JP2009097810A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009097810A
JP2009097810A JP2007270778A JP2007270778A JP2009097810A JP 2009097810 A JP2009097810 A JP 2009097810A JP 2007270778 A JP2007270778 A JP 2007270778A JP 2007270778 A JP2007270778 A JP 2007270778A JP 2009097810 A JP2009097810 A JP 2009097810A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
heat transfer
transfer tube
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007270778A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsushima
浩幸 對馬
Takahiko Kawai
孝彦 河合
Mitsuhiro Harada
充博 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007270778A priority Critical patent/JP2009097810A/en
Publication of JP2009097810A publication Critical patent/JP2009097810A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of a conventional technology, wherein, since a previously coated brazing material is poured into a recessed part formed in the outer surface of a core tube (a heat transfer tube) and a coiled tube is arranged above the recessed part to cover the recessed part, unevenness is easily caused in positioning of the recessed part and the coiled tube, and wherein, since a protruding shape is machined in order from an end of the heat transmitting tube when forming the protrusion in the inner surface of the heat transmitting tube, it takes long time to manufacture the tube. <P>SOLUTION: This heat exchanger has: a heat transfer tube 1 formed with a spiral crest and trough part on the outer surface and the inner surface thereof and provided with an irregular part 7 in the spiral angular part 6 in the inner surface; and a coiled tube 4 spirally wound around the outer surface of the heat transfer tube 3 along the trough part 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は熱交換器に関し、特に外面および内面に螺旋状の山部及び谷部が形成されている伝熱管に巻管が巻き付けられた熱交換器に関するものである。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger in which a wound tube is wound around a heat transfer tube in which spiral ridges and valleys are formed on an outer surface and an inner surface.

従来の熱交換器として、第1流体と第2流体との間で熱交換を行わせる熱交換器であって、第1流体の流路を形成し、外面を押圧することで内面に突起が形成されるとともに外面に凹み部が形成された芯管(伝熱管)と、第2流体の流路を形成し、前記芯管の外面に巻き付けられた巻管と、前記巻管の近傍に位置する前記凹み部に流し込まれているロウ材とを備えるようにしたものがある(例えば特許文献1参照。)。   As a conventional heat exchanger, a heat exchanger that exchanges heat between a first fluid and a second fluid, forming a flow path for the first fluid, and pressing the outer surface to cause protrusions on the inner surface. A core tube (heat transfer tube) formed on the outer surface and having a recessed portion formed thereon, a flow path for the second fluid, and a wound tube wound around the outer surface of the core tube; And a brazing material poured into the recess (see, for example, Patent Document 1).

特開2006−317115号公報(第1頁、図5)Japanese Patent Laying-Open No. 2006-317115 (first page, FIG. 5)

上記のような従来技術では、芯管の外面に形成した凹み部にあらかじめ塗布したロウ材を流し込み、凹み部の真上に被さる状態で巻管を配置する構成である。しかし、この構成では、巻管の位置を固定する手段が無いため、凹み部と巻管の位置決めにばらつきが発生し易く、性能上のばらつきを引き起こす可能性が高いという課題があった。また伝熱管の内面に突起を形成する手段として、所定の突起形状を伝熱管の端部から順次加工していく必要があり、製造時間が長くなるという課題があった。   The conventional technology as described above has a configuration in which a brazing material previously applied is poured into a recess formed on the outer surface of the core tube, and the winding tube is disposed in a state of covering the recess just above. However, in this configuration, since there is no means for fixing the position of the winding tube, there is a problem that the positioning of the recess and the winding tube is likely to vary, and there is a high possibility of causing a variation in performance. In addition, as a means for forming protrusions on the inner surface of the heat transfer tube, it is necessary to sequentially process a predetermined protrusion shape from the end of the heat transfer tube, resulting in a problem that the manufacturing time becomes long.

この発明は、上記のような従来技術の課題を解消するためになされたものであり、性能上のばらつきが少なく、しかも性能が向上され、在来の製造設備でも製造時間が長くなることなく容易に製造できる熱交換器を得ることを目的としている。   The present invention has been made in order to solve the above-described problems of the prior art, has little variation in performance, is improved in performance, and can be easily performed without increasing the manufacturing time even in a conventional manufacturing facility. The purpose is to obtain a heat exchanger that can be manufactured easily.

この発明に係る熱交換器は、芯管として用いる伝熱管の外面及び内面にそれぞれ螺旋状の山部及び谷部が形成され、内面における螺旋状の山部にさらに凹凸が形成されている。この内面の山部に凹凸が形成された伝熱管の外面側の谷部に螺旋状に巻き付けられた巻管を備えるようにしたものである。   In the heat exchanger according to the present invention, spiral peaks and valleys are formed on the outer surface and the inner surface of the heat transfer tube used as the core tube, respectively, and irregularities are further formed on the spiral peaks on the inner surface. A winding tube spirally wound around a trough portion on the outer surface side of the heat transfer tube in which irregularities are formed in the ridge portion on the inner surface is provided.

この発明によれば、伝熱管の内面における螺旋状の山部部分にさらに凹凸が形成されているため、伝熱面積が拡大され、熱交換器の性能が向上される。また上記内面の山部部分に設ける凹凸は、伝熱管を製造する際に用いるマンドレルとして、外周面に該凹凸に対応する凹凸を設けたマンドレルを用いる他は従来の製造装置で同様に形成することができるので、製造工程を変更する必要がなく、製造時間が長くなることもない。また伝熱管内面に形成された凹凸は、常に伝熱管の外面に形成されている螺旋状の谷部に位置するため、伝熱管の外面の谷部に巻き付けられる巻管との接触位置が一定になり、性能上のばらつきを低減できるという従来にない顕著な効果を奏するものである。   According to this invention, since the unevenness | corrugation is further formed in the helical peak part in the inner surface of a heat exchanger tube, a heat-transfer area is expanded and the performance of a heat exchanger is improved. In addition, the unevenness provided in the peak portion of the inner surface is formed in the same manner with a conventional manufacturing apparatus except that a mandrel having an unevenness corresponding to the unevenness is used on the outer peripheral surface as a mandrel used when manufacturing the heat transfer tube. Therefore, it is not necessary to change the manufacturing process and the manufacturing time is not prolonged. In addition, since the irregularities formed on the inner surface of the heat transfer tube are always located in the spiral valley formed on the outer surface of the heat transfer tube, the contact position with the winding tube wound around the valley of the outer surface of the heat transfer tube is constant. Thus, it is possible to reduce the variation in performance, which has an unprecedented remarkable effect.

実施の形態1.
図1〜図3は本発明の実施の形態1に係る熱交換器を説明するものであって、図1は捻り管形の熱交換器の要部を示す斜視図、図2は図1に示された伝熱管の内部構造を示す一部破断斜視図、図3は図1に示された伝熱管を製造するときに用いる突起付マンドレルを示す図で、(a)は外観斜視図、(b)は軸方向から見た拡大正面図である。なお、各図を通じて同一符号は同一または相当部分を示している。図において、熱交換器10は、外面に複数条(この例では3条)の山部2及び谷部3を各条毎に連続して螺旋状に設けた捻り管からなる伝熱管1と、該伝熱管1の谷部3に沿って巻き付け嵌め込まれた巻管4(41、42、43)とを備えている。
Embodiment 1 FIG.
1 to 3 illustrate a heat exchanger according to Embodiment 1 of the present invention. FIG. 1 is a perspective view showing a main part of a twisted tube heat exchanger, and FIG. FIG. 3 is a partially broken perspective view showing the internal structure of the shown heat transfer tube, FIG. 3 is a view showing a mandrel with protrusions used when manufacturing the heat transfer tube shown in FIG. 1, (a) is an external perspective view, b) is an enlarged front view seen from the axial direction. Note that the same reference numerals denote the same or corresponding parts throughout the drawings. In the figure, the heat exchanger 10 includes a heat transfer tube 1 composed of a twisted tube in which a plurality of ridges 2 and valleys 3 are continuously provided in a spiral shape on each outer surface (three in this example), A winding tube 4 (41, 42, 43) wound and fitted along the valley portion 3 of the heat transfer tube 1 is provided.

なお、伝熱管1は巻管4のための芯管を構成し、第1流体配管として用い、巻管4は第2流体配管として用いられる。上記伝熱管1の内面は図2に示すように、外面の山部2に対応する部分が谷部5、外面の谷部3に対応する部分が山部6を形成している。そして、上記内面側の山部6には、凹凸7が周方向に所定のピッチで形成されている。該凹凸7は、軸方向、即ち伝熱管1の長手方向に伸びる溝状に形成された凹部71及び凸部72からなり、内面側の各山部6にそれぞれ周方向に螺旋状に形成されている。   The heat transfer tube 1 constitutes a core tube for the winding tube 4 and is used as the first fluid piping, and the winding tube 4 is used as the second fluid piping. As shown in FIG. 2, the inner surface of the heat transfer tube 1 has a valley portion 5 corresponding to the peak portion 2 on the outer surface and a peak portion 6 corresponding to the valley portion 3 on the outer surface. And the unevenness | corrugation 7 is formed in the circumferential direction at the predetermined | prescribed pitch in the peak part 6 on the said inner surface side. The unevenness 7 is composed of a concave portion 71 and a convex portion 72 formed in a groove shape extending in the axial direction, that is, the longitudinal direction of the heat transfer tube 1, and is formed in a spiral shape in the circumferential direction on each mountain portion 6 on the inner surface side. Yes.

次に、上記伝熱管1の製造方法について説明する。上記捻り管形の伝熱管1を製造するには、基本的には従来の製造方法と略同様に銅管(平滑管)の内部にマンドレルを挿入し、捻り加工した後、該マンドレルを引抜くことで製造される。この発明の実施の形態1においては、該マンドレルとして図3に示す突起付マンドレル8を用いる。即ち、突起付マンドレル8は、外周面に所定角度θ1の間隔で形成された複数の凸部81と凹部82を備えている。なお、この例では凸部81は外周面に12箇所設けられ、該凸部81と凹部82の段差は0.5mmに設定されている。第1流体配管を構成する伝熱管1は従来の製造工程と同様に、突起付マンドレル8を図示省略している銅管の内部に挿入し、捻り加工した後、突起付マンドレル8を引抜くことで製造される。   Next, the manufacturing method of the said heat exchanger tube 1 is demonstrated. In order to manufacture the above-described twisted tube type heat transfer tube 1, basically, a mandrel is inserted into a copper tube (smooth tube) in the same manner as in the conventional manufacturing method, and after twisting, the mandrel is pulled out. It is manufactured by. In the first embodiment of the present invention, a mandrel 8 with protrusions shown in FIG. 3 is used as the mandrel. In other words, the mandrel with protrusions 8 includes a plurality of convex portions 81 and concave portions 82 formed on the outer peripheral surface at intervals of a predetermined angle θ1. In this example, 12 convex portions 81 are provided on the outer peripheral surface, and the step between the convex portion 81 and the concave portion 82 is set to 0.5 mm. As in the conventional manufacturing process, the heat transfer tube 1 constituting the first fluid pipe is inserted into a copper tube (not shown) and twisted, and then the mandrel 8 with protrusions is pulled out. Manufactured by.

上記伝熱管1の内面の山部6に周方向に螺旋状に形成された凹部71及び凸部72からなる凹凸7は、各々上記突起付マンドレル8の凸部81と凹部82が転写されることで形成されたものであり、この例では凸部72及び凹部71は各12個/周形成されている。なお、上記捻り加工時に銅管の外周部に形成された複数条の谷部3に図示省略している複数のローラを突起付マンドレル8の中心軸方向にそれぞれ押し付けることで、転写を確実なものとすることができる。なお、従来のマンドレルは断面円形の金属製の丸棒(図示省略)であり、かかる丸棒状のマンドレルを銅管の内部に挿入し、捻り加工した後、引抜いた場合、銅管の内面には外面と同様の滑らかな凹凸からなる螺旋状の山部と谷部が形成される。   The projections and depressions 82 of the projection mandrel 8 are respectively transferred to the projections and depressions 7 formed of the depressions 71 and the projections 72 spirally formed in the circumferential direction on the crest 6 on the inner surface of the heat transfer tube 1. In this example, 12 convex portions 72 and one concave portion 71 are formed per circumference. In addition, a plurality of rollers (not shown) are pressed against the plurality of valleys 3 formed on the outer peripheral portion of the copper tube at the time of the twisting, so that the transfer can be surely performed. It can be. In addition, the conventional mandrel is a metal round bar (not shown) having a circular cross section, and when the round mandrel is inserted into a copper tube, twisted and then pulled out, the inner surface of the copper tube Spiral peaks and valleys are formed of smooth irregularities similar to the outer surface.

次に、上記のように構成された熱交換器の動作について説明する。熱交換器10の第1流体配管として用いる伝熱管1は、外面に所定のピッチを有する螺旋状の山部2と谷部3を交互に有し、外面の谷部3に対応する内面の山部6に凹部71及び凸部72からなる凹凸7を有しており、外面の谷部3に沿って3本の巻管41、42、43を巻き付けるため、上記伝熱管1の内面に一定間隔の角度で形成されている凹部71及び凸部72からなる凹凸7の真上部に確実に巻管4を配置でき、性能上のばらつきが抑制される。また、伝熱管1は内面に凹部71及び凸部72からなる凹凸7が設けられていることにより伝熱に寄与する表面積が拡大されるので、該伝熱管1を第1流体配管として用いたときに、第2流体配管として用いる巻管4との熱交換が改善され熱交換器性能が向上する。なお、伝熱管1及び巻管4(41、42、43)に通流する流体(気体、液体)の種類は特に限定されるものではなく、例えば空気調和装置等の冷凍サイクルに用いる冷媒、各種給湯器、暖房機等に用いる湯、水、風呂水など、何れも特別な制限なく好ましく用いることができる。   Next, the operation of the heat exchanger configured as described above will be described. The heat transfer tube 1 used as the first fluid piping of the heat exchanger 10 has spiral peaks 2 and valleys 3 having a predetermined pitch on the outer surface alternately, and peaks on the inner surface corresponding to the valleys 3 on the outer surface. The portion 6 has the concave and convex portions 7 including the concave portion 71 and the convex portion 72, and the three winding tubes 41, 42, and 43 are wound along the outer trough portion 3, so that the inner surface of the heat transfer tube 1 is spaced at a constant interval. The winding tube 4 can be surely arranged directly above the irregularities 7 formed by the concave portions 71 and the convex portions 72 formed at the angles, and variations in performance are suppressed. Moreover, since the surface area which contributes to heat transfer is expanded because the heat transfer tube 1 is provided with the unevenness 7 including the concave portion 71 and the convex portion 72 on the inner surface, when the heat transfer tube 1 is used as the first fluid pipe, Furthermore, heat exchange with the wound tube 4 used as the second fluid piping is improved, and the heat exchanger performance is improved. In addition, the kind of fluid (gas, liquid) flowing through the heat transfer tube 1 and the winding tube 4 (41, 42, 43) is not particularly limited, for example, a refrigerant used in a refrigeration cycle such as an air conditioner, Any of hot water, water, bath water, and the like used for a water heater, a heater, etc. can be preferably used without any particular limitation.

図4は上記実施の形態1によって得られた熱交換器について測定された熱交換器性能を従来技術による熱交換器と比較して示す特性図であり、横軸は伝熱管の内面表面積(mm)、縦軸は熱交換器性能(W/K)を示す。図4において、縦軸目盛が1300W/Kの部分に引かれた横方向の直線Lは熱交換器性能の製品仕様(参考値)を示している。性能曲線Aは実施の形態1によって得られた熱交換器10の場合であり、点A1は凸部72の数が8個のとき、点A2は凸部72の数が16個のときを示す。なお、点Bは丸棒状のマンドレルを使用して製造された従来の熱交換器の場合(比較例)である。 FIG. 4 is a characteristic diagram showing the heat exchanger performance measured for the heat exchanger obtained in the first embodiment in comparison with the heat exchanger according to the prior art, and the horizontal axis is the inner surface area (mm) of the heat transfer tube. 2 ), the vertical axis represents the heat exchanger performance (W / K). In FIG. 4, a horizontal straight line L drawn with a vertical axis scale of 1300 W / K indicates the product specifications (reference values) of the heat exchanger performance. The performance curve A is the case of the heat exchanger 10 obtained by Embodiment 1, and the point A1 shows the case where the number of the convex parts 72 is 8, and the point A2 shows the case where the number of the convex parts 72 is 16. . In addition, the point B is the case (comparative example) of the conventional heat exchanger manufactured using the mandrel of a round bar shape.

図4から明らかなように、従来のマンドレルを使用して製造された熱交換器の熱交換器性能が点Bに示す約1305W/Kであるのに対して、実施の形態1の突起付マンドレル8を使用して製造された熱交換器10の熱交換器性能は、凸部72の数を8個に設定したとき、伝熱管1の内面表面積が点A1に示すように約73mmとなり、熱交換器性能は約1350W/Kであった。同様に凸部72の数を16個に設定したとき、伝熱管1の内面表面積が76mmとなり、熱交換器性能は点A2に示すように約1390W/Kとなった。なお、上記凸部72の数を変えて同様の性能試験を行なった結果、該凸部72の数を8〜16個/周の範囲にすることで、従来の熱交換器の性能と比べて3.5〜6.5%の熱交換器性能の向上が図られることがわかった。なお、該凸部72の数は特に限定されるものではなく、例えば7個以下、または17個以上としても差し支えないが、熱交換器性能の向上の度合いが小さくなるので上記範囲内とすることは好ましい。 As is clear from FIG. 4, the heat exchanger performance of the heat exchanger manufactured using the conventional mandrel is about 1305 W / K shown in point B, whereas the mandrel with protrusions of the first embodiment is used. As for the heat exchanger performance of the heat exchanger 10 manufactured using 8, when the number of convex portions 72 is set to 8, the inner surface area of the heat transfer tube 1 is about 73 mm 2 as indicated by a point A1, The heat exchanger performance was about 1350 W / K. Similarly, when the number of convex portions 72 was set to 16, the inner surface area of the heat transfer tube 1 was 76 mm 2 , and the heat exchanger performance was about 1390 W / K as indicated by point A2. In addition, as a result of performing the same performance test by changing the number of the convex portions 72, the number of the convex portions 72 is in the range of 8 to 16 per circumference, compared with the performance of the conventional heat exchanger. It was found that the heat exchanger performance was improved by 3.5 to 6.5%. The number of the convex portions 72 is not particularly limited, and may be, for example, 7 or less, or 17 or more. However, the degree of improvement in the heat exchanger performance is reduced, so that it is within the above range. Is preferred.

上記説明したようにこの実施の形態1によれば、伝熱管1の内面における、外面の谷部3に対応する山部6に、凹部71及び凸部72からなる凹凸7を設けたことにより、伝熱面積を拡大でき、熱交換器10の性能を向上させることができる。また、上記のような内面に凹凸7を設けた伝熱管1を製造する場合、突起付マンドレル8を用いることで、例えば在来の製造設備でも製造工程を変更させずに製造時間が長くなることもなく容易に製造できる。また、該凹凸7が、第1流体配管として用いられる伝熱管1の外面における螺旋状の谷部3に対応する位置に常に備えられるため、該谷部3に螺旋溝に巻き付けられる巻管4(41、42、43)との接触位置が一定になり、性能上のばらつきを低減できる。更に熱交換器性能が改善されるため、熱交換器の長さを短縮できることで低コスト化を図ることもできる、と言った従来にない顕著な効果を得ることができる。また、伝熱管1の内面に形成した凸部72の数を8〜16個の範囲に設定することにより伝熱管1内部の伝熱面積を拡大でき、熱交換器性能を向上させることができる。   As described above, according to the first embodiment, the ridges 6 corresponding to the valleys 3 on the outer surface on the inner surface of the heat transfer tube 1 are provided with the concave and convex portions 7 including the concave portions 71 and the convex portions 72. The heat transfer area can be expanded, and the performance of the heat exchanger 10 can be improved. Further, when manufacturing the heat transfer tube 1 having the uneven surface 7 on the inner surface as described above, by using the mandrel 8 with a protrusion, for example, even in a conventional manufacturing facility, the manufacturing time can be extended without changing the manufacturing process. And can be easily manufactured. Moreover, since this unevenness | corrugation 7 is always provided in the position corresponding to the spiral trough part 3 in the outer surface of the heat exchanger tube 1 used as 1st fluid piping, the winding pipe 4 ( 41, 42, 43), the contact position is constant, and performance variations can be reduced. Furthermore, since the performance of the heat exchanger is improved, a remarkable effect that has not been achieved in the past can be obtained by reducing the length of the heat exchanger so that the cost can be reduced. Moreover, by setting the number of convex portions 72 formed on the inner surface of the heat transfer tube 1 within a range of 8 to 16, the heat transfer area inside the heat transfer tube 1 can be expanded, and the heat exchanger performance can be improved.

実施の形態2.
図5及び図6は本発明の実施の形態2に係る熱交換器を説明するものであって、図5は熱交換器を構成する伝熱管の内部構造を示す一部破断斜視図、図6は図5に示された伝熱管を製造するときに用いる多角形マンドレルを示す図で、(a)は外観斜視図、(b)は軸方向から見た拡大正面図である。図において、伝熱管1Aの内面における山部6には、多角形の1辺に相当する平面状の凸部72A及び隣接する凸部72A相互の間に形成された角度が広いV字形の谷状の凹部71Aからなる凹凸7Aが周方向に一定間隔の角度で螺旋状に形成されている。その他の構成は上記図1及び図2に示す実施の形態1と同様であるので説明を省略する。
Embodiment 2. FIG.
5 and 6 illustrate a heat exchanger according to Embodiment 2 of the present invention, and FIG. 5 is a partially broken perspective view showing an internal structure of a heat transfer tube constituting the heat exchanger, FIG. These are figures which show the polygonal mandrel used when manufacturing the heat exchanger tube shown by FIG. 5, (a) is an external appearance perspective view, (b) is the enlarged front view seen from the axial direction. In the figure, the peak portion 6 on the inner surface of the heat transfer tube 1A has a V-shaped valley shape with a wide angle formed between the planar convex portion 72A corresponding to one side of the polygon and the adjacent convex portions 72A. The concaves and convexes 7A composed of the concave parts 71A are formed in a spiral shape at an angle of a constant interval in the circumferential direction. Other configurations are the same as those of the first embodiment shown in FIGS.

上記伝熱管1Aを得るには、図6に示す多角形マンドレル8Aが用いられる。図6において、多角形マンドレル8Aは外周面に従来の断面円形のマンドレルの外形寸法に相当する寸法を内接円とし、一定間隔の辺部角度θ2で平面状の辺部(凹部に相当)82A及び稜線状の稜部(凸部に相当)81Aを備えている。伝熱管1Aは、上記実施の形態1と同様に、上記多角形マンドレル8Aを図示省略している銅管(平滑管)の内部に挿入し、捻り加工した後、多角形マンドレル8Aを引抜くことで製造される。伝熱管1Aの内面における山部6に形成された凹凸7Aは、上記多角形マンドレル8Aの外周面の辺部82A及び稜部81Aが転写されたもので、辺部82Aに対応する部分が凸部72A、稜部81Bに対応する部分が凹部71Aとして転写される。なお、凸部72Aは、この例では12個/周形成されている。   In order to obtain the heat transfer tube 1A, a polygonal mandrel 8A shown in FIG. 6 is used. In FIG. 6, a polygonal mandrel 8A has an inscribed circle on the outer peripheral surface corresponding to the outer dimension of a conventional mandrel having a circular cross section, and has a planar side part (corresponding to a concave part) 82A with a side angle θ2 of a constant interval. And a ridge line-like ridge portion (corresponding to a convex portion) 81A. As in the first embodiment, the heat transfer tube 1A inserts the polygonal mandrel 8A into a copper tube (smooth tube) (not shown), twists it, and then pulls out the polygonal mandrel 8A. Manufactured by. The unevenness 7A formed on the peak portion 6 on the inner surface of the heat transfer tube 1A is obtained by transferring the side portion 82A and the ridge portion 81A of the outer peripheral surface of the polygonal mandrel 8A, and the portion corresponding to the side portion 82A is a convex portion. A portion corresponding to 72A and ridge 81B is transferred as a recess 71A. In this example, 12 convex portions 72A / circumference are formed.

次に、動作について説明する。伝熱管1Aは、実施の形態1と同様、外面に所定のピッチを有する螺旋状の山部2と谷部3を交互に有し、外面の谷部3に対応する内面の山部6に凹部71A及び凸部72Aからなる凹凸7Aが形成され、外面側に設けられた螺旋の3条の谷部3に沿って3本の巻管4(41、42、43)が巻き付けられるため、内面側に形成された凹部71A及び凸部72Aからなる凹凸7Aの真上部に確実に巻管4を配置でき、性能上のばらつきが抑制される。また、伝熱管1Aは内面に凹凸7Aが設けられていることにより表面積が拡大され、該伝熱管1Aを第1流体配管として用いたときに、第2流体配管として用いる巻管4との熱交換が改善され熱交換器性能が向上する。   Next, the operation will be described. As in the first embodiment, the heat transfer tube 1A has spiral peaks 2 and valleys 3 having a predetermined pitch on the outer surface alternately, and is recessed in the peaks 6 on the inner surface corresponding to the valleys 3 on the outer surface. An uneven surface 7A composed of 71A and a convex portion 72A is formed, and the three winding tubes 4 (41, 42, 43) are wound along the three spiral valleys 3 provided on the outer surface side. The winding tube 4 can be surely disposed directly above the unevenness 7A composed of the concave portion 71A and the convex portion 72A formed in the above, and variations in performance are suppressed. Further, the heat transfer tube 1A has a surface area enlarged by providing the inner surface with the unevenness 7A, and when the heat transfer tube 1A is used as the first fluid piping, heat exchange with the winding tube 4 used as the second fluid piping is performed. Is improved and the performance of the heat exchanger is improved.

図7は上記実施の形態2によって得られた熱交換器について測定された熱交換器性能を従来技術による熱交換器と比較して示す図4と同様の特性図であり、図において、横軸、縦軸、直線L、及び点Bは図4と同様であるので説明を省略する。性能曲線Cは実施の形態2によって得られた熱交換器(図示省略)の場合であり、点C1は伝熱管1A内面の凸部72Aの数が8個/周のとき、点C2は凸部72Aの数が24個/周のときを示す。図7から明らかなように、多角形マンドレル8Aを使用して製造された伝熱管1Aを第1流体配管として用いた熱交換器の性能曲線Cは、凸部72Aの数を8個に設定した場合、伝熱管1Aの内面表面積が73mmとなり、熱交換器性能は点C1にプロットしたように約1320W/Kとなった。同様に凸部72Aの数を24個に設定した場合、伝熱管1Aの内面表面積が76mmとなり、熱交換器性能は点C2にプロットしたように1350W/Kとなった。 FIG. 7 is a characteristic diagram similar to FIG. 4 showing the heat exchanger performance measured for the heat exchanger obtained by Embodiment 2 above in comparison with a heat exchanger according to the prior art, in which the horizontal axis , The vertical axis, the straight line L, and the point B are the same as in FIG. The performance curve C is the case of the heat exchanger (not shown) obtained by the second embodiment, and the point C1 is the number of the convex portions 72A on the inner surface of the heat transfer tube 1A is 8 pieces / round, and the point C2 is the convex portion The case where the number of 72A is 24 / round is shown. As is clear from FIG. 7, the performance curve C of the heat exchanger using the heat transfer tube 1A manufactured using the polygonal mandrel 8A as the first fluid piping has the number of convex portions 72A set to eight. In this case, the inner surface area of the heat transfer tube 1A was 73 mm 2 , and the heat exchanger performance was about 1320 W / K as plotted at the point C1. Similarly, when the number of convex portions 72A was set to 24, the inner surface area of the heat transfer tube 1A was 76 mm 2 , and the heat exchanger performance was 1350 W / K as plotted at point C2.

なお、上記伝熱管1A内面の凸部72Aの数を変えて同様の性能試験を行なった結果、該凸部72Aの数を8〜24個の範囲にすることで、熱交換器性能を1320〜1350W/Kとすることができ、従来の熱交換器の熱交換器性能と比べて1.2〜3.5%の熱交換器性能の向上が図られることがわかった。なお、該凸部72Aの数は特に限定されるものではなく、例えば7個/周以下、または25個/周以上としても差し支えないが、熱交換器性能の向上の度合いが小さくなるので上記範囲内とすることは好ましい。   In addition, as a result of performing the same performance test by changing the number of the convex portions 72A on the inner surface of the heat transfer tube 1A, the number of the convex portions 72A is set in the range of 8 to 24, thereby improving the heat exchanger performance to 1320. It can be set to 1350 W / K, and it has been found that the heat exchanger performance is improved by 1.2 to 3.5% as compared with the heat exchanger performance of the conventional heat exchanger. Note that the number of the convex portions 72A is not particularly limited, and may be, for example, 7 pieces / circumference or less, or 25 pieces / circumference or more. However, since the degree of improvement in the heat exchanger performance is reduced, the above range. It is preferable to be inside.

上記のように実施の形態2によれば、熱交換器の第1流体配管として用いる伝熱管1Aにおける外面の谷部3に対応している内面の山部6に、凹部71A及び凸部72Aからなる多角形状の凹凸7Aを設けたことにより、伝熱面積を拡大でき、熱交換器の性能を向上させることができる。また、このような伝熱管1Aを製造する場合、例えば通常の断面円形のマンドレルの外周面に多角形状を施こすことで多角形マンドレル8Aを得、例えば在来の捻り管形の伝熱管の製造工程を変更させずに短時間で容易に製造できる。また伝熱管1A内面に形成されている凹凸7Aが、常に伝熱管1A外面に形成されている螺旋状の谷部3に備えられるため、伝熱管1Aの螺旋溝である谷部3に巻き付けられる巻管4との接触位置が一定になり、性能上のばらつきを低減できる。更に熱交換器性能を改善できるため、熱交換器の長さを短縮することが可能となり、短縮した場合には低コスト化を図ることもできる、と言った従来にない顕著な効果を得ることができる。また、伝熱管1A内面の凸部72Aの数を8〜24個/周の範囲に設定することにより伝熱管1A内部の伝熱面積を拡大でき、熱交換器性能を向上させることができる。   As described above, according to the second embodiment, the concave portion 71A and the convex portion 72A are provided on the inner surface ridge portion 6 corresponding to the outer valley portion 3 in the heat transfer tube 1A used as the first fluid piping of the heat exchanger. By providing the polygonal unevenness 7A, the heat transfer area can be expanded and the performance of the heat exchanger can be improved. Further, when manufacturing such a heat transfer tube 1A, for example, a polygonal mandrel 8A is obtained by applying a polygonal shape to the outer peripheral surface of a normal mandrel having a circular cross section, for example, manufacturing a conventional twisted tube heat transfer tube It can be easily manufactured in a short time without changing the process. Further, since the unevenness 7A formed on the inner surface of the heat transfer tube 1A is always provided in the spiral valley portion 3 formed on the outer surface of the heat transfer tube 1A, the winding wound around the valley portion 3 that is the spiral groove of the heat transfer tube 1A. The position of contact with the tube 4 is constant, and variations in performance can be reduced. Furthermore, since the heat exchanger performance can be improved, the length of the heat exchanger can be shortened, and if it is shortened, the cost can be reduced and an unprecedented remarkable effect can be obtained. Can do. Moreover, by setting the number of convex portions 72A on the inner surface of the heat transfer tube 1A within a range of 8 to 24 pieces / circumference, the heat transfer area inside the heat transfer tube 1A can be expanded, and the heat exchanger performance can be improved.

ところで、上記実施の形態では、伝熱管の内面側における螺旋状の山部6に形成する凹凸として、断面略歯車状の凹凸7(実施の形態1)、及び断面多角形状の凹凸7A(実施の形態1)を設けた場合について例示したが、該凹凸の形状はこれらに限定されないことは言うまでもない。また、伝熱管の周面に形成される螺旋状の山部2(または谷部3)が3条の場合について説明したが、必ずしも3条でなくても良い。従って、巻管4の数も3つに限定されるものではない。また、突起付マンドレル8の凸部81と凹部82の段差などについても実施の形態で例示したものに限定されないことは当然である。   By the way, in the said embodiment, as unevenness | corrugation formed in the helical peak part 6 in the inner surface side of a heat exchanger tube, unevenness | corrugation 7 (embodiment 1) of cross-sectional substantially gear shape, and uneven | corrugated 7A (embodiment of cross-section) Although the case where the form 1) is provided is illustrated, it is needless to say that the shape of the unevenness is not limited thereto. Moreover, although the helical peak part 2 (or trough part 3) formed in the surrounding surface of a heat exchanger tube demonstrated the case where it was 3, it does not necessarily need to be 3 lines. Therefore, the number of winding tubes 4 is not limited to three. Further, it is natural that the step between the convex portion 81 and the concave portion 82 of the mandrel 8 with protrusions is not limited to that exemplified in the embodiment.

本発明の実施の形態1に係る熱交換器の要部を示す斜視図。The perspective view which shows the principal part of the heat exchanger which concerns on Embodiment 1 of this invention. 図1に示された伝熱管の内部構造を示す一部破断斜視図。The partially broken perspective view which shows the internal structure of the heat exchanger tube shown by FIG. 図1に示された伝熱管を製造するときに用いる突起付マンドレルを示す図で、(a)は外観斜視図、(b)は軸方向から見た拡大正面図。It is a figure which shows the mandrel with a protrusion used when manufacturing the heat exchanger tube shown by FIG. 1, (a) is an external appearance perspective view, (b) is the enlarged front view seen from the axial direction. 実施の形態1によって得られた熱交換器について測定された熱交換器性能を従来技術による熱交換器と比較して示す特性図。The characteristic view which shows the heat exchanger performance measured about the heat exchanger obtained by Embodiment 1 compared with the heat exchanger by a prior art. 本発明の実施の形態2に係る熱交換器を構成する伝熱管の内部構造を示す一部破断斜視図。The partially broken perspective view which shows the internal structure of the heat exchanger tube which comprises the heat exchanger which concerns on Embodiment 2 of this invention. 図5に示された伝熱管を製造するときに用いる多角形マンドレルを示す図で、(a)は外観斜視図、(b)は軸方向から見た拡大正面図。It is a figure which shows the polygonal mandrel used when manufacturing the heat exchanger tube shown by FIG. 5, (a) is an external appearance perspective view, (b) is the enlarged front view seen from the axial direction. 実施の形態2によって得られた熱交換器について測定された熱交換器性能を従来技術による熱交換器と比較して示す特性図。The characteristic view which shows the heat exchanger performance measured about the heat exchanger obtained by Embodiment 2 compared with the heat exchanger by a prior art.

符号の説明Explanation of symbols

1、1A 伝熱管、 2 山部、 3 谷部、 4(41、42、43) 第2流体配管、 5 谷部、 6 山部、 7、7A 凹凸、 71、71A 凹部、 72、72A 凸部、 8 突起付マンドレル、 81 凸部、 82 凹部、 8A 多角形マンドレル、 81A 稜部(凸部に相当)、 82A 辺部(凹部に相当)、 10 熱交換器。   1, 1A heat transfer tube, 2 peaks, 3 valleys, 4 (41, 42, 43) 2nd fluid piping, 5 valleys, 6 peaks, 7, 7A irregularities, 71, 71A depressions, 72, 72A projections 8 Protruding mandrel, 81 convex portion, 82 concave portion, 8A polygonal mandrel, 81A ridge portion (corresponding to convex portion), 82A side portion (corresponding to concave portion), 10 heat exchanger.

Claims (5)

外面及び内面にそれぞれ螺旋状の山部及び谷部が形成され、上記内面における螺旋状の山部に凹凸が形成されている伝熱管と、この伝熱管の外面における上記谷部に沿って螺旋状に巻き付けられた巻管とを備えたことを特徴とする熱交換器。   A heat transfer tube in which spiral peaks and valleys are formed on the outer surface and the inner surface, respectively, and irregularities are formed on the spiral peaks on the inner surface, and a spiral shape along the valley on the outer surface of the heat transfer tube A heat exchanger characterized by comprising a winding tube wound around. 上記凹凸は、平滑管を捻り加工するときに芯材として用いた断面略歯車状の突起付マンドレルの外周面が転写されたものであることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the unevenness is formed by transferring an outer peripheral surface of a mandrel with a projection having a substantially gear-shaped cross section used as a core material when twisting a smooth tube. 上記凹凸の凸部の数は8〜16個/周であることを特徴とする請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the number of the convex and concave portions is 8 to 16 per circumference. 上記凹凸は、平滑管を捻り加工するときに芯材として用いた断面多角形状の多角形マンドレルの外周面が転写されたものであることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the irregularities are formed by transferring an outer peripheral surface of a polygonal mandrel having a polygonal cross section used as a core material when twisting a smooth tube. 上記凹凸の凸部の数は8〜24個/周であることを特徴とする請求項4に記載の熱交換器。   5. The heat exchanger according to claim 4, wherein the number of the convex and concave portions is 8 to 24 per circumference.
JP2007270778A 2007-10-18 2007-10-18 Heat exchanger Pending JP2009097810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270778A JP2009097810A (en) 2007-10-18 2007-10-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270778A JP2009097810A (en) 2007-10-18 2007-10-18 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2009097810A true JP2009097810A (en) 2009-05-07

Family

ID=40700976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270778A Pending JP2009097810A (en) 2007-10-18 2007-10-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2009097810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018025391A1 (en) * 2016-08-05 2019-03-07 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249580A (en) * 2003-02-20 2004-09-09 Bridgestone Corp Method for producing mold for molding peripheral surface of molding roll
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004249580A (en) * 2003-02-20 2004-09-09 Bridgestone Corp Method for producing mold for molding peripheral surface of molding roll
JP2006090697A (en) * 2004-08-26 2006-04-06 Mitsubishi Electric Corp Twisted tube type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018025391A1 (en) * 2016-08-05 2019-03-07 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger

Similar Documents

Publication Publication Date Title
JP3953074B2 (en) Heat exchanger
US20120312514A1 (en) Dense twisted bundle heat exchanger
US20050103482A1 (en) Multi-tube in spiral heat exchanger
JP4736919B2 (en) Flat tube roll forming method and apparatus, and flat tube
JP5293584B2 (en) Twisted tube heat exchanger and method of manufacturing twisted tube heat exchanger
JP2013053804A (en) Structure of triple pipe, and heat exchanger
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
JP4699945B2 (en) Manufacturing method of spiral multistage heat exchanger and spiral multistage heat exchanger
JP6211313B2 (en) Triple tube heat exchanger
JP2009097810A (en) Heat exchanger
JP5404589B2 (en) Twisted tube heat exchanger
JP2011163655A (en) Method of manufacturing torsion pipe type heat exchanger and the torsion pipe type heat exchanger manufactured in the manufacturing method
JP3332052B2 (en) Method of manufacturing spiral heat transfer tube
CN101806551B (en) Heat exchanger and heat transfer tube
KR101326759B1 (en) Double pipe heat exchanger
JP2010091266A (en) Twisted tube type heat exchanger
JP3642368B2 (en) Fin tube and manufacturing method thereof
JP2008249163A (en) Heat exchanger for supplying hot water
JP5656786B2 (en) Manufacturing method of different diameter twisted tube heat exchanger
JP2015025577A (en) Method of manufacturing triple tube type heat exchanger
KR20120001268U (en) Condenser For Refrigerator
JP2007218566A (en) Tube with grooves on inner surface and its manufacturing method, and fluted plug
JP4419673B2 (en) Heat exchanger
WO1994007071A1 (en) Manufacture of helically corrugated conduit
JP2008023537A (en) Method for producing double tube with curved part

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110928

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120214