JP2012047732A - Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product - Google Patents

Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product Download PDF

Info

Publication number
JP2012047732A
JP2012047732A JP2011155689A JP2011155689A JP2012047732A JP 2012047732 A JP2012047732 A JP 2012047732A JP 2011155689 A JP2011155689 A JP 2011155689A JP 2011155689 A JP2011155689 A JP 2011155689A JP 2012047732 A JP2012047732 A JP 2012047732A
Authority
JP
Japan
Prior art keywords
light
transmittance
photomask
light beam
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011155689A
Other languages
Japanese (ja)
Inventor
Koichiro Yoshida
光一郎 吉田
Junichi Tanaka
淳一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2011155689A priority Critical patent/JP2012047732A/en
Publication of JP2012047732A publication Critical patent/JP2012047732A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0242Control or determination of height or angle information of sensors or receivers; Goniophotometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706849Irradiation branch, e.g. optical system details, illumination mode or polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/706843Metrology apparatus
    • G03F7/706851Detection branch, e.g. detector arrangements, polarisation control, wavelength control or dark/bright field detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmittance measuring instrument capable of accurately measuring the film transmittance of a fine pattern (e.g., a fine light-semitransmitting film pattern formed on a transparent substrate).SOLUTION: In measuring the film transmittance of a fine pattern and the like of a light-semitransmitting film formed on a transparent substrate, light of a measurement wavelength is converged on the light-semitransmitting film to be a measurement object so as to be the smallest diameter (beam waist) and transmitted, and the whole transmitted light is subsequently collected in an integrating sphere and is detected by a detector.

Description

本発明は、透過率測定装置に関し、例えば、透明基板上に形成された光学膜を加工してなる転写パターンを有するフォトマスク等の微細部分の光透過率を測定する透過率測定装置に関する。   The present invention relates to a transmittance measuring apparatus, for example, a transmittance measuring apparatus that measures the light transmittance of a fine portion such as a photomask having a transfer pattern formed by processing an optical film formed on a transparent substrate.

従来、液晶装置等の電子デバイスの製造においては、フォトリソグラフィ工程が利用される。すなわち、エッチングされる被加工層(以下、被転写体ともいう)上に形成されたレジスト膜に対して、所定の転写パターンを有するフォトマスクを用いて所定の露光条件下で露光を行い、該転写パターンを転写し、該レジスト膜を現像することによりレジストパターンを形成する。そして、このレジストパターンをマスクとして被転写体をエッチングするという工程が行われている。   Conventionally, a photolithography process is used in manufacturing an electronic device such as a liquid crystal device. That is, a resist film formed on a layer to be etched (hereinafter also referred to as a transfer target) is exposed under predetermined exposure conditions using a photomask having a predetermined transfer pattern, The transfer pattern is transferred, and the resist film is developed to form a resist pattern. And the process of etching a to-be-transferred body is performed using this resist pattern as a mask.

近年、液晶表示装置等の電子デバイスの製造において低コスト化が要求されており、製造工程におけるマスク数の削減が求められている。具体的には、遮光部と透光部と半透光部を有する多階調フォトマスク(以下、フォトマスクともいう)を用いることにより、使用するマスク枚数を低減する方法が提案されている。すなわち、遮光部と透光部のほかに半透光部を有することにより、3階調を有するフォトマスクを用いて、被転写体上に形成されたレジスト膜に露光、現像することにより、部分的に露光量を異ならせ、部分によって残膜量の異なるレジストパターンを形成することができる。この場合、従来2枚のマスクを使用していた工程が1枚のマスクで可能となるため、マスク使用枚数が削減でき、生産効率が高くなる。更に、4階調以上の多階調フォトマスクを作製するために、光透過率の異なる2種類以上の半透光膜で形成された半透光部を有するマスクも提案されている(例えば、特許文献1)。このような4階調を有するフォトマスクを用いれば、従来3枚のマスクを使用してきた工程を1枚のマスクで行うことも可能となる。ここで、半透光部とは、マスクを使用してパターンを被転写体に転写する際、透過する露光光の透過量を所定量低減させ、被転写体上のフォトレジスト膜の現像後の残膜量を制御する部分をいい、そのような半透光部を、遮光部、透光部とともに備えているフォトマスクを多階調フォトマスクという。   In recent years, there has been a demand for cost reduction in the manufacture of electronic devices such as liquid crystal display devices, and a reduction in the number of masks in the manufacturing process is required. Specifically, a method of reducing the number of masks to be used by using a multi-tone photomask (hereinafter also referred to as a photomask) having a light-shielding portion, a light-transmitting portion, and a semi-light-transmitting portion has been proposed. That is, by having a semi-transparent part in addition to the light-shielding part and the translucent part, the resist film formed on the transferred body is exposed and developed using a photomask having three gradations, thereby producing a partial Thus, it is possible to form resist patterns having different amounts of residual film and different amounts of residual film depending on the portions. In this case, since the process that conventionally used two masks can be performed with one mask, the number of masks used can be reduced and the production efficiency is increased. Further, in order to fabricate a multi-tone photomask having four or more gradations, a mask having a semi-transparent portion formed of two or more types of semi-transparent films having different light transmittances has been proposed (for example, Patent Document 1). If such a photomask having four gradations is used, a process that has conventionally used three masks can be performed with one mask. Here, the semi-transparent portion means that when a pattern is transferred to a transfer object using a mask, the amount of exposure light transmitted therethrough is reduced by a predetermined amount, and the photoresist film on the transfer object after development is developed. A portion that controls the amount of remaining film is referred to, and a photomask including such a semi-transparent portion together with a light-shielding portion and a translucent portion is called a multi-tone photomask.

特開2009−258250号公報JP 2009-258250 A

液晶表示装置製造用のフォトマスクとしては、例えば、TFT(薄膜トランジスタ)におけるソース、ドレインに対応する部分を遮光部として形成し、該ソース、ドレインの間に隣接して位置するチャネル部に相当する部分を半透光部として形成した多階調フォトマスクを使用することができる。近年、TFTチャネル部等のパターンの微細化に伴い、多階調フォトマスクにおいてもますます微細なパターンが必要とされてきており、TFTチャネル部のパターンにおけるチャネル幅に相当する部分、すなわち遮光膜間の半透光部の幅も微細化傾向にある。これは、液晶の明るさ向上や反応速度の向上には有効であるが、そのような微細な半透光部をもつフォトマスクの製造は、容易でない。例えば、上記半透光部の線幅が7μm以下、更には、5μm以下であるような転写パターンも、精緻に転写できなければならない。この微細化傾向は更に進み、3μm以下の線幅が求められることも想定できる。   As a photomask for manufacturing a liquid crystal display device, for example, a portion corresponding to a source and a drain in a TFT (thin film transistor) is formed as a light shielding portion, and a portion corresponding to a channel portion located adjacent to the source and drain Can be used as a semi-transparent portion. In recent years, with the miniaturization of the pattern of the TFT channel portion and the like, a finer pattern is required also in the multi-tone photomask, and the portion corresponding to the channel width in the pattern of the TFT channel portion, that is, the light shielding film The width of the semi-translucent portion in between also tends to be miniaturized. This is effective for improving the brightness of the liquid crystal and the reaction speed, but it is not easy to manufacture a photomask having such a fine semi-translucent portion. For example, a transfer pattern in which the line width of the semi-translucent portion is 7 μm or less, and further 5 μm or less must be able to be transferred precisely. This trend toward miniaturization is further advanced, and it can be assumed that a line width of 3 μm or less is required.

また、多階調フォトマスクにおける半透光部の役割は、マスクの透過光量を制御して、所望の露光量を被転写体に与えるものであるため、前記半透光部の微細化と同時に、半透光部の光透過率を正確に測定して評価する必要がある。すなわち、半透光部に形成された膜の膜透過率(単層か積層かという膜構造によらず、結果としてのその膜の光透過率を膜透過率という)を把握する必要が生じる。一般的に、透明基板上に形成された半透光部の膜透過率の測定方法としては、(1)分光光度計を用いて実測する方法、(2)可視光を光源とする顕微鏡で2次元画像を取得し、画像内の所望の点の画像濃度に基づいて画像濃度と膜の特性(透過率の波長依存性)に応じた換算式(あらかじめ求めておく)から所望の波長における透過率を予測する方法を用いることができると考えられる。   The role of the semi-transparent portion in the multi-tone photomask is to control the amount of light transmitted through the mask to give a desired exposure amount to the transfer target. It is necessary to accurately measure and evaluate the light transmittance of the semi-translucent portion. That is, it is necessary to grasp the film transmittance of the film formed in the semi-translucent portion (regardless of the film structure of single layer or stacked layer, the resulting light transmittance of the film is referred to as the film transmittance). In general, as a method for measuring the film transmittance of a semi-transparent portion formed on a transparent substrate, (1) a method of actually measuring using a spectrophotometer, (2) a microscope using visible light as a light source, 2 Obtain a two-dimensional image, and based on the image density at the desired point in the image, the transmittance at the desired wavelength from the conversion formula (preliminarily determined) according to the image density and the film characteristics (wavelength dependence of the transmittance) It is considered that a method for predicting can be used.

上記方法(1)は、実測定を行う点では信頼性は高いとも言える一方で、装置の制約により、測定対象物におけるスポット径が大きいため、微細な部分の測定に適さない。例えば、分光光度計によって透過率が測定可能な限界線幅は、装置の仕様により1〜5mm程度である。従って、測定しようとする部分の線幅が5mm未満になると、その周囲の透過率の影響を受け、測定値の信頼性が下がる。測定しようとする部分の線幅が1mm未満になると、ほぼ測定不可能な状態となる。このため、線幅がμmオーダーの測定領域(例えば、微細な半透光部)について、信頼性のある透過率を測定することができないという問題がある。   The method (1) can be said to have high reliability in terms of actual measurement, but is not suitable for measurement of a minute portion because the spot diameter on the measurement object is large due to the limitations of the apparatus. For example, the limit line width at which the transmittance can be measured with a spectrophotometer is about 1 to 5 mm depending on the specifications of the apparatus. Therefore, when the line width of the portion to be measured is less than 5 mm, the reliability of the measurement value is lowered due to the influence of the surrounding transmittance. When the line width of the portion to be measured is less than 1 mm, it becomes almost impossible to measure. For this reason, there is a problem that a reliable transmittance cannot be measured for a measurement region having a line width of the order of μm (for example, a fine semi-translucent portion).

上記方法(2)は、小さな測定領域の透過率測定は可能であるが、可視光で測定した後に所望の波長に換算する必要があり、半透光部に形成された膜の分光特性の事前把握が煩雑である上、膜特性によっては誤差が生じるなど、信頼性のある正確な透過率を測定することは困難であるという問題がある。   Although the above method (2) can measure the transmittance of a small measurement region, it needs to be converted to a desired wavelength after measurement with visible light, and the spectral characteristics of the film formed on the semi-translucent portion are preliminarily determined. There is a problem that it is difficult to measure a reliable and accurate transmittance such that the grasping is complicated and an error occurs depending on the film characteristics.

本発明はかかる点に鑑みてなされたものであり、微細パターン(例えば、透明基板上に形成された半透光膜をパターニングして得られた半透光部)の膜透過率を正確に測定可能な透過率測定装置を提供することを目的の一とする。   The present invention has been made in view of such points, and accurately measures the film transmittance of a fine pattern (for example, a semi-transparent portion obtained by patterning a semi-transparent film formed on a transparent substrate). Another object is to provide a possible transmittance measuring device.

本発明の透過率測定装置は、試験光束を射出する光源装置と、前記試験光束を集光して被検体に導く集光光学系と、前記被検体を透過した透過光束を受光し、光量を検出する光検出装置と、前記光検出装置によって検出された光量に基づき、前記被検体の光透過率を求める演算装置と、を有し、前記集光された試験光束が、ビームウエスト近傍において前記被検体の被検査位置に入射するように、前記光源装置、前記集光光学系及び前記被検体の相対位置が調節されていること特徴とする。   The transmittance measuring apparatus according to the present invention includes a light source device that emits a test light beam, a condensing optical system that collects the test light beam and guides the test light beam to a subject, receives the transmitted light beam that has passed through the subject, A light detection device for detecting, and a calculation device for determining the light transmittance of the subject based on the amount of light detected by the light detection device, wherein the collected test light beam is in the vicinity of a beam waist. The relative positions of the light source device, the condensing optical system, and the subject are adjusted so that the light enters the subject to be examined.

本発明の透過率測定装置において、前記光源装置がレーザー光源を備え、前記集光光学系に備えられた集光レンズの有効径を1としたときに、平行光として前記集光レンズに入射される前記試験光束の径が、0.4以上0.6以下であることが好ましい。   In the transmittance measuring apparatus of the present invention, the light source device includes a laser light source, and when the effective diameter of the condensing lens provided in the condensing optical system is 1, the light is incident on the condensing lens as parallel light. The diameter of the test light beam is preferably 0.4 or more and 0.6 or less.

本発明の透過率測定装置において、前記光検出装置は、内部にフォトディテクタを備えた積分球を有することが好ましい。   In the transmittance measuring device according to the present invention, it is preferable that the photodetecting device has an integrating sphere provided with a photodetector inside.

本発明の透過率測定装置において、前記積分球は、前記透過光束が入光する入射ポートを有し、かつ、前記入射ポートのポート径が、前記透過光束が入光する位置における前記透過光束の径より大きくなるように、前記積分球が配置されることが好ましい。   In the transmittance measuring apparatus according to the present invention, the integrating sphere has an incident port through which the transmitted light beam is incident, and a port diameter of the incident port of the transmitted light beam at a position where the transmitted light beam is incident. The integrating sphere is preferably arranged so as to be larger than the diameter.

本発明の透過率測定装置において、前記集光光学系は、第1のコリメータレンズと集光レンズを有することが好ましい。   In the transmittance measuring apparatus of the present invention, it is preferable that the condensing optical system includes a first collimator lens and a condensing lens.

本発明の透過率測定装置において、前記被検体の主平面に平行な面内において、前記光源装置、前記集光光学系及び前記被検体の相対位置を調整するために、前記光源装置と前記集光光学系を移動させ、又は、前記被検体を移動させるための移動装置を備えることが好ましい。   In the transmittance measuring apparatus of the present invention, the light source device and the light collecting device are arranged to adjust the relative positions of the light source device, the condensing optical system, and the subject in a plane parallel to the main plane of the subject. It is preferable to provide a moving device for moving the optical optical system or moving the subject.

本発明の透過率測定装置において、前記被検体と前記光検出装置の間に、前記透過光束の径を調整する第2のコリメータレンズを有することが好ましい。   In the transmittance measuring apparatus of the present invention, it is preferable that a second collimator lens for adjusting a diameter of the transmitted light beam is provided between the subject and the light detection device.

本発明の透過率測定装置において、前記集光光学系は、前記試験光束の光軸と垂直な面における光強度分布が、中央部において、周辺部より大きいものとする光分布調整手段を有することが好ましい。   In the transmittance measuring apparatus according to the present invention, the condensing optical system includes a light distribution adjusting unit that makes the light intensity distribution in a plane perpendicular to the optical axis of the test light beam larger in the central portion than in the peripheral portion. Is preferred.

本発明のフォトマスクの透過率検査装置は、透明基板上に形成した光学膜がパターニングされることにより形成された転写パターンを有するフォトマスクの、前記転写パターンの特定の被検査位置における透過率を測定する透過率検査装置であって、試験光束を射出する光源装置と、前記試験光束を集光してフォトマスクに導く集光光学系と、前記フォトマスクを透過した透過光束を受光し、光量を検出する光検出装置と、前記光検出装置によって検出された光量に基づき、前記フォトマスクの前記被検査位置における光透過率を求める演算装置とを有し、前記集光された試験光束が、ビームウエスト近傍において前記フォトマスクの被検査位置に入射するように、前記光源装置、前記集光光学系及び前記フォトマスクの相対位置が調節されていること特徴とする。   According to the photomask transmittance inspection apparatus of the present invention, the transmittance of a photomask having a transfer pattern formed by patterning an optical film formed on a transparent substrate is measured at a specific inspection position of the transfer pattern. A transmittance inspection device for measuring, a light source device for emitting a test light beam, a condensing optical system for condensing the test light beam and guiding it to a photomask, and receiving a transmitted light beam transmitted through the photomask, And a calculation device that obtains the light transmittance at the inspection position of the photomask based on the amount of light detected by the light detection device, and the collected test light beam is The relative positions of the light source device, the condensing optical system, and the photomask are adjusted so that they are incident on the inspection position of the photomask near the beam waist. And said that you are.

本発明のフォトマスクの透過率検査装置において、前記光源装置がレーザー光源を備え、前記集光光学系に備えられた集光レンズの有効径を1としたときに、平行光として前記集光レンズに入射される前記試験光束の径が、0.4以上0.6以下であることが好ましい。   In the photomask transmittance inspection apparatus according to the present invention, when the light source device includes a laser light source and the effective diameter of the condensing lens provided in the condensing optical system is 1, the condensing lens is converted into parallel light. It is preferable that the diameter of the test light beam incident on is 0.4 or more and 0.6 or less.

本発明の透過率検査方法は、透明基板上に形成した光学膜がパターニングされることにより形成された転写パターンを有するフォトマスクの、前記転写パターンの特定の被検査位置における透過率を測定する透過率検査方法であって、光源装置から射出する試験光束を前記フォトマスクの被検査位置に集光し、前記試験光束のビームウエスト近傍において前記フォトマスクを透過させ、透過後に拡散する透過光束を、光検出装置に入光させ、前記光検出装置が検出した光量Lに基づき、前記被検査位置における光透過率Tを求めることを特徴とする。   The transmittance inspection method of the present invention is a transmission for measuring the transmittance of a photomask having a transfer pattern formed by patterning an optical film formed on a transparent substrate at a specific inspection position of the transfer pattern. The test light beam emitted from the light source device is collected at the inspection position of the photomask, transmitted through the photomask in the vicinity of the beam waist of the test light beam, and the transmitted light beam diffused after the transmission, The light is incident on the light detection device, and the light transmittance T at the inspection position is obtained based on the light amount L detected by the light detection device.

本発明の透過率検査方法において、前記光検出装置は、内部にフォトディテクタを備えた積分球を有し、前記透過光束は、前記積分球内で、繰り返し拡散反射することにより強度が均一化した状態で、前記フォトディテクタによって光量検出されることが好ましい。   In the transmittance inspection method of the present invention, the light detection device has an integrating sphere provided with a photodetector inside, and the transmitted light beam is in a state where the intensity is uniformed by repeated diffuse reflection within the integrating sphere. Therefore, it is preferable that the light amount is detected by the photodetector.

本発明の透過率検査方法において、前記転写パターンは、露光光を透過する透光部と、露光光の一部を遮光する半透光部を有することが好ましい。   In the transmittance inspection method of the present invention, it is preferable that the transfer pattern has a translucent part that transmits exposure light and a semi-transparent part that blocks part of the exposure light.

本発明の透過率検査方法において、前記転写パターンは、露光光を実質的に遮光する遮光部を更に有することが好ましい。   In the transmittance inspection method of the present invention, it is preferable that the transfer pattern further includes a light shielding portion that substantially shields exposure light.

本発明の透過率検査方法において、前記フォトマスクは、被転写体上に形成されたレジスト膜に、異なる複数のレジスト残膜値を有するレジストパターンを形成するための、多階調フォトマスクであることが好ましい。   In the transmittance inspection method of the present invention, the photomask is a multi-tone photomask for forming a resist pattern having a plurality of different resist residual film values on a resist film formed on a transfer target. It is preferable.

本発明の透過率検査方法において、光学膜が形成されていない透明基板上の任意の部分、または前記フォトマスクの光学膜が形成されていない部分を、参照位置として、前記光源から射出する試験光束を、前記参照位置に集光し、前記試験光束のビームウエスト近傍において透明基板又は前記フォトマスクの前記参照位置を透過させ、透過後に拡散する透過光束を、光検出装置に入光させ、前記光検出装置が検出した光量L0と、前記光量Lとを用いて、前記フォトマスクの被検査位置における光透過率Tを求めることが好ましい。   In the transmittance inspection method of the present invention, a test light beam emitted from the light source with any part on a transparent substrate on which an optical film is not formed or a part on which the optical film of the photomask is not formed as a reference position In the vicinity of the beam waist of the test light beam, pass through the reference position of the transparent substrate or the photomask, and transmit the transmitted light beam diffused after transmission to the light detection device, It is preferable to obtain the light transmittance T at the inspection position of the photomask using the light quantity L0 detected by the detection device and the light quantity L.

本発明のフォトマスク製造方法は、透明基板上に、光学膜が形成されたフォトマスクブランクを用意し、前記光学膜にパターニングを施すことにより、転写パターンを形成し、前記転写パターンの検査を行うことを含むフォトマスクの製造方法において、前記検査において上記の透過率検査方法を用いることを特徴とする。   The photomask manufacturing method of the present invention prepares a photomask blank having an optical film formed on a transparent substrate, forms a transfer pattern by patterning the optical film, and inspects the transfer pattern. In the photomask manufacturing method, the transmittance inspection method described above is used in the inspection.

本発明のパターン転写方法は、上記フォトマスクの製造方法により製造したフォトマスクと、露光装置を用い、前記フォトマスクの転写パターンを、被転写体上に転写することを特徴とする。   The pattern transfer method of the present invention is characterized in that a transfer pattern of the photomask is transferred onto a transfer object using a photomask manufactured by the above-described photomask manufacturing method and an exposure apparatus.

本発明のフォトマスク製品は、上記透過率検査方法によって得られた、前記フォトマスクの所望の被検査位置の光透過率Tを、前記フォトマスクと対応付けた状態で有することを特徴とする。   The photomask product of the present invention has the light transmittance T at the desired inspection position of the photomask obtained by the transmittance inspection method in a state associated with the photomask.

本発明によれば、微細パターンなど、幅の小さな領域に対してでも、測定波長に対する光透過率を精緻に求めることができる。   According to the present invention, the light transmittance with respect to the measurement wavelength can be precisely determined even for a narrow region such as a fine pattern.

本発明の実施の形態に係る透過率測定装置の一例を示す図である。It is a figure which shows an example of the transmittance | permeability measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る透過率測定装置の一例を示す図である。It is a figure which shows an example of the transmittance | permeability measuring apparatus which concerns on embodiment of this invention. 集光レンズに均一な強度分布の平行光を入光させる場合の被検体上のスポット光を説明する図である。It is a figure explaining the spot light on a subject in case parallel light of uniform intensity distribution is incident on a condensing lens. 集光レンズにガウス分布の光を入光させる場合を説明する図である。It is a figure explaining the case where the light of a Gaussian distribution is entered into a condensing lens. 集光レンズにガウス分布の光を入光させる場合を説明する図である。It is a figure explaining the case where the light of a Gaussian distribution is entered into a condensing lens. 測定対象物を透過した透過光を直接フォトディテクタに入光させる透過率測定装置を示す図である。It is a figure which shows the transmittance | permeability measuring apparatus which directly enters into the photodetector the transmitted light which permeate | transmitted the measuring object. 光分布調整手段の一例を示す図である。It is a figure which shows an example of a light distribution adjustment means. 本発明の透過率測定装置、またはフォトマスクの透過率検査装置の一例を示す図である。It is a figure which shows an example of the transmittance | permeability measuring apparatus of this invention, or the transmittance inspection apparatus of a photomask. 本発明の透過率測定装置、またはフォトマスクの透過率検査装置の一例を示す図である。It is a figure which shows an example of the transmittance | permeability measuring apparatus of this invention, or the transmittance inspection apparatus of a photomask. 本発明の透過率測定装置に適用する多階調フォトマスクの一例を示す図である。It is a figure which shows an example of the multi-tone photomask applied to the transmittance measuring apparatus of the present invention. 図10に示した多階調フォトマスクによる転写工程の一例を示す図である。It is a figure which shows an example of the transfer process by the multi-tone photomask shown in FIG. 多階調フォトマスクの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of a multi-tone photomask.

本発明者は、試験光束を射出する光源装置と、前記試験光束を集光して被検体に導く集光光学系と、前記被検体を透過した透過光束を受光し、光量を検出する光検出装置と、前記光検出装置によって検出された光量に基づき、前記被検体の光透過率を求める演算装置とを有する、透過率測定装置であって、前記集光された試験光束が、ビームウエスト近傍において前記被検体の被検査位置に入射するように、前記光学系及び前記被検体の相対位置が調節されていること特徴とする、透過率測定装置を用いることにより、測定波長における被検体の膜透過率そのものを正確に測定できるとの知見を得た。以下に、本発明の透過率測定装置の構成例について図面を参照して説明する。   The inventor has a light source device that emits a test light beam, a condensing optical system that condenses the test light beam and guides it to a subject, and a light detection that detects a light amount by receiving a transmitted light beam that has passed through the subject. A transmittance measuring device comprising: a device; and a computing device for obtaining the light transmittance of the subject based on the amount of light detected by the light detecting device, wherein the collected test light beam is in the vicinity of a beam waist In this case, the relative position of the optical system and the subject is adjusted so as to be incident on the examination position of the subject. The knowledge that the transmittance itself can be measured accurately was obtained. Below, the structural example of the transmittance | permeability measuring apparatus of this invention is demonstrated with reference to drawings.

図1に示す透過率測定装置は、少なくとも光源101と、光源101から射出した光束を被検体に導く集光光学系(ここでは、光源101からの射出光を平行光束111とするコリメータレンズ102と、コリメータレンズ102からの平行光束111を被検体120に集光する集光レンズ103を備えている)と、試験光束が被検体120を透過後に拡散する透過光束112となり、該透過光束112を入光させて検出する光検出装置を備えている。光検出装置は、透過光束112を、入射ポート104から入光させて拡散反射により空間的に積分した後にフォトディテクタ106に導く積分球105を有している。また、被検体120を透過した透過光束112は被検体120の後方において拡散するが、入射ポート104の位置において透過光束112の径より入射ポート104の径が大きくなるように積分球105を配置することにより、透過光束112を全て積分球105に取り込める構成とする。以下に、透過率測定装置の構成要素について具体的に説明する。   The transmittance measuring apparatus shown in FIG. 1 includes at least a light source 101 and a condensing optical system that guides a light beam emitted from the light source 101 to a subject (here, a collimator lens 102 that converts the emitted light from the light source 101 into a parallel light beam 111) And a collimating lens 103 for condensing the collimated light beam 111 from the collimator lens 102 onto the subject 120), the transmitted light beam 112 diffuses after the test light beam passes through the subject 120. A light detection device for detecting light is provided. The photodetector includes an integrating sphere 105 that guides the transmitted light beam 112 from the incident port 104 and spatially integrates it by diffuse reflection, and then guides it to the photodetector 106. The transmitted light beam 112 transmitted through the subject 120 is diffused behind the subject 120, but the integrating sphere 105 is arranged so that the diameter of the incident port 104 is larger than the diameter of the transmitted light beam 112 at the position of the incident port 104. In this way, the transmitted light beam 112 can be all taken into the integrating sphere 105. Hereinafter, the components of the transmittance measuring device will be specifically described.

<光源装置>
光源装置は少なくとも光源101を備える。光源101は、被検体120に対して所定の光を射出するものであればよい。被検体120が半透光部を含む転写パターンを有するフォトマスクである場合には、該フォトマスクを使用する際に用いる露光機の光源に含まれる波長をもつ光とすることができる。例えば、i線、g線、h線を含む波長域の光、またはその中の代表波長を射出可能な水銀ランプ、ハロゲンランプ、キセノンランプ、LED光源等を用いることができる。また、光源101として特定の単一波長の光を射出するレーザーを用いてもよい。
<Light source device>
The light source device includes at least a light source 101. The light source 101 only needs to emit predetermined light to the subject 120. In the case where the subject 120 is a photomask having a transfer pattern including a semi-translucent portion, light having a wavelength included in a light source of an exposure machine used when the photomask is used can be used. For example, a mercury lamp, a halogen lamp, a xenon lamp, an LED light source, or the like that can emit light in a wavelength range including i-line, g-line, and h-line, or a representative wavelength therein can be used. Further, a laser that emits light of a specific single wavelength may be used as the light source 101.

尚、レーザー光は、ビーム(光束)中における光強度が、略ガウス分布をもつことができる。つまり、光軸に垂直な平面上で、ビーム中央(光軸近傍)の光強度が相対的に大きく光軸から離れるに従い(周辺部にいくに従い)減少する。一方で、複数波長を含む上述のランプやLEDにおいては、上記レーザー光のような強度分布は有さず、光束中の光強度はほぼ均一である。この場合、レーザー光に類似の光強度分布をもたせるために、光束の光分布を調整する目的のフィルタを備えたものであってもよい。この点については後述する。   The laser light can have a substantially Gaussian distribution of light intensity in the beam (light beam). In other words, on the plane perpendicular to the optical axis, the light intensity at the center of the beam (near the optical axis) is relatively large and decreases as it moves away from the optical axis (goes to the periphery). On the other hand, the above-mentioned lamp and LED including a plurality of wavelengths do not have an intensity distribution like the laser light, and the light intensity in the light beam is almost uniform. In this case, in order to have a light intensity distribution similar to laser light, a filter for the purpose of adjusting the light distribution of the light beam may be provided. This point will be described later.

光源装置に用いる光源101として、水銀ランプ、ハロゲンランプ、キセノンランプ等を用いる場合には、光源101からは複数の波長が混ざっている光が射出されるため、所望の波長の光を選択的に透過する波長選択フィルタ121を設けることができる。一方で、レーザーやLEDのように、光源101が特定の波長の光を射出する場合には、波長選択フィルタ121は設けない構成としてもよい。又は、単一波長のLEDやレーザー光源を複数搭載した光源装置を適用することも有用である。このように互いに異なる単一波長の複数の光源を切り替えて使うことで、異なる波長ごとの透過率を測定することができる。また、これらのLEDやレーザー光源から射出された単一波長の光は、光学系による集光がし易く、光束の径を小さく絞ることができるので好適である。   In the case where a mercury lamp, a halogen lamp, a xenon lamp, or the like is used as the light source 101 used in the light source device, light having a plurality of wavelengths is emitted from the light source 101. Therefore, light having a desired wavelength is selectively selected. A transmissive wavelength selective filter 121 can be provided. On the other hand, when the light source 101 emits light of a specific wavelength, such as a laser or LED, the wavelength selection filter 121 may not be provided. Alternatively, it is also useful to apply a light source device equipped with a plurality of single wavelength LEDs or laser light sources. In this way, by switching and using a plurality of light sources having different single wavelengths, it is possible to measure the transmittance for each different wavelength. In addition, light of a single wavelength emitted from these LEDs and laser light sources is suitable because it can be easily condensed by the optical system and the diameter of the light beam can be reduced.

これらの、指向性の高い光源を使用する際には、射出された光束の径(ビーム径)を、ビームエキスパンダ(図示せず)などの光学素子を使用して、所定の倍率に拡大しコリメータレンズ102に導入することが好適である。また、光源101としてレーザー光源を使用する際には、発振を単一モードとすることが好適であり、ビーム径の形状は円または楕円であることが好適である。   When using these highly directional light sources, the diameter of the emitted light beam (beam diameter) is enlarged to a predetermined magnification using an optical element such as a beam expander (not shown). It is preferable to introduce into the collimator lens 102. Further, when a laser light source is used as the light source 101, it is preferable that the oscillation is in a single mode, and the shape of the beam diameter is preferably a circle or an ellipse.

<集光光学系>
本態様では、集光光学系は、コリメータレンズ102と集光レンズ103を備える。コリメータレンズ102は、光源101から射出した光を平行光束111として、集光レンズ103に導く機能を有している。これにより、光源101から射出した光を効率的に集光レンズ103に導くことができる。
<Condensing optical system>
In this aspect, the condensing optical system includes a collimator lens 102 and a condensing lens 103. The collimator lens 102 has a function of guiding the light emitted from the light source 101 to the condenser lens 103 as a parallel light beam 111. Thereby, the light emitted from the light source 101 can be efficiently guided to the condenser lens 103.

コリメータレンズ102は、光源101の射出光(試験光束)が平行光となるように調整することが望ましい。但し、コリメータレンズ102(以下、第1コリメータレンズともいう)は、光源101の射出光(試験光束)を完全に平行光にすることを必須としない。コリメータレンズ102は、光源101から射出される光(試験光束)を適切な光束径に調整し、これが後述する集光光学系(集光レンズ103)の径内(有効径内)に入射できるようにするのが望ましい。   The collimator lens 102 is desirably adjusted so that the light emitted from the light source 101 (test light beam) becomes parallel light. However, the collimator lens 102 (hereinafter also referred to as the first collimator lens) does not necessarily require the light emitted from the light source 101 (test light beam) to be completely parallel light. The collimator lens 102 adjusts the light (test light beam) emitted from the light source 101 to an appropriate light beam diameter so that it can be incident on the diameter (effective diameter) of a condensing optical system (condensing lens 103) described later. It is desirable to make it.

集光レンズ103は、光を集光させる機能を有しており、試験光束が被検体120の被検査位置に集光されるようにする。すなわち、試験光束の径が最も小さな部分(ビームウエスト)近傍において、被検体120の被検査位置に入射するように配置する。例えば、被検体120がフォトマスクであり、被検査位置が、転写パターン中の半透光部であるとき、該半透光部に焦点を合わせる。このようにすると、試験光束の径が最も小さな部分で被検査位置の測定ができるので、微細なパターンの測定に有利である。尚、分光光度計を用いて、微細な領域の透過率を実測する従来の方法では、所望の被測定位置の周辺部分(例えば、遮光部や透光部)の光透過率が、測定スポット中に位置してしまうため、測定精度が低下するという問題があるが、本実施の形態で示す透過率測定装置は、試験光束を被検査領域(例えば、半透光部)だけに導き、透過させることが可能となるため、半透光膜そのものの膜透過率を正確に測定することができる。   The condensing lens 103 has a function of condensing light so that the test light beam is condensed at the inspection position of the subject 120. That is, the test light beam is arranged so as to be incident on the inspection position of the subject 120 in the vicinity of the portion (beam waist) where the diameter of the test light beam is the smallest. For example, when the subject 120 is a photomask and the inspection position is a semi-transparent portion in the transfer pattern, the semi-transparent portion is focused. In this way, since the position to be inspected can be measured at the portion where the diameter of the test light beam is the smallest, it is advantageous for measuring a fine pattern. Note that in the conventional method of actually measuring the transmittance of a minute region using a spectrophotometer, the light transmittance of a peripheral portion (for example, a light-shielding portion or a light-transmitting portion) around a desired measurement position is measured in a measurement spot. However, the transmittance measuring device shown in the present embodiment guides the test light beam only to the region to be inspected (for example, the semi-translucent portion) and transmits it. Therefore, it is possible to accurately measure the film transmittance of the semi-transparent film itself.

ここで、ビームウエスト近傍とは、集光レンズ103によって集光された光束の最も径の小さい部分をビームウエストとしたとき、その径に対して、1.1倍を超えない径の領域をいう。また、光束の径とは、光軸と垂直方向の面で光束を切断したときの切断面において、中心部の光強度(すなわち最大光強度)を100%としたときに、光強度が13.5%(中心部の最大光強度の1/e)以上の領域の円の直径、又は楕円の長径とすることができる。 Here, the vicinity of the beam waist refers to a region having a diameter not exceeding 1.1 times the diameter when the portion having the smallest diameter of the light beam collected by the condenser lens 103 is defined as the beam waist. . Further, the diameter of the light beam means that the light intensity is 13.2 when the light intensity at the center (that is, the maximum light intensity) is 100% on the cut surface when the light beam is cut in a plane perpendicular to the optical axis. The diameter of a circle in an area of 5% or more (1 / e 2 of the maximum light intensity at the center) or the major axis of an ellipse can be used.

上記の関係を満たすためには、集光レンズ103と被検体120の光軸方向の相対位置の調整が重要であるが、上記のように被検体120を固定した状態で集光レンズ103を移動させてもよく、逆に、集光レンズ103に対して被検体120を移動させてもよい。もしくは、両者を移動させてもよい。   In order to satisfy the above relationship, it is important to adjust the relative positions of the condensing lens 103 and the subject 120 in the optical axis direction, but the condensing lens 103 is moved while the subject 120 is fixed as described above. Conversely, the subject 120 may be moved relative to the condenser lens 103. Or you may move both.

集光レンズ103の開口数(NA)は、集光スポット形状と被検体120への入射角度依存性の観点から、0.25〜0.65(NA=0.25〜0.65)とすることが好ましい。NAが小さすぎると、被検査位置において、集光スポット形状を十分に小さくすることができなくなる。一方で被検体120への入射角度が大きくなりすぎると、被検体120に対して斜め(被検体表面に対して垂直以外の方向)に入射する光線の比率が増加し、透過率測定の信頼性が低下するため、NAの上限を0.65とすることが好ましい。   The numerical aperture (NA) of the condensing lens 103 is set to 0.25 to 0.65 (NA = 0.25 to 0.65) from the viewpoint of the shape of the condensing spot and the incident angle dependency on the subject 120. It is preferable. If the NA is too small, the focused spot shape cannot be made sufficiently small at the inspection position. On the other hand, if the incident angle on the subject 120 becomes too large, the ratio of light rays that are incident on the subject 120 obliquely (in a direction other than perpendicular to the subject surface) increases, and the reliability of transmittance measurement is increased. Therefore, it is preferable to set the upper limit of NA to 0.65.

上記を考慮し、集光レンズ103の開口数は、測定する領域の面積(フォトマスクの半透光部の面積)、測定波長等により適宜設定することができる。   In consideration of the above, the numerical aperture of the condensing lens 103 can be appropriately set according to the area of the region to be measured (the area of the semi-transparent portion of the photomask), the measurement wavelength, and the like.

<光検出装置>
光検出装置は、積分球105及びフォトディテクタ106を備える。積分球105は、入射ポート104から入光する光(透過光束112)を球内壁面での拡散反射により空間的に積分し均一にしてフォトディテクタ106に入射する役割を果たす。図1では、光源装置から射出された試験光束は、被検体120の表面に集光されて透過した後、透過光束112が入射ポート104を介して積分球105に入光し、積分球105内部の拡散反射により空間的に積分される。また、積分球105は、被検体120の後方で拡散する透過光束112が全て入射ポート104から積分球105に取り込まれるように配置する。
<Photodetection device>
The light detection apparatus includes an integrating sphere 105 and a photodetector 106. The integrating sphere 105 plays a role of making the light (transmitted light beam 112) incident from the incident port 104 spatially integrate by diffuse reflection on the inner wall surface of the sphere and make it uniform and enter the photodetector 106. In FIG. 1, the test light beam emitted from the light source device is condensed on the surface of the subject 120 and transmitted, and then the transmitted light beam 112 enters the integrating sphere 105 via the incident port 104, and the inside of the integrating sphere 105 Is spatially integrated by the diffuse reflection. Further, the integrating sphere 105 is arranged so that all of the transmitted light beam 112 diffusing behind the subject 120 is taken into the integrating sphere 105 from the incident port 104.

フォトディテクタ106(又はパワーメータともいう)は、積分球105に設けられた、入射ポート104とは別の開口部により、設置することができる。当該フォトディテクタ106には、積分球105で空間的に積分されて均一化(平均化)された光が入射する構成となっている。つまり、被検体120の被検査位置(光源装置からの試験光束が集光された範囲)を通過した全ての光が平均化され、その強度に比例した光がフォトディテクタ106に均一に入射することとなり、被検体120の被検査位置における光透過量を高精度で測定することができ、この光透過量に基づき、光透過率を求めることが可能となる。フォトディテクタ106は、積分球105の内部に備えられていることが望ましい。ここで、内部とは積分球105で積分された光をフォトディテクタ106に入射させることができる位置であり、例えば、積分球105の内側、内面を含むことができる。但し、機械的な制約等によってフォトディテクタ106を積分球105の内部に設置できない場合には、フォトディテクタ106に入射される光量が減少してしまう等のデメリットはあるものの、積分球105で積分された光をフォトディテクタ106に入射させることができる位置の範囲で、フォトディテクタ106の設置位置を変更することができる。例えば、積分球105の外側にフォトディテクタ106を設置することができる。また、積分球105内で空間的に積分して十分に均一化(平均化)するために、入射ポート104の径は積分球105の直径の1/4以下であることが好ましい。   The photodetector 106 (also referred to as a power meter) can be installed by an opening provided in the integrating sphere 105, which is different from the incident port 104. The photodetector 106 is configured to receive light that has been spatially integrated by the integrating sphere 105 and made uniform (averaged). That is, all the light that has passed through the inspection position of the subject 120 (the range in which the test light beam from the light source device is collected) is averaged, and light proportional to the intensity is uniformly incident on the photodetector 106. The light transmission amount at the inspection position of the subject 120 can be measured with high accuracy, and the light transmittance can be obtained based on the light transmission amount. The photodetector 106 is preferably provided inside the integrating sphere 105. Here, the inside is a position where the light integrated by the integrating sphere 105 can be incident on the photodetector 106, and can include, for example, the inside and the inside of the integrating sphere 105. However, when the photodetector 106 cannot be installed inside the integrating sphere 105 due to mechanical restrictions, etc., there is a demerit such as a decrease in the amount of light incident on the photodetector 106, but the light integrated by the integrating sphere 105 is reduced. The installation position of the photodetector 106 can be changed within a range of positions where the light can enter the photodetector 106. For example, the photodetector 106 can be installed outside the integrating sphere 105. In addition, in order to integrate spatially within the integrating sphere 105 and make it sufficiently uniform (averaged), the diameter of the incident port 104 is preferably ¼ or less of the diameter of the integrating sphere 105.

また、前記積分球105は、内壁に前記試験光束に対する反射率が0.8以上の素材が被覆されているものであることが好ましい。   Further, it is preferable that the integrating sphere 105 has an inner wall covered with a material having a reflectance of 0.8 or more with respect to the test light beam.

尚、図6に示すように、積分球105を用いずに、被検体120を透過した透過光束112を直接フォトディテクタ123の受光部に入光させ、透過光束112をフォトディテクタ123で直接検出することも可能である。この場合、一般的に、フォトディテクタ123は、受光部が平面であり、受光部に対する入射角度依存性が存在するため受光部を光軸に対して垂直に設置する必要がある。被検体120を透過した透過光束112を直接フォトディテクタ123に入光させる場合には、拡散する透過光束112の光軸に対して受光部を垂直に設置しても、該透過光束112のすべてを垂直に入光させることはできないため、測定誤差が生じる可能性がある。また、フォトディテクタ123の受光面は、透過光束112の径より大きくなければならず、その大きさについても制約があるため、透過光束112を全てフォトディテクタ123に入光させる場合には、被検体120とフォトディテクタ123間の距離を非常に短くしなければならなくなる。一方で、図1に示すように、積分球105を用いる場合は、フォトディテクタ106の受光面より大きい径を有する入射ポート104から、透過光束112を入光させて、積分球105で空間的に積分されて均一化(平均化)した光をフォトディテクタ106に入射するため、透過光束112の径がフォトディテクタ106の受光面より大きな場合でも、対応したサイズの積分球105を選択することで、上記した装置上の制約が無くなり、すぐれた精度の測定が可能である。   As shown in FIG. 6, without using the integrating sphere 105, the transmitted light beam 112 that has passed through the subject 120 is directly incident on the light receiving portion of the photodetector 123, and the transmitted light beam 112 can be directly detected by the photodetector 123. Is possible. In this case, in general, the photodetector 123 has a flat light receiving portion and has an incident angle dependency with respect to the light receiving portion, so that it is necessary to install the light receiving portion perpendicular to the optical axis. When the transmitted light beam 112 that has passed through the subject 120 is directly incident on the photodetector 123, all of the transmitted light beam 112 is perpendicular even if the light receiving unit is installed perpendicular to the optical axis of the diffused transmitted light beam 112. Since it is not possible to enter the light, a measurement error may occur. In addition, since the light receiving surface of the photodetector 123 must be larger than the diameter of the transmitted light beam 112 and the size thereof is limited, when the entire transmitted light beam 112 is incident on the photodetector 123, The distance between the photodetectors 123 must be very short. On the other hand, as shown in FIG. 1, when the integrating sphere 105 is used, the transmitted light beam 112 is incident from the incident port 104 having a larger diameter than the light receiving surface of the photodetector 106 and is spatially integrated by the integrating sphere 105. Since the uniformized (averaged) light is incident on the photodetector 106, even if the diameter of the transmitted light beam 112 is larger than the light receiving surface of the photodetector 106, the integrating sphere 105 having the corresponding size is selected, so that the above-described device is obtained. The above limitation is eliminated, and measurement with excellent accuracy is possible.

また、膜透過率についてより高精度な測定を行う場合には、積分球105への入射光(透過光束112)を一定の角度(立体角)に固定することができる。この場合、図2に示すように、被検体120と積分球105の間に、透過光束112を平行光とするコリメータレンズ122(以下、第2コリメータレンズともいう)を設けることができる。これにより、積分球105の入射ポート104に、透過光束112のすべてが入光することが容易となり、その入射角も一定範囲内となるため、フォトディテクタ106における測定精度をより向上させることが可能となる。   Further, in the case of measuring the film transmittance with higher accuracy, the incident light (transmitted light beam 112) to the integrating sphere 105 can be fixed at a certain angle (solid angle). In this case, as shown in FIG. 2, a collimator lens 122 (hereinafter also referred to as a second collimator lens) that uses the transmitted light beam 112 as parallel light can be provided between the subject 120 and the integrating sphere 105. As a result, it becomes easy for all of the transmitted light beam 112 to enter the incident port 104 of the integrating sphere 105, and the incident angle is within a certain range, so that the measurement accuracy of the photodetector 106 can be further improved. Become.

また、被検体120と積分球105の間に第2コリメータレンズ122を設けることにより透過光束112の径を減少させることができるため、入射ポート104の径を非常に大きなものにしなくても積分球105を被検体120から所望距離離して配置させることができる。つまり、積分球105の配置を自由に設定することが可能となり、光学エレメントの設置の自由度が向上するとういう効果を奏する。   Further, since the diameter of the transmitted light beam 112 can be reduced by providing the second collimator lens 122 between the subject 120 and the integrating sphere 105, the integrating sphere can be obtained without making the diameter of the incident port 104 very large. 105 can be arranged at a desired distance from the subject 120. That is, it is possible to freely set the arrangement of the integrating spheres 105, and there is an effect that the degree of freedom of installation of the optical element is improved.

尚、ここでいう第2コリメータレンズ122も、上述した第1コリメータレンズ102と同様に、透過光束112を完全な平行光とすることが必ずしも必要ではない。光束径を減少させることによって、透過光束112を積分球105内部へ、確実に取り込めるものであればよい。換言すれば、第2コリメータレンズ122は、積分球105を所望の位置に配置するための、光束径調整手段として、機能することができる。   It should be noted that the second collimator lens 122 here is not necessarily required to make the transmitted light beam 112 completely parallel light, like the first collimator lens 102 described above. It is only necessary that the transmitted light beam 112 can be reliably taken into the integrating sphere 105 by reducing the light beam diameter. In other words, the second collimator lens 122 can function as a light beam diameter adjusting means for arranging the integrating sphere 105 at a desired position.

尚、図6の装置においても、被検体120を透過した透過光束をコリメータレンズで平行化してフォトディテクタ123に入光させることは可能である。但し、フォトディテクタ123が、透過光束112以外の迷光(装置内や装置外の光源に由来し、被検査位置以外のところから意図せずに入光する光)を検知する可能性があるので、積分球を用いた図1又は図2の装置がより好ましい。   In the apparatus of FIG. 6 as well, the transmitted light beam that has passed through the subject 120 can be collimated by the collimator lens and incident on the photodetector 123. However, since the photodetector 123 may detect stray light other than the transmitted light beam 112 (light that comes from a light source inside or outside the apparatus and enters unintentionally from a place other than the inspection position), integration is possible. The apparatus of FIG. 1 or 2 using a sphere is more preferable.

<透過率測定装置>
上記にて説明した、光源装置、集光光学系、光検出装置を搭載した、透過率測定装置を、図8及び図9に例示する。
<Transmittance measuring device>
FIGS. 8 and 9 illustrate the transmittance measuring device on which the light source device, the condensing optical system, and the light detection device described above are mounted.

本態様において、光源装置と集光光学系は、その光軸を一致させた状態で、被検体(ここではフォトマスク)120の所望位置に配置可能である。また、光検出装置も、被検体120を透過した透過光束を完全に入光させられるように、その軸を上記光軸と実質的に一致させている。このようにして、被検体120の所望の被検査位置の光透過率を検出可能である。   In this aspect, the light source device and the condensing optical system can be arranged at a desired position on the subject (photomask) 120 in a state where the optical axes thereof are aligned. Further, the optical detection device also has its axis substantially coincided with the optical axis so that the transmitted light beam transmitted through the subject 120 can be completely incident. In this way, it is possible to detect the light transmittance at a desired inspection position of the subject 120.

ここで、光源装置と集光光学系は、光軸を一致させた状態で一体に保持され(ユニットA)、ユニットA駆動用レールに移動方向を制御されつつ移動可能となっている。そして、被検体120の主平面と平行な面内で所望の位置に配置することができる。その一方、光検出装置(ユニットB)は、ユニットB駆動用レールによって移動方向を制御されつつ、やはり、被検体120の主平面と平行な面内で移動できる。ユニットAとユニットBは、被検体の主平面を両側から対向し、光透過率測定時には、両者の光軸が一致する。光検出装置側にコリメータレンズ122を設ける場合(図2参照)は、これも光軸を一致させ、ユニットBの一部として設置することができる。   Here, the light source device and the condensing optical system are integrally held with the optical axes aligned (unit A), and can be moved while the movement direction is controlled by the unit A driving rail. Then, it can be arranged at a desired position in a plane parallel to the main plane of the subject 120. On the other hand, the photodetection device (unit B) can be moved in a plane parallel to the main plane of the subject 120 while the movement direction is controlled by the unit B driving rail. Unit A and unit B face the main plane of the subject from both sides, and the optical axes of both coincide with each other when measuring light transmittance. When the collimator lens 122 is provided on the light detection device side (see FIG. 2), it can also be installed as a part of the unit B with the optical axes aligned.

上記ユニットA及びユニットBは、被検体120の主平面と平行な面内(すなわち光軸と垂直な面内)で、それぞれを所望位置に移動させるためのユニットA移動装置301、ユニットB移動装置302にそれぞれ接続され、これらの移動装置は、制御装置300によって制御される(図9参照)。   The unit A and the unit B are a unit A moving device 301 and a unit B moving device for moving each to a desired position in a plane parallel to the main plane of the subject 120 (that is, in a plane perpendicular to the optical axis). These mobile devices are respectively connected to 302 and controlled by the control device 300 (see FIG. 9).

更に、被検体120とユニットA,ユニットBは、位置調節機構(不図示)によって、その光軸方向の相対位置調整が可能である。すなわち、光源装置から射出された試験光束が、集光光学系によって被検体120に導かれ、その光束がビームウエスト近傍において被検体120の被検査位置に入射するように、相互の位置が精緻に調節される。この位置調節機構は、ユニットA移動装置301、ユニットB移動装置302に含ませることも可能である。また、ユニットA内において、光源装置と集光光学系の光軸方向においての相互位置、光源装置内において、その構造部品(光源101、第1コリメータレンズ102など)の相互位置も、必要に応じて調整可能であることは言うまでもない。   Furthermore, the subject 120 and the units A and B can be adjusted in relative position in the optical axis direction by a position adjusting mechanism (not shown). That is, the mutual position of the test light beam emitted from the light source device is so precise that the light beam is guided to the subject 120 by the condensing optical system, and the light beam is incident on the inspection position of the subject 120 near the beam waist. Adjusted. This position adjusting mechanism can be included in the unit A moving device 301 and the unit B moving device 302. In the unit A, the mutual position of the light source device and the condensing optical system in the optical axis direction, and the mutual position of the structural components (the light source 101, the first collimator lens 102, etc.) in the light source device are also set as necessary. Needless to say, it is adjustable.

光検出装置によって検出された光量は、演算装置303に送られ、被検体の光透過率を演算することが可能である。演算装置303はまた、付随するメモリを用いて、光透過率の算出に必要はパラメータをあらかじめ、記憶し保存しておくことができる。   The amount of light detected by the light detection device is sent to the calculation device 303, and the light transmittance of the subject can be calculated. The arithmetic unit 303 can also store and save parameters necessary for the calculation of the light transmittance in advance using an accompanying memory.

本発明の装置は更に、被検体120を保持する被検体ホルダを有する。本態様の前記被検体ホルダは、一辺が300mm以上の方形を有する、フォトマスクを保持可能である。例えば、一辺が300〜1800mmの方形のフォトマスクを保持可能であることが好ましい。   The apparatus of the present invention further includes a subject holder that holds the subject 120. The subject holder of this aspect can hold a photomask having a square shape with a side of 300 mm or more. For example, it is preferable that a rectangular photomask having a side of 300 to 1800 mm can be held.

尚、上述の態様では、被検体120を固定し、両ユニット(A,B)を可動としているが、逆でもよく、更には両者が可動であってもよい。また、図8に示すように、被検体ホルダは被検体120をほぼ水平に保持してもよく、或いはほぼ垂直に保持してもよい。   In the above-described embodiment, the subject 120 is fixed and both units (A, B) are movable. However, the opposite may be possible, and both may be movable. In addition, as shown in FIG. 8, the subject holder may hold the subject 120 substantially horizontally, or may hold the subject 120 substantially vertically.

<透過率測定方法>
上記透過率測定装置に、被検体(ここでは、フォトマスク)120をセットし、そのフォトマスク120上に形成された転写パターンの、所望位置における光透過率を測定することができる。例えば、フォトマスク120が、露光光の一部を透過する、半透光部を備えたものであるとき、その半透光部が微細なサイズであった場合においても、該半透光部の周辺に配置されたパターン(透光部、遮光部など)に影響されず、正確な半透光部の光透過率を測定することができる。
<Transmittance measurement method>
An object (here, a photomask) 120 is set on the transmittance measuring device, and the light transmittance at a desired position of a transfer pattern formed on the photomask 120 can be measured. For example, when the photomask 120 is provided with a semi-transparent portion that transmits part of the exposure light, even when the semi-transparent portion has a fine size, An accurate light transmittance of the semi-translucent portion can be measured without being affected by the patterns (translucent portion, light-shielding portion, etc.) arranged around the periphery.

例えば、被検体であるフォトマスク120を、本発明の装置の被検体ホルダにセットする。次に、ユニットAとユニットBを、両者の光軸が一致した状態で、フォトマスク120の主平面に平行な面内で移動させ、透過率を得ようとする半透光部の位置にセットする。ここで、被検体であるフォトマスク120が、液晶表示装置用の大型マスクである場合、その露光光波長は、i線〜g線であるから、それと実質的に等しい波長域をもつ光源を用いて、測定することが有用である。或いは、マスクユーザが透過率測定の基準として用いる代表波長(たとえばi線)を用いて測定することも、また有用である。   For example, the photomask 120 that is the subject is set in the subject holder of the apparatus of the present invention. Next, the unit A and the unit B are moved in a plane parallel to the main plane of the photomask 120 in a state where the optical axes of the units A and B coincide with each other, and set at the position of the semi-transparent portion where the transmittance is to be obtained. To do. Here, when the photomask 120 that is the subject is a large mask for a liquid crystal display device, the exposure light wavelength is i-line to g-line, so a light source having a wavelength region substantially equal to that is used. It is useful to measure. Alternatively, it is also useful to perform measurement using a representative wavelength (for example, i-line) used as a reference for transmittance measurement by the mask user.

ユニットAとユニットBの、マスク面と平行な面内での位置を画定し、更に、光源装置から射出する試験光束が集光光学系を経て、そのビームウエスト近傍が、測定しようとするフォトマスク120の半透光部に位置するように、ユニットAと被検体の相対位置を調整する。ついで、試験光束が該半透光部を透過したのちの透過光束112が、光検出装置の積分球105の入射ポート104から確実に入光するように、光検出装置を位置させる。このとき、積分球105内におかれた、フォトディテクタ106の出力(透過光量L)を演算装置303に取り込む。   The position of the unit A and unit B in the plane parallel to the mask surface is defined, and the test light beam emitted from the light source device passes through the condensing optical system, and the vicinity of the beam waist is the photomask to be measured. The relative position between the unit A and the subject is adjusted so as to be positioned at the semi-transparent portion 120. Next, the light detection device is positioned so that the transmitted light beam 112 after the test light beam passes through the semi-translucent portion is reliably incident from the incident port 104 of the integrating sphere 105 of the light detection device. At this time, the output (transmitted light amount L) of the photodetector 106 placed in the integrating sphere 105 is taken into the arithmetic unit 303.

フォトマスク120の半透光部における膜透過率Tを求めようとするときには、膜が形成される前の透明基板がもつ、参照透過量L0を予め求めておくことができる。これは、膜が形成されていない透明基板の一部分、または、フォトマスク120の転写パターン中、膜が形成されていない部分(これらを「参照位置」ともよぶ)について、上記と同様の方法で参照透過光量L0を求めることにより得られる。そして、上記のように半透光部の光透過量Lを求めれば、該半透光部の光透過率Tは、
T= L/L0
として求めることができる。
When obtaining the film transmittance T in the semi-transparent portion of the photomask 120, the reference transmission amount L0 of the transparent substrate before the film is formed can be obtained in advance. This is referred to in the same manner as described above for a part of the transparent substrate on which no film is formed, or on a part of the transfer pattern of the photomask 120 where no film is formed (also referred to as “reference position”). It is obtained by obtaining the transmitted light amount L0. Then, if the light transmission amount L of the semi-translucent part is obtained as described above, the light transmittance T of the semi-translucent part is:
T = L / L0
Can be obtained as

<被検体>
本実施の形態で示す透過率測定装置の被検体120としては、光が透過するものであればよい。本実施の形態で示す透過率測定装置を用いて透過率の測定を行うことができる好適な一例としては、透明基板上に形成された光学膜をパターニングして得られた転写パターンをもつ、フォトマスクが挙げられる。
<Subject>
The subject 120 of the transmittance measuring apparatus shown in this embodiment may be any object that transmits light. As a suitable example in which transmittance can be measured using the transmittance measuring apparatus shown in this embodiment, a photomask having a transfer pattern obtained by patterning an optical film formed on a transparent substrate is used. A mask is mentioned.

光学膜とは、露光光の少なくとも一部を遮光する(つまり、一部を透過する)膜(半透光膜とよぶ)とすることができる。これは、被転写体上に形成されたレジスト膜を、フォトマスクを使用して露光することにより、所望量減膜させ、所望形状のレジストパターンを形成するときに用いられる。   The optical film can be a film that shields (that is, partially transmits) at least a part of the exposure light (referred to as a semi-transparent film). This is used when a resist film formed on a transfer object is exposed using a photomask to reduce the film by a desired amount to form a resist pattern having a desired shape.

特に、多階調フォトマスクにおいて、複数の異なる残膜量をもつレジストパターンを形成し、これを用いて、所望の電子デバイスを製造することが可能であり、極めて有用である。例えば、本発明に適用されるフォトマスクとして、液晶表示装置の製造に用いられる多階調フォトマスクであることができ、透光部、遮光部のほか、1種類又は複数種類の露光光透過率をもつ、半透光部を有することができる。   In particular, in a multi-tone photomask, a resist pattern having a plurality of different residual film amounts can be formed, and a desired electronic device can be manufactured using the resist pattern, which is extremely useful. For example, the photomask applied to the present invention can be a multi-tone photomask used for manufacturing a liquid crystal display device. In addition to a light transmitting portion and a light shielding portion, one or more types of exposure light transmittance And a semi-translucent portion.

図10に上記用途の多階調フォトマスクを例示する。透明基板200上に形成された半透光膜201と遮光膜202がそれぞれパターニングされ、所望の転写パターン(半透光膜パターン201p、遮光膜パターン202p)を有する、3階調のフォトマスク20となっている。ここで半透光部215は、微細な幅をもち、透光部220、遮光部210と隣接している。このため、パターニングが施された後に、半透光部に形成された半透光膜の光透過率を正確に把握することは従来技術において困難である。   FIG. 10 illustrates a multi-tone photomask for the above application. A three-tone photomask 20 having a desired transfer pattern (semi-transparent film pattern 201p, light-shielding film pattern 202p) by patterning the semi-transparent film 201 and the light-shielding film 202 formed on the transparent substrate 200; It has become. Here, the semi-translucent portion 215 has a fine width and is adjacent to the translucent portion 220 and the light shielding portion 210. For this reason, it is difficult in the prior art to accurately grasp the light transmittance of the semi-transparent film formed in the semi-transparent portion after patterning.

遮光膜の形成前、半透光膜のみが形成された段階(後述のフォトマスクブランク形成過程)で光透過率を測定することは可能であるが、複数のプロセスを経てパターニングが施された後、フォトマスク完成品となったときに、これが同一の透過率を示すか否かは不明である。したがって、フォトマスクとしての、微細な半透光部の透過率測定が必要である。   It is possible to measure the light transmittance before the formation of the light-shielding film and at the stage where only the semi-translucent film is formed (the photomask blank forming process described later), but after patterning is performed through a plurality of processes. It is unclear whether or not this shows the same transmittance when it is a finished photomask. Therefore, it is necessary to measure the transmittance of a fine semi-transparent portion as a photomask.

上記の多階調フォトマスクによる転写工程を、図11に示す。すなわち、透明基板500上に形成された複数の薄膜501を積層した被転写体50に対して、3次元的なパターンを形成したいときに、適宜フォトマスクを用いて、パターンを転写する。ここでは、多階調フォトマスク20を用い、被転写体上に形成したポジレジスト層502に対して、複数の異なる残膜量をもつレジストパターン502pを形成している。このようにすることで、フォトマスク2枚分のパターン加工を、フォトマスク1枚によって行うことができる。   FIG. 11 shows a transfer process using the above multi-tone photomask. That is, when it is desired to form a three-dimensional pattern on the transferred object 50 in which a plurality of thin films 501 formed on the transparent substrate 500 are laminated, the pattern is transferred using an appropriate photomask. Here, a resist pattern 502p having a plurality of different residual film amounts is formed on the positive resist layer 502 formed on the transfer object, using the multi-tone photomask 20. In this way, pattern processing for two photomasks can be performed with one photomask.

本発明による、半透光膜の透過率の測定としては、上記の多階調フォトマスクにおける、転写パターン中の、微細な(たとえば幅が1mm以下。特に、2〜500μmのときに本発明を適用する必要性が高く、2〜100μmの時に、本発明による効果が殊に顕著である)半透光部の露光光透過率を測定できる。   The transmissivity of the translucent film according to the present invention is measured when the transfer pattern in the above multi-tone photomask is fine (for example, the width is 1 mm or less. The exposure light transmittance of the semi-translucent portion can be measured because the necessity of application is high and the effect of the present invention is particularly remarkable when the thickness is 2 to 100 μm.

例えば、遮光部と隣接する半透光部の膜透過率を測定しようとするとき、測定スポットの大きい、既存の分光光度計を使用すれば、測定視野内に、被検査位置にある半透光部のみを配置することが不可能であって、正確な光透過率が得られない。本発明によれば、測定視野は、集光光学系の形成するビームウエストの径とすることができるので、微小なスポットの測定が可能である。   For example, when using an existing spectrophotometer with a large measurement spot when trying to measure the film transmittance of the semi-transparent part adjacent to the light-shielding part, the semi-transparent light at the position to be inspected is in the measurement field of view. It is impossible to arrange only the portion, and an accurate light transmittance cannot be obtained. According to the present invention, since the measurement visual field can be the diameter of the beam waist formed by the condensing optical system, a minute spot can be measured.

上述したように、近年フォトマスクの多階調化やパターンの微細化により、透明基板上に形成された光学膜(ここでは、露光光の一部を透過する、半透光膜)が、製造後のフォトマスクにおいて有している膜透過率を正確に測定することが求められており、このような被検体に対して本実施の形態で示す透過率測定装置を用いることは非常に有効となる。   As described above, an optical film (here, a semi-transparent film that transmits part of exposure light) formed on a transparent substrate has been manufactured by increasing the number of gradations and pattern miniaturization of a photomask in recent years. It is required to accurately measure the membrane transmittance of a later photomask, and it is very effective to use the transmittance measuring device described in this embodiment for such an object. Become.

すなわち、製造後のフォトマスクにおいては、分光光度計を用いた従来の測定方法によって測定可能な面積よりも小さい面積の半透光部が存在し、この部分の膜透過率を正確に知ることが、フォトマスクの検査や製品保証の上で、極めて重要である。   That is, in the manufactured photomask, there is a semi-translucent portion having an area smaller than the area that can be measured by a conventional measuring method using a spectrophotometer, and the film transmittance of this portion can be accurately known. It is extremely important for photomask inspection and product warranty.

例えば、このようなフォトマスクとして液晶表示装置製造用のフォトマスクであって、そのサイズが一辺300mm以上の大型マスクが挙げられる。   For example, such a photomask is a photomask for manufacturing a liquid crystal display device, and a large-sized mask having a side of 300 mm or more can be used.

また、液晶表示装置に用いる薄膜トランジスタ(TFT)製造用、或いはカラーフィルタ(CF)製造用として透光部、半透光部、遮光部をもつ、(3階調の)多階調フォトマスクが挙げられる。或いは、互いに透過率の異なる2種類以上の半透光部をもつ、4階調以上の多階調フォトマスクが挙げられる。   In addition, a multi-tone photomask (three gradations) having a light-transmitting portion, a semi-light-transmitting portion, and a light-shielding portion is used for manufacturing a thin film transistor (TFT) or a color filter (CF) used in a liquid crystal display device. It is done. Alternatively, a multi-tone photomask having four or more gradations having two or more types of semi-transparent portions having different transmittances can be given.

更には、2階調のフォトマスクであっても、遮光部に所定の透過率を有する光学膜を用いる場合には、本発明の被検体として有用に適用できる。   Furthermore, even a two-tone photomask can be usefully applied as the subject of the present invention when an optical film having a predetermined transmittance is used for the light shielding portion.

本発明に適用する被検体として、本発明の顕著な効果が得られる、多階調フォトマスク及びその検査方法、製造方法について説明する。   As an object to be applied to the present invention, a multi-tone photomask, an inspection method thereof, and a manufacturing method thereof, which can obtain the remarkable effects of the present invention, will be described.

多階調フォトマスクは、例えば、図12に示す方法で作製することができる。即ち、まず透明基板(200)に、半透光膜201と遮光膜202をこの順に積層し、レジスト203(ここではポジレジスト)を塗布したフォトマスクブランク20bを用意する(図12(a)参照)。   The multi-tone photomask can be manufactured, for example, by the method shown in FIG. That is, first, a photomask blank 20b in which a semi-transparent film 201 and a light-shielding film 202 are laminated in this order on a transparent substrate (200) and a resist 203 (here, a positive resist) is applied is prepared (see FIG. 12A). ).

透明基板200は、例えば、石英(SiO)ガラスや、SiO,Al,B,RO(Rはアルカリ土類金属),RO(Rはアルカリ金属)等を含むガラス等からなる平板として構成されている。透明基板200の主面(表面及び裏面)は、研磨されて平坦且つ平滑に構成されている。透明基板200は、例えば一辺が500mm〜1800mm程度の方形とすることができる。透明基板200の厚さは例えば3mm〜20mm程度とすることができる。 The transparent substrate 200 is made of, for example, quartz (SiO 2 ) glass, SiO 2 , Al 2 O 3 , B 2 O 3 , RO (R is an alkaline earth metal), R 2 O (R 2 is an alkali metal) or the like. It is comprised as a flat plate which consists of glass etc. which contain. The main surface (front surface and back surface) of the transparent substrate 200 is polished to be flat and smooth. The transparent substrate 200 can be a square having a side of about 500 mm to 1800 mm, for example. The thickness of the transparent substrate 200 can be set to about 3 mm to 20 mm, for example.

半透光膜201は、例えばクロム(Cr)を含む材料からなり、例えば窒化クロム(CrN)、酸化クロム(CrO)、酸窒化クロム(CrON)、フッ化クロム(CrF)等のクロム化合物とすることができる。これらの半透光膜201は、例えば硝酸第2セリウムアンモニウム((NHCe(NO)及び過塩素酸(HClO)を含む純水からなるクロム用エッチング液を用いてエッチング可能なように構成されている。又は、モリブデン(Mo)等の金属材料とシリコン(Si)とを含む材料からなる金属シリサイド化合物とすることができる。例えばMoSi、MoSix、MoSiN、MoSiON、MoSiCON等からなる。この種の半透光膜201は、フッ素(F)系のエッチング液(又はエッチングガス)を用いてエッチング可能なように構成されている。 The translucent film 201 is made of a material containing, for example, chromium (Cr), and is made of a chromium compound such as chromium nitride (CrN), chromium oxide (CrO), chromium oxynitride (CrON), or chromium fluoride (CrF). be able to. These semi-transparent films 201 are etched using a chromium etching solution made of pure water containing, for example, ceric ammonium nitrate ((NH 4 ) 2 Ce (NO 3 ) 6 ) and perchloric acid (HClO 4 ). It is configured as possible. Alternatively, a metal silicide compound made of a material containing a metal material such as molybdenum (Mo) and silicon (Si) can be used. For example, it is made of MoSi, MoSix, MoSiN, MoSiON, MoSiCON or the like. This type of translucent film 201 is configured to be etched using a fluorine (F) -based etching solution (or etching gas).

遮光膜202は、クロム(Cr)またはクロムを主成分とするクロム化合物とすることができる。なお、遮光膜202の表面に所定組成のCr化合物(CrO、CrC,CrN等)を積層する(図示せず)ことにより、遮光膜202の表面に光反射抑制機能を持たせることができる。遮光膜202は、上述のクロム用エッチング液を用いてエッチング可能なように構成されている。   The light shielding film 202 can be made of chromium (Cr) or a chromium compound containing chromium as a main component. In addition, by laminating a Cr compound (CrO, CrC, CrN, etc.) having a predetermined composition on the surface of the light shielding film 202 (not shown), the surface of the light shielding film 202 can have a light reflection suppressing function. The light shielding film 202 is configured to be etched using the above-described chromium etching solution.

遮光膜202は露光光(i線〜g線)を実質的に遮光し、透光部220は露光光を略100%透過させるように構成されている。そして、半透光膜201は、透明基板の透過率を100%としたとき、3%以上80%以下の膜透過率をもつものとすることができる。TFT製造用のフォトマスクとして、3階調以上の多階調フォトマスクの半透光部に用いる半透光膜としては、5〜60%、マスクユーザによる被転写体の加工のしやすさの点では、20〜60%が好ましい。尚、代表波長(たとえばi線)を用いて、上記透過率を持つものを評価してもよい。   The light shielding film 202 substantially shields the exposure light (i-line to g-line), and the light transmitting part 220 is configured to transmit the exposure light substantially 100%. The semi-transparent film 201 can have a film transmittance of 3% or more and 80% or less when the transmittance of the transparent substrate is 100%. As a semi-transparent film used for a semi-transparent portion of a multi-gradation photomask having three or more gradations as a photomask for manufacturing TFTs, it is easy to process a transfer object by a mask user by 5 to 60%. In terms, 20 to 60% is preferable. In addition, you may evaluate what has the said transmittance | permeability using a representative wavelength (for example, i line | wire).

更に、2階調(遮光部と透光部)のフォトマスクにおいて、遮光部に用いる遮光膜に一定の透過率をもたせる場合、その透過率は、3〜20%が好ましく、より好ましくは、5〜15%とすることができる。   Furthermore, in a photomask having two gradations (a light shielding part and a light transmitting part), when the light shielding film used for the light shielding part has a certain transmittance, the transmittance is preferably 3 to 20%, and more preferably 5%. -15%.

上記フォトマスクブランクに対し、所定のパターンを描画し、現像することによって、第1のレジストパターン(203p)を得る(図12(b)参照)。これをマスクにして、遮光膜202をエッチングすることによって、遮光膜パターン202pが形成される(図12(c)参照)。   A predetermined pattern is drawn on the photomask blank and developed to obtain a first resist pattern (203p) (see FIG. 12B). The light shielding film 202p is formed by etching the light shielding film 202 using this as a mask (see FIG. 12C).

レジストパターン203pを剥離したのち、再度全面にレジスト204を塗布する(図12(d)参照)。そして、2度目の描画及び現像により、第2のレジストパターン(204p)を得る(図12(e)参照)。これをマスクとして、半透光膜201をエッチングすることにより、半透光膜パターン201pが形成される(図12(f)参照)。そして、残留するレジストパターン204pを剥離する(図12(g)参照)。このようにして、多階調(ここでは3階調)のフォトマスクが完成する。   After peeling off the resist pattern 203p, a resist 204 is applied again on the entire surface (see FIG. 12D). Then, the second resist pattern (204p) is obtained by the second drawing and development (see FIG. 12E). The semi-transmissive film pattern 201p is formed by etching the semi-transmissive film 201 using this as a mask (see FIG. 12F). Then, the remaining resist pattern 204p is peeled off (see FIG. 12G). In this way, a multi-tone (here, 3) photomask is completed.

図12は、パターニングプロセスを模式的に示したものであり、実際のパターン形状には、用途に応じ他の種々の形式がある。   FIG. 12 schematically shows the patterning process, and there are various other types of actual pattern shapes depending on applications.

本発明の製造方法では、上記パターニングの後、透過率の検査工程を設けることができる。これは、マスクユーザの求める正しい光透過率が得られているか否かを確認し、不都合があれば製造工程に戻し、問題がなければ、製品保証をすることができる。   In the manufacturing method of the present invention, a transmittance inspection step can be provided after the patterning. This confirms whether or not the correct light transmittance required by the mask user is obtained. If there is any inconvenience, the process returns to the manufacturing process, and if there is no problem, the product can be guaranteed.

尚、マスクユーザの希望によっては、本発明の検査方法で得られた光透過率の数値を、フォトマスクと対応づけた形でフォトマスク製品として供給することができる。すなわち、フォトマスク製品の供給を受けても、その微細部分の光透過率を精密に測定することは、通常は不可能であるから、フォトマスクの属性である透過率を、フォトマスクと一体化して付属させることが有意義である。この場合、供給形式は、フォトマスクと透過率データを物理的に一体にしてもよく、または、流通は個々に行うものの、互いを結び付ける情報によって、対応づけられていてもよい。   Depending on the desire of the mask user, the numerical value of the light transmittance obtained by the inspection method of the present invention can be supplied as a photomask product in a form associated with the photomask. In other words, even if a photomask product is supplied, it is usually impossible to accurately measure the light transmittance of the fine part. Therefore, the transmittance that is an attribute of the photomask is integrated with the photomask. It is meaningful to attach it. In this case, the supply format may be such that the photomask and the transmittance data are physically integrated, or the distribution is performed individually but the information is associated with each other.

フォトマスクユーザは、この透過率データを参照し、該フォトマスクと、露光機とを用いて、フォトマスクの有する転写パターンを、被転写体に転写し、所望の電子デバイスを製造することができる。この場合、製造工程に適用される様々な条件パラメータは、該透過率データを基に設定されることができる。   The user of the photomask can refer to the transmittance data and use the photomask and an exposure machine to transfer the transfer pattern of the photomask to the transfer target to manufacture a desired electronic device. . In this case, various condition parameters applied to the manufacturing process can be set based on the transmittance data.

また、本実施の形態に示す透過率測定装置において、測定精度をより向上させるためには、光源装置から射出する試験光束の強度分布等を適宜制御することが好ましい。   In the transmittance measuring apparatus shown in this embodiment, in order to further improve the measurement accuracy, it is preferable to appropriately control the intensity distribution of the test light beam emitted from the light source device.

例えば、図1に示す透過率測定装置において、コリメータレンズ102から集光レンズ103に入光する平行光束111の強度分布を、中央部が周辺部と比較して相対的に明るい分布とするための、光分布強度調整手段を導入することができる。分布の形態の一例としては、例えばガウス分布があげられる。   For example, in the transmittance measuring apparatus shown in FIG. 1, the intensity distribution of the parallel light beam 111 entering the condenser lens 103 from the collimator lens 102 is a distribution in which the central portion is relatively brighter than the peripheral portion. A light distribution intensity adjusting means can be introduced. An example of the distribution form is a Gaussian distribution.

一般的に、均一な強度分布の平行光束111を集光レンズ103に入光させて、被検体120に集光させた場合、集光された光のピークの外周にサイドローブが発生することが発明者らによって確認された(図3(A)、(B)参照)。微細な部分の透過率を正確に測定するためには測定光を測定対象部分に集光させる必要があるが、サイドローブが発生することにより集光したスポットの外側にも一部の光が出てしまい、微細パターンのサイズや周辺パターンの位置(例えば、スリット幅)によってはサイドローブが被検体120の被検査位置以外の位置に入射されてしまい、そのはみ出し光のために、測定精度が低下する恐れがある。   In general, when a collimated light beam 111 having a uniform intensity distribution is incident on the condensing lens 103 and condensed on the subject 120, side lobes may be generated around the peak of the collected light. It was confirmed by the inventors (see FIGS. 3A and 3B). In order to accurately measure the transmittance of a minute part, it is necessary to focus the measurement light on the part to be measured, but due to the generation of side lobes, part of the light is also emitted outside the focused spot. Therefore, depending on the size of the fine pattern and the position of the peripheral pattern (for example, the slit width), the side lobe may be incident on a position other than the inspection position of the object 120, and the measurement accuracy decreases due to the protruding light. There is a risk of doing.

そのため、集光光学系に入光する平行光束111内の強度分布を均一でなく、中央部(光軸近傍)が周辺部に比べて相対的に明るい分布とすることが好ましい(図4参照)。これにより、サイドローブの発生を抑制し、測定領域の透過率を高い精度で測定することが可能となる。   Therefore, it is preferable that the intensity distribution in the parallel light beam 111 entering the condensing optical system is not uniform, and the central portion (near the optical axis) is relatively brighter than the peripheral portion (see FIG. 4). . Thereby, generation | occurrence | production of a side lobe can be suppressed and it becomes possible to measure the transmittance | permeability of a measurement area | region with high precision.

平行光束111内の光強度分布の種類は、中央(光軸近傍)に比べ、周辺方向に向かって強度が単調減少するものであればとくに制約は無い。例えば、ガウス分布とすることが可能である。光源がレーザーの場合には、ほぼガウス分布が得られる。その他の光源の場合には、光分布を調整する手段を導入して同様の効果を得ることができる。   The type of the light intensity distribution in the parallel light beam 111 is not particularly limited as long as the intensity monotonously decreases toward the peripheral direction compared to the center (near the optical axis). For example, a Gaussian distribution can be used. When the light source is a laser, a Gaussian distribution can be obtained. In the case of other light sources, a similar effect can be obtained by introducing means for adjusting the light distribution.

図5に、試験光束光強度分布を変化させた場合に、サイドローブにより微細パターンからはみ出すスポット光の割合について検証したシミュレーション結果を示す。分布形状はガウス分布とした。   FIG. 5 shows a simulation result in which the ratio of the spot light protruding from the fine pattern by the side lobe when the test light beam light intensity distribution is changed is shown. The distribution shape was a Gaussian distribution.

具体的には、コリメータレンズ102からの平行光束111のガウス分布を変化させて集光レンズ103に入光させ、被検体120のパターン線幅に応じてスポット光がはみ出す割合を測定した。集光レンズ103としては、NAが0.4と0.65のレンズを用い、評価波長は405nmの光とした。   Specifically, the Gaussian distribution of the parallel light beam 111 from the collimator lens 102 was changed to enter the condensing lens 103, and the ratio of the spot light protruding according to the pattern line width of the subject 120 was measured. As the condensing lens 103, lenses having NAs of 0.4 and 0.65 were used, and light having an evaluation wavelength of 405 nm was used.

図5(A)は、NAが0.4の集光レンズ103を用いた場合に、集光レンズ103に入射させる平行光束111のガウス分布を示しており、縦軸が強度を示し、横軸が集光レンズ103に入射するビーム断面(ガウス分布幅1/e)を示している。 FIG. 5A shows a Gaussian distribution of the parallel light beam 111 incident on the condensing lens 103 when the condensing lens 103 with NA of 0.4 is used, the vertical axis indicates the intensity, and the horizontal axis. Indicates a beam cross section (Gaussian distribution width 1 / e 2 ) incident on the condenser lens 103.

上述のように、ガウス分布のビーム径は、光軸に対して直交する面で測定されたピーク値の1/e(約13.5%)の強度となる幅として定義することができる。この幅(図5(B)に示す「ガウス分布のNA」、NAgともいう)が、集光レンズのNA(NAcともいう)に対し、
0.4 ≦ NAg/NAc ≦ 0.6
であることが好ましい。
As described above, the beam diameter of the Gaussian distribution can be defined as a width having an intensity of 1 / e 2 (about 13.5%) of a peak value measured on a plane orthogonal to the optical axis. This width (also referred to as “Gaussian distribution NA” or NAg shown in FIG. 5B) is relative to the NA of the condenser lens (also referred to as NAc).
0.4 ≦ NAg / NAc ≦ 0.6
It is preferable that

例えば、集光レンズのNAを元に、上記数式の範囲からガウス分布のNA比を求め、使用される集光レンズの有効径(瞳径)との比によって、本発明に好適に使用できるガウス分布幅を求めることができる。例えば、集光レンズの有効径を1としたときに、集光レンズに入射される試験光束の径(ビーム断面)は0.4以上0.6以下の範囲とすることができる。   For example, based on the NA of the condenser lens, the NA ratio of the Gaussian distribution is obtained from the range of the above formula, and the Gaussian that can be suitably used in the present invention by the ratio with the effective diameter (pupil diameter) of the condenser lens used. The distribution width can be obtained. For example, when the effective diameter of the condensing lens is 1, the diameter of the test light beam (beam cross section) incident on the condensing lens can be in the range of 0.4 to 0.6.

例えば、NA0.4の集光レンズを用いたとき、平行光束111のガウス分布のNAが0.4であれば、6μm幅のパターンについては、はみ出し光が小さい(0.61%)が、2μm幅のパターンについては、はみ出し光が2.18%に達してしまう(図5(B))。一方、同一の集光レンズを用いても、平行光束111のガウス分布のNAが0.2(NAg/NAc=0.5)であれば、6μm幅のパターンについては0.0%、2μm幅パターンでも0.42%となり、測定精度が向上する。   For example, when a NA 0.4 condensing lens is used and the NA of the Gaussian distribution of the parallel light beam 111 is 0.4, the protruding light is small (0.61%) for a 6 μm wide pattern, but 2 μm. With respect to the width pattern, the protruding light reaches 2.18% (FIG. 5B). On the other hand, even if the same condensing lens is used, if the NA of the Gaussian distribution of the parallel light beam 111 is 0.2 (NAg / NAc = 0.5), the pattern of 6 μm width is 0.0%, 2 μm width. Even the pattern is 0.42%, which improves the measurement accuracy.

また、被検査位置(例えば半透光部)の幅内に、試験光束全体の光強度の99.7%以上が入っている状態(はみ出し光0.3%以下)とするのが好ましい。より好ましくは、99.9%以上(はみ出し光0.1%以下)である。光束径中の光強度分布の調整は、光強度分布制御手段(例えば、アポダイゼーションフィルタ(図7参照))の利用や、集光レンズのNAの選択、それらの組み合わせによって行うことができる。   Further, it is preferable that 99.7% or more of the light intensity of the entire test light beam is within the width of the position to be inspected (for example, a semi-transparent portion) (excessive light is 0.3% or less). More preferably, it is 99.9% or more (excessive light 0.1% or less). The light intensity distribution in the beam diameter can be adjusted by using light intensity distribution control means (for example, an apodization filter (see FIG. 7)), selecting the NA of the condenser lens, or a combination thereof.

以上により、本願発明によって、CCDやCMOS等の2次元センサーを用いて画像を取得する従来の方法が有していた、測定領域から取得した信号強度が、該測定領域に隣接した領域で取得した信号強度の変化に影響して変動を生じる、という問題も発生せず、該測定領域の正確な透過率を得ることができるようになった。   As described above, according to the present invention, the signal intensity acquired from the measurement region that the conventional method of acquiring an image using a two-dimensional sensor such as a CCD or CMOS has acquired in the region adjacent to the measurement region. It is possible to obtain an accurate transmittance of the measurement region without causing a problem of fluctuation caused by affecting the change in signal intensity.

このように、本願発明は、微細なパターンの透過率を測定する際に、該パターンの周辺に存在するパターンの透過率の影響や、該パターン周辺にあるパターンによる検査光束の回折が生じることが無く、微細パターンの透過率測定を行うことが可能となる。ここで、本発明における、微細なパターンとは0.5μm以上7μm以下の線幅を有する半透光部の透過率測定に有効である。さらには0.5μm以上5μm以下の線幅、よりさらには0.5μm以上3μm以下の線幅の透過率測定に有効である。   As described above, in the present invention, when measuring the transmittance of a fine pattern, the influence of the transmittance of a pattern existing around the pattern and the diffraction of the inspection light beam by the pattern around the pattern may occur. Therefore, it is possible to measure the transmittance of a fine pattern. Here, the fine pattern in the present invention is effective for measuring the transmittance of a semi-translucent portion having a line width of 0.5 μm or more and 7 μm or less. Furthermore, it is effective for measuring transmittance of a line width of 0.5 μm or more and 5 μm or less, and further a line width of 0.5 μm or more and 3 μm or less.

また、本願発明によって、従来は不可能であった、フォトマスクの微細な半透光部や、前述の透過率をもたせた遮光部の微細パターンの膜透過率に関する品質保証が可能となった。さらには、周辺の条件に影響されず、膜固有の特性としての膜透過率を正確に評価可能な本願発明は、より微細化が求められているフォトマスクの開発においても有効となる。   In addition, according to the present invention, it has become possible to guarantee quality regarding the film transmittance of a fine pattern of a fine semi-transparent portion of a photomask and a light-shielding portion having the above-described transmittance, which has been impossible in the past. Furthermore, the present invention that can accurately evaluate the film transmittance as a characteristic characteristic of the film without being influenced by the surrounding conditions is also effective in the development of a photomask that is required to be further miniaturized.

なお、本発明は、上記実施の形態に限定されず、適宜変更して実施することができる。例えば、上記実施の形態における材質、パターン構成、部材の個数、サイズ、処理手順などは一例であり、本発明の効果を発揮する範囲内において種々変更して実施することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can implement by changing suitably. For example, the material, the pattern configuration, the number of members, the size, the processing procedure, and the like in the above embodiment are merely examples, and various modifications can be made within the scope of the effects of the present invention. In addition, various modifications can be made without departing from the scope of the object of the present invention.

101 光源
102 コリメータレンズ
103 集光レンズ
104 入射ポート
105 積分球
106 フォトディテクタ
111 平行光束
112 透過光束
120 被検体
121 波長選択フィルタ
122 コリメータレンズ
123 フォトディテクタ
DESCRIPTION OF SYMBOLS 101 Light source 102 Collimator lens 103 Condensing lens 104 Incident port 105 Integrating sphere 106 Photo detector 111 Parallel light beam 112 Transmitted light beam 120 Subject 121 Wavelength selection filter 122 Collimator lens 123 Photo detector

Claims (19)

試験光束を射出する光源装置と、前記試験光束を集光して被検体に導く集光光学系と、前記被検体を透過した透過光束を受光し、光量を検出する光検出装置と、前記光検出装置によって検出された光量に基づき、前記被検体の光透過率を求める演算装置と、を有する透過率測定装置であって、
前記集光された試験光束が、ビームウエスト近傍において前記被検体の被検査位置に入射するように、前記光源装置、前記集光光学系及び前記被検体の相対位置が調節されていること特徴とする透過率測定装置。
A light source device that emits a test light beam, a condensing optical system that collects the test light beam and guides it to a subject, a light detection device that receives a transmitted light beam that has passed through the subject, and detects the amount of light, and the light A transmittance measuring device having a computing device for obtaining the light transmittance of the subject based on the amount of light detected by the detection device,
The relative positions of the light source device, the condensing optical system, and the subject are adjusted so that the collected test light beam is incident on a subject position to be examined in the vicinity of a beam waist. Transmittance measuring device.
前記光源装置がレーザー光源を備え、
前記集光光学系に備えられた集光レンズの有効径を1としたときに、
前記集光レンズに入射される前記試験光束の径が、0.4以上0.6以下であることを特徴とする請求項1記載の透過率測定装置。
The light source device comprises a laser light source;
When the effective diameter of the condensing lens provided in the condensing optical system is 1,
The transmittance measuring apparatus according to claim 1, wherein a diameter of the test light beam incident on the condenser lens is 0.4 or more and 0.6 or less.
前記光検出装置は、内部にフォトディテクタを備えた積分球を有することを特徴とする請求項1又は2に記載の透過率測定装置。   The transmittance measuring device according to claim 1, wherein the light detection device includes an integrating sphere provided with a photodetector. 前記積分球は、透過光束が入光する入射ポートを有し、かつ、前記入射ポートのポート径が、前記透過光束が入光する位置における前記透過光束の径より大きくなるように、前記積分球が配置されることを特徴とする請求項1〜3のいずれかに記載の透過率測定装置。   The integrating sphere has an incident port through which a transmitted light beam enters, and the integrating sphere has a port diameter larger than the diameter of the transmitted light beam at a position where the transmitted light beam enters. The transmittance measuring device according to claim 1, wherein the transmittance measuring device is arranged. 前記集光光学系は、第1のコリメータレンズと集光レンズを有することを特徴とする請求項1〜4のいずれかに記載の透過率測定装置。   The transmittance measuring apparatus according to claim 1, wherein the condensing optical system includes a first collimator lens and a condensing lens. 前記被検体の主平面に平行な面内において、前記光源装置、前記集光光学系及び前記被検体の相対位置を調整するために、前記光源装置と前記集光光学系を移動させ、又は、前記被検体を移動させるための移動装置を備えたことを特徴とする請求項1〜5のいずれかに記載の透過率測定装置。   In order to adjust the relative positions of the light source device, the condensing optical system and the subject in a plane parallel to the main plane of the subject, the light source device and the condensing optical system are moved, or The transmittance measuring apparatus according to claim 1, further comprising a moving device for moving the subject. 前記被検体と前記光検出装置の間に、前記透過光束の径を調整する第2のコリメータレンズを有することを特徴とする請求項1〜6のいずれかに記載の透過率測定装置。   The transmittance measuring apparatus according to claim 1, further comprising a second collimator lens that adjusts a diameter of the transmitted light beam between the subject and the light detection apparatus. 前記集光光学系は、前記試験光束の光軸と垂直な面における光強度分布が、中央部において、周辺部より大きいものとする光分布調整手段を有することを特徴とする請求項1〜7のいずれかに記載の透過率測定装置。   8. The condensing optical system includes a light distribution adjusting unit that makes a light intensity distribution in a plane perpendicular to an optical axis of the test light beam larger in a central part than in a peripheral part. The transmittance measuring apparatus according to any one of the above. 透明基板上に形成した光学膜がパターニングされることにより形成された転写パターンを有するフォトマスクの、前記転写パターンの特定の被検査位置における透過率を測定する透過率検査装置であって、
試験光束を射出する光源装置と、前記試験光束を集光してフォトマスクに導く集光光学系と、前記フォトマスクを透過した透過光束を受光し、光量を検出する光検出装置と、前記光検出装置によって検出された光量に基づき、前記フォトマスクの前記被検査位置における光透過率を求める演算装置と、を有し、
前記集光された試験光束が、ビームウエスト近傍において前記フォトマスクの被検査位置に入射するように、前記光源装置、前記集光光学系及び前記フォトマスクの相対位置が調節されていること特徴とするフォトマスクの透過率検査装置。
A transmittance inspection apparatus for measuring a transmittance of a photomask having a transfer pattern formed by patterning an optical film formed on a transparent substrate at a specific inspection position of the transfer pattern,
A light source device that emits a test light beam, a condensing optical system that collects the test light beam and guides it to a photomask, a light detection device that receives a transmitted light beam that has passed through the photomask, and detects the amount of light, and the light An arithmetic unit that obtains light transmittance at the inspection position of the photomask based on the amount of light detected by the detection device;
The relative positions of the light source device, the condensing optical system, and the photomask are adjusted so that the collected test light beam is incident on the inspection position of the photomask near the beam waist. Photomask transmittance inspection device.
前記光源装置がレーザー光源を備え、
前記集光光学系に備えられた集光レンズの有効径を1としたときに、
前記集光レンズに入射される前記試験光束の径が、0.4以上0.6以下であることを特徴とする請求項9記載のフォトマスクの透過率検査装置。
The light source device comprises a laser light source;
When the effective diameter of the condensing lens provided in the condensing optical system is 1,
10. The photomask transmittance inspection apparatus according to claim 9, wherein a diameter of the test light beam incident on the condenser lens is 0.4 or more and 0.6 or less.
透明基板上に形成した光学膜がパターニングされることにより形成された転写パターンを有するフォトマスクの、前記転写パターンの特定の被検査位置における透過率を測定する透過率検査方法において、
光源装置から射出する試験光束を前記フォトマスクの被検査位置に集光し、前記試験光束のビームウエスト近傍において前記フォトマスクを透過させ、
透過後に拡散する透過光束を、光検出装置に入光させ、
前記光検出装置が検出した光量Lに基づき、前記被検査位置における光透過率Tを求めることを特徴とする透過率検査方法。
In a transmittance inspection method for measuring the transmittance of a photomask having a transfer pattern formed by patterning an optical film formed on a transparent substrate, at a specific inspection position of the transfer pattern,
Condensing the test light beam emitted from the light source device at the inspection position of the photomask, and transmitting the photomask near the beam waist of the test light beam,
The transmitted light beam that diffuses after transmission enters the light detection device,
A transmittance inspection method characterized in that a light transmittance T at the position to be inspected is obtained based on a light quantity L detected by the light detection device.
前記光検出装置は、内部にフォトディテクタを備えた積分球を有し、前記透過光束は、前記積分球内で、繰り返し拡散反射することにより強度が均一化した状態で、前記フォトディテクタによって光量検出されることを特徴とする請求項11記載の透過率検査方法。   The photodetector has an integrating sphere equipped with a photodetector inside, and the transmitted light beam is detected by the photodetector in a state where the intensity is uniformed by repeated diffuse reflection within the integrating sphere. The transmittance inspection method according to claim 11. 前記転写パターンは、露光光を透過する透光部と、露光光の一部を遮光する半透光部を有することを特徴とする請求項11又は12に記載の透過率検査方法。   The transmittance inspection method according to claim 11 or 12, wherein the transfer pattern includes a light-transmitting portion that transmits exposure light and a semi-light-transmitting portion that blocks part of the exposure light. 前記転写パターンは、露光光を実質的に遮光する遮光部を更に有することを特徴とする請求項13に記載の透過率検査方法。   The transmittance inspection method according to claim 13, wherein the transfer pattern further includes a light shielding portion that substantially shields exposure light. 前記フォトマスクは、被転写体上に形成されたレジスト膜に、異なる複数のレジスト残膜値を有するレジストパターンを形成するための、多階調フォトマスクであることを特徴とする請求項11〜14のいずれかに記載の透過率検査方法。   The photomask is a multi-tone photomask for forming a resist pattern having a plurality of different resist residual values on a resist film formed on a transfer target. The transmittance inspection method according to any one of 14. 前記光学膜が形成されていない透明基板上の任意の部分、または前記フォトマスクの光学膜が形成されていない部分を、参照位置として、
前記光源から射出する試験光束を、前記参照位置に集光し、前記試験光束のビームウエスト近傍において透明基板又は前記フォトマスクの前記参照位置を透過させ、
透過後に拡散する透過光束を、前記光検出装置に入光させ、
前記光検出装置が検出した光量L0と、請求項11〜15のいずれかに記載の透過率検査方法より得られた光量Lとを用いて、前記フォトマスクの被検査位置における光透過率Tを求めることを特徴とする請求項11〜15のいずれかに記載の透過率検査方法。
An arbitrary part on the transparent substrate where the optical film is not formed, or a part where the optical film of the photomask is not formed is used as a reference position.
The test light beam emitted from the light source is condensed at the reference position, and transmitted through the reference position of the transparent substrate or the photomask in the vicinity of the beam waist of the test light beam,
The transmitted light beam that diffuses after transmission is incident on the light detection device,
The light transmittance T at the inspected position of the photomask is calculated using the light amount L0 detected by the light detection device and the light amount L obtained by the transmittance inspection method according to any one of claims 11 to 15. The transmittance inspection method according to claim 11, wherein the transmittance inspection method is obtained.
透明基板上に、光学膜が形成されたフォトマスクブランクを用意し、前記光学膜にパターニングを施すことにより、転写パターンを形成し、前記転写パターンの検査を行うことを含む、フォトマスクの製造方法において、
前記検査において、請求項11〜16のいずれかに記載の透過率検査方法を用いることを特徴とするフォトマスク製造方法。
A method for manufacturing a photomask, comprising: preparing a photomask blank having an optical film formed on a transparent substrate; patterning the optical film to form a transfer pattern; and inspecting the transfer pattern In
In the said inspection, the transmittance | permeability inspection method in any one of Claims 11-16 is used, The photomask manufacturing method characterized by the above-mentioned.
請求項17に記載の製造方法により製造したフォトマスクと、露光装置を用い、前記フォトマスクの転写パターンを、被転写体上に転写することを特徴とするパターン転写方法。   18. A pattern transfer method, wherein a photomask manufactured by the manufacturing method according to claim 17 and an exposure apparatus are used to transfer a transfer pattern of the photomask onto a transfer target. 請求項11〜16のいずれかに記載の透過率検査方法によって得られた、前記フォトマスクの所望の被検査位置の光透過率Tを、前記フォトマスクと対応付けた状態で有することを特徴とするフォトマスク製品。   It has the light transmittance T of the to-be-inspected position of the said photomask obtained by the transmittance | permeability inspection method in any one of Claims 11-16 in the state matched with the said photomask, Photomask products.
JP2011155689A 2010-07-30 2011-07-14 Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product Pending JP2012047732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011155689A JP2012047732A (en) 2010-07-30 2011-07-14 Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010172729 2010-07-30
JP2010172729 2010-07-30
JP2011155689A JP2012047732A (en) 2010-07-30 2011-07-14 Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product

Publications (1)

Publication Number Publication Date
JP2012047732A true JP2012047732A (en) 2012-03-08

Family

ID=45793896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011155689A Pending JP2012047732A (en) 2010-07-30 2011-07-14 Transmittance measuring instrument, photomask transmittance inspection device, transmittance inspection method, photomask manufacturing method, pattern transfer method, and photomask product

Country Status (4)

Country Link
JP (1) JP2012047732A (en)
KR (1) KR101286374B1 (en)
CN (1) CN102374977B (en)
TW (1) TWI497055B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120170040A1 (en) * 2010-12-30 2012-07-05 Samsung Corning Precision Materials Co., Ltd. Apparatus for measuring transmissivity of patterned glass substrate
US20130222804A1 (en) * 2012-01-16 2013-08-29 Samsung Corning Precision Materials Co., Ltd. Apparatus for measuring transmittance of cover glass for photovoltaic cell
CN103852452A (en) * 2012-11-28 2014-06-11 海洋王(东莞)照明科技有限公司 Method and system for testing light transmittance
CN104181106A (en) * 2013-05-27 2014-12-03 深圳市海洋王照明工程有限公司 Transparent member light transmittance test tooling
US9010398B2 (en) 2012-11-16 2015-04-21 Samsung Display Co., Ltd. Carrier substrate removing apparatus, display apparatus manufacturing system, and method of manufacturing the display apparatus
CN105628346A (en) * 2016-04-05 2016-06-01 中国工程物理研究院激光聚变研究中心 Lens transmittance test system and method
KR101776708B1 (en) 2012-04-09 2017-09-08 한화테크윈 주식회사 Device for inspecting graphene board
CN107388994A (en) * 2017-06-14 2017-11-24 武汉华星光电技术有限公司 A kind of method and device for measuring polysilicon roughness
US20180347537A1 (en) * 2015-12-02 2018-12-06 Ricoh Company, Ltd. Laser device, ignition device, and internal combustion engine
CN116533419A (en) * 2023-06-06 2023-08-04 广东汇发塑业科技有限公司 Air cooler control method of multilayer co-extrusion film forming machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015010714A1 (en) * 2013-07-22 2015-01-29 Applied Materials, Inc. Apparatus and method for processing a large area substrate
JP6474655B2 (en) * 2014-09-30 2019-02-27 エイブリック株式会社 Reticle transmittance measuring method, projection exposure apparatus, and projection exposure method
US9733567B2 (en) * 2014-09-30 2017-08-15 Sii Semiconductor Corporation Reticle transmittance measurement method, and projection exposure method using the same
CN105158214B (en) * 2015-09-12 2017-11-24 宁波申山新材料科技有限公司 A kind of function adhesive plaster membrane permeability tester and its method of testing
CN105891163B (en) * 2016-03-31 2018-10-09 华南理工大学 The test device and method of long-persistence luminous intensity in 0.3 to 2 micron ranges
CN106970049B (en) * 2017-05-15 2024-01-02 中国工程物理研究院激光聚变研究中心 Transmission distribution measuring system and method
CN109504320A (en) * 2017-09-14 2019-03-22 东莞市荣腾纳米科技有限公司 Pressure sensitive adhesive preparation method for thermal isolation film
CN109501396B (en) * 2017-09-14 2021-06-22 东莞市荣腾纳米科技有限公司 Light guide and heat insulation film and preparation method thereof
CN109000884B (en) * 2018-05-04 2020-12-01 芜湖良匠机械制造有限公司 Detection device for monitoring light transmittance of glass substrate
WO2019236616A1 (en) 2018-06-05 2019-12-12 Electro Scientific Industries, Inc. Laser-processing apparatus, methods of operating the same, and methods of processing workpieces using the same
CN111896226A (en) * 2019-05-06 2020-11-06 深圳市杰普特光电股份有限公司 Transmittance detection system and control method thereof
TWI808707B (en) * 2021-04-07 2023-07-11 旺矽科技股份有限公司 Optical detection system and optical detection method
CN113267473B (en) * 2021-05-18 2022-09-23 陕西理工大学 Light transmission detection imaging device and method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182141A (en) * 1984-09-28 1986-04-25 Shimadzu Corp Spectrophotometer
JPS61265552A (en) * 1985-05-20 1986-11-25 Shimadzu Corp Absorptiometric analyser
JPH04100045A (en) * 1990-08-20 1992-04-02 Nikon Corp Photomask inspecting device
JPH04146437A (en) * 1990-10-08 1992-05-20 Nikon Corp Method and device for inspecting mask for phase shift
JPH07159978A (en) * 1993-10-12 1995-06-23 Mitsubishi Electric Corp Method for inspecting phase shift mask and inspecting device used for the method
JPH0915153A (en) * 1995-06-28 1997-01-17 Dainippon Screen Mfg Co Ltd Transmissivity measuring device
JPH10115909A (en) * 1996-10-11 1998-05-06 Toppan Printing Co Ltd Device and method for inspecting phase shift mask
JP2001235853A (en) * 1999-10-13 2001-08-31 Applied Materials Inc Method and device for reticle inspection using aerial image
JP2001524215A (en) * 1997-05-06 2001-11-27 ジェイ. ホルコム、マシュー Surface analysis using Gaussian beam distribution
JP2002231613A (en) * 2001-02-05 2002-08-16 Nikon Corp Exposure method and aligner, mask, and method of manufacturing the mask
JP2004117015A (en) * 2002-09-24 2004-04-15 Canon Inc Transmittance measuring apparatus
JP2006098389A (en) * 2004-09-02 2006-04-13 Pentax Corp Method and apparatus for measuring transmittance of finite-system optical element
JP2008190938A (en) * 2007-02-02 2008-08-21 Lasertec Corp Inspection device, inspection method, and manufacturing method of pattern substrate
WO2009007977A2 (en) * 2007-07-12 2009-01-15 Pixer Technology Ltd. Method and apparatus for duv transmission mapping

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021523A (en) * 1983-07-15 1985-02-02 Toshiba Corp Mask defect inspection
JPS61279128A (en) * 1985-06-05 1986-12-09 Toshiba Corp Mask defect inspecting method
US5235400A (en) * 1988-10-12 1993-08-10 Hitachi, Ltd. Method of and apparatus for detecting defect on photomask
US5563702A (en) * 1991-08-22 1996-10-08 Kla Instruments Corporation Automated photomask inspection apparatus and method
JPH1195410A (en) * 1997-09-19 1999-04-09 Oki Electric Ind Co Ltd Method and device for inspecting defect of photomask
JP3814155B2 (en) * 2001-03-14 2006-08-23 Hoya株式会社 Transmittance measuring method and apparatus
JP4185428B2 (en) * 2003-09-19 2008-11-26 Hoya株式会社 Transmittance measuring method and transmittance measuring apparatus
KR100684895B1 (en) * 2004-06-14 2007-02-20 삼성전자주식회사 System and method for measuring dimension of patterns formed on photomask
KR20070080173A (en) * 2006-02-06 2007-08-09 삼성전자주식회사 Exposure method and exposure system
JP2008185582A (en) 2007-01-04 2008-08-14 Lasertec Corp Phase shift amount measuring apparatus and transmittance measuring apparatus
TWI446105B (en) * 2007-07-23 2014-07-21 Hoya Corp Method of manufacturing a photomask, method of transferring a pattern, photomask and database
CN101545825A (en) * 2009-02-25 2009-09-30 宋光均 Fast measuring device and measuring method of optical element

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182141A (en) * 1984-09-28 1986-04-25 Shimadzu Corp Spectrophotometer
JPS61265552A (en) * 1985-05-20 1986-11-25 Shimadzu Corp Absorptiometric analyser
JPH04100045A (en) * 1990-08-20 1992-04-02 Nikon Corp Photomask inspecting device
JPH04146437A (en) * 1990-10-08 1992-05-20 Nikon Corp Method and device for inspecting mask for phase shift
JPH07159978A (en) * 1993-10-12 1995-06-23 Mitsubishi Electric Corp Method for inspecting phase shift mask and inspecting device used for the method
JPH0915153A (en) * 1995-06-28 1997-01-17 Dainippon Screen Mfg Co Ltd Transmissivity measuring device
JPH10115909A (en) * 1996-10-11 1998-05-06 Toppan Printing Co Ltd Device and method for inspecting phase shift mask
JP2001524215A (en) * 1997-05-06 2001-11-27 ジェイ. ホルコム、マシュー Surface analysis using Gaussian beam distribution
JP2001235853A (en) * 1999-10-13 2001-08-31 Applied Materials Inc Method and device for reticle inspection using aerial image
JP2002231613A (en) * 2001-02-05 2002-08-16 Nikon Corp Exposure method and aligner, mask, and method of manufacturing the mask
JP2004117015A (en) * 2002-09-24 2004-04-15 Canon Inc Transmittance measuring apparatus
JP2006098389A (en) * 2004-09-02 2006-04-13 Pentax Corp Method and apparatus for measuring transmittance of finite-system optical element
JP2008190938A (en) * 2007-02-02 2008-08-21 Lasertec Corp Inspection device, inspection method, and manufacturing method of pattern substrate
WO2009007977A2 (en) * 2007-07-12 2009-01-15 Pixer Technology Ltd. Method and apparatus for duv transmission mapping

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120170040A1 (en) * 2010-12-30 2012-07-05 Samsung Corning Precision Materials Co., Ltd. Apparatus for measuring transmissivity of patterned glass substrate
US9030664B2 (en) * 2010-12-30 2015-05-12 Samsung Corning Precision Materials Co., Ltd. Apparatus for measuring transmissivity of patterned glass substrate
US20130222804A1 (en) * 2012-01-16 2013-08-29 Samsung Corning Precision Materials Co., Ltd. Apparatus for measuring transmittance of cover glass for photovoltaic cell
US8982351B2 (en) * 2012-01-16 2015-03-17 Samsung Corning Precision Materials Co., Ltd. Apparatus for measuring transmittance of cover glass for photovoltaic cell
KR101776708B1 (en) 2012-04-09 2017-09-08 한화테크윈 주식회사 Device for inspecting graphene board
US9010398B2 (en) 2012-11-16 2015-04-21 Samsung Display Co., Ltd. Carrier substrate removing apparatus, display apparatus manufacturing system, and method of manufacturing the display apparatus
CN103852452A (en) * 2012-11-28 2014-06-11 海洋王(东莞)照明科技有限公司 Method and system for testing light transmittance
CN104181106A (en) * 2013-05-27 2014-12-03 深圳市海洋王照明工程有限公司 Transparent member light transmittance test tooling
US20180347537A1 (en) * 2015-12-02 2018-12-06 Ricoh Company, Ltd. Laser device, ignition device, and internal combustion engine
US10626842B2 (en) * 2015-12-02 2020-04-21 Ricoh Company, Ltd. Laser device, ignition device, and internal combustion engine
CN105628346A (en) * 2016-04-05 2016-06-01 中国工程物理研究院激光聚变研究中心 Lens transmittance test system and method
CN105628346B (en) * 2016-04-05 2019-05-21 中国工程物理研究院激光聚变研究中心 The transmissivity test macro and method of lens
CN107388994A (en) * 2017-06-14 2017-11-24 武汉华星光电技术有限公司 A kind of method and device for measuring polysilicon roughness
CN116533419A (en) * 2023-06-06 2023-08-04 广东汇发塑业科技有限公司 Air cooler control method of multilayer co-extrusion film forming machine
CN116533419B (en) * 2023-06-06 2023-10-20 广东汇发塑业科技有限公司 Air cooler control method of multilayer co-extrusion film forming machine

Also Published As

Publication number Publication date
TW201215877A (en) 2012-04-16
TWI497055B (en) 2015-08-21
KR101286374B1 (en) 2013-07-15
KR20120057495A (en) 2012-06-05
CN102374977A (en) 2012-03-14
CN102374977B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
KR101286374B1 (en) Transmittance measurement apparatus, transmittance inspecting apparatus of photomask, transmittance inspecting method, photomask manufacturing method, pattern transfer method, and photomask product
KR100770771B1 (en) Optical element, exposure apparatus, and device manufacturing method
TWI569002B (en) Metrology tool, catadioptric optical system, and metrology method
TWI605311B (en) Measuring method, and exposure method and apparatus
TWI534558B (en) Detection device, exposure apparatus, and device manufacturing method using same
CN107850858A (en) Technique sensitivity metering system and method
JP2003007598A (en) Focus monitoring method, focus monitor and method for manufacturing semiconductor device
TWI522608B (en) Transmittance measurement apparatus for photomask and transmittance measurement method
TW202117309A (en) Method of measurement
KR20100097626A (en) Method for evaluating multi-gray scale photomask
KR100846044B1 (en) Sensor unit, exposure apparatus, and device manufacturing method
JP2020012892A (en) Exposure apparatus and method for manufacturing article
JP2006071481A (en) Optical characteristic measuring device and method, semiconductor exposure device and exposure method using optical characteristic measuring device, and semiconductor device manufacturing method
JP2970330B2 (en) Method for measuring internal transmittance and adjusting spectrophotometer
JPWO2005124831A1 (en) Photodetection apparatus, illumination optical apparatus, exposure apparatus, and exposure method
TW202008080A (en) Lithography projection apparatus
JP3327627B2 (en) Original exposure plate and projection exposure apparatus using the same
JP2003075990A (en) Mask for inspection and inspecting method for exposure device
KR101295557B1 (en) Standard sample for calibration and method of producing the same, method of calibrating spectrophotometer, and mask blank and method of producing the same
JP2015220343A (en) Detector, lithographic apparatus and article manufacturing method
KR20200038174A (en) Exposure apparatus, exposure method, and method of manufacturing article
JPH0697038A (en) Projection aligner
KR20190013517A (en) Method for inspecting a photomask, method for manufacturing a photomask, and apparatus for inspecting a photomask
JPH09190965A (en) Position detector
JP2021531502A (en) Methods and Devices for Determining the Effect of One or More Pixels Installed on a Photolithography Mask Substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151104