JP2019091065A - Projection exposure method - Google Patents

Projection exposure method Download PDF

Info

Publication number
JP2019091065A
JP2019091065A JP2019013614A JP2019013614A JP2019091065A JP 2019091065 A JP2019091065 A JP 2019091065A JP 2019013614 A JP2019013614 A JP 2019013614A JP 2019013614 A JP2019013614 A JP 2019013614A JP 2019091065 A JP2019091065 A JP 2019091065A
Authority
JP
Japan
Prior art keywords
reticle
transmittance
measurement
projection exposure
design data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019013614A
Other languages
Japanese (ja)
Inventor
通博 村田
Michihiro Murata
通博 村田
豊 五味
Yutaka Gomi
豊 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Ablic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ablic Inc filed Critical Ablic Inc
Publication of JP2019091065A publication Critical patent/JP2019091065A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N2021/5915Processing scan data in densitometry
    • G01N2021/5919Determining total density of a zone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Abstract

SOLUTION: A rectile is actually put into a device when using a first rectile to perform oblique measurement and random measurement. A measurement spot size that is generally fixed is made variable and an incident angle is changed according to the measurement spot size.EFFECT: A partial sampling risk can be avoided even without increasing the number of samplings to catch a rectile transmittance of the entire rectile used as a population.SELECTED DRAWING: Figure 3

Description

本発明は半導体装置の製造に用いられるレチクルの透過率測定方法およびその測定に用いる投影露光装置と投影露光方法に関する。   The present invention relates to a method of measuring transmittance of a reticle used for manufacturing a semiconductor device, and a projection exposure apparatus and a projection exposure method used for the measurement.

投影露光装置、例えばステッパにおいて、初回レチクルを使用する場合は、実際にレチクルを装置に入れて、光源の水銀ランプにより露光し、透過/入射エネルギーを演算して、レチクル透過率として返す。このとき、レチクルパターン全面を等間隔で露光してサンプリングする。レチクル全体を母集団と見たときに、特性を推定する必要があるが、どのようなパターンなのか認識するのが現実的に困難であるため、往々にして偏ったサンプリングになる恐れがある。例えば、サンプリングと同じピッチで繰り返されるパターンでは、レチクル透過率として返した結果は実際の値と乖離する。投影露光装置では、透過する光量が増加すると、露光負荷が大きくなった場合の発熱に伴うレンズ膨張の影響をキャンセルするために補正機能が働くが、正しくフィードバックされない場合、フォーカスずれに至り、線幅のバラツキが増加したり、レジストプロファイルが矩形を維持できなくなったりし、所望のパターンを形成することが困難となる。配線パターンではショート・オープンが発生して、品質を損なう問題があった。   When a first reticle is used in a projection exposure apparatus, for example, a stepper, the reticle is actually put into the apparatus, exposed by a mercury lamp of a light source, transmission / incident energy is calculated, and returned as reticle transmittance. At this time, the entire surface of the reticle pattern is exposed and sampled at equal intervals. When the entire reticle is viewed as a population, it is necessary to estimate the characteristics, but since it is practically difficult to recognize what pattern it is, there is often a possibility of biased sampling. For example, in a pattern repeated at the same pitch as sampling, the result returned as reticle transmittance deviates from the actual value. In the projection exposure apparatus, when the amount of light to be transmitted increases, a correction function works to cancel the influence of lens expansion caused by heat generation when the exposure load becomes large, but if it is not properly fed back, it leads to defocus and line width Variation of the resist profile, the resist profile can not maintain a rectangular shape, and it becomes difficult to form a desired pattern. In the wiring pattern, there is a problem that the short / open occurs and the quality is impaired.

このため、サンプリング数を増やすことで、母集団であるレチクル全体を捉えようとする。しかし、等間隔に測定する場合は、偏ったサンプリングの危険性が残る。仮に正確に計測できたとしても、測定に膨大な時間が掛かり、投影露光装置の生産性を損なってしまう問題があった。   Therefore, by increasing the number of samplings, it is attempted to capture the entire reticle as a population. However, when measuring at equal intervals, the risk of biased sampling remains. Even if the measurement can be accurately performed, it takes a long time to perform the measurement, and the productivity of the projection exposure apparatus is impaired.

特開2001−297961号公報JP 2001-297961 A 特開平6−236838号公報Japanese Patent Application Laid-Open No. 6-236838

背景技術にも述べたように、サンプリングと同じピッチで繰り返されるパターンがある場合は、レチクル透過率として得られた結果は実際の値と乖離する問題が発生することがあった。例えば、パターンの特徴を考慮したレチクル透過率を求める場合、特許文献1のように、ショット毎に領域が異なる場合において、レチクル全面の全光量測定を行い、投影像に対するデータを記憶して、このデータとマスキングブレードの開閉から実際のレチクルの露光部分を算出して、レチクル透過率を求める方法がある。実際のレチクルの露光部分を算出するためには、初めにレチクル全面の全光量測定が正確に行えることが前提条件となる。マスキングブレードの開閉で実際に露光部分を算出しようとしても、サンプリングと同じピッチで繰り返されるパターンがある場合は、レチクル透過率として返した結果は実際と乖離してしまい、実際のレチクルの露光部分を算出することが困難になってしまう。   As described in the background art, in the case where there is a pattern repeated at the same pitch as sampling, the result obtained as the reticle transmittance sometimes causes a problem of divergence from the actual value. For example, in the case of obtaining the reticle transmittance in consideration of the feature of the pattern, when the area is different for each shot as in Patent Document 1, the total light quantity measurement of the entire reticle surface is performed to store data for the projected image. There is a method of obtaining the reticle transmittance by calculating the actual exposed portion of the reticle from the data and the opening and closing of the masking blade. In order to calculate the actual exposed portion of the reticle, it is a precondition that the total light amount measurement on the entire surface of the reticle can be accurately performed first. Even if an exposed portion is actually calculated by opening and closing the masking blade, if there is a pattern repeated at the same pitch as sampling, the result returned as reticle transmittance deviates from the actual, and the actual exposed portion of the reticle It will be difficult to calculate.

また、レチクル透過率を正確に測定しようとすると、サンプリング数を増やすことで、母集団であるレチクル全体を捉えようとする。また、特許文献2のように、実際にレチクルを装置に入れて、光源の水銀ランプで露光して、形成されたレチクルパターンの転写像の画像データを取り込み、これによって得られた画像データに基づいてレチクル透過率を求める方法があるが、いずれにしても、膨大なサンプリング数が増えるために測定に膨大な時間が掛かり、投影露光装置の生産性を損なってしまう問題があった。   Also, in order to accurately measure the reticle transmittance, it is attempted to capture the entire reticle as a population by increasing the sampling number. Further, as in Patent Document 2, the reticle is actually inserted into the apparatus, exposed with a mercury lamp as a light source, image data of a transferred image of the formed reticle pattern is taken in, and image data obtained by this is taken. Although there is a method of obtaining the reticle transmittance, in any case, it takes a lot of time for measurement because the huge number of sampling increases, and there is a problem that the productivity of the projection exposure apparatus is lost.

本発明はこのような問題点を鑑みてなされたものであって、その課題は、投影露光装置における露光負荷の増加に伴うレンズ膨張に起因するフォーカスずれの対策として、露光負荷補正に用いる負荷算出のためのレチクル透過率測定の新しい測定方法及び投影露光装置を提供することにある。   The present invention has been made in view of such problems, and the problem is to calculate the load used for exposure load correction as a countermeasure for defocus due to lens expansion caused by an increase in exposure load in the projection exposure apparatus. Measurement method and reticle exposure apparatus for reticle transmittance measurement.

上記課題を解決するために、本発明の半導体装置の露光方法においては、以下のような手段を用いた。   In order to solve the above problems, the following means are used in the exposure method of the semiconductor device of the present invention.

レチクルパターンの設計データを転用することによって、実際にレチクル透過率測定を行わずとも、短時間でレチクル透過率を求めるために、標準的なCADツールを用いてレチクルパターンの設計データを作成する工程と、この設計データを標準的なファイル形式のストリーム形式(GDSIIと呼ばれる)あるいは cif形式など、マスクCADで書かれたデータの通りにデータ変換を行う工程と、変換された設計データからレチクル透過率を求める工程と、求めたレチクル透過率を保存する工程と、からなることを特徴とした。また、実際のレチクルを用いてレチクル透過率を測定せずに、データから直接レチクル透過率を求めることを特徴とする半導体露光装置または露光の方法とする。   A process of creating design data of a reticle pattern using a standard CAD tool in order to obtain reticle transmittance in a short time without actually performing reticle transmittance measurement by diverting design data of a reticle pattern The process of converting this design data as a standard file format stream format (called GDSII) or data written in mask CAD such as cif format, and reticle transmittance from the converted design data And storing the obtained reticle transmittance. Further, the present invention provides a semiconductor exposure apparatus or an exposure method characterized in that reticle transmittance is directly obtained from data without measuring reticle transmittance using an actual reticle.

本発明によれば、投影露光装置における露光負荷の増加に伴うレンズ膨張に起因するフォーカスずれの対策として、いかなる特徴をもつパターンであっても、高精度かつ短時間でレチクル透過率を求める方法、すなわち、生産性を損なわずに、正確なレチクル透過率を求める方法を提供することができる。   According to the present invention, as a countermeasure for defocusing caused by lens expansion caused by an increase in exposure load in a projection exposure apparatus, a method of obtaining reticle transmittance with high accuracy and in a short time, regardless of a pattern having any features. That is, it is possible to provide a method of determining the correct reticle transmittance without losing productivity.

本発明の実施の形態に係るステッパの構成図である。It is a block diagram of the stepper which concerns on embodiment of this invention. 従来のステッパの構成図である。It is a block diagram of the conventional stepper. レチクル透過率を斜め測定する方法を説明するための説明図である。It is an explanatory view for explaining a method of obliquely measuring a reticle transmittance. レチクル透過率をランダム測定する方法を説明するための説明図である。It is explanatory drawing for demonstrating the method to measure the reticle transmittance | permeability at random. 計測スポットサイズ小に応じた傾斜測定する方法を説明するための説明図である。It is explanatory drawing for demonstrating the method to measure the inclination according to measurement spot size small. 計測スポットサイズ大に応じた傾斜測定する方法を説明するための説明図である。It is explanatory drawing for demonstrating the method to measure the inclination according to measurement spot size large. 一つのチップ領域の透過率測定方法を説明するための説明図である。It is explanatory drawing for demonstrating the transmittance | permeability measurement method of one chip | tip area | region. 四つのチップ領域の透過率測定方法を説明するための説明図である。It is explanatory drawing for demonstrating the transmittance | permeability measurement method of four chip | tip area | regions. 任意の領域だけに絞った領域を透過率測定する方法を説明する説明図である。It is explanatory drawing explaining the method to measure the transmittance | permeability of the area | region which narrowed down only to the arbitrary area | regions.

図1は本発明の実施の形態に係る投影露光装置のひとつであるステッパの構成図であり、設計データから露光負荷補正を行う機能を有している。ステッパは、照明光学系1、実際にレチクル透過率を測定するための原版であるレチクル2、レチクルパターンを例えば5分の1に縮小して所望のパターンを露光によりウェハ上に転写するための投影光学系3、レチクル透過率を測定する所定の計測スポットにウェハを移動するためのステージ4、ウェハを支持するチャック5、投影光学系を通過する光量を測定するフォトディテクタ6、測定したレチクル透過率から露光負荷補正を行ったり、設計データからレチクル透過率を算出して露光負荷補正を行ったり、照明光学系1やステージ4の駆動を制御するCPU7を有している。   FIG. 1 is a block diagram of a stepper which is one of the projection exposure apparatuses according to the embodiment of the present invention, and has a function of performing exposure load correction from design data. The stepper includes the illumination optical system 1, the reticle 2 which is an original plate for actually measuring the reticle transmittance, and a projection for reducing the reticle pattern to, for example, 1⁄5 and transferring the desired pattern by exposure. Optical system 3, stage 4 for moving the wafer to a predetermined measurement spot for measuring reticle transmittance, chuck 5 for supporting the wafer, photodetector 6 for measuring the amount of light passing through the projection optical system, and measured reticle transmittance The CPU 7 has a CPU 7 that performs exposure load correction, calculates reticle transmittance from design data to perform exposure load correction, and controls driving of the illumination optical system 1 and the stage 4.

レチクル透過率記憶装置8は、実際に測定したレチクル透過率のデータや、設計データ9から算出したレチクル透過率のデータを保存しておくための記憶装置である。設計データ9を用いる方法に関しては後述する。   The reticle transmittance storage device 8 is a storage device for storing data of reticle transmittance measured actually and data of reticle transmittance calculated from the design data 9. The method of using the design data 9 will be described later.

参考までに、従来のステッパの構成図を図2に示す。明瞭な違いは、従来のステッパにおいては、設計データとの連係が無いことであり、レチクル透過率記憶装置8は設計データから算出したレチクル透過率のデータを有効に活用していない点である。   For reference, a block diagram of a conventional stepper is shown in FIG. The clear difference is that in the conventional stepper, there is no linkage with the design data, and the reticle transmittance storage unit 8 does not effectively utilize the reticle transmittance data calculated from the design data.

上記構成を用いて、サンプリングと同じピッチで繰り返されるパターンがある場合に、レチクル透過率として返した結果が実際の値と乖離するという従来の問題を解決することが可能である。以下ではレチクル透過率を測定する方法を具体的に説明する。   Using the above configuration, it is possible to solve the conventional problem that the result returned as the reticle transmittance deviates from the actual value when there is a pattern repeated at the same pitch as sampling. The method of measuring the reticle transmittance will be specifically described below.

第一の方法は、図3に示すように、例えば、従来X,Y方向に0.2mmピッチで測定していたものを、例えば、光量計測スポット10をレチクルの対角状に斜めにとり、0.2mmピッチで測定を行うものである。ここで対角状に斜めとは、レチクルの4辺に対して斜めの直線であって、対角線とは通常一致してしない直線に沿うことを意味するものとする。この際、XおよびY方向のサンプリングがレチクルの繰り返されるパターンに対して異なる間隔を持つ様に設定する。また、計測スポット10をレチクルの対角状に斜めにとり、0.2mm、0.3mm、0.2mm、0.3mmというように異なるピッチで透過率測定を行っても良い。この場合もXおよびY方向のサンプリングがレチクルの繰り返されるパターンに対して、同じパターンに重ならずに異なるパターンに重なる様に設定する。   In the first method, as shown in FIG. 3, for example, the light intensity measurement spots 10 are taken diagonally in the diagonal direction of the reticle, for example, in the conventional measurement with 0.2 mm pitch in the X and Y directions. .2 The measurement is performed at 2 mm pitch. Here, "diagonally diagonal" means to follow along a straight line that is a straight line that is diagonal to the four sides of the reticle and that is not generally coincident with the diagonal. At this time, sampling in the X and Y directions is set to have different intervals with respect to the repeated pattern of the reticle. Alternatively, the measurement spots 10 may be diagonally placed on the reticle and the transmittance may be measured at different pitches such as 0.2 mm, 0.3 mm, 0.2 mm and 0.3 mm. Also in this case, the sampling in the X and Y directions is set so as to overlap different patterns without overlapping the same pattern for repeated patterns of the reticle.

上記のサンプリングからレチクル全体の特性であるレチクル透過率を求め、レチクル透過率記憶装置8に保管する。求めたレチクル透過率に基づいて、図1のCPU(露光負荷補正装置)7にてフォーカス、レンズディストーション、倍率において露光負荷補正を必要に応じ組み合わせて行い、図1の投影光学系3にフィードバックし、投影露光を行う。   The reticle transmittance, which is the characteristic of the entire reticle, is obtained from the above sampling and stored in the reticle transmittance storage unit 8. Based on the reticle transmittance thus determined, the CPU (exposure load correction device) 7 in FIG. 1 performs exposure load correction in the focus, lens distortion, and magnification as necessary in combination, and feeds it back to the projection optical system 3 in FIG. , Projection exposure.

第二の方法は、図4に示すように、例えば、従来X,Y方向に0.2mmピッチで順番に測定していたものを、例えば、計測スポット10のピッチを0.2〜1.0mmと幅を持たせ、X,Y方向個別に順番移動していたものを組み合わせてランダムに移動し、規則性がない測定を行い、レチクルの繰り返されるパターンに対して、同じパターンに重ならずに異なるパターンに重なる様にサンプリングの動作を設定するものである。   In the second method, as shown in FIG. 4, for example, in the conventional measurement in order of 0.2 mm pitch in the X and Y directions, for example, the pitch of the measurement spots 10 is 0.2 to 1.0 mm. And move them randomly in combination in the X and Y directions individually, and perform non-regular measurement, and do not overlap the same pattern for repeated patterns of the reticle. The sampling operation is set so as to overlap different patterns.

第三の方法は、図5に示すように、従来計測スポットが、例えば、0.3mmφで固定であったものを、0.3mmφ〜1.0mmφに可変とし、計測スポットのサイズに応じて、傾斜角度を変化させるものである。正面から見た計測スポット11のサイズが小さく、例えば0.3mmφの場合、真横から見た場合のレチクル2の表面からの傾斜角度θ1(12)は10〜30度の間の小さい傾斜をつけて、レチクル透過率を測定する。このようにして、計測スポットのサイズが小さい場合においても実効的な測定領域が大きく確保できるようにする。一方、図6に示すように正面から見た計測スポット13のサイズが大きく、例えば1.0mmφの場合、真横から見た場合のレチクル2の表面からの傾斜角度θ2(14)は70〜90度の間の大きい傾斜でレチクル透過率を測定してよい。計測スポットのサイズが大きい場合には、大きな測定領域が確保できるからである。このように計測スポットのサイズを変化させることで、同一のパターンによるサンプリングを防止することが可能である。   In the third method, as shown in FIG. 5, the measurement spot conventionally fixed at 0.3 mmφ, for example, is made variable from 0.3 mmφ to 1.0 mmφ according to the size of the measurement spot, The inclination angle is changed. When the size of the measurement spot 11 viewed from the front is small, for example, 0.3 mmφ, the inclination angle θ1 (12) from the surface of the reticle 2 when viewed from the side is small with 10 to 30 degrees Measure the reticle transmittance. In this manner, even when the size of the measurement spot is small, a large effective measurement area can be secured. On the other hand, as shown in FIG. 6, when the size of the measurement spot 13 viewed from the front is large, for example, 1.0 mmφ, the inclination angle θ2 (14) from the surface of the reticle 2 viewed from the side is 70 to 90 degrees. The reticle transmission may be measured with a large slope between. When the size of the measurement spot is large, a large measurement area can be secured. By changing the size of the measurement spot in this manner, it is possible to prevent sampling by the same pattern.

第四の方法は、図7に示すように、複数の同一チップで構成された、多面付けのレチクルにおいて、一つのチップ領域だけをサンプリングして透過率測定を行い、その結果からレチクル透過率を算出する方法である。ここでいう一つのチップ領域15とは、例えば半導体デバイスの動作領域およびその外側の、ダイシングで研削するスクライブラインの中央(中間)までの領域により囲まれた単位となる領域を指す。また、多面付けの全領域としては、これら単位領域が全て含まれるレチクル全面を指す。これらは、予めサンプリングする領域および多面付けの全領域として、装置にパラメータを入力しておく。一つのチップ領域15と多面付けの全領域との面積比から算出して、レチクル全面のレチクル透過率を求め、レチクル透過率記憶装置8に保管する。求めたレチクル透過率に基づいて、図1のCPU(露光負荷補正装置)7にてフォーカス、レンズディストーション、倍率において露光負荷補正を必要に応じ組み合わせて行い、図1の投影光学系3にフィードバックし、投影露光を行う。   In the fourth method, as shown in FIG. 7, only one chip area is sampled and transmittance measurement is performed on a polyhedral reticle composed of a plurality of identical chips, and the reticle transmittance is obtained from the result. It is a method to calculate. Here, one chip region 15 refers to, for example, a region which is a unit surrounded by an operation region of a semiconductor device and a region to the center (middle) of a scribe line to be ground by dicing outside the region. In addition, the entire area of the polyhedron refers to the entire surface of the reticle including all of these unit areas. As these, the parameters are input to the apparatus as the area to be sampled in advance and the entire area of poly-imposition. The reticle transmittance of the entire surface of the reticle is calculated from the area ratio of one chip region 15 to the entire region of polyhedralization, and is stored in the reticle transmittance storage unit 8. Based on the reticle transmittance thus determined, the CPU (exposure load correction device) 7 in FIG. 1 performs exposure load correction in the focus, lens distortion, and magnification as necessary in combination, and feeds it back to the projection optical system 3 in FIG. , Projection exposure.

第五の方法は、図8に示すように、複数の同一チップで構成された、多面付けのレチクルにおいて、四つのチップ領域16だけをサンプリングして透過率測定を行い、その結果からレチクル透過率を算出する方法である。四つのチップ領域16と多面付けの全領域の面積比から算出して、レチクル全面の透過率を求めることによって、第四の方法と同様の露光負荷補正が可能になる。   In the fifth method, as shown in FIG. 8, in a multi-faceted reticle composed of a plurality of identical chips, only four chip areas 16 are sampled to measure the transmittance, and the result shows that the reticle transmittance Is a method of calculating The exposure load correction similar to the fourth method can be performed by calculating the transmittance of the entire surface of the reticle, which is calculated from the area ratio of the four chip areas 16 and the entire area of polyhedra.

第六の方法は、図9に示すように、複数の同一チップで構成された、多面付けのレチクルにおいて、レチクル全体の1/4に絞った領域17だけをサンプリングして透過率測定を行い、その結果からレチクル透過率を算出する方法である。レチクル全体の1/4に絞った領域17と多面付けの全領域の面積比から算出して、レチクル全面のレチクル透過率を求めることによって、通常の1/4の所要時間に短縮して、第四及び第五の方法と同様の露光負荷補正が可能になる。   In the sixth method, as shown in FIG. 9, transmittance measurement is performed by sampling only a region 17 narrowed down to 1⁄4 of the entire reticle, in a multi-faceted reticle composed of a plurality of identical chips, It is a method of calculating the reticle transmittance from the result. The reticle transmittance of the entire surface of the reticle is calculated from the area ratio of the area 17 narrowed to 1/4 of the entire reticle and the entire area of polyhedra, thereby shortening the required time to 1/4 of the usual time. Exposure load correction similar to the fourth and fifth methods is possible.

第七の方法は、上記方法とは異なり、実際に透過率測定を行わずに、レチクル透過率を求める方法である。図1の設計データ9を得るために、まずレチクルの設計データを全レイヤー分についてCAD作成する。次にその設計データを標準的なファイル形式のストリーム形式(GDSIIと呼ばれる)あるいはcif形式にデータ変換する。そして、変換されたデータからレチクル透過率をレチクル上の遮光膜の占有面積から求め、LANネットワークを経由して、図1のレチクル透過率記憶装置8に、レチクル透過率としてデータ保管する。データ保管されたレチクル透過率を基にして図1のCPU(露光負荷補正装置)7にてフォーカス、レンズディストーション、倍率において露光負荷補正を必要に応じ組み合わせて行い、図1の投影光学系3にフィードバックする。こうすることで実際のレチクルにて透過率測定を行わずに短時間でレチクル透過率を求めることが可能である。こうして測定を行わずに求めたレチクル透過率を上記第1ないし第6の方法により測定して求めたレチクル透過率と比較検討することで、CADデータからレチクル透過率を求める精度を上げたり、測定におけるサンプリングの適正化を図ったりすることが可能となり、さらに精度を向上させることが可能となる。   The seventh method is a method of determining the reticle transmittance without actually performing the transmittance measurement, unlike the above method. In order to obtain the design data 9 of FIG. 1, first, design data of the reticle is created by CAD for all layers. Next, the design data is converted into a standard file format stream format (called GDSII) or cif format. Then, the reticle transmittance is obtained from the converted data from the occupied area of the light shielding film on the reticle, and data is stored as reticle transmittance in the reticle transmittance storage device 8 of FIG. 1 via the LAN network. Based on the stored reticle transmittance, the CPU (exposure load correction device) 7 of FIG. 1 performs exposure load correction as needed in focusing, lens distortion, and magnification in combination, and the projection optical system 3 of FIG. give feedback. By doing this, it is possible to obtain reticle transmittance in a short time without measuring transmittance with an actual reticle. In this way, the reticle transmittance determined without performing the measurement is compared with the reticle transmittance determined by the above first to sixth methods to increase the accuracy of obtaining the reticle transmittance from CAD data, or to measure It is possible to optimize the sampling in the above, and it is possible to further improve the accuracy.

半導体基板およびMEMSなど投影露光装置でレチクルを用いたフォトリソグラフィー技術を用いる工程を有する微細加工が必要な装置の製造に利用することが可能である。   It is possible to use for manufacture of an apparatus which needs micro processing which has a process of using a photolithographic technique using a reticle in a semiconductor substrate and a projection exposure apparatus such as MEMS.

1 照明光学系
2 レチクル(原版)
3 投影光学系
4 移動ステージ
5 チャック
6 フォトディテクタ
7 CPU(露光負荷補正装置)
8 レチクル透過率記憶装置
9 設計データ
10 光量計測スポット(光量を測定するポイント)
11 正面から見た、計測スポット(サイズ小、例えば0.3mmφの場合)
12 レチクル表面からの傾斜角度θ1
13 正面から見た、計測スポット(サイズ大、例えば1.0mmφの場合)
14 レチクル表面からの傾斜角度θ2
15 透過率測定を行う一つのチップ領域
16 透過率測定を行う四つのチップ領域
17 透過率測定を行うレチクル全体の1/4に絞った領域
1 Illumination optical system 2 Reticle (original)
Reference Signs List 3 projection optical system 4 moving stage 5 chuck 6 photodetector 7 CPU (exposure load correction device)
8 Reticle transmittance storage unit 9 Design data 10 Light quantity measurement spot (point to measure light quantity)
11 Measurement spot (small size, for example, 0.3 mmφ) as viewed from the front
12 Tilt angle θ1 from reticle surface
13 Measurement spot (in the case of large size, for example, 1.0 mmφ) viewed from the front
14 Tilt angle θ2 from reticle surface
15 One chip area 16 for measuring the transmittance Four chip areas 17 for measuring the transmittance 17 Area reduced to 1/4 of the whole reticle for measuring the transmittance

Claims (2)

レチクルの設計データを用いた投影露光方法であって、
レチクルの設計データを作成する工程と、
前記設計データをストリーム形式またはcif形式にデータ変換する工程と、
前記データ変換された設計データからレチクル透過率を求める工程と、
前記レチクル透過率を投影露光装置のレチクル透過率記憶装置に保管する工程と、
前記レチクル透過率を基に露光負荷補正を行う工程と、
からなることを特徴とする投影露光方法。
A projection exposure method using design data of a reticle
Creating reticle design data;
Converting the design data into stream format or cif format;
Determining reticle transmittance from the data converted design data;
Storing the reticle transmittance in a reticle transmittance storage device of a projection exposure apparatus;
Performing exposure load correction based on the reticle transmittance;
A projection exposure method characterized by comprising:
前記露光負荷補正はフォーカス補正、レンズディストーション補正、もしくは倍率補正のうちの少なくとも1つであることを特徴とする請求項1記載の投影露光方法。   The projection exposure method according to claim 1, wherein the exposure load correction is at least one of focus correction, lens distortion correction, and magnification correction.
JP2019013614A 2014-09-30 2019-01-29 Projection exposure method Pending JP2019091065A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202016 2014-09-30
JP2014202016 2014-09-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015053800A Division JP6474655B2 (en) 2014-09-30 2015-03-17 Reticle transmittance measuring method, projection exposure apparatus, and projection exposure method

Publications (1)

Publication Number Publication Date
JP2019091065A true JP2019091065A (en) 2019-06-13

Family

ID=55867462

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015053800A Expired - Fee Related JP6474655B2 (en) 2014-09-30 2015-03-17 Reticle transmittance measuring method, projection exposure apparatus, and projection exposure method
JP2019013614A Pending JP2019091065A (en) 2014-09-30 2019-01-29 Projection exposure method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015053800A Expired - Fee Related JP6474655B2 (en) 2014-09-30 2015-03-17 Reticle transmittance measuring method, projection exposure apparatus, and projection exposure method

Country Status (3)

Country Link
JP (2) JP6474655B2 (en)
KR (1) KR20160038776A (en)
TW (1) TWI667458B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236838A (en) * 1993-02-08 1994-08-23 Canon Inc Semiconductor exposure device
JPH0850359A (en) * 1994-08-08 1996-02-20 Canon Inc Aligner
JP2001222097A (en) * 2000-02-09 2001-08-17 Fujitsu Ltd Phase shift mask, and method of manufacturing the same
JP2002049653A (en) * 2000-08-07 2002-02-15 Fujitsu Ltd Pattern data correction method and device
JP2004259744A (en) * 2003-02-24 2004-09-16 Semiconductor Leading Edge Technologies Inc Electron beam lithography system, method of exposing hole pattern, and method of manufacturing semiconductor device
JP2006039059A (en) * 2004-07-23 2006-02-09 Toshiba Corp Method for producing photomask data and method for manufacturing photomask
US20070117409A1 (en) * 2004-02-05 2007-05-24 Yoshihiko Okamoto Aligner and Semiconductor Device Manufacturing Method Using the Aligner
JP2008098383A (en) * 2006-10-11 2008-04-24 Toshiba Corp Surface position measurement system and exposure method
JP2009004632A (en) * 2007-06-22 2009-01-08 Canon Inc Exposure apparatus and device manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03156347A (en) * 1989-11-14 1991-07-04 Seiko Epson Corp Transmittance measuring method
JP3233964B2 (en) * 1992-01-23 2001-12-04 大日本印刷株式会社 Method for inspecting transmittance of periodic pattern and quantifying unevenness
US20020080338A1 (en) * 1994-03-29 2002-06-27 Nikon Corporation Projection exposure apparatus
JPH1027743A (en) * 1996-07-11 1998-01-27 Canon Inc Projection aligner, device manufacturing method and aberration correcting optical system
JP2001297961A (en) * 2000-04-12 2001-10-26 Canon Inc Projection aligner
US7177010B2 (en) * 2004-11-03 2007-02-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4690795B2 (en) * 2005-06-28 2011-06-01 株式会社東芝 Manufacturing method of semiconductor device
JP2008102162A (en) * 2006-10-17 2008-05-01 Kawasaki Microelectronics Kk Method for managing foreign substance of reticle
JP2009218518A (en) * 2008-03-12 2009-09-24 Toshiba Corp Method of manufacturing semiconductor device, method of managing mask, and method of acquiring exposure amount correction information
US20120120379A1 (en) * 2009-12-21 2012-05-17 Phillips Alton H System and method for controlling the distortion of a reticle
JP2012047732A (en) * 2010-07-30 2012-03-08 Hoya Corp Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product
JP5869942B2 (en) * 2012-04-03 2016-02-24 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Mask design method, program and mask design system
JP6084507B2 (en) * 2012-04-16 2017-02-22 Hoya株式会社 Mask blank substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06236838A (en) * 1993-02-08 1994-08-23 Canon Inc Semiconductor exposure device
JPH0850359A (en) * 1994-08-08 1996-02-20 Canon Inc Aligner
JP2001222097A (en) * 2000-02-09 2001-08-17 Fujitsu Ltd Phase shift mask, and method of manufacturing the same
JP2002049653A (en) * 2000-08-07 2002-02-15 Fujitsu Ltd Pattern data correction method and device
JP2004259744A (en) * 2003-02-24 2004-09-16 Semiconductor Leading Edge Technologies Inc Electron beam lithography system, method of exposing hole pattern, and method of manufacturing semiconductor device
US20070117409A1 (en) * 2004-02-05 2007-05-24 Yoshihiko Okamoto Aligner and Semiconductor Device Manufacturing Method Using the Aligner
JP2006039059A (en) * 2004-07-23 2006-02-09 Toshiba Corp Method for producing photomask data and method for manufacturing photomask
JP2008098383A (en) * 2006-10-11 2008-04-24 Toshiba Corp Surface position measurement system and exposure method
JP2009004632A (en) * 2007-06-22 2009-01-08 Canon Inc Exposure apparatus and device manufacturing method

Also Published As

Publication number Publication date
JP2016072598A (en) 2016-05-09
TWI667458B (en) 2019-08-01
TW201625914A (en) 2016-07-16
KR20160038776A (en) 2016-04-07
JP6474655B2 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
US10712672B2 (en) Method of predicting patterning defects caused by overlay error
KR20120100297A (en) Flare correction method and method for fabricating euv(extreme ultra violet) mask
JP6858732B2 (en) OPC method and mask manufacturing method using the OPC method
US9904170B2 (en) Reticle transmittance measurement method, projection exposure method using the same, and projection exposure device
TWI448838B (en) Program storage medium and method for determining exposure condition and mask pattern
JP2009071103A (en) Exposing system and method of manufacturing semiconductor apparatus
KR102478399B1 (en) Exposure apparatus, exposure method, and article manufacturing method
JP2009071125A (en) Method and program determining exposure condition
JP5045445B2 (en) Mask pattern correction method, mask pattern correction program, mask pattern correction apparatus, exposure condition setting method, exposure condition setting program, exposure condition setting apparatus, semiconductor device manufacturing method, semiconductor device manufacturing program, and semiconductor device manufacturing apparatus
US20190361355A1 (en) Evaluation method, exposure method, and method for manufacturing an article
TWI723287B (en) Charged particle beam drawing device and charged particle beam drawing method
JP2019091065A (en) Projection exposure method
JP2009104024A (en) Exposure mask, focus measuring method, and pattern forming method
JP2012190945A (en) Exposure device and manufacturing method of device
JP6529812B2 (en) Exposure device
JP2018194778A (en) Exposure method
US8956791B2 (en) Exposure tolerance estimation method and method for manufacturing semiconductor device
JP2010251580A (en) Method of manufacturing semiconductor device and exposure apparatus
JP2011035333A (en) Scanning exposure device, scanning exposure method, method of manufacturing semiconductor device, and program
JP2009212276A (en) Exposure apparatus
JP6496600B2 (en) Exposure equipment
KR101450518B1 (en) Electron beam lithography and method for adjusting focus thereof
JP2013135201A (en) Exposure method and device manufacturing method
JP5742385B2 (en) Optical performance simulation method, exposure method, and recording medium
KR100922933B1 (en) A Pattern of Semiconductor and Method for Designing pattern using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200609