JP2019086180A - Double pipe and manufacturing method thereof - Google Patents

Double pipe and manufacturing method thereof Download PDF

Info

Publication number
JP2019086180A
JP2019086180A JP2017212675A JP2017212675A JP2019086180A JP 2019086180 A JP2019086180 A JP 2019086180A JP 2017212675 A JP2017212675 A JP 2017212675A JP 2017212675 A JP2017212675 A JP 2017212675A JP 2019086180 A JP2019086180 A JP 2019086180A
Authority
JP
Japan
Prior art keywords
pipe
fin
tube
fin material
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017212675A
Other languages
Japanese (ja)
Inventor
裕之 大野
Hiroyuki Ono
裕之 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2017212675A priority Critical patent/JP2019086180A/en
Publication of JP2019086180A publication Critical patent/JP2019086180A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

To provide a pipe with a fin incorporated therein, and a manufacturing method thereof capable of reducing the number of manufacturing processes for the pipe, to enhance productivity.SOLUTION: A pipe 30 with a fin incorporated therein is configured such that in an inner pipe 20 (pipe), a fin material 10 is arranged; between an inner periphery 22 of the inner pipe 20 (pipe) and the fin material 10, a clearance 11 smaller than a thickness t of the fin material 10 is provided; and in the inner pipe 20, the fin material 10 is twisted and molded spirally. Although in conventional arts where a fin material formed spirally in advance is inserted into an inner pipe, it is necessary to contract the pipe after insertion, this invention can save such a process.SELECTED DRAWING: Figure 1

Description

本発明は、フィン内蔵管及びその製造方法に関する。   The present invention relates to a fin-containing tube and a method of manufacturing the same.

特許文献1には、管の内部に螺旋状のフィン材(薄肉板)を備える熱交換パイプが開示されている。   Patent Document 1 discloses a heat exchange pipe provided with a helical fin material (thin plate) inside a pipe.

上記熱交換パイプの製造時には、まず、フィン材が螺旋状に成形される。その後、成形された螺旋状のフィン材が管の内部に挿入される。その後、管の外周及び内周を縮径する工程が行われ、管の内周がフィン材に隙間なく当接するようになっている。   At the time of manufacturing the heat exchange pipe, first, the fin material is formed in a spiral shape. Thereafter, the shaped spiral fin material is inserted into the inside of the tube. Then, the process of diameter-reducing the outer periphery and inner periphery of a pipe | tube is performed, and the inner periphery of a pipe | tube abuts on a fin material without gap.

特開2009−186063号公報JP, 2009-186063, A

しかしながら、上記熱交換パイプにあっては、管の内周をフィン材に隙間なく当接させるために、管を縮径する工程が必要であり、生産性が低下するおそれがあった。   However, in the above heat exchange pipe, in order to bring the inner circumference of the pipe into contact with the fin material without any gap, a step of reducing the diameter of the pipe is necessary, which may lower the productivity.

本発明は、上記の問題点に鑑みてなされたものであり、フィン内蔵管の製造工数を減らして生産性を高めることを目的とする。   The present invention has been made in view of the above-mentioned problems, and an object thereof is to reduce the number of manufacturing steps of the fin-incorporated tube and to improve the productivity.

本発明のある態様によれば、管の内部に螺旋状のフィン材が配置されるフィン内蔵管であって、前記管の内周と前記フィン材との間に前記フィン材の板厚より小さい間隙を有するフィン内蔵管が提供される。   According to an aspect of the present invention, it is a fin-incorporated pipe in which a spiral fin material is disposed in the inside of the pipe, wherein the thickness is smaller than the thickness of the fin material between the inner periphery of the pipe and the fin material. A fin-in-tube with a gap is provided.

上記態様によれば、フィン内蔵管の製造時に、管の内周に間隙を持ってフィン材を配置した後に、管を縮径する工程が不要になる。これにより、フィン内蔵管の生産性を高められる。   According to the above aspect, the step of reducing the diameter of the pipe becomes unnecessary after arranging the fin material with a gap on the inner circumference of the pipe at the time of manufacturing the fin-incorporated pipe. This can improve the productivity of the fin-in-pipe.

図1は、本発明の実施形態に係るフィン内蔵管を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a fin-incorporated pipe according to an embodiment of the present invention. 図2は、図1のII−II線に沿う横断面図である。FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 図3は、成形工程におけるフィン内蔵管を示す斜視図である。FIG. 3 is a perspective view showing the fin-incorporated pipe in the forming step. 図4Aは、間隙の寸法に応じて熱伝達率対圧力損失比率が変化する特性を示す線図である。FIG. 4A is a diagram showing the characteristic that the ratio of heat transfer to pressure loss changes according to the size of the gap. 図4Bは、間隙の寸法に応じて熱伝達率対圧力損失比率が変化する特性を示す線図である。FIG. 4B is a diagram showing the characteristic that the ratio of heat transfer to pressure loss changes according to the size of the gap. 図4Cは、間隙の寸法に応じて熱伝達率対圧力損失比率が変化する特性を示す線図である。FIG. 4C is a diagram showing the characteristic that the ratio of heat transfer to pressure loss changes according to the size of the gap. 図5Aは、間隙の寸法に応じて熱伝達率対圧力損失比率が変化する特性を示す線図である。FIG. 5A is a diagram showing the characteristic that the ratio of heat transfer to pressure loss changes according to the size of the gap. 図5Bは、間隙の寸法に応じて熱伝達率対圧力損失比率が変化する特性を示す線図である。FIG. 5B is a diagram showing the characteristic that the ratio of heat transfer to pressure loss changes according to the size of the gap. 図5Cは、間隙の寸法に応じて熱伝達率対圧力損失比率が変化する特性を示す線図である。FIG. 5C is a diagram showing the characteristic that the ratio of heat transfer to pressure loss changes according to the size of the gap.

以下、添付図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the attached drawings.

図1に示す二重管50は、車両等に搭載される空調装置(図示省略)に熱交換器として設けられる。   The double pipe 50 shown in FIG. 1 is provided as a heat exchanger in an air conditioner (not shown) mounted on a vehicle or the like.

二重管50は、フィン材10を内蔵するフィン内蔵管30と、フィン内蔵管30を包囲する外管40と、を備える。二重管50では、空調装置の冷媒がフィン内蔵管30の外側と内側をそれぞれ流通し、冷媒どうしがフィン内蔵管30を介して熱交換をする。   The double pipe 50 includes a fin-incorporated pipe 30 containing the fin material 10 and an outer pipe 40 surrounding the fin-incorporated pipe 30. In the double pipe 50, the refrigerant of the air conditioner flows through the outside and the inside of the fin-containing pipe 30, respectively, and the refrigerants exchange heat via the fin-containing pipe 30.

円筒状の外管40の内部には、フィン内蔵管30との間に外側流路52が形成される。外側流路52の両端は、外管40の端部41によって閉塞される。外管40には、外側流路52に冷媒を導く入口58及び出口59が形成される。   An outer flow passage 52 is formed inside the cylindrical outer tube 40 with the fin-containing tube 30. Both ends of the outer flow passage 52 are closed by the end 41 of the outer tube 40. The outer pipe 40 is formed with an inlet 58 and an outlet 59 for guiding the refrigerant to the outer flow passage 52.

フィン内蔵管30は、円筒状の内管20と、内管20の内部に配置される螺旋状のフィン材10と、を備える。内管20の内部には、内側流路51が形成される。内管20の両端部(図示省略)には、冷媒を導く配管(図示省略)が接続される。フィン材10は、伝熱部材として設けられる。   The fin-incorporated pipe 30 includes a cylindrical inner pipe 20 and a spiral fin material 10 disposed inside the inner pipe 20. An inner flow passage 51 is formed in the inner pipe 20. Piping (not shown) for leading the refrigerant is connected to both ends (not shown) of the inner pipe 20. The fin material 10 is provided as a heat transfer member.

フィン材10は、薄肉の板状に形成される。フィン材10、内管20、及び外管40は、例えばアルミニウム等の金属を材質とする。   The fin material 10 is formed in a thin plate shape. The fin material 10, the inner pipe 20, and the outer pipe 40 are made of, for example, a metal such as aluminum.

図2に示すように、フィン内蔵管30は、内管20の内周22とフィン材10の外周端12との間に間隙11を有する。   As shown in FIG. 2, the fin-incorporated pipe 30 has a gap 11 between the inner periphery 22 of the inner pipe 20 and the outer peripheral end 12 of the fin material 10.

図2に示すように、内管20の内径をD、フィン材10の板厚tの方向に直交する幅(フィン径)をSとすると、管の内径Dに対する前記フィン材の幅Sの寸法差Cは、次式で表される。
C=D−S …(1)
よって、間隙11の寸法(クリアランス)の平均値は、C/2で表される。
As shown in FIG. 2, assuming that the inner diameter of the inner pipe 20 is D and the width (fin diameter) orthogonal to the direction of the thickness t of the fin material 10 is S, the dimension of the width S of the fin material relative to the inner diameter D of the pipe The difference C is expressed by the following equation.
C = D-S (1)
Therefore, the average value of the dimension (clearance) of the gap 11 is represented by C / 2.

次に、フィン内蔵管30及び二重管50の製造方法について説明する。   Next, the manufacturing method of the fin built-in pipe | tube 30 and the double pipe | tube 50 is demonstrated.

まず、二重管50の一方の端部53において、例えばカシメ加工機(図示省略)を用いて外管40、内管20、及びフィン材10を互いにカシメ固定するカシメ工程が行われる。   First, at one end 53 of the double pipe 50, a caulking process of caulking and fixing the outer pipe 40, the inner pipe 20, and the fin material 10 to each other is performed using, for example, a caulking machine (not shown).

続いて、内管20の内部でフィン材10を螺旋状に成形する成形工程が行われる。   Subsequently, a forming step of forming the fin material 10 in a spiral shape inside the inner pipe 20 is performed.

成形工程では、図3に示す成形装置60が用いられる。成形装置60は、内管20の内部に挿入する芯金61を備える。円柱状の芯金61は、長手方向に延在して開口するスリット62を有する。   In the molding process, a molding apparatus 60 shown in FIG. 3 is used. The forming device 60 includes a cored bar 61 inserted into the inner pipe 20. The cylindrical cored bar 61 has a slit 62 extending in the longitudinal direction and opening.

成形工程では、まず、チャック(図示省略)が外管40の外周を把持し、芯金61を内管20の内部に挿入する。このとき、芯金61のスリット62にフィン材10が挿入される。   In the forming step, first, a chuck (not shown) grips the outer periphery of the outer tube 40 and inserts the cored bar 61 into the inner tube 20. At this time, the fin material 10 is inserted into the slit 62 of the core metal 61.

続いて、図3に矢印hで示すように、駆動機構(図示省略)によってチャックに把持された外管40及び内管20を芯金61に対して中心線o方向に移動するとともに、図3に矢印eで示すように、芯金61を外管40及び内管20に対して一方向に回転させる。これにより、芯金61のスリット62から出ていくフィン材10は、フィン固定部15を支点として捩られることで、螺旋状に成形される。このとき、フィン材10は、その外周端12と内管20の内周22との間に間隙11を持つため、その外周端12に生じる摩擦力が抑えられることで、円滑に成形される。   Subsequently, as shown by the arrow h in FIG. 3, the outer tube 40 and the inner tube 20 gripped by the chuck by the drive mechanism (not shown) are moved in the center line o direction with respect to the core metal 61 The core metal 61 is rotated in one direction with respect to the outer pipe 40 and the inner pipe 20 as indicated by an arrow e in FIG. Thereby, the fin material 10 which comes out of the slit 62 of the metal core 61 is formed in a spiral shape by being twisted with the fin fixing portion 15 as a fulcrum. At this time, since the fin member 10 has the gap 11 between the outer peripheral end 12 and the inner periphery 22 of the inner pipe 20, it is formed smoothly by suppressing the frictional force generated at the outer peripheral end 12.

上記フィン材10の成形時に、駆動機構は、芯金61を内管20の中心線O方向に移動させる移動速度と、芯金61を回転させる回転速度と、が制御される。これにより、フィン材10は、内管20に対して任意の位置で捩られる。   When the fin material 10 is formed, the drive mechanism controls the moving speed of moving the cored bar 61 in the direction of the center line O of the inner pipe 20 and the rotational speed of rotating the cored bar 61. Thus, the fin material 10 is twisted at an arbitrary position with respect to the inner pipe 20.

なお、上記成形工程では、外管40及び内管20を中心線O方向に移動する過程で、曲げ加工機(図示省略)を用いて外管40、内管20、及びフィン材10を共に湾曲させる曲げ加工を行ってもよい。   In the above forming step, in the process of moving the outer pipe 40 and the inner pipe 20 in the direction of the center line O, the outer pipe 40, the inner pipe 20 and the fin material 10 are curved together using a bending machine (not shown). Bending may be performed.

上記成形工程が行われた後に、二重管50の他方の端部53において、カシメ加工機(図示省略)を用いて外管40、内管20、及びフィン材10を互いに固定するカシメ工程が行われる。   After the above forming process is performed, there is a caulking process in which the outer pipe 40, the inner pipe 20, and the fin material 10 are fixed to each other using a caulking machine (not shown) at the other end 53 of the double pipe 50 To be done.

続いて、二重管50の両端部53において、外管40の内周を内管20の外周に例えばろう付けによって隙間なく接合する接合工程が行われる。   Subsequently, at both ends 53 of the double pipe 50, a bonding step is performed in which the inner circumference of the outer pipe 40 is joined to the outer circumference of the inner pipe 20 without any gap, for example, by brazing.

以上の工程が順に行われることによって、フィン内蔵管30及び二重管50が製造される。   The fin-incorporated tube 30 and the double tube 50 are manufactured by sequentially performing the above steps.

製造された二重管50は、空調装置の冷媒が循環する回路(図示省略)に組み付けられる。   The manufactured double pipe 50 is assembled to a circuit (not shown) through which the refrigerant of the air conditioner circulates.

空調装置の作動時には、高温高圧の液状冷媒が図1に矢印a、bで示すように入口58及び出口59を通じて外側流路52に導かれる。そして、低温低圧のガス状冷媒が図1に矢印c、dで示すように内側流路51に導かれる。こうして、二重管50では、外側流路52及び内側流路51をそれぞれ流通する冷媒どうしがフィン内蔵管30を介して熱交換する。   During operation of the air conditioner, a high temperature and high pressure liquid refrigerant is introduced to the outer flow passage 52 through the inlet 58 and the outlet 59 as shown by arrows a and b in FIG. Then, the low-temperature low-pressure gaseous refrigerant is led to the inner flow passage 51 as shown by arrows c and d in FIG. Thus, in the double pipe 50, the refrigerant flowing through the outer flow passage 52 and the inner flow passage 51 exchanges heat via the fin-containing tube 30.

このときに、内側流路51では、冷媒がフィン材10に沿って螺旋状に旋回しながら流通することで、冷媒がフィン材10及び内管20を介して熱交換することが促される。内側流路51では、冷媒が間隙11を通じて内管20の内周22に沿って流れるため、間隙11の寸法C/2を大きくすると、フィン内蔵管30における冷媒の圧力損失Pを低く抑えられる反面、フィン内蔵管30の熱伝達率Qが低下する。   At this time, in the inner flow passage 51, the refrigerant circulates while spirally swirling along the fin material 10, thereby promoting the heat exchange of the refrigerant via the fin material 10 and the inner pipe 20. In the inner flow passage 51, since the refrigerant flows along the inner periphery 22 of the inner pipe 20 through the gap 11, if the dimension C / 2 of the gap 11 is increased, the pressure loss P of the refrigerant in the fin-containing tube 30 can be suppressed low. The heat transfer coefficient Q of the fin built-in tube 30 is lowered.

フィン内蔵管30では、間隙11の寸法C/2がフィン材10の板厚tより小さい寸法に設定される。これにより、間隙11によって形成される流路では、流路幅の寸法C/2が、流路長さの寸法tより小さくなることで、熱伝達率Qの低下が抑えられる。   In the fin-incorporated tube 30, the dimension C / 2 of the gap 11 is set to be smaller than the thickness t of the fin material 10. As a result, in the flow path formed by the gap 11, the dimension C / 2 of the flow path width is smaller than the dimension t of the flow path length, whereby the decrease in the heat transfer coefficient Q can be suppressed.

ここで、内管20の内径Dに対するフィン材10の幅Sの比率を寸法比率S/Dとする。寸法比率S/Dは、フィン材10の幅Sが内管20の内径Dと同じである場合に1.0であり、間隙11の寸法C/2が大きくなる程小さくなる値である。   Here, the ratio of the width S of the fin material 10 to the inner diameter D of the inner pipe 20 is referred to as a dimensional ratio S / D. The dimensional ratio S / D is 1.0 when the width S of the fin material 10 is the same as the inner diameter D of the inner pipe 20, and the smaller the dimension C / 2 of the gap 11, the smaller the value.

フィン内蔵管30では、寸法比率S/Dに応じてフィン内蔵管30の圧力損失Pに対する熱伝達率Qの熱伝達率対圧力損失比率Q/Pが以下のように増減する。なお、熱伝達率対圧力損失比率Q/Pは、冷媒が内側流路51を流通する過程で単位時間及び単位流路長さあたりのエネルギー損失に対する外側流路52を流通する冷媒との間で伝達される熱量の比である。フィン内蔵管30では、熱伝達率対圧力損失比率Q/Pの値が高いことが望ましい。   In the fin built-in tube 30, the heat transfer coefficient-to-pressure loss ratio Q / P of the heat transfer coefficient Q with respect to the pressure loss P of the fin built-in tube 30 increases or decreases as follows according to the dimensional ratio S / D. Note that the heat transfer coefficient to pressure loss ratio Q / P corresponds to the refrigerant flowing through the outer flow passage 52 for the unit time and the energy loss per unit flow passage length in the process of the refrigerant flowing through the inner flow passage 51. It is the ratio of the amount of heat transferred. In the fin-incorporated tube 30, it is desirable that the value of the heat transfer coefficient to pressure loss ratio Q / P be high.

図4A〜図4C、図5A〜図5Cは、寸法差Cを0〜0.6mmの範囲で変化させた場合に、熱伝達率Q、圧力損失P、及び熱伝達率対圧力損失比率Q/Pがそれぞれ変化する特性を示す線図である。各線図において、横軸のパラメータを内管20の内径Dに対するフィン材10の幅Sの寸法比率S/Dとし、縦軸のパラメータを熱伝達率Q、圧力損失P、または熱伝達率対圧力損失比率Q/Pとしている。なお、熱伝達率Q、圧力損失P、熱伝達率対圧力損失比率Q/Pの各値は、計算によって求められる。   FIGS. 4A to 4C and FIGS. 5A to 5C show that the heat transfer coefficient Q, the pressure loss P, and the heat transfer coefficient to pressure loss ratio Q / when the dimensional difference C is changed in the range of 0 to 0.6 mm. It is a diagram which shows the characteristic which P changes, respectively. In each diagram, the parameter of the horizontal axis is the dimensional ratio S / D of the width S of the fin material 10 to the inner diameter D of the inner pipe 20, and the parameter of the vertical axis is the heat transfer coefficient Q, pressure loss P, or heat transfer coefficient versus pressure It is assumed that the loss ratio Q / P. The values of the heat transfer coefficient Q, the pressure loss P, and the heat transfer coefficient to pressure loss ratio Q / P are determined by calculation.

図4A〜図4Cは、内管20の内径Dを16.6mmとして、内側流路51及び外側流路52を流通する冷媒の流量を130kg/h、110kg/h、90kg/hとした場合の特性である。   4A to 4C show the case where the inner diameter D of the inner pipe 20 is 16.6 mm, and the flow rates of the refrigerant flowing through the inner flow passage 51 and the outer flow passage 52 are 130 kg / h, 110 kg / h, and 90 kg / h. It is a characteristic.

図4A〜図4Cにおいて、熱伝達率対圧力損失比率Q/Pは、寸法比率S/Dが1.0から小さくなるのに伴って次第に高まってピーク値に達した後に次第に低くなる。   In FIGS. 4A-4C, the heat transfer coefficient to pressure loss ratio Q / P gradually increases as the dimensional ratio S / D decreases from 1.0 and gradually decreases after reaching a peak value.

図4A〜図4Cの順に冷媒の流量が減少するのに伴って、熱伝達率対圧力損失比率Q/Pは、増減する度合いが大きくなり、かつピーク値付近に保たれるピーク範囲が狭くなる。   As the flow rate of the refrigerant decreases in the order of FIG. 4A to FIG. 4C, the degree of heat transfer to pressure loss ratio Q / P increases and decreases, and the peak range kept near the peak value decreases. .

図4A〜図4Cにおいて、寸法差Cが0となる場合(S/D=1.0)の熱伝達率対圧力損失比率Q/Pの値を基準値A0とし、この基準値A0を1.2倍にした値を第一基準値A1とする。熱伝達率対圧力損失比率Q/Pは、寸法比率S/Dが0.970〜0.988の範囲で第一基準値A1より大きくなる。   In FIGS. 4A to 4C, when the dimensional difference C is 0 (S / D = 1.0), the value of the heat transfer coefficient to pressure loss ratio Q / P is taken as a reference value A0. The doubled value is taken as a first reference value A1. The heat transfer coefficient to pressure loss ratio Q / P becomes larger than the first reference value A1 in the range of the dimensional ratio S / D of 0.970 to 0.988.

図4A〜図4Cにおいて、上記基準値A0を1.3倍にした値を第二基準値A2とする。熱伝達率対圧力損失比率Q/Pは、寸法比率S/Dが0.976〜0.982の範囲で第二基準値A2より大きくなってピーク値に達する。   In FIGS. 4A to 4C, a value obtained by multiplying the reference value A0 by 1.3 is taken as a second reference value A2. The heat transfer coefficient to pressure loss ratio Q / P reaches the peak value by being larger than the second reference value A2 in the range of the dimensional ratio S / D of 0.976 to 0.982.

図5A〜図5Cは、内管20の内径Dを13.6mmとして、内側流路51及び外側流路52を流通する冷媒の流量を130kg/h、110kg/h、90kg/hとした場合の特性である。   5A to 5C show the case where the inner diameter D of the inner pipe 20 is 13.6 mm, and the flow rates of the refrigerant flowing through the inner flow passage 51 and the outer flow passage 52 are 130 kg / h, 110 kg / h and 90 kg / h. It is a characteristic.

図5A〜図5Cにおいても、上記した図4A〜図4Cの特性と同様に、熱伝達率対圧力損失比率Q/Pは、寸法比率S/Dが1.0から小さくなるのに伴って次第に高まってピーク値に達した後に次第に低くなる。   In FIGS. 5A to 5C, as in the characteristics of FIGS. 4A to 4C described above, the heat transfer coefficient to pressure loss ratio Q / P gradually decreases as the dimensional ratio S / D decreases from 1.0. After rising and reaching the peak value, it gradually decreases.

図5A〜図5Cの順に冷媒の流量が減少するのに伴って、熱伝達率対圧力損失比率Q/Pは、増減する度合いが大きくなり、かつピーク値付近に保たれるピーク範囲が狭くなる。   As the flow rate of the refrigerant decreases in the order of FIG. 5A to FIG. 5C, the degree of heat transfer to pressure loss ratio Q / P increases and decreases, and the peak range kept near the peak value decreases. .

図5A〜図5Cにおいて、寸法差Cが0となる場合(S/D=1.0)の熱伝達率対圧力損失比率Q/Pの値を基準値A0とし、この基準値A0を1.2倍にした値を第一基準値A1とする。熱伝達率対圧力損失比率Q/Pは、寸法比率S/Dが0.970〜0.988の範囲で第一基準値A1より大きくなる。   In FIGS. 5A to 5C, when the dimensional difference C is 0 (S / D = 1.0), the value of the heat transfer coefficient to pressure loss ratio Q / P is set as a reference value A0. The doubled value is taken as a first reference value A1. The heat transfer coefficient to pressure loss ratio Q / P becomes larger than the first reference value A1 in the range of the dimensional ratio S / D of 0.970 to 0.988.

図5A〜図5Cにおいて、上記基準値A0を1.3倍にした値を第二基準値A2とする。熱伝達率対圧力損失比率Q/Pは、寸法比率S/Dが0.976〜0.982の範囲で第二基準値A2より大きくなってピーク値に達する。   In FIGS. 5A to 5C, a value obtained by multiplying the reference value A0 by 1.3 is taken as a second reference value A2. The heat transfer coefficient to pressure loss ratio Q / P reaches the peak value by being larger than the second reference value A2 in the range of the dimensional ratio S / D of 0.976 to 0.982.

上記図4A〜図4C、及び図5A〜図5Cの特性に基づいて、フィン内蔵管30では、内管20の内径Dに対するフィン材10の幅Sの寸法比率S/Dを0.970〜0.988の範囲に設定することにより、熱伝達率対圧力損失比率Q/Pを十分に高めることができる。   Based on the characteristics of FIGS. 4A to 4C and 5A to 5C, in the fin built-in tube 30, the dimensional ratio S / D of the width S of the fin material 10 to the inner diameter D of the inner tube 20 is 0.970-0. By setting in the range of .988, the heat transfer coefficient to pressure loss ratio Q / P can be sufficiently increased.

そして、フィン内蔵管30では、内管20の内径Dに対するフィン材10の幅Sの寸法比率S/Dを0.976〜0.982の範囲に設定することにより、熱伝達率対圧力損失比率Q/Pをさらに高めることができる。   And, in the fin-incorporated tube 30, the heat transfer coefficient to pressure loss ratio is set by setting the dimensional ratio S / D of the width S of the fin material 10 to the inner diameter D of the inner tube 20 in the range of 0.976 to 0.982. Q / P can be further enhanced.

次に、本実施形態の効果について説明する。   Next, the effects of the present embodiment will be described.

本実施形態によれば、内管20(管)の内周22とフィン材10との間にフィン材10の板厚tより小さい間隙11を有するフィン内蔵管30が提供される。   According to the present embodiment, a fin-embedded tube 30 having a gap 11 smaller than the thickness t of the fin material 10 between the inner periphery 22 of the inner tube 20 (tube) and the fin material 10 is provided.

これにより、フィン内蔵管30の製造時に、内管20の内周22に間隙11を持ってフィン材10を配置した後に、内管20を縮径する工程が不要になる。これにより、フィン内蔵管30の生産性を高められ、製品のコストダウンが図れる。   As a result, when the fin-containing tube 30 is manufactured, the step of reducing the diameter of the inner tube 20 becomes unnecessary after the fin material 10 is disposed with the gap 11 in the inner periphery 22 of the inner tube 20. Thereby, the productivity of the fin-incorporated tube 30 can be enhanced, and the cost of the product can be reduced.

そして、フィン内蔵管30は、内管20の内径Dに対するフィン材10の幅Sの寸法比率S/Dは、熱伝達率対圧力損失比率Q/Pが所定の範囲に収まるように設定される。   Then, the dimensional ratio S / D of the width S of the fin material 10 to the inner diameter D of the inner pipe 20 is set such that the heat transfer coefficient to pressure loss ratio Q / P falls within a predetermined range. .

これにより、フィン内蔵管30は、その内側を流れる冷媒の圧力損失Pを低く抑えられるとともに、その内側及び外側を流通する冷媒どうしの熱伝達率Qを高めることができる。   As a result, the pressure loss P of the refrigerant flowing inside can be suppressed to a low level, and the heat transfer coefficient Q of the refrigerant flowing inside and outside can be increased.

また、本実施形態によれば、内管20の内部でフィン材10を捩って成形するフィン内蔵管30の製造方法が提供される。   Further, according to the present embodiment, a method of manufacturing the fin-embedded tube 30 in which the fin material 10 is twisted and formed inside the inner tube 20 is provided.

これにより、フィン内蔵管30は、その製造時に成形後のフィン材10を内管20の内部に挿入する工程が無くなり、生産性を高められる。   As a result, the process for inserting the fin material 10 after being molded into the inside of the inner pipe 20 at the time of its manufacture is eliminated, and the productivity can be enhanced.

なお、上記したフィン内蔵管30の製造方法に限らず、フィン材10を螺旋状に成形した後に、螺旋状のフィン材10を内管20の内部に挿入して組み付けるようにしてもよい。その後、曲げ加工機を用いて外管40、内管20、及びフィン材10を共に湾曲させる曲げ加工を行ってもよい。   The method for manufacturing the fin-embedded tube 30 is not limited to the above, and after the fin material 10 is formed in a spiral shape, the spiral fin material 10 may be inserted into the inner tube 20 and assembled. Thereafter, a bending process may be used to bend the outer pipe 40, the inner pipe 20, and the fin material 10 together.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   As mentioned above, although the embodiment of the present invention was described, the above-mentioned embodiment showed only a part of application example of the present invention, and in the meaning of limiting the technical scope of the present invention to the concrete composition of the above-mentioned embodiment. Absent.

例えば、上記実施形態のフィン内蔵管30は、熱交換器を構成する熱交換チューブとして好適であるが、熱交換器以外に使用される機械または設備にも適用できる。   For example, although the fin built-in tube 30 of the above-mentioned embodiment is suitable as a heat exchange tube which constitutes a heat exchanger, it is applicable also to a machine or equipment used other than a heat exchanger.

10 フィン材
11 間隙
20 内管(管)
22 内周
30 フィン内蔵管
10 fin material 11 gap 20 inner pipe (tube)
22 inner circumference 30 fin built-in tube

本発明のある態様によれば、管の内部に螺旋状のフィン材が配置されるフィン内蔵管と、前記フィン内蔵管を包囲する外管と、を備え、車両用の空調装置に設けられる二重管であって、前記フィン内蔵管の内部に形成され、前記空調装置の冷媒が前記フィン材に沿って螺旋状に旋回しながら流通する内周流路と、前記外管の内部にて前記フィン内蔵管との間に形成され、前記空調装置の冷媒が流通する外周流路と、を備え、前記管の内周と前記フィン材との間に前記フィン材の板厚より小さい間隙を有することを特徴とする二重管が提供される。 According to an embodiment of the present invention, a two-in-one provided in an air conditioner for a vehicle, comprising: a fin-containing pipe in which a helical fin material is disposed inside the pipe; and an outer pipe surrounding the fin-containing pipe. A heavy pipe , which is formed inside the fin built-in pipe, and in which the refrigerant in the air conditioner circulates while spirally swirling along the fin material, and the fin built-in inside the outer pipe An outer peripheral flow passage formed between the pipe and the refrigerant in the air conditioning device and having a gap smaller than a thickness of the fin member between an inner periphery of the pipe and the fin member; A dual tube featuring the features is provided.

Claims (4)

管の内部に螺旋状のフィン材が配置されるフィン内蔵管であって、
前記管の内周と前記フィン材との間に前記フィン材の板厚より小さい間隙を有することを特徴とするフィン内蔵管。
A fin-embedded tube in which a helical fin material is disposed inside the tube,
There is a gap smaller than the thickness of the fin material between the inner circumference of the tube and the fin material.
請求項1に記載のフィン内蔵管であって、
前記管の内径Dに対する前記フィン材の幅Sの寸法比率S/Dを0.970〜0.988の範囲に設定することを特徴とするフィン内蔵管。
It is a fin built-in pipe according to claim 1,
A fin-incorporated pipe, wherein a dimensional ratio S / D of a width S of the fin material to an inner diameter D of the pipe is set in a range of 0.970 to 0.988.
請求項2に記載のフィン内蔵管であって、
前記管の内径Dに対する前記フィン材の幅Sの寸法比率S/Dを0.976〜0.982の範囲に設定することを特徴とするフィン内蔵管。
It is a fin built-in pipe according to claim 2,
A fin built-in tube, wherein a dimensional ratio S / D of a width S of the fin material to an inner diameter D of the tube is set in a range of 0.976 to 0.982.
請求項1〜3のいずれかに記載のフィン内蔵管の製造方法であって、
前記管の内部で前記フィン材を捩って成形することを特徴とするフィン内蔵管の製造方法。
It is a manufacturing method of the fin built-in pipe according to any one of claims 1 to 3,
A method of manufacturing a fin-embedded tube, comprising twisting and forming the fin material inside the tube.
JP2017212675A 2017-11-02 2017-11-02 Double pipe and manufacturing method thereof Pending JP2019086180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017212675A JP2019086180A (en) 2017-11-02 2017-11-02 Double pipe and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017212675A JP2019086180A (en) 2017-11-02 2017-11-02 Double pipe and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2019086180A true JP2019086180A (en) 2019-06-06

Family

ID=66763615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017212675A Pending JP2019086180A (en) 2017-11-02 2017-11-02 Double pipe and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2019086180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166651A1 (en) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Radiant tube
KR200494721Y1 (en) * 2020-06-18 2021-12-08 임인규 support bar manufacturing equipment for grill
GB2612610A (en) * 2021-11-05 2023-05-10 Daimler Truck AG Cooling device for a vehicle as well as vehicle

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1028000A (en) * 1964-03-04 1966-05-04 Brown Fintube Co Improvements in and relating to heat exchanger tubes
JPS5689584U (en) * 1979-12-10 1981-07-17
JPS5852475U (en) * 1981-09-29 1983-04-09 森 康夫 heat exchanger tube
JPS5852491U (en) * 1981-09-29 1983-04-09 株式会社東芝 Heat exchanger
JPS5858280U (en) * 1981-10-13 1983-04-20 株式会社ミハマ製作所 Synthetic resin turbulator
JPS6050391U (en) * 1983-09-07 1985-04-09 石川島播磨重工業株式会社 Heat transfer tube with swirl tape
JPS6066976U (en) * 1983-10-07 1985-05-13 袁 文全 heat exchange pipe
JPS61175788U (en) * 1985-04-15 1986-11-01
JPS62116898A (en) * 1985-11-15 1987-05-28 Nagao Seisakusho:Kk Heat exchanger pipe
JPS635277U (en) * 1986-06-26 1988-01-14
JPH0181486U (en) * 1987-11-11 1989-05-31
JPH01101092U (en) * 1987-12-25 1989-07-06
JPH02157597A (en) * 1988-12-12 1990-06-18 Sanyo Radiator Kk Radiator
JPH1123180A (en) * 1997-06-30 1999-01-26 Ishikawajima Harima Heavy Ind Co Ltd Heat transfer accelerator for heat transfer tube
JP2008157506A (en) * 2006-12-21 2008-07-10 Calsonic Kansei Corp Heat exchanger
CN201653223U (en) * 2010-05-14 2010-11-24 杭州美宝炉窑工程有限公司 Plug type heat exchange pipe capable of adjusting heat exchange performance and pressure reduction
JP2011027285A (en) * 2009-07-22 2011-02-10 Panasonic Corp Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger
CN104344759A (en) * 2013-08-05 2015-02-11 上海通华不锈钢压力容器工程有限公司 Heat exchange tube with internal left and right spiral pieces
JP2017090412A (en) * 2015-11-17 2017-05-25 川崎重工業株式会社 Manufacturing method of cooling pipe unit, in-pipe straightening tool, cooling pipe, and fixing structure of in-pipe straightening tool
KR20180085544A (en) * 2017-01-19 2018-07-27 주식회사 지엠에스 Refrigerant rotate type freezer

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1028000A (en) * 1964-03-04 1966-05-04 Brown Fintube Co Improvements in and relating to heat exchanger tubes
JPS5689584U (en) * 1979-12-10 1981-07-17
JPS5852475U (en) * 1981-09-29 1983-04-09 森 康夫 heat exchanger tube
JPS5852491U (en) * 1981-09-29 1983-04-09 株式会社東芝 Heat exchanger
JPS5858280U (en) * 1981-10-13 1983-04-20 株式会社ミハマ製作所 Synthetic resin turbulator
JPS6050391U (en) * 1983-09-07 1985-04-09 石川島播磨重工業株式会社 Heat transfer tube with swirl tape
JPS6066976U (en) * 1983-10-07 1985-05-13 袁 文全 heat exchange pipe
JPS61175788U (en) * 1985-04-15 1986-11-01
JPS62116898A (en) * 1985-11-15 1987-05-28 Nagao Seisakusho:Kk Heat exchanger pipe
JPS635277U (en) * 1986-06-26 1988-01-14
JPH0181486U (en) * 1987-11-11 1989-05-31
JPH01101092U (en) * 1987-12-25 1989-07-06
JPH02157597A (en) * 1988-12-12 1990-06-18 Sanyo Radiator Kk Radiator
JPH1123180A (en) * 1997-06-30 1999-01-26 Ishikawajima Harima Heavy Ind Co Ltd Heat transfer accelerator for heat transfer tube
JP2008157506A (en) * 2006-12-21 2008-07-10 Calsonic Kansei Corp Heat exchanger
JP2011027285A (en) * 2009-07-22 2011-02-10 Panasonic Corp Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger
CN201653223U (en) * 2010-05-14 2010-11-24 杭州美宝炉窑工程有限公司 Plug type heat exchange pipe capable of adjusting heat exchange performance and pressure reduction
CN104344759A (en) * 2013-08-05 2015-02-11 上海通华不锈钢压力容器工程有限公司 Heat exchange tube with internal left and right spiral pieces
JP2017090412A (en) * 2015-11-17 2017-05-25 川崎重工業株式会社 Manufacturing method of cooling pipe unit, in-pipe straightening tool, cooling pipe, and fixing structure of in-pipe straightening tool
KR20180085544A (en) * 2017-01-19 2018-07-27 주식회사 지엠에스 Refrigerant rotate type freezer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166651A1 (en) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Radiant tube
KR200494721Y1 (en) * 2020-06-18 2021-12-08 임인규 support bar manufacturing equipment for grill
GB2612610A (en) * 2021-11-05 2023-05-10 Daimler Truck AG Cooling device for a vehicle as well as vehicle

Similar Documents

Publication Publication Date Title
EP2232187B1 (en) Heat transfer tube
JP2019086180A (en) Double pipe and manufacturing method thereof
JP2007271123A (en) Inner face-grooved heat transfer tube
WO2012117440A1 (en) Heat exchanger, refrigerator with the heat exchanger, and air conditioner with the heat exchanger
JP2011027285A (en) Heat exchanger and its manufacturing method, and article storage device equipped with the heat exchanger
EP2921808B1 (en) Flat heat transmission tube, method for manufacturing cross-fin-tube-type heat exchanger provided with same, cross-fin-tube-type heat exchanger manufactured using said method
EP1460366A1 (en) Heat exchanger
JP2007093036A (en) Heat exchanger, its manufacturing method and its manufacturing device
CN109791029B (en) Method for manufacturing tube with built-in fin and method for manufacturing double-layer tube
JP2011163655A (en) Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method
WO2018088396A1 (en) Built-in fin-equipped pipe
JP6441881B2 (en) Manufacturing method and manufacturing apparatus for finned tube
JP6537755B1 (en) Method of manufacturing double pipe
JP2004322141A (en) Hairpin bent copper tube and hairpin bending method for copper tube
JP6502912B2 (en) Method and apparatus for manufacturing fin-incorporated tube
JP2012200769A (en) Flat tube for heat exchanger and method of manufacture the same
JP2011252626A (en) Heat transfer tube for double-tube heat exchanger
JP6503021B2 (en) Fin built-in tube and method of manufacturing the same
JP6502914B2 (en) Method and apparatus for manufacturing double pipe
KR100431937B1 (en) A Corrosion-Resistant Bimetal Copper Finned-Tube And Manufacturing Method Thereof
JP3964244B2 (en) Internal grooved tube
JP6902930B2 (en) Multiple twisted pipe with inner spiral groove and its manufacturing method
JP3743330B2 (en) Manufacturing method of internally grooved tube
KR101807959B1 (en) Spiral pipe manufacturing apparatus
JPS603932A (en) Production of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180924

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181102

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190813