrodes and wirings constituting the display panel device, an insulating film, a TFT (thin film semiconductor) and the like is formed, and organic EL etc. A light emitting layer (display pixel portion) is formed by the self light emitting element of the above (step S204). Although this step S204 includes the conventional photolithography process of exposing the photoresist layer using the exposure apparatuses EX, EX2, EX3 and EX4 described in the above embodiments, the photosensitivity is used instead of the photoresist. Pattern exposure of the substrate P coated with the silane coupling material to form a pattern of hydrophilicity and water repellency on the surface, pattern exposure of the photosensitive catalyst layer and pattern of a metal film by electroless plating (wiring, electrode Processing by a wet process of forming etc.) or a printing process of drawing a pattern with a conductive ink containing silver nanoparticles etc. is also included.

次いで、ロール方式で長尺の基板P上に連続的に製造される表示パネルデバイス毎に、基板Pをダイシングしたり、各表示パネルデバイスの表面に、保護フィルム(対環境バリア層)やカラーフィルターシート等を貼り合せたりして、デバイスを組み立てる(ステップS205)。次いで、表示パネルデバイスが正常に機能するか、所望の性能や特性を満たしているかの検査工程が行われる(ステップS206)。以上のようにして、表示パネル(フレキシブル・ディスプレイ)を製造することができる。   Then, the substrate P is diced for each display panel device continuously manufactured on a long substrate P by a roll method, or a protective film (anti-environment barrier layer) or a color filter is formed on the surface of each display panel device. A sheet or the like is attached to assemble a device (step S205). Next, an inspection process is performed to determine whether the display panel device functions properly or satisfies the desired performance or characteristics (step S206). As described above, a display panel (flexible display) can be manufactured.

上記実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型のレチクルを用いたが、このレチクルに代えて、例えば米国特許第6778257号明細書に記載されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形のレチクル(電子レチクル、アクティブレチクル、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形のレチクルに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしてもよい。   In the above embodiment, a light transmission type reticle in which a predetermined light shielding pattern (or a phase pattern / light reduction pattern) is formed on a light transmitting substrate is used, but in place of this reticle, for example, US Pat. As described in US patent application Ser. No. 07 / 982,095, a variable-shaped reticle (also called an electronic reticle, an active reticle, or an image generator) that forms a transmission pattern or a reflection pattern or a light emission pattern based on electronic data of a pattern to be exposed. May be used. Further, instead of the variable-shaped reticle having the non-light emitting type image display device, a pattern forming apparatus including a self-light emitting type image display device may be provided.

また、上記実施形態の露光装置は、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度及び光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、露光装置の組立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムを組み合わせて露光装置に組み立てる工程は、各種サブシステム相互の機械的接続、電気回路の配線接続及び気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組立工程の前に、各サブシステム個々の組立工程があることはいうまでもない。各種サブシステムの露光装置への組立工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。   In addition, the exposure apparatus of the above embodiment is manufactured by assembling various sub-systems including the respective components recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy and optical accuracy. Be done. In order to ensure these various accuracies, before and after assembly of the exposure apparatus, adjustments for achieving optical accuracy for various optical systems, adjustments for achieving mechanical accuracy for various mechanical systems, various electric systems The system is tuned to achieve electrical accuracy. The process of assembling various subsystems into an exposure apparatus includes mechanical connection between the various subsystems, wiring connection of electric circuits, piping connection of air pressure circuits, and the like. It goes without saying that there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed to secure various accuracies as the entire exposure apparatus. It is desirable that the manufacture of the exposure apparatus be performed in a clean room in which the temperature and the degree of cleanliness are controlled.

また、上記実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。さらに、本発明の要旨を逸脱しない範囲で構成要素の置換又は変更を行うこともできる。また、法令で許容される限りにおいて、上述の実施形態で引用した露光装置等に関するすべての公開公報及び米国特許の記載を援用して本明細書の記載の一部とする。このように、上記実施形態に基づいて当業者等によりなされる他の実施形態及び運用技術等は、すべて本発明の範囲に含まれる。   Also, the components of the above embodiments can be combined as appropriate. In addition, some components may not be used. Furthermore, component replacements or changes can be made without departing from the scope of the present invention. Further, as far as the laws and regulations permit, the disclosures of all of the published publications and the U.S. Patents related to the exposure apparatus and the like cited in the above embodiments are incorporated herein by reference. Thus, all other embodiments, operation techniques, and the like made by those skilled in the art based on the above embodiments are included in the scope of the present invention.

11 基板処理装置
14 制御装置
21 第1ドラム部材
22 第2ドラム部材
25 第1検出器
35 第2検出器
60 調整部材
61 雄ねじ部
62 ヘッド部
AX1 回転中心線(第1中心軸)
AX2 回転中心線(第2中心軸)
Cs 真円度調整機構
DM 円筒マスク
EN、EN1、EN2、EN3、EN4、EN5、EH1、EH2、EH3、EH4、EH5 エンコーダヘッド
EX、EX1、EX2、EX3、EX4 露光装置
GP、GPd、GPM、GPm スケール
NS 計測スケール数
P 基板
SD エンコーダスケール円盤
TBc 補正マップ
11 substrate processing apparatus 14 control apparatus 21 first drum member 22 second drum member 25 first detector 35 second detector 60 adjustment member 61 male screw portion 62 head portion AX1 rotation center line (first center axis)
AX2 rotation center line (second center axis)
Cs Roundness adjustment mechanism DM Cylindrical mask EN, EN1, EN2, EN3, EN4, EN5, EH1, EH2, EH4, EH5 Encoder head EX, EX1, EX2, EX3, EX4 Exposure device GP, GPd, GPM, GPm Scale NS Measurement scale number P Substrate SD Encoder scale disc TBc correction map

Claims (9)

可撓性を有する長尺のシート基板を長尺方向に搬送して、前記シート基板に所定の処理を施す基板処理装置であって、
中心線から一定半径で円筒状に湾曲した外周面で前記シート基板を支持すると共に、前記中心線の回りに回転して前記シート基板を長尺方向に搬送する回転ドラムと、
前記シート基板の前記回転ドラムの外周面で支持された周方向の範囲内の特定位置で、前記シート基板に処理を施す処理部と、
前記回転ドラムが回転する周方向に沿って環状に設けられ、前記回転ドラムと共に前記中心線の回りに回転して、前記シート基板の周方向における位置変化をエンコーダ計測する為のスケール目盛と、
周方向の第1の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第1エンコーダヘッドと、
前記第1の方位に対して周方向に角度θqだけ回転した第2の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第2エンコーダヘッドと、
周方向に関して前記第1の方位と前記第2の方位との間であって、前記第2の方位に対して周方向に角度θsだけ回転した第3の方位に前記スケール目盛と対向するように配置され、前記スケール目盛を読み取る第3エンコーダヘッドと、
前記第1エンコーダヘッドによる第1読み取り値をCm1、前記第2エンコーダヘッドによる第2読み取り値をCm4、前記第3エンコーダヘッドによる第3読み取り値をCm5としたとき、ΔMs=(Cm1+Cm4)/2−Cm5で算出される計測値ΔMsを、前記スケール目盛の一定角度αの回転毎に逐次記憶し、前記スケール目盛の全周に渡るピッチ誤差に関する誤差情報を記憶する記憶部と、
を備える基板処理装置。
A substrate processing apparatus for transporting a flexible long sheet substrate in a longitudinal direction and performing predetermined processing on the sheet substrate,
A rotary drum for supporting the sheet substrate with a cylindrically curved outer peripheral surface at a constant radius from a center line, and for conveying the sheet substrate in a longitudinal direction by rotating around the center line;
A processing unit configured to process the sheet substrate at a specific position within a circumferential range supported by the outer peripheral surface of the rotary drum of the sheet substrate;
A scale graduation for providing an annular measurement along the circumferential direction in which the rotary drum rotates, and rotating around the center line with the rotary drum to measure an encoder position change in the circumferential direction of the sheet substrate;
A first encoder head arranged to face the scale marking in a first circumferential direction and reading the scale marking;
A second encoder head arranged to face the scale graduation in a second orientation rotated by an angle θq in a circumferential direction with respect to the first orientation, and reading the scale graduation;
Between the first orientation and the second orientation in the circumferential direction, the third orientation rotated by an angle θs in the circumferential direction with respect to the second orientation so as to face the scale graduation A third encoder head arranged to read the scale markings;
Assuming that the first reading value by the first encoder head is Cm1, the second reading value by the second encoder head is Cm4, and the third reading value by the third encoder head is Cm5, ΔMs = (Cm1 + Cm4) / 2− A storage unit which sequentially stores the measured value ΔMs calculated by Cm5 for each rotation of the scale scale at a predetermined angle α, and stores error information on a pitch error across the entire scale scale;
Substrate processing apparatus comprising:
請求項1に記載の基板処理装置であって、
前記回転ドラムの回転に伴う前記スケール目盛の周方向の移動方向に関して、上流側から前記第2エンコーダヘッド、前記第3エンコーダヘッド、前記第1エンコーダヘッドの順に配置され、
前記第1読み取り値Cm1、前記第2読み取り値Cm4、前記第3読み取り値Cm5は、Cm1<Cm5<Cm4の関係になるように設定される、
基板処理装置。
The substrate processing apparatus according to claim 1, wherein
The second encoder head, the third encoder head, and the first encoder head are disposed in this order from the upstream side with respect to the circumferential movement direction of the scale graduation accompanying the rotation of the rotary drum,
The first reading value Cm1, the second reading value Cm4, and the third reading value Cm5 are set to have a relationship of Cm1 <Cm5 <Cm4.
Substrate processing equipment.
請求項2に記載の基板処理装置であって、
前記一定角度αは、前記第2の方位と前記第3の方位との周方向における前記角度θsに対して、α<θsに設定される、
基板処理装置。
The substrate processing apparatus according to claim 2,
The constant angle α is set to α <θs with respect to the angle θs in the circumferential direction between the second direction and the third direction.
Substrate processing equipment.
請求項3に記載の基板処理装置であって、
前記角度θsは、45度以内に設定され、
前記一定角度αは、360度の約数以外の値、360度に対して素数となる値、360度/αの値が小数点以下1桁〜4桁で割り切れる値、のいずれかに設定される、
基板処理装置。
The substrate processing apparatus according to claim 3, wherein
The angle θs is set within 45 degrees,
The constant angle α is set to any value other than a divisor of 360 degrees, a value to be a prime number with respect to 360 degrees, or a value in which a value of 360 degrees / α is divisible by 1 to 4 decimal places. ,
Substrate processing equipment.
請求項1〜4のいずれか一項に記載の基板処理装置であって、
前記第1エンコーダヘッドが配置される前記第1の方位は、前記処理部が処理を施す前記特定位置の周方向に関する方位と同じに設定され、
前記処理部によって前記シート基板に処理を施す際は、前記第1エンコーダヘッドによる前記第1読み取り値を、前記記憶部に記憶された前記誤差情報に基づいて補正した値を、前記シート基板の前記長尺の方向の搬送位置又は搬送量として出力する補正部を、更に備える
基板処理装置。
The substrate processing apparatus according to any one of claims 1 to 4, wherein
The first orientation in which the first encoder head is disposed is set to be the same as the orientation in the circumferential direction of the specific position on which the processing unit performs processing,
When processing the sheet substrate by the processing unit, a value obtained by correcting the first reading value by the first encoder head based on the error information stored in the storage unit is the value of the sheet substrate. A substrate processing apparatus, further comprising: a correction unit that outputs a conveyance position or a conveyance amount in a long direction.
請求項1又は請求項2に記載の基板処理装置であって、
前記スケール目盛は、前記中心線が延びる方向の前記回転ドラムの少なくとも一方の端部に前記中心線と同軸に固定されて、前記回転ドラムと共に回転するスケール円盤の外周部に刻設される、
基板処理装置。
The substrate processing apparatus according to claim 1 or 2, wherein
The scale graduation is fixed coaxially with the center line to at least one end of the rotary drum in a direction in which the center line extends, and is engraved on the outer peripheral portion of a scale disc that rotates with the rotary drum.
Substrate processing equipment.
請求項6に記載の基板処理装置であって、
前記スケール円盤を前記回転ドラムの端部に固定する為に、前記スケール円盤の周方向に沿って所定の取り付け角度β毎に配置される複数の締結部材が設けられ、
前記取り付け角度β、前記一定角度α、前記角度θsは、α<β<θsの関係に設定される、
基板処理装置。
The substrate processing apparatus according to claim 6, wherein
In order to fix the scale disc to the end of the rotary drum, a plurality of fastening members are provided at predetermined mounting angles β along the circumferential direction of the scale disc,
The attachment angle β, the constant angle α, and the angle θs are set to a relationship of α <β <θs.
Substrate processing equipment.
請求項2〜4のいずれか一項に記載の基板処理装置であって、
前記スケール目盛は、全周のうちの1ヶ所に設けられた原点マークを含み、
前記第1読み取り値Cm1を出力すると共に、前記第1エンコーダヘッドが前記原点マークを検出した瞬間に前記第1読み取り値Cm1をゼロリセットする第1の計数器と、
前記第2読み取り値Cm4を出力すると共に、前記第2エンコーダヘッドが前記原点マークを検出した瞬間に前記第2読み取り値Cm4をゼロリセットする第2の計数器と、
前記第3読み取り値Cm5を出力すると共に、前記第3エンコーダヘッドが前記原点マークを検出した瞬間に前記第3読み取り値Cm5をゼロリセットする第3の計数器と、を更に備える、
基板処理装置。
The substrate processing apparatus according to any one of claims 2 to 4, wherein
The scale graduation includes an origin mark provided at one of the entire circumferences,
A first counter which outputs the first read value Cm1 and which resets the first read value Cm1 to zero at the moment when the first encoder head detects the origin mark;
A second counter which outputs the second read value Cm4 and which resets the second read value Cm4 to zero at the moment when the second encoder head detects the origin mark;
And a third counter configured to output the third read value Cm5 and to zero reset the third read value Cm5 at the moment when the third encoder head detects the origin mark.
Substrate processing equipment.
請求項8に記載の基板処理装置であって、
前記スケール目盛の1回転中に、3つの前記計数器の各々で計数される最大計数値をCmfとしたとき、
前記原点マークが前記第2エンコーダヘッドの読取位置と前記第3エンコーダヘッドの読取位置の間にある場合は、前記第2の計数器が出力する前記第2読み取り値Cm4に前記最大計数値Cmfを加えた計数値Cm4’を用いて、前記計測値ΔMsを、ΔMs=(Cm1+Cm4’)/2−Cm5で算出し、
前記原点マークが前記第3エンコーダヘッドの読取位置と前記第1エンコーダヘッドの読取位置の間にある場合は、前記第3の計数器が出力する前記第3読み取り値Cm5に前記最大計数値Cmfを加えた計数値Cm5’と前記計数値Cm4’を用いて、前記計測値ΔMsを、ΔMs=(Cm1+Cm4’)/2−Cm5’で算出する、
基板処理装置。
The substrate processing apparatus according to claim 8, wherein
Assuming that the maximum count value counted by each of the three counters during one rotation of the scale is Cmf,
When the origin mark is between the reading position of the second encoder head and the reading position of the third encoder head, the maximum count value Cmf is used as the second reading value Cm4 output by the second counter. Using the added count value Cm4 ′, the measurement value ΔMs is calculated by ΔMs = (Cm1 + Cm4 ′) / 2−Cm5,
When the origin mark is between the reading position of the third encoder head and the reading position of the first encoder head, the maximum count value Cmf is used as the third reading value Cm5 output by the third counter. The measurement value ΔMs is calculated by ΔMs = (Cm1 + Cm4 ′) / 2-Cm5 ′ using the added count value Cm5 ′ and the count value Cm4 ′.
Substrate processing equipment.
JP2019028051A 2014-07-23 2019-02-20 Substrate processing equipment Active JP6665957B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014149763 2014-07-23
JP2014149763 2014-07-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018037938A Division JP6551562B2 (en) 2014-07-23 2018-03-02 Sheet substrate transfer device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020025525A Division JP2020079954A (en) 2014-07-23 2020-02-18 Substrate processing apparatus

Publications (2)

Publication Number Publication Date
JP2019091076A true JP2019091076A (en) 2019-06-13
JP6665957B2 JP6665957B2 (en) 2020-03-13

Family

ID=55162946

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016535876A Active JP6460110B2 (en) 2014-07-23 2015-07-10 Cylindrical member position detection apparatus, substrate processing apparatus, and device manufacturing method
JP2018037938A Active JP6551562B2 (en) 2014-07-23 2018-03-02 Sheet substrate transfer device
JP2019028051A Active JP6665957B2 (en) 2014-07-23 2019-02-20 Substrate processing equipment
JP2020025525A Pending JP2020079954A (en) 2014-07-23 2020-02-18 Substrate processing apparatus

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016535876A Active JP6460110B2 (en) 2014-07-23 2015-07-10 Cylindrical member position detection apparatus, substrate processing apparatus, and device manufacturing method
JP2018037938A Active JP6551562B2 (en) 2014-07-23 2018-03-02 Sheet substrate transfer device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020025525A Pending JP2020079954A (en) 2014-07-23 2020-02-18 Substrate processing apparatus

Country Status (3)

Country Link
JP (4) JP6460110B2 (en)
TW (4) TWI710009B (en)
WO (1) WO2016013417A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7381204B2 (en) * 2019-01-29 2023-11-15 ファナック株式会社 robot

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224154B2 (en) * 1998-10-15 2009-02-12 株式会社アミテック Self-calibration type angle detection device and detection accuracy calibration method
JP4090016B2 (en) * 2002-03-11 2008-05-28 多摩川精機株式会社 Self-calibrating angle detector
JP2007064771A (en) * 2005-08-31 2007-03-15 Japan Servo Co Ltd Error correction device for encoder
JP5198761B2 (en) * 2006-12-11 2013-05-15 株式会社ミツトヨ Rotational displacement correction device and displacement detection device
JP5765002B2 (en) * 2011-03-29 2015-08-19 株式会社ニコン Position detecting scale measuring device, position detecting scale measuring method, and scale manufacturing method
JP6123252B2 (en) * 2012-11-21 2017-05-10 株式会社ニコン Processing apparatus and device manufacturing method
JP6074898B2 (en) * 2012-03-26 2017-02-08 株式会社ニコン Substrate processing equipment
CN106773558B (en) * 2012-03-26 2018-05-11 株式会社尼康 Scanning-exposure apparatus
KR101861904B1 (en) * 2012-09-14 2018-05-28 가부시키가이샤 니콘 Substrate processing device and device manufacturing method

Also Published As

Publication number Publication date
TWI710009B (en) 2020-11-11
JP2018106197A (en) 2018-07-05
JP6665957B2 (en) 2020-03-13
JP6460110B2 (en) 2019-01-30
TW202004850A (en) 2020-01-16
JPWO2016013417A1 (en) 2017-05-25
TW201921440A (en) 2019-06-01
TWI668736B (en) 2019-08-11
WO2016013417A1 (en) 2016-01-28
TW201907447A (en) 2019-02-16
TW201604935A (en) 2016-02-01
TWI649784B (en) 2019-02-01
TWI677901B (en) 2019-11-21
JP2020079954A (en) 2020-05-28
JP6551562B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
TWI686678B (en) Substrate processing apparatus
JP6074898B2 (en) Substrate processing equipment
JP6123252B2 (en) Processing apparatus and device manufacturing method
JP6665957B2 (en) Substrate processing equipment
JP6551175B2 (en) Rotating cylindrical body measuring apparatus, substrate processing apparatus, and device manufacturing method
JP6787447B2 (en) Board processing equipment
JP6528882B2 (en) Substrate processing equipment
JP7004041B2 (en) Exposure device
JP2017090517A (en) Cylindrical mask, exposure equipment and device manufacturing method
JP6252697B2 (en) Substrate processing equipment
JP6750703B2 (en) Pattern forming equipment
JP6332482B2 (en) Substrate processing equipment
JP6327305B2 (en) Pattern exposure apparatus and device manufacturing method
JP2019152879A (en) Method of manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250