JP2011163655A - Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method - Google Patents

Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method Download PDF

Info

Publication number
JP2011163655A
JP2011163655A JP2010026726A JP2010026726A JP2011163655A JP 2011163655 A JP2011163655 A JP 2011163655A JP 2010026726 A JP2010026726 A JP 2010026726A JP 2010026726 A JP2010026726 A JP 2010026726A JP 2011163655 A JP2011163655 A JP 2011163655A
Authority
JP
Japan
Prior art keywords
pipe
tube
heat exchanger
manufacturing
torsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010026726A
Other languages
Japanese (ja)
Other versions
JP2011163655A5 (en
Inventor
masaaki Wagatsuma
正章 我妻
Hideki Mori
秀樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010026726A priority Critical patent/JP2011163655A/en
Publication of JP2011163655A publication Critical patent/JP2011163655A/en
Publication of JP2011163655A5 publication Critical patent/JP2011163655A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a torsion pipe type heat exchanger capable of suppressing decline in performance and quality caused by variation of the height of spiral mountains of a torsion pipe serving as an inner pipe and excessive torsion and of reducing labor, time and device cost for evaluation of performance and quality, and the torsion pipe type heat exchanger manufactured in the manufacturing method. <P>SOLUTION: The method of manufacturing the torsion pipe type heat exchanger includes: a process of forming a plurality of the spiral mountains 1b and grooves 1c on a pipe wall of the inner pipe 1 by applying torsion treatment to the inner pipe 1 serving as a water pipe; a process of contracting an outer pipe 2 so that tops of the spiral mountains 1b of the inner pipe 1 are brought into close contact with an inner wall of the outer pipe 2 after the inner pipe 1 is inserted to the outer pipe 2 serving as a refrigerant pipe and of forming a double pipe having a spiral refrigerant flow passage 2a between the inner pipe 1 and the outer pipe 2; and a process of bending the double pipe to a predetermined dimension. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水と冷媒とを熱交換させる捩り管形熱交換器の製造方法、特に水管となる内管と冷媒管となる外管とからなる二重管式熱交換器の製造方法及びその製造方法により製造された捩り管形熱交換器に関するものである。   The present invention relates to a manufacturing method of a torsion tube heat exchanger for exchanging heat between water and a refrigerant, and in particular, a manufacturing method of a double tube heat exchanger including an inner tube serving as a water tube and an outer tube serving as a refrigerant tube, and its The present invention relates to a twisted tube heat exchanger manufactured by a manufacturing method.

従来より、捩り管形熱交換器、特に水管となる内管と、冷媒管となる外管とからなる二重管式熱交換器の製造方法としては、径の異なる2本の管(内管、外管)を用い、外管に内管を挿入した状態で内管に捩り加工を施す方法が知られている(例えば、特許文献1参照)。   Conventionally, as a method for manufacturing a twisted tube heat exchanger, particularly a double-tube heat exchanger comprising an inner tube serving as a water tube and an outer tube serving as a refrigerant tube, two tubes having different diameters (inner tube) , An outer tube), and a method of twisting the inner tube with the inner tube inserted into the outer tube is known (for example, see Patent Document 1).

特開2003−329376号公報(要約、図2)JP 2003-329376 A (Summary, FIG. 2)

しかしながら、上記従来の方法では内管の捩り加工を施した際、捩り山の高さにバラつきが生じるなど捩り加工の出来次第により、内管の螺旋溝と外管との間に形成される冷媒流路が、管軸方向に隣接する冷媒流路と分離せずに一体となってしまう場合がある。この場合、冷媒が螺旋溝に沿って流れず、管軸方向に直線的に流れてしまうので熱交換性能が低下する。更に、内管の螺旋山を外管の内壁に密着させようと過度に捩り加工を施すと、内管が捩れ過ぎ、流路を塞いでしまう恐れが有り、これにより性能と品質が低下する。また、内管は外管で覆われているため、外観上、内管流路が塞がれている事を確認することが出来ない。内管流路の閉塞の有無を確認するには内管の圧力損失を測定するなどの手段が有効で有るが、これには装置費用と手間がかかる。   However, in the above-described conventional method, when the inner pipe is twisted, a refrigerant formed between the spiral groove of the inner pipe and the outer pipe depending on the completion of the twisting process, such as a variation in the height of the helix. There is a case where the flow path is integrated with the refrigerant flow path adjacent in the tube axis direction without being separated. In this case, since the refrigerant does not flow along the spiral groove but flows linearly in the tube axis direction, the heat exchange performance decreases. Furthermore, if the twisting process is excessively performed so that the spiral crest of the inner pipe is brought into close contact with the inner wall of the outer pipe, the inner pipe may be twisted too much and the flow path may be blocked, thereby reducing the performance and quality. Further, since the inner tube is covered with the outer tube, it cannot be confirmed from the appearance that the inner tube flow path is blocked. Means such as measuring the pressure loss of the inner pipe are effective for confirming whether or not the inner pipe flow path is blocked, but this requires apparatus costs and labor.

本発明は、上記内容の課題を解決する為になされたもので、内管となる捩り管の螺旋山の山高さのバラつき、また、捩り過ぎによる性能と品質低下を抑制し、性能・品質評価の為の手間と装置費用を削減することが可能な捩り管形熱交換器の製造方法及びその製造方法により製造された捩り管形熱交換器を提供する事を目的とする。   The present invention has been made to solve the above-mentioned problems, and it has been found that the height of the spiral crest of the torsion pipe serving as the inner pipe varies, and the performance and quality deterioration due to over-torsion are suppressed. It is an object of the present invention to provide a method for manufacturing a twisted tube heat exchanger capable of reducing labor and apparatus costs for the manufacturing, and a twisted tube heat exchanger manufactured by the manufacturing method.

本発明に係る捩り管形熱交換器の製造方法は、水管となる内管に捩り加工を施して内管の管壁に複数条の螺旋形状の山と溝を形成する工程と、内管を冷媒管となる外管に挿入した後、内管の螺旋山の頂部が外管の内壁に密着するように外管を縮管し、内管と外管との間に螺旋状の冷媒流路を有する二重管を形成する工程と、二重管を所定寸法に曲げ加工する工程とを有するものである。   A method for manufacturing a torsion tube heat exchanger according to the present invention includes a step of twisting an inner tube serving as a water tube to form a plurality of spiral ridges and grooves on a tube wall of the inner tube, After being inserted into the outer pipe that becomes the refrigerant pipe, the outer pipe is contracted so that the top of the spiral crest of the inner pipe is in close contact with the inner wall of the outer pipe, and the spiral refrigerant flow path between the inner pipe and the outer pipe And a step of bending the double tube into a predetermined dimension.

本発明によれば、水管となる内管に捩り加工を施して内管管壁に複数条の螺旋形状の山と溝とを形成し、その内管を冷媒管となる外管に挿入した後、内管の螺旋山の頂部が外管の内壁に密着するように外管を縮管するようにしたので、内管となる捩り管の螺旋山の山高さのバラつき、また、捩り過ぎによる性能と品質低下を抑制でき、性能・品質評価の為の手間と装置費用を削減できる効果を有する。   According to the present invention, after the inner pipe serving as the water pipe is twisted to form a plurality of spiral ridges and grooves on the inner pipe wall, the inner pipe is inserted into the outer pipe serving as the refrigerant pipe. Because the outer tube is contracted so that the top of the spiral crest of the inner tube is in close contact with the inner wall of the outer tube, the height of the spiral crest of the torsion tube that becomes the inner tube varies, and the performance due to over-torsion It is possible to suppress the quality degradation and reduce the labor and equipment cost for performance and quality evaluation.

本発明の一実施の形態に係る捩り管形熱交換器の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the twisted-tube heat exchanger which concerns on one embodiment of this invention. 本発明の一実施の形態に係る捩り管形熱交換器の製造方法における、水管となる内管に捩り加工を施した際の断面図である。It is sectional drawing at the time of giving the torsion process to the inner pipe used as a water pipe in the manufacturing method of the twisted tube type heat exchanger which concerns on one embodiment of this invention. 本発明の一実施の形態に係る捩り管形熱交換器の製造方法における、水管となる内管を冷媒管となる外管に挿入した状態の断面図である。It is sectional drawing of the state which inserted the inner pipe used as a water pipe in the outer pipe used as a refrigerant pipe in the manufacturing method of the twisted tube type heat exchanger which concerns on one embodiment of this invention. 本発明の一実施の形態に係る捩り管形熱交換器の製造方法における、内管を挿入した後の外管を縮管する様子を示した断面図である。It is sectional drawing which showed a mode that the outer tube | pipe after inserting an inner tube | pipe in the manufacturing method of the twisted tube type heat exchanger which concerns on one embodiment of this invention was contracted. 本発明の一実施の形態に係る捩り管形熱交換器の製造方法における、内管を外管に挿入した後に外管を縮管し内管の螺旋山と外管の内壁が密着し螺旋状の冷媒流路が形成されている様子を示す断面図である。In the manufacturing method of the twisted tube heat exchanger according to one embodiment of the present invention, after inserting the inner tube into the outer tube, the outer tube is contracted, and the spiral crest of the inner tube and the inner wall of the outer tube are in close contact with each other. It is sectional drawing which shows a mode that the refrigerant | coolant flow path is formed.

以下、図示実施形態により本発明を説明する。
図1は本発明の一実施の形態に係る捩り管形熱交換器の製造方法を示す工程図である。図2は図1の工程において、水管となる内管に捩り加工を施した状態の断面図である。図3は内管を外管に挿入した状態の断面図である。図4は内管が挿入された外管を縮管する様子を示した断面図である。図5は外管を縮管した後の内管の螺旋山と外管の内壁が密着し螺旋状の冷媒流路が形成されている様子を示す断面図である。尚、図2から図5は内管の管軸に沿って切断した断面図を示す。
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a process diagram showing a manufacturing method of a twisted tube heat exchanger according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the state where the inner pipe serving as the water pipe is twisted in the process of FIG. FIG. 3 is a cross-sectional view of the inner tube inserted into the outer tube. FIG. 4 is a cross-sectional view showing how the outer tube into which the inner tube is inserted is contracted. FIG. 5 is a cross-sectional view showing a state in which the spiral crest of the inner tube after the outer tube is contracted and the inner wall of the outer tube are in close contact with each other to form a spiral refrigerant flow path. 2 to 5 are sectional views cut along the tube axis of the inner tube.

本実施の形態に係る捩り管を用いた二重管式熱交換器4は、図1から図5に示すように水管となる内管1と、内管1の外側に配置した冷媒管となる外管2(円管)とを有している。内管1の内部は水流路1aとなり、外周面は複数条の螺旋形状の山1bと溝1cとを有している。このように構成された内管1を外管2に挿入し、外管2を縮管して内管1の螺旋山1bの頂部と外管2の内壁とを密着させる事で、内管1と外管2との間に螺旋状の冷媒流路2aが形成されている。   The double-pipe heat exchanger 4 using the torsion pipe according to the present embodiment is an inner pipe 1 serving as a water pipe and a refrigerant pipe disposed outside the inner pipe 1 as shown in FIGS. It has an outer tube 2 (circular tube). The inside of the inner tube 1 is a water flow path 1a, and the outer peripheral surface has a plurality of spiral peaks 1b and grooves 1c. The inner tube 1 thus configured is inserted into the outer tube 2, the outer tube 2 is contracted, and the top of the spiral crest 1 b of the inner tube 1 and the inner wall of the outer tube 2 are brought into close contact with each other. A spiral refrigerant flow path 2 a is formed between the outer pipe 2 and the outer pipe 2.

次に、本実施の形態に係る捩り管形熱交換器の製造方法について、図1に基づき図2から図5を参照しながら説明する。まず、内管1に捩り加工を施し、複数条の螺旋山1bと螺旋溝1cをもつ水管となる内管1を作製する(図1(a)、図2)。次いで、捩り加工を施した内管1を、内管1の外径よりも内径が大きい外管2に挿入(図1(b)、図3)する。その後、内管1の螺旋山1bの頂部が外管2の内壁に密着するまで外管2に例えば縮管ダイス3により縮管加工を施し、二重管4aを形成する(図1(c,d)、図4、図5)。その後、二重管4aを所定の寸法となるように曲げ加工を行ない、二重管式熱交換器4を作製する(図1(e))。   Next, the manufacturing method of the twisted tube heat exchanger which concerns on this Embodiment is demonstrated, referring FIGS. 2-5 based on FIG. First, the inner tube 1 is twisted to produce an inner tube 1 that becomes a water tube having a plurality of spiral ridges 1b and spiral grooves 1c (FIGS. 1A and 2). Next, the twisted inner tube 1 is inserted into the outer tube 2 having an inner diameter larger than the outer diameter of the inner tube 1 (FIGS. 1B and 3). Thereafter, until the top of the spiral crest 1b of the inner tube 1 is in close contact with the inner wall of the outer tube 2, the outer tube 2 is subjected to contraction processing, for example, with a contraction die 3 to form a double tube 4a (FIG. 1 (c, d), FIG. 4, FIG. 5). Thereafter, the double pipe 4a is bent so as to have a predetermined dimension, and the double pipe heat exchanger 4 is produced (FIG. 1 (e)).

このように、内管1を挿入した外管2を縮管することで、内管1の螺旋山1bの頂部と外管2の内壁とが密着し、内管1の螺旋溝1cと外管2とからなる冷媒流路2aが形成される(図3から図5)。また、外管2を縮管する方式とすることで、捩り加工後の内管1の螺旋山1bの山高さにバラつきが生じても、内管1を外管2に挿入する前に螺旋山1bの山高さバラつきを測定しておくなどしておけば、外管2を山高さが最も短い螺旋山1bの頂部に合わせて必要な分だけ縮管する事が出来る。このため、冷媒流路2aが、二重管4aの軸方向に隣接する冷媒流路2aと一体となってしまう事を抑制できる。これにより、冷媒が管軸方向に直線的に流れる事が無くなり螺旋状に流すことができる為、熱交換性能が低下する事も抑制できる。   Thus, by contracting the outer tube 2 into which the inner tube 1 is inserted, the top of the spiral mountain 1b of the inner tube 1 and the inner wall of the outer tube 2 are brought into close contact with each other, and the spiral groove 1c of the inner tube 1 and the outer tube 2 is formed (FIGS. 3 to 5). Further, by adopting a system in which the outer tube 2 is contracted, even if the peak height of the spiral mountain 1b of the inner tube 1 after the twisting process varies, the helical mountain is inserted before the inner tube 1 is inserted into the outer tube 2. If the variation in the peak height of 1b is measured in advance, the outer tube 2 can be contracted as much as necessary according to the top of the spiral mountain 1b having the shortest peak height. For this reason, it can suppress that the refrigerant flow path 2a becomes integral with the refrigerant flow path 2a adjacent to the axial direction of the double pipe 4a. As a result, the refrigerant does not flow linearly in the direction of the tube axis and can flow spirally, so that it is possible to suppress a decrease in heat exchange performance.

また、内管1の螺旋山1bの頂部を外管2の内壁に密着させるにあたり、本実施の形態では外管2を縮管することにより実現しているため、従来のように過度に捩り加工を行う事はあり得ない。このため、内管1の捩り過ぎにより冷媒流路2aを閉塞してしまうといった不都合を防止できる。よって、閉塞の有無を確認するための圧力損失を測定するなどの手段をとる必要が無く、装置費用と手間を削減する事ができる。   In addition, in the present embodiment, the outer tube 2 is contracted when the top of the spiral crest 1b of the inner tube 1 is brought into close contact with the inner wall of the outer tube 2, so that excessive twisting is performed as in the prior art. It is impossible to do. For this reason, the inconvenience that the refrigerant flow path 2a is closed due to excessive twisting of the inner tube 1 can be prevented. Therefore, it is not necessary to take measures such as measuring pressure loss for confirming the presence or absence of blockage, and the apparatus cost and labor can be reduced.

1 内管(水管)、1a 水流路、1b 螺旋山(捩り山)、1c 螺旋溝、2 外管(冷媒管)、2a 冷媒流路、3 縮管ダイス、4 二重管式熱交換器、4a 二重管。   1 inner pipe (water pipe), 1a water flow path, 1b spiral mountain (twist mountain), 1c spiral groove, 2 outer pipe (refrigerant pipe), 2a refrigerant flow path, 3 contraction die, 4 double pipe heat exchanger, 4a Double tube.

Claims (2)

水管となる内管に捩り加工を施して前記内管の管壁に複数条の螺旋形状の山と溝を形成する工程と、
前記内管を冷媒管となる外管に挿入した後、前記内管の螺旋山が前記外管の内壁に密着するように外管を縮管し、前記内管と前記外管との間に螺旋状の冷媒流路を有する二重管を形成する工程と、
前記二重管を所定寸法に曲げ加工する工程と
を有することを特徴とする捩り管形熱交換器の製造方法。
A step of twisting the inner pipe to be a water pipe to form a plurality of helical peaks and grooves on the pipe wall of the inner pipe;
After the inner tube is inserted into the outer tube serving as the refrigerant tube, the outer tube is contracted so that the spiral crest of the inner tube is in close contact with the inner wall of the outer tube, and between the inner tube and the outer tube. Forming a double pipe having a spiral refrigerant flow path;
And a step of bending the double pipe into a predetermined dimension.
請求項1記載の製造方法により製造された捩り管形熱交換器。   A twisted tube heat exchanger manufactured by the manufacturing method according to claim 1.
JP2010026726A 2010-02-09 2010-02-09 Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method Pending JP2011163655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010026726A JP2011163655A (en) 2010-02-09 2010-02-09 Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010026726A JP2011163655A (en) 2010-02-09 2010-02-09 Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method

Publications (2)

Publication Number Publication Date
JP2011163655A true JP2011163655A (en) 2011-08-25
JP2011163655A5 JP2011163655A5 (en) 2012-08-30

Family

ID=44594557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010026726A Pending JP2011163655A (en) 2010-02-09 2010-02-09 Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method

Country Status (1)

Country Link
JP (1) JP2011163655A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113525A (en) * 2011-11-30 2013-06-10 Watanabe Seisakusho:Kk Double tube
CN105258400A (en) * 2014-07-18 2016-01-20 上海交通大学 Coaxial threaded pipe leakage flow type heat exchanger
CN111749181A (en) * 2020-07-07 2020-10-09 白美荣 Cleaning device for building construction land and using method thereof
JP2020531790A (en) * 2017-09-06 2020-11-05 コンティテヒ・フルイド・コリア・リミテッド Double tube for heat exchange

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251686A (en) * 1990-02-28 1991-11-11 Shinko Metal Prod Kk Heat exchanger
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
JP2009162396A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251686A (en) * 1990-02-28 1991-11-11 Shinko Metal Prod Kk Heat exchanger
JP2008232449A (en) * 2007-03-16 2008-10-02 Sumitomo Light Metal Ind Ltd Double tube type heat exchanger and its manufacturing method
JP2009162396A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Double-wall-tube heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113525A (en) * 2011-11-30 2013-06-10 Watanabe Seisakusho:Kk Double tube
CN105258400A (en) * 2014-07-18 2016-01-20 上海交通大学 Coaxial threaded pipe leakage flow type heat exchanger
JP2020531790A (en) * 2017-09-06 2020-11-05 コンティテヒ・フルイド・コリア・リミテッド Double tube for heat exchange
EP3679312A4 (en) * 2017-09-06 2021-03-31 Contitech Fluid Korea Ltd. Double tube for heat exchange
CN111749181A (en) * 2020-07-07 2020-10-09 白美荣 Cleaning device for building construction land and using method thereof

Similar Documents

Publication Publication Date Title
JP2011163655A (en) Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method
US8453718B2 (en) Sintered heat pipe, manufacturing method thereof and manufacturing method for groove tube thereof
JP2004270916A (en) Double pipe and its manufacturing method
JP2009041880A (en) Water heat exchanger for water heater
JP2003156294A5 (en)
JP2005164166A (en) Heat exchanger
JP5293584B2 (en) Twisted tube heat exchanger and method of manufacturing twisted tube heat exchanger
JP2019086180A (en) Double pipe and manufacturing method thereof
JP2011163655A5 (en)
JP2006130558A (en) Method for manufacturing heat exchanger
JP2010120036A (en) Flaring punch
JP2008107013A (en) Heat transfer tube having leakage detecting mechanism and heat exchanger using the same
WO2019130386A1 (en) Method for manufacturing heat exchanger, and heat exchanger
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
JP5289088B2 (en) Heat exchanger and heat transfer tube
US10955198B2 (en) Fin-assembled tube
JP2002364989A (en) Method for manufacturing heat exchanger
JP2007218566A (en) Tube with grooves on inner surface and its manufacturing method, and fluted plug
JP6502914B2 (en) Method and apparatus for manufacturing double pipe
JP6502912B2 (en) Method and apparatus for manufacturing fin-incorporated tube
JP5794952B2 (en) Twisted tube heat exchanger
JP2015025577A (en) Method of manufacturing triple tube type heat exchanger
JP2009097810A (en) Heat exchanger
JP2008023537A (en) Method for producing double tube with curved part
JP4127246B2 (en) Manufacturing method of heat exchange device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140121