JP2004322141A - Hairpin bent copper tube and hairpin bending method for copper tube - Google Patents

Hairpin bent copper tube and hairpin bending method for copper tube Download PDF

Info

Publication number
JP2004322141A
JP2004322141A JP2003119412A JP2003119412A JP2004322141A JP 2004322141 A JP2004322141 A JP 2004322141A JP 2003119412 A JP2003119412 A JP 2003119412A JP 2003119412 A JP2003119412 A JP 2003119412A JP 2004322141 A JP2004322141 A JP 2004322141A
Authority
JP
Japan
Prior art keywords
bending
hairpin
copper tube
copper
radius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119412A
Other languages
Japanese (ja)
Other versions
JP4598371B2 (en
Inventor
Masatoshi Yoshida
正敏 吉田
Masaki Kobayashi
正樹 小林
Tetsuo Uchida
哲夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003119412A priority Critical patent/JP4598371B2/en
Publication of JP2004322141A publication Critical patent/JP2004322141A/en
Application granted granted Critical
Publication of JP4598371B2 publication Critical patent/JP4598371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small-diameter hairpin bent copper tube which is suppressed of wrinkling in a hairpin bending section even if the external diameter of a copper tube is ≤10 mm ϕ and bending pitch is ≤40 mm and a hairpin bending method for the copper tube. <P>SOLUTION: In the hairpin bending section 2 of the copper tube 1, the average bending radius R<SB>0</SB>of the bending portion 2b on the side where hairpin bending is ended out of the two bending portions 2a and 2b respectively rising to an arcuate shape from the straight section of the copper tube is made larger than the average bending radius Ri of the bending portion 1a on the side where the hairpin bending is started, to suppress the wrinkling of the hairpin bending section. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、小径で、かつ略平行な銅管同士の軸心間距離が小さいヘアピン曲げ銅管および銅管のヘアピン曲げ加工方法に関するものである。
【0002】
【従来の技術】
近年、地球温暖化防止など環境への負荷低減を目的として、エアコン等において、小型化、軽量化および伝熱性能向上に対する要求が高まり、これに用いる銅管に対しても、薄肉化、小型化、熱交換能の向上が要求されている。銅管の熱交換能向上の代表例は内面溝付管であり、内面が平滑な管に対して、内面に螺旋状の複数の平行溝を形成し、熱交換能を向上している。
【0003】
この他、銅管熱交換能の向上の手段としては、熱交換フィンを貫通している伝熱管としての銅管同士の間隔を狭めて、小ピッチ化する方法がある。これは、銅管同士の間隔を小ピッチ化することで、伝熱管の密度を高くし、熱交換フィンの熱交換能を増大させるものである。
【0004】
図6 に、これら銅管熱交換器の一例を斜視図で示す通り、熱交換器10の伝熱管として用いられる銅管は、略平行な銅管1 同士を、ヘアピン曲げ(U字曲げ) と呼ばれる半円形の円弧状曲げ部分2 で一体につなぐ、ヘアピン曲げ銅管から構成される。
【0005】
このようなヘアピン曲げ銅管は、直線状の銅管をヘアピン曲げ加工して製作されることが公知である (例えば特許文献1参照) 。このヘアピン曲げは、例えば後述する図4 (a) に示すような回転引き曲げ法によって、銅管1 内に球頭の首振り式心金5 を設けた中子4 を挿入した上で、曲げ中心半径R を一定とした180 °の曲げ加工によって行なわれる。
【0006】
【特許文献1】
特開2002−224756 号公報、(第1 〜2 頁、図6 )
【0007】
しかし、前記小ピッチ化の際、ヘアピン曲げ銅管の略平行な銅管直線部同士の軸心間距離t (以下曲げピッチとも言う)を小さくすると、上記ヘアピン曲げ加工の際に、ヘアピン曲げ部分( 曲げ内側部分) に、破断やしわ、あるいは断面変形などの形状不良が発生しやすくなる。この傾向は、銅管を薄肉化した場合にも大きくなることも知られている(例えば非特許文献1参照)。また、同じ曲げ加工度R/D (曲げ中心半径R /管肉厚中心直径D )、同じ径厚比(管肉厚中心直径D/管肉厚t)で比較すると、外径D が小さい方がしわが大きく発生しやすいことが知られている。
【0008】
【非特許文献1】
銅と銅合金、vol.41(2002)(第54〜58頁)
【0009】
上記しわなどの形状不良は、外見上の問題とともに、フィンの組み立て不良の原因となる。すなわち、ヘアピン曲げ銅管は、銅管の直線部分を熱交換フィン上に開けられた穴に挿入して、伝熱管として組み立てられる。しかし、銅管のヘアピン曲げ部分 (曲げ内側部分) にしわや断面変形のある場合、銅管のヘアピン曲げ加工部近傍まで熱交換フィンを挿入することが不可能となる。また、しわが大きい場合、銅管の内径が変化し、内部を通過する冷媒や熱媒の流通に影響して、エアコン等における小型化、軽量化および伝熱性能向上へ悪影響を与える。
【0010】
一般に、曲げ加工時の破断については、曲げ中心半径R と管径D の比(ε=D /2R)でおおむね定まることが知られている。また、上記しわなどの形状不良の1つの原因は、銅管素材に加わる圧縮応力σが増大した場合に起きると言われている。この圧縮応力σは、曲げ中心半径R と管径D の比(ε=D /2R)で定まり、この圧縮応力σに対するしわの発生しやすさは、管の径厚比D/t に依存することが知られている。
【0011】
したがって、しわや断面変形を防ぐ方法として、このD とR およびtを最適化して、この圧縮応力σを抑制することが、これまでの実際のヘアピン曲げ加工で行われて来た。また、曲げ加工の際、管軸方向に張力を加えることでしわを抑制する方法も一般に知られているが、この際、破断が生じやすくなり、また断面が変形するなどの問題がある。
【0012】
【発明が解決しようとする課題】
しかし、前記D 、R 、t などの調整で破断やしわを抑制する方法は、結果的に製品形状を制限することになる。つまり、断面形状が同じで小ピッチの製品(製品の小型化)や、逆により薄肉の素管を用いて外観は同じ製品(製品の軽量化)を得ること等は不可能といえる。このため、より小ピッチ、薄肉の製品を得るための加工方法の開発が望まれていた。
【0013】
特に小径管の場合には、同一曲げ加工度R/D 、径厚比条件D/t で比較して、しわが発生しやすく、このような加工方法の開発が急務であった。また、製品薄肉化達成のために銅管素材の高強度化も検討されているが、この際、加工性が劣化し、このような破断、しわなどの形状不良が生じやすいことが問題になる。これを補うという面でも、破断しわの生じにくい加工方法が望まれている。
【0014】
本発明は、この様な事情に着目してなされたものであって、その目的は、特に銅管の外径がΦ10mm以下であり、曲げピッチが40mm以下であっても、ヘアピン曲げ部のしわが抑制された小径ヘアピン曲げ銅管と、その銅管のヘアピン曲げ加工方法を提供しようとするものである。
【0015】
【課題を解決するための手段】
この目的を達成するために、本発明ヘアピン曲げ銅管の要旨は、特に、略平行な銅管同士の軸心間距離が40mm以下で、銅管の外径がΦ10mm以下であるような、ヘアピン曲げ銅管であって、銅管のヘアピン曲げ部分において銅管直線部から各々円弧状に立ち上がる二つの曲げ部分の内、ヘアピン曲げ加工が終了される側であるいずれかの曲げ部分の平均曲げ半径が、ヘアピン曲げ加工が開始される側である他方の曲げ部分の平均曲げ半径よりも大きいことである。
【0016】
また、上記目的を達成するために、本発明銅管のヘアピン曲げ加工方法の要旨は、特に、銅管の外径がΦ10mm以下である銅管を、略平行な銅管同士の軸心間距離が40mm以下に、ヘアピン曲げ加工する方法であって、銅管をヘアピン曲げ加工する方法であって、銅管のヘアピン曲げ部分において銅管直線部から各々円弧状に立ち上がる二つの曲げ部分の内、ヘアピン曲げ加工が終了される側の曲げ部分の平均曲げ半径を、ヘアピン曲げ加工が開始される側の曲げ部分の平均曲げ半径よりも大きくして、ヘアピン曲げ加工を行なうことである。
【0017】
【発明の実施の形態】
本発明では、図1 に正面図で示すようなヘアピン曲げ銅管において、銅管1 のヘアピン曲げ部分2 において銅管直線部1a、1bから各々円弧状に立ち上がる二つの曲げ部分2a、2bの内、ヘアピン曲げ加工が終了される側である曲げ部分2bの平均曲げ半径Rを、ヘアピン曲げ加工が開始される側である他方の曲げ部分2aの平均曲げ半径Riよりも大きくする。
【0018】
なお、図1 において、t はヘアピン曲げ銅管の略平行な銅管直線部同士の軸心間距離(曲げピッチ)、D は銅管外径である。そして、図1 に記載した矢印方向に、銅管は曲げ加工される( 以下の図2 でも同様) 。
【0019】
先ず、銅管のヘアピン曲げ部分 (曲げ内側部分) にしわが発生する機構について、以下に具体的に説明する。図4(a)に断面図で示した回転引き曲げ法など、銅管をヘアピン曲げ加工する場合には、ヘアピン曲げ部において、銅管の曲げ角度の小さい部分と、曲げ角度が大きい部分とが必然的に生じる。
【0020】
このヘアピン曲げ部における、銅管の曲げ角度の小さい部分と、曲げ角度が大きい部分とを、図2 (a) 、(b) に示す。図2 (a) 、(b) では、銅管1 のヘアピン曲げ部分2 において、銅管直線部1a、1bから各々円弧状に立ち上がる、この二つの曲げ部分を、ヘアピン曲げの経過に応じて示している。
【0021】
先ず、図2 (a) のように、ヘアピン曲げの初期乃至前半には、ヘアピン曲げ加工が開始される側の曲げ部分2aが生じる。この曲げ部分2aの曲げ角度θは、直管状の0 °( 曲げ前の角度) から直角状の90°程度までの曲げ角度となり、曲げ角度θは比較的小さい条件となる。
【0022】
これに対して、図2 (b) のように、ヘアピン曲げの終わり乃至後期には、上記曲げ部分2aに次いで、ヘアピン曲げ加工が終了される側の曲げ部分2bが生じる。この曲げ部分2bの曲げ角度θは、前記直角状の90°程度からヘアピン曲げの180 °( 曲げ終了の角度) までの曲げ角度となり、曲げ角度θは比較的大きくなる。即ち、ヘアピン曲げ部において、曲げの初期乃至前半から曲げの終わり乃至後期に行くに従い、曲げ角度は大きくなる。
【0023】
この銅管の曲げ角度の違いによる、銅管の曲げ内側部分3 に与えるひずみ量への影響を図3 に示す。図3 は、ヘアピン曲げ加工終了後のヘアピン曲げ銅管について、曲げ最外側表面に生じる管軸方向のひずみ量 (縦軸: 最大主ひずみ量ε) とヘアピン曲げの特定部分の位置φ (横軸:DEG) との関係をFEM 解析によって求めたものである。図3 の横軸において、曲げ終了側端部位置を0DEG. 、曲げ開始側端部位置を180DEG. としている。図3 において、3 種類の曲線は、R(銅管ヘアピン曲げ中心半径) とD(銅管外径) との比R/D が、丸印の曲線は1.2 、三角印の曲線は1.5 、四角印の曲線は2.0 のものである。
【0024】
図3 によれば、各曲線とも、位置φの小さい領域 (曲げ角度θが大きい、ヘアピン曲げ加工が終了される側の曲げ部分2b) ほど、銅管に生じるひずみ量が大きくなる。一方、ヘアピン曲げ加工が開始される側 (位置φの大きい領域、曲げ角度θが小さいヘアピン曲げ加工が開始される側の曲げ部分2a) では、銅管の曲げ内側部分3 に生じるひずみ量は小さい。
【0025】
このことから、位置φの小さい領域、即ち、曲げ角度θが大きい、ヘアピン曲げ加工が終了される側の曲げ部分2bほど、銅管 (曲げ内側部分3 を含めて) に生じるひずみ量が大きくなる。したがって、ヘアピン曲げ加工が終了される側の曲げ部分2bほど、曲げ内側部分3 に、破断やしわA が生じやすい。これに対して位置φの大きい領域、即ち、ヘアピン曲げ加工が開始される側の曲げ部分2aでは曲げ角度θが小さく、せん断変形の影響で銅管に加わるひずみ量が低減できる。即ち、曲げ角度が大きくなるにつれて、このひずみ量低減効果が小さくなり、ヘアピン曲げ加工が終了される側の曲げ部分2bほど、曲げ内側部分3 に、破断やしわが生じやすいことに起因している。また、解析結果からも分かるように、銅管の曲げ角度の違いによる、せん断変形の影響は、比較的曲げ加工度R/D が小さいほど顕著になる。
【0026】
前記した従来のヘアピン曲げ加工方法では、曲げ中心半径R を一定として、このR が一定な半円状のヘアピン曲げ部を形成する。このため、上記したしわの発生機構からして、このような銅管の曲げ角度の違いによる、せん断変形の影響を解消できない。すなわち、ヘアピン曲げ加工時に、破断、しわなどの成形不良が発生する条件であっても、曲げ開始側領域に発生するひずみ量(および応力)は小さく、成形不良の発生に対して常に余裕がある状態で成形されていることになる。
【0027】
これに対し、本発明のように、前記図1 に示す、ヘアピン曲げの終わり乃至後期である、銅管の曲げ角度θが大きい銅管曲げ部分2bの平均曲げ半径Rを大きくすることで、曲げ加工の際に、銅管に加わるひずみ量を曲げ周方向に平均化できる。すなわち、破断、しわなどの成形不良の発生しやすい曲げ終了側の曲げ半径を大きくすることで、成形不良を回避できる。そしてし、成形余裕度のある曲げ開始側の曲げ半径を小さくすることで、曲げピッチを減少させることが可能になる。
【0028】
この銅管曲げ部分2bの平均曲げ半径Rを大きくする目安として、曲げ加工部全体の平均曲げ半径Raveに対して、ヘアピン曲げ加工が開始される側(φの大きい領域)の平均曲げ半径Riと曲げ加工終了側(φの小さい領域)の平均曲げ半径Roの和が同等以下であり(Rave.≧Ro+Ri) 、かつ、Ri<Roのように選定する。
これによって、後述する通り、媒体の流通や熱交換能などに影響を与えることなく、ヘアピン曲げ加工の際の、破断、しわなどの形状不良を発生しにくくすること、また、しわや断面変形が発生した場合に、その程度を軽くすることが可能煮にある。特にしわが発生しやすい銅管の外径D がΦ10mm以下で、曲げピッチt が40mm以下の条件や、加工性に劣る高強度銅管、内面溝付管でその効果は顕著である。
【0029】
以下に、本発明の具体的な実施態様について説明する。
先ず、前提として、本発明では、例えば後述する図5(b)に示す、曲げ中心半径R を一定としてヘアピン曲げ加工された従来の銅管のように、ヘアピン曲げ部は曲げ中心半径R が一定な半円状 (円弧状) とはならない。即ち、前記図1 に示すように、本発明銅管のヘアピン曲げ部2 は、ヘアピン曲げの終わり乃至後期である銅管曲げ部分2bの平均曲げ半径Rが大きく、ヘアピン曲げ加工が開始される側である銅管曲げ部分2aの平均曲げ半径Riが小さい、言わば歪な半円状 (円弧状) となる。
【0030】
このように、本発明銅管のように、平均曲げ半径が異なるヘアピン曲げ部を有していても、急激な形状変化はなく、内部を通過する冷媒や熱媒の流通には何ら影響はなく、エアコン等において、小型化、軽量化および伝熱性能向上への悪影響は一切ない。そして、却って、しわの発生の抑制による、銅管内部を通過する冷媒や熱媒の流通への悪影響が無くなる効果により、エアコン等において小型化、軽量化および伝熱性能の向上が図れる利点が大きい。また、従来曲げ加工方法に比べて破断、しわが生じにくいことから、より小ピッチでの曲げ加工が可能となり、これによって製品の小型化、軽量化が図れる。
【0031】
この点、従来の曲げ中心半径R を一定とした銅管のヘアピン曲げ部でしわが発生した場合、このしわによる銅管の内径変化によって、却って、内部を通過する冷媒や熱媒の流通に影響がある。この影響は、内面が平滑な管でも大きいが、内面に螺旋状の複数の平行溝を設けた内面溝付管などではより大きくなり、エアコン等としての、薄肉化、小型化、熱交換能の向上への悪影響が不可避である。
【0032】
本発明において、前記図1 に示す、銅管曲げ部分2bの平均曲げ半径Rを、銅管曲げ部分2aの平均曲げ半径Riよりも大きくする程度は、ヘアピン曲げ部分の設計形状からの従来の曲げ中心半径R を土台とし、その下限は、曲げ加工の際に、銅管曲げ部分2bの曲げ内側部分3 に発生する破断やしわを抑えることができる最小限の値から選択する。
【0033】
但し、銅管曲げ部分2bの平均曲げ半径Rを、銅管曲げ部分2aの平均曲げ半径Riよりもあまり大きくしすぎると、フィンを曲げ加工部近傍まで挿入することが困難になるという問題が生じる。このことから、Roの上限は、これに影響しない範囲で選択することが望ましい。
【0034】
一方、銅管曲げ部分2aの平均曲げ半径Riは、ヘアピン曲げ部分の設計されるスパンなどの大きさや形状からくる、従来の均一な曲げ中心半径Rave. を土台とし、上記銅管曲げ部分2bの平均曲げ半径Rとの関係で定まる。
【0035】
銅管曲げ部分2aの曲げ半径Riや、銅管曲げ部分2bの曲げ半径Rを、各々平均とした理由は、各々の曲げ部分の円弧方向の各部分に渡って、RiやRが一定の値とならずとも良いからである。即ち、各々の曲げ部分の円弧方向の各部分に渡って、RiやRは、曲げ加工や形状設計の都合で、上記RiやRの本発明効果を発揮する許容範囲内で、適宜変化しても良いからである。
【0036】
なお、以上の説明は、主として、銅管の外径がΦ10mm以下である銅管を、略平行な銅管同士の軸心間距離が40mm以下とするヘアピン曲げ銅管を対象にしたが、これより、銅管の外径や略平行な銅管同士の軸心間距離が大きい銅管に対しても、本発明は同様の効果を発揮でき、適用できる。ただ、このような銅管では、製品に要求される軽量化、小型化要求が小さく、前記した従来技術(D 、R 、tの調整)で十分対応できることが多く、本発明を適用する意味は少ない。
【0037】
本発明が対象とする銅管は、冷凍機、空調機の配管などに汎用されている、直通管、内面溝付き管、外面溝付き管、内外面溝付き管などが主たる対象となる。このため、本発明では、銅管自体の製造工程は、これら銅管の通常の製造方法と同じである。即ち、先ず、主としてりん脱酸銅などの純銅を溶解、鋳造後、熱間押出によって素管とする。この押出素管を、前記中間焼鈍を含む、レデューサ等の冷間圧延、抽伸、引き抜き、延伸、などを適宜組み合わせた冷間加工を行なって、銅管となし、仕上げ焼鈍して製品銅管とする。なお、内面や外面に溝が付いた銅管の場合には、上記冷間加工後、あるいは冷間加工途中に、必要により再度中間焼鈍 (部分焼鈍を含む) が施された上で内面や外面に溝が加工され、その後仕上げ焼鈍して製品銅管とする。製品銅管の形態はコイル状であっても、管状であっても良い。
【0038】
本発明ヘアピン曲げ銅管に用いられる銅管材料は、耐力、加工性が高く、熱伝導も大きい、従来からこの種用途に汎用されているような、規格純銅又は銅合金、調質材が適用される。言い換えると、本発明では特殊な銅合金を適用する必要は無い。例えば、純銅としては、無酸素銅、タフピッチ銅、脱酸銅などが例示される。ただ、この中でも、冷凍機、空調機の配管などに汎用されているりん脱酸銅が銅管材料として好ましい。りん脱酸銅としては、伸銅品のJIS 規格に化学成分が規定される、C1201 のりん脱酸銅1A種 (P:0.004 〜0.015 質量% 、Cu:99.90質量% 以上) 、1220のりん脱酸銅1B種(P:0.015〜0.040 質量% 、Cu:99.90質量% 以上) 、1221のりん脱酸銅2 種(P:0.004〜0.040 質量% 、Cu:99.75質量% 以上) などが例示される。これらのりん脱酸銅を小径製品銅管のグレードに合わせて、適宜選択して用いる。
【0039】
次に、本発明銅管のヘアピン曲げ加工方法について、以下に説明する。前提となる曲げ加工機としては、図4(a)に銅管の曲げ加工初期の状態を模式的に示すように、この種用途に汎用されるドローベンダーを用い、合わせて、任意の形状を持つ心金を用いることが好ましい。このドローベンダーによる曲げ加工方法は、通常、回転引き曲げ法と呼ばれる。そして、管の断面形状を維持するために、管内に砲弾型あるいは首振り型、ナイフ形などの心金を挿入し、曲げ加工 (ベンディング) ダイ6 、把持 (クランプ) ダイ7 、供給 (フィーディング) ダイ8 との共動で、銅管1 を曲げ加工する。この際、管材は、曲げ加工に追従して図中矢印方向に移動する。
【0040】
具体的には、図4(a)に示す通り、銅管1 内に、球頭の首振り式心金5 を設けた中子 (マンドレル)4を挿入した上で、クランプダイ7 で銅管1 をクランプした後、ベンディングダイ6 を回転させ、この回転に沿って銅管1 の曲げ加工がされる。図4(a)において、θは曲げ角度、Rは曲げ中心半径 (曲げ内側半径) 、Dは銅管1 の外径、2 は銅管1 のヘアピン曲げ部分、1a、1bは銅管直線部、を各々示している。
【0041】
ここで、本発明銅管のヘアピン曲げ部のように、ヘアピン曲げの終わり乃至後期である銅管曲げ部分2bの平均曲げ半径Rを大きく、ヘアピン曲げ加工が開始される側である銅管曲げ部分2aの平均曲げ半径Riを小さくするためには、図4(b)に示すようなベンディングダイを用いる。すなわち、図4(b)に示すように、ベンディングダイ6 の最内側形状を、円弧状のインボリュート曲線で示すように、曲げ開始側の平均曲げ半径であるRiと、曲げ終了側の平均曲げ半径であるRとを、R>Riとして設定 (設計) する。ベンディングダイの最内側形状曲げ半径は、図4(b)に示すように、各々一定値のRとRiとせずとも、上記したRとRiとの許容範囲内で、曲げ中心からの角度に応じて連続的に曲げ半径を変化させても良いし、違う曲げ半径を段階的に形成しても良い。
【0042】
本発明の曲げ加工方法では、このようなベンディングダイを用いて、従来の曲げ中心半径Rを一定とした曲げ加工方法と同様、図4(a)に示したように、クランプダイ7 で銅管1 をクランプした後、ベンディングダイ6 を回転させて行う。この際、上記最内側形状のRiとRとを変えたベンディングダイ6 と、銅管1 との接触状態を一定に保つためは、図4(b)に示すように、ベンディングダイ6 の回転中心を、送りダイの位置を変えるなどして、偏心乃至移動させる必要がある。
【0043】
この際、ベンディングダイ6 の回転中心の移動は、ベンディングダイに設定したRiとRとの変化に応じて、機械的に移動させても良いし、ベンディングダイに加わる圧力あるいは感覚を検出し、これらを一定に制御しても良い。逆にベンディングダイ6 の回転中心は固定したまま、管を保持している送りダイおよび心金位置を動かしても良い。これらについては装置やスペースの制約などにより、適した方法を選択する。
【0044】
また、このようなベンディングダイに異なるRiとRとを設定せずとも、上記曲げ終了側の平均曲げ半径であるRを有するベンディングダイで一定角度曲げ加工後、曲げ開始側の平均曲げ半径であるRi(R>Ri) を有する別のベンディングダイでヘアピン曲げ加工して、本発明の平均曲げ半径が異なるヘアピン曲げ銅管としても良い。
【0045】
なお、心金(中子)4の大きさ、心金4と銅管1とのクリアランスC、心金位置も、曲げ加工後のしわ、断面変形の発生に影響するので、本発明においても、従来技術と同様に、しわ、断面変形が起こらない心金の条件を設定する。
【0046】
【実施例】
以下に、FEM 解析によって、本発明例と、ヘアピン曲げ部を同一曲げ半径R とした従来例とで、ヘアピン曲げ部の曲げ内側でのしわ発生状態を比較した結果を、図5 を用いて説明する。図5 は、FEM 解析による曲げ加工された銅管ヘアピン曲げ部を示し。図5(a)が本発明例のヘアピン曲げ部、図5(b)が従来例のヘアピン曲げ部を示す。なお、図5(a)、(b) は、銅管の上下 (ヘアピン曲げ加工が終了される側である曲げ部分2b、ヘアピン曲げ加工が開始される側である他方の曲げ部分2a) が、前記図1 と逆になっている。
【0047】
この図5(a)と図5(b)とのFEM 解析結果の対比から明らかな通り、図5(a)の本発明例のヘアピン曲げ部では、しわA の発生が大きく抑制されており、銅管の曲げ内側( 表面) にしわA は殆ど発生していない。これに対し、図5(b)の従来例のヘアピン曲げ部では、銅管の曲げ内側 (表面) に、大きく多数のしわA が発生している。
【0048】
このFEM 解析の条件としては、図4(a)に示したドローベンダーによる曲げ加工方法を用い、本発明例は、図4(b)に示したように、ベンディングダイ6 の最内側形状を、曲げ開始側の平均曲げ半径であるRiを一定の8.5mm 、曲げ終了側の平均曲げ半径Rを一定の10.0mmとし、R>Riとして設定した。一方、従来例の同一曲げ半径R は一定の9.25mmとした。また、前提となる銅管条件は、前記C1201 のりん脱酸銅1A種からなる銅管であって、肉厚0.2mm 、外径D がΦ10mm以下のΦ7mm 、曲げピッチt が40mm以下の32.5mm、心金4と銅管1とのクリアランスCを0.1mm、とした。
【0049】
したがって、このこのFEM 解析の結果からは、銅管の外径D がΦ10mm以下であり、曲げピッチt が40mm以下であっても、本発明は、銅管のヘアピン曲げ部分の曲げ内側に発生するしわ発生を抑制し、かつ銅管を破断させることなく曲げ加工可能であることが分かる。
【0050】
【発明の効果】
本発明によれば、銅管の外径がΦ10mm以下であり、曲げピッチが40mm以下であっても、ヘアピン曲げ部のしわが抑制された小径ヘアピン曲げ銅管と、その銅管のヘアピン曲げ加工方法を提供できる。また、本発明ヘアピン曲げ銅管では、平均曲げ半径が異なるヘアピン曲げ部となるものの、銅管の内径には変化が無く、内部を通過する冷媒や熱媒の流通には何ら影響はなく、エアコン等において、小型化、軽量化および伝熱性能向上への悪影響は一切ない。そして、却って、ヘアピン曲げ部のしわの発生の抑制による、銅管内部を通過する冷媒や熱媒の流通への悪影響が無くなり、エアコン等において、小型化、軽量化および伝熱性能の向上が図れる利点が大きい。
【図面の簡単な説明】
【図1】本発明ヘアピン曲げ銅管の一例を示す正面図である。
【図2】銅管のヘアピン曲げ加工の際の曲げ部分の状況を示し、図2 (a) は曲げの初期、図2 (b) は曲げの終わりを各々示す、正面図である。
【図3】ヘアピン曲げ加工の際の銅管の曲げ角度と、銅管の曲げ内側部分に与えるひずみ量との関係を示す、説明図である。
【図4】本発明におけるドローベンダーによる銅管の曲げ加工を模式的に示し、図4(a)は曲げ加工の初期の状態、図4(b)は、ベンディングダイ形状を各々示す断面図である。
【図5】FEM 解析したヘアピン曲げ銅管を示し、図5(a)は本発明例、図5(b)は従来例を各々示す説明図である。
【図6】ヘアピン曲げ銅管が用いられる一般的な熱交換器を示す斜視図である。
【符号の説明】
1:銅管、2:ヘアピン曲げ部、1a、1b: 銅管直線部、
2a:ヘアピン曲げ加工が開始される側である曲げ部分、
2b:ヘアピン曲げ加工が終了される側である曲げ部分、
:曲げ部分2bの平均曲げ半径、Ri: 曲げ部分2aの平均曲げ半径、
3: 曲げ内側、
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hairpin bent copper pipe having a small diameter and a small center-to-center distance between substantially parallel copper pipes, and a hairpin bending method for the copper pipe.
[0002]
[Prior art]
In recent years, there has been an increasing demand for miniaturization, weight reduction, and improvement in heat transfer performance of air conditioners, etc., with the aim of reducing environmental impacts such as preventing global warming. There is a demand for improved heat exchange capacity. A typical example of the improvement of the heat exchange ability of a copper tube is an inner grooved tube. For a tube having a smooth inner surface, a plurality of spiral parallel grooves are formed on the inner surface to improve the heat exchange ability.
[0003]
In addition, as a means for improving the heat exchange capability of the copper tube, there is a method of reducing the pitch by reducing the interval between copper tubes as heat transfer tubes penetrating the heat exchange fins. This is to reduce the pitch between the copper tubes, thereby increasing the density of the heat transfer tubes and increasing the heat exchange capability of the heat exchange fins.
[0004]
FIG. 6 is a perspective view showing an example of these copper tube heat exchangers. As a copper tube used as a heat transfer tube of the heat exchanger 10, substantially parallel copper tubes 1 are hairpin bent (U-shaped bent). It is composed of a hairpin bent copper tube that is connected together by a so-called semicircular arc-shaped bent portion 2.
[0005]
It is known that such a hairpin bent copper tube is manufactured by bending a straight copper tube into a hairpin (for example, see Patent Document 1). This hairpin bending is performed, for example, by inserting a core 4 provided with a ball-head swinging mandrel 5 into a copper tube 1 by a rotary pulling bending method as shown in FIG. This is performed by bending at 180 ° with a constant center radius R 1.
[0006]
[Patent Document 1]
JP-A-2002-224756, (pages 1-2, FIG. 6)
[0007]
However, when the pitch is reduced, if the distance t (hereinafter also referred to as bending pitch) between the axial centers of the substantially parallel copper pipe straight portions of the hairpin bending copper pipe is reduced, the hairpin bending portion may be reduced during the hairpin bending process. (Bending inner part) is likely to cause shape defects such as breakage, wrinkles, and cross-sectional deformation. It is also known that this tendency increases when the copper tube is made thinner (for example, see Non-Patent Document 1). Also, comparing the same degree of bending R / D (bending center radius R 2 / wall thickness center diameter D) and the same diameter ratio (pipe wall thickness center diameter D / wall thickness t), the smaller outer diameter D 1 It is known that wrinkles are easily generated.
[0008]
[Non-patent document 1]
Copper and copper alloys, vol. 41 (2002) (pp. 54-58)
[0009]
The shape defect such as the wrinkle described above causes an appearance problem as well as a fin assembly failure. That is, the hairpin bent copper tube is assembled as a heat transfer tube by inserting a straight portion of the copper tube into a hole formed on the heat exchange fin. However, if the hairpin bending portion (bending inner portion) of the copper tube has wrinkles or cross-sectional deformation, it becomes impossible to insert heat exchange fins near the hairpin bending portion of the copper tube. In addition, when the wrinkles are large, the inner diameter of the copper tube changes, which affects the flow of the refrigerant and the heat medium passing through the inside, and adversely affects the miniaturization and weight reduction of the air conditioner and the like and the improvement of the heat transfer performance.
[0010]
In general, it is known that the fracture at the time of bending is substantially determined by the ratio of the bending center radius R to the pipe diameter D (ε = D / 2R). Further, it is said that one cause of the shape defect such as the wrinkle occurs when the compressive stress σ applied to the copper tube material increases. The compressive stress σ is determined by the ratio of the bending center radius R to the pipe diameter D (ε = D / 2R), and the degree of occurrence of wrinkles with respect to the compressive stress σ depends on the diameter / thickness ratio D / t of the pipe. It is known.
[0011]
Therefore, as a method of preventing wrinkles and cross-sectional deformation, optimizing the D, R, and t to suppress the compressive stress σ has been performed in actual hairpin bending processes so far. In addition, a method of suppressing wrinkles by applying tension in the tube axis direction during bending is generally known, but at this time, there is a problem that a fracture is easily generated and a cross section is deformed.
[0012]
[Problems to be solved by the invention]
However, the method of suppressing breakage and wrinkles by adjusting the D 1, R 2, t and the like results in limiting the product shape. In other words, it is impossible to obtain a product with the same cross-sectional shape and a small pitch (smaller product), or a product with the same appearance (lighter product) by using a thin tube. For this reason, development of a processing method for obtaining a smaller pitch and thinner product has been desired.
[0013]
In particular, in the case of small diameter pipes, wrinkles are likely to occur when compared with the same degree of bending R / D and diameter / thickness ratio D / t, and development of such a processing method is urgently needed. In addition, high strength of the copper tube material is also being studied to achieve a product thinner, but at this time, workability is deteriorated, and it is problematic that shape defects such as breakage and wrinkles are likely to occur. . In terms of compensating for this, there is a demand for a processing method that does not easily cause fracture wrinkles.
[0014]
The present invention has been made in view of such circumstances, and its purpose is to form a hairpin bent portion even when the outer diameter of a copper tube is Φ10 mm or less and the bending pitch is 40 mm or less. An object of the present invention is to provide a small-diameter hairpin-bent copper pipe in which wrinkles are suppressed and a hairpin bending method for the copper pipe.
[0015]
[Means for Solving the Problems]
To achieve this object, the gist of the hairpin bent copper tube of the present invention is, in particular, a hairpin in which the distance between the axes of the substantially parallel copper tubes is 40 mm or less and the outer diameter of the copper tube is 10 mm or less. In a bent copper pipe, an average bending radius of any one of the two bending portions which are raised from the straight portion of the copper tube in an arc shape at the hairpin bending portion of the copper tube, and on which the hairpin bending process is finished. Is larger than the average bending radius of the other bending portion on the side where the hairpin bending process is started.
[0016]
In addition, in order to achieve the above object, the gist of the copper pin hairpin bending method of the present invention is, in particular, a copper pipe having an outer diameter of Φ10 mm or less, the distance between the axes of substantially parallel copper pipes. Is 40mm or less, a method of bending the hairpin, the method of bending the copper tube hairpin, of the two bending portions rising in an arc shape from the copper tube straight portion at the hairpin bending portion of the copper tube, The hairpin bending process is performed by setting the average bending radius of the bending portion on the side where the hairpin bending process is completed to be larger than the average bending radius of the bending portion on the side where the hairpin bending process is started.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, in a hairpin bent copper tube as shown in a front view in FIG. 1, in a hairpin bent portion 2 of a copper tube 1, there are two bent portions 2a, 2b rising from the copper tube straight portions 1a, 1b in an arc shape, respectively. The average bending radius R0 of the bending portion 2b on the side where the hairpin bending is finished is made larger than the average bending radius Ri of the other bending portion 2a on the side where the hairpin bending is started.
[0018]
In FIG. 1, t is the distance between the axes (bending pitch) between the substantially parallel copper pipe straight portions of the hairpin bent copper pipe, and D is the outer diameter of the copper pipe. Then, the copper pipe is bent in the direction of the arrow shown in FIG. 1 (the same applies to FIG. 2 below).
[0019]
First, the mechanism by which wrinkles occur in the hairpin bending portion (bending inner portion) of the copper tube will be specifically described below. When a copper tube is subjected to a hairpin bending process such as the rotary pull bending method shown in the cross-sectional view of FIG. 4A, a portion where the bending angle of the copper tube is small and a portion where the bending angle is large in the hairpin bending portion. Inevitably occurs.
[0020]
FIGS. 2A and 2B show a portion of the hairpin bent portion where the bending angle of the copper tube is small and a portion where the bending angle is large. 2 (a) and 2 (b), in the hairpin bent portion 2 of the copper tube 1, the two bent portions rising from the copper tube straight portions 1a and 1b, respectively, are shown in accordance with the progress of the hairpin bending. ing.
[0021]
First, as shown in FIG. 2A, a bent portion 2a on the side where the hairpin bending process is started occurs in the initial to first half of the hairpin bending. The bending angle θ of the bent portion 2a is from a straight tubular 0 ° (angle before bending) to a right-angled bending angle of about 90 °, and the bending angle θ is relatively small.
[0022]
On the other hand, as shown in FIG. 2 (b), at the end or later of the bending of the hairpin, a bent portion 2b on the side where the hairpin bending process is finished is formed next to the bent portion 2a. The bending angle θ of the bent portion 2b is a bending angle from about 90 ° of the right angle to 180 ° of hairpin bending (angle at which bending is completed), and the bending angle θ is relatively large. That is, in the bending portion of the hairpin, the bending angle increases from the initial to the first half of the bending to the end to the latter of the bending.
[0023]
FIG. 3 shows the effect of the difference in the bending angle of the copper tube on the amount of strain applied to the bending inner portion 3 of the copper tube. Figure 3 shows the amount of strain in the tube axis direction (vertical axis: maximum principal strain ε) and the position φ of the specific part of the hairpin bending (horizontal axis) for the copper pin after bending the hairpin after bending the hairpin. : DEG) was obtained by FEM analysis. In the horizontal axis of FIG. , The bending start side end position is 180 DEG. And In FIG. 3, the three types of curves show the ratio R / D of R (copper tube hairpin bending center radius) to D (copper tube outer diameter). .., The square curve is 2.0.
[0024]
According to FIG. 3, in each curve, the smaller the position φ (the larger the bending angle θ, the bent portion 2b on the side where the hairpin bending process is finished), the larger the amount of strain generated in the copper pipe. On the other hand, on the side where the hairpin bending process is started (the region where the position φ is large, and the bending portion 2a where the bending angle θ is small where the hairpin bending process is started), the amount of strain generated in the bending inner portion 3 of the copper pipe is small. .
[0025]
From this, the strain amount generated in the copper pipe (including the bent inner portion 3) becomes larger in the region where the position φ is smaller, that is, in the bent portion 2b where the bending angle θ is larger and the hairpin bending process is completed. . Therefore, the bending portion 2b on the side where the hairpin bending process is completed is more likely to break or wrinkle A 2 in the bending inner portion 3. On the other hand, the bending angle θ is small in the region where the position φ is large, that is, in the bending portion 2a on the side where the hairpin bending process is started, and the amount of strain applied to the copper pipe under the influence of shear deformation can be reduced. That is, as the bending angle increases, the effect of reducing the amount of distortion decreases, and the bending portion 2b on the side where the hairpin bending process is finished is more likely to break or wrinkle in the bending inner portion 3. . Further, as can be seen from the analysis results, the influence of the shear deformation due to the difference in the bending angle of the copper pipe becomes more remarkable as the degree of bending R / D is relatively small.
[0026]
In the above-described conventional hairpin bending method, the bending center radius R 1 is fixed, and R 1 forms a constant semicircular hairpin bending portion. For this reason, from the above-described wrinkle generation mechanism, the influence of the shear deformation due to the difference in the bending angle of the copper pipe cannot be eliminated. That is, even under the condition that a molding failure such as breakage or wrinkles occurs during the hairpin bending process, the amount of strain (and stress) generated in the bending start side region is small, and there is always room for the occurrence of the molding failure. It will be molded in the state.
[0027]
In contrast, as in the present invention, by increasing the average bending radius R0 of the copper tube bending portion 2b having a large copper tube bending angle θ, which is the end to late stage of the hairpin bending shown in FIG. The amount of strain applied to the copper tube during bending can be averaged in the bending circumferential direction. That is, by increasing the bending radius on the bending end side where molding defects such as breaks and wrinkles are likely to occur, molding defects can be avoided. Then, the bending pitch can be reduced by reducing the bending radius on the bending start side having a margin for forming.
[0028]
As a guide for increasing the average bending radius R0 of the copper pipe bending portion 2b, the average bending radius Ri of the side where the hairpin bending is started (the region where φ is large) is compared with the average bending radius Rave of the entire bending portion. And the average bending radius Ro on the bending end side (the area where φ is small) is equal to or less than (Rave. ≧ Ro + Ri), and Ri <Ro is selected.
As a result, as will be described later, it is possible to make it difficult to cause shape defects such as breakage and wrinkles during hairpin bending without affecting media distribution and heat exchange capacity, etc. If it occurs, it is possible to reduce the degree. In particular, the effect is remarkable under the condition that the outer diameter D 1 of the copper tube in which wrinkling is liable to occur is 10 mm or less and the bending pitch t is 40 mm or less, the high-strength copper tube with poor workability, and the inner grooved tube.
[0029]
Hereinafter, specific embodiments of the present invention will be described.
First, as a premise, in the present invention, the bending center radius R 1 is constant at the hairpin bending portion, for example, as shown in FIG. It does not become a semi-circular shape (arc shape). That is, as shown in FIG. 1, in the hairpin bending portion 2 of the copper tube of the present invention, the average bending radius R0 of the copper tube bending portion 2b at the end or late stage of the hairpin bending is large, and the hairpin bending process is started. The mean bending radius Ri of the copper tube bending portion 2a on the side is small, that is, a distorted semicircular shape (arc shape).
[0030]
Thus, like the copper pipe of the present invention, even if it has a hairpin bent portion having a different average bending radius, there is no sudden change in shape, and there is no effect on the flow of the refrigerant or the heat medium passing through the inside. In air conditioners and the like, there is no adverse effect on miniaturization, weight reduction, and improvement in heat transfer performance. On the contrary, by suppressing the generation of wrinkles, the effect of eliminating the adverse effect on the flow of the refrigerant and the heat medium passing through the inside of the copper tube is eliminated. . Further, since breakage and wrinkles are less likely to occur than in the conventional bending method, bending can be performed at a smaller pitch, thereby reducing the size and weight of the product.
[0031]
In this respect, when wrinkles occur at the hairpin bending portion of a conventional copper tube with a constant bending center radius R 1, the change in the inner diameter of the copper tube due to the wrinkles rather affects the flow of the refrigerant and the heat medium passing through the inside. There is. This effect is large even for a pipe with a smooth inner surface, but is greater for a pipe with an inner groove provided with a plurality of spiral parallel grooves on the inner surface. An adverse effect on improvement is inevitable.
[0032]
In the present invention, the extent to which the average bending radius R0 of the copper tube bending portion 2b shown in FIG. 1 is larger than the average bending radius Ri of the copper tube bending portion 2a depends on the conventional shape from the design shape of the hairpin bending portion. The bending center radius R 1 is used as a base, and the lower limit is selected from the minimum value that can suppress breakage and wrinkles generated in the bending inner portion 3 of the copper tube bending portion 2b during bending.
[0033]
However, if the average bending radius R0 of the copper tube bending portion 2b is too much larger than the average bending radius Ri of the copper tube bending portion 2a, it becomes difficult to insert the fins to the vicinity of the bent portion. Occurs. For this reason, it is desirable to select the upper limit of Ro within a range that does not affect this.
[0034]
On the other hand, the average bending radius Ri of the copper pipe bending portion 2a is determined by the conventional uniform bending center radius Rave. And the average bending radius R0 of the copper tube bending portion 2b.
[0035]
The reason why the bending radius Ri of the copper pipe bending portion 2a and the bending radius R0 of the copper pipe bending portion 2b are each averaged is that Ri and R0 are constant over each portion in the arc direction of each bending portion. It is not necessary to take the value of That is, over the respective arc portions of the respective bent portions, Ri and R 0 are appropriately changed within the allowable range in which the effects of the present invention of Ri and R 0 are exhibited due to the bending process and the shape design. This is because you may.
[0036]
The above description has mainly been directed to a copper tube having an outer diameter of Φ10 mm or less for a copper tube and a hairpin bent copper tube having a distance between axes of approximately parallel copper tubes of 40 mm or less. Therefore, the present invention can exert the same effect and can be applied to a copper tube having a large outer diameter of the copper tube or a large distance between the axial centers of the substantially parallel copper tubes. However, in such a copper tube, the demand for light weight and small size required for the product is small, and the conventional technology (adjustment of D 1, R 2, and t) can often be sufficiently satisfied. Few.
[0037]
The copper pipe to which the present invention is applied is mainly a direct pipe, an inner grooved pipe, an outer grooved pipe, an inner and outer grooved pipe, etc., which are generally used for refrigerators and air conditioner pipes. For this reason, in the present invention, the manufacturing process of the copper tube itself is the same as the normal manufacturing method of these copper tubes. That is, first, pure copper such as phosphorous deoxidized copper is melted and cast, and then a raw tube is formed by hot extrusion. This extruded raw tube, including the intermediate annealing, cold rolling of a reducer or the like, drawing, drawing, stretching, etc., are subjected to cold working appropriately combined, etc., to form a copper tube, finish annealing and product copper tube. I do. In the case of a copper tube with a groove on the inner or outer surface, after the above-mentioned cold working or during the cold working, intermediate annealing (including partial annealing) is performed again if necessary, and then the inner or outer surface is processed. A groove is machined, and then finish annealing is performed to obtain a product copper tube. The form of the product copper tube may be a coil shape or a tubular shape.
[0038]
The copper tube material used for the hairpin bent copper tube of the present invention has high yield strength, high workability, and high heat conduction. Is done. In other words, it is not necessary to apply a special copper alloy in the present invention. For example, examples of pure copper include oxygen-free copper, tough pitch copper, and deoxidized copper. However, among them, phosphorus deoxidized copper, which is widely used for piping of refrigerators and air conditioners, is preferable as a copper tube material. As phosphorous deoxidized copper, the chemical components are specified in the JIS standard of copper-brought products, and the phosphorous deoxidized copper 1A class of C1201 (P: 0.004 to 0.015% by mass, Cu: 99.90% by mass or more) ), 1220 phosphorous deoxidized copper 1B species (P: 0.015 to 0.040% by mass, Cu: 99.90% by mass or more), 1221 phosphorous deoxidized copper 2 species (P: 0.004 to 0. 040% by mass, Cu: 99.75% by mass or more). These phosphorus deoxidized copper are appropriately selected and used in accordance with the grade of the small-diameter product copper tube.
[0039]
Next, a method for bending a copper tube of the present invention with a hairpin will be described below. As a prerequisite bending machine, as shown schematically in FIG. 4 (a), an initial state of copper pipe bending, a drawbender generally used for this kind of application is used. It is preferable to use a mandrel that has. This bending method by the draw bender is usually called a rotary drawing bending method. Then, in order to maintain the cross-sectional shape of the tube, a mandrel such as a shell type, a swing type, or a knife type is inserted into the tube, and the bending (bending) die 6, the gripping (clamp) die 7, and the feeding (feeding) are performed. ) The copper tube 1 is bent in cooperation with the die 8. At this time, the tube material moves in the direction of the arrow in the figure following the bending process.
[0040]
Specifically, as shown in FIG. 4A, a core (mandrel) 4 provided with a ball-head swinging mandrel 5 is inserted into a copper tube 1, and then the copper tube is clamped by a clamp die 7. After clamping 1, the bending die 6 is rotated, and the copper tube 1 is bent along this rotation. In FIG. 4A, θ is a bending angle, R is a bending center radius (bending inner radius), D is an outer diameter of the copper tube 1, 2 is a hairpin bending portion of the copper tube 1, 1a and 1b are copper tube straight portions. , Respectively.
[0041]
Here, like the hairpin bending portion of the copper tube of the present invention, the average bending radius R0 of the copper tube bending portion 2b which is the end or late stage of the hairpin bending is large, and the copper tube bending on the side where the hairpin bending process is started. In order to reduce the average bending radius Ri of the portion 2a, a bending die as shown in FIG. 4B is used. That is, as shown in FIG. 4B, the innermost shape of the bending die 6 is represented by an arc-shaped involute curve, and the average bending radius Ri on the bending start side and the average bending radius on the bending end side. and R 0 is set as R 0> Ri (design) to. As shown in FIG. 4 (b), the bending radius of the innermost shape of the bending die can be set to an angle from the bending center within the allowable range of R0 and Ri described above, without using constant values of R0 and Ri. The bending radius may be changed continuously according to the conditions, or a different bending radius may be formed stepwise.
[0042]
In the bending method according to the present invention, as shown in FIG. 4A, a copper pipe is formed by using the bending die as shown in FIG. After clamping 1, the bending die 6 is rotated. At this time, in order to keep the contact state between the bending dies 6 in which the innermost shapes Ri and R0 are changed and the copper tube 1 constant, as shown in FIG. The center needs to be eccentric or moved by changing the position of the feed die.
[0043]
At this time, the center of rotation of the bending die 6 may be moved mechanically in accordance with the change between Ri and R0 set on the bending die, or the pressure or sense applied to the bending die may be detected. These may be controlled to be constant. Conversely, while the center of rotation of the bending die 6 is fixed, the position of the feed die holding the pipe and the position of the mandrel may be moved. For these, a suitable method is selected depending on the device and space restrictions.
[0044]
Further, even if different Ri and R0 are not set for such a bending die, after bending at a constant angle with a bending die having an average bending radius R0 on the bending end side, an average bending radius on the bending start side is used. The bending of the hairpin with another bending die having Ri ( R0 > Ri) may be performed to obtain a bent copper tube having a different average bending radius of the present invention.
[0045]
In addition, the size of the mandrel (core) 4, the clearance C between the mandrel 4 and the copper tube 1, and the position of the mandrel also affect the occurrence of wrinkles and cross-sectional deformation after bending. As in the prior art, the condition of the mandrel where wrinkles and cross-sectional deformation do not occur is set.
[0046]
【Example】
The results of comparison of the wrinkle generation state inside the bend of the hairpin bent portion between the present invention example and the conventional example in which the hairpin bent portion has the same bending radius R by FEM analysis will be described below with reference to FIG. I do. FIG. 5 shows a bent portion of a copper tube hairpin bent by FEM analysis. FIG. 5A shows a hairpin bent portion of the present invention, and FIG. 5B shows a conventional hairpin bent portion. 5 (a) and 5 (b) show the upper and lower portions of the copper tube (the bent portion 2b where the hairpin bending process is finished, and the other bent portion 2a where the hairpin bending process is started). It is the reverse of FIG.
[0047]
As is clear from the comparison between the FEM analysis results of FIG. 5A and FIG. 5B, in the hairpin bent portion of the example of the present invention in FIG. Almost no wrinkles A occurred inside the bending (surface) of the copper tube. On the other hand, in the hairpin bending portion of the conventional example in FIG. 5B, a large number of wrinkles A are generated inside the bending (surface) of the copper tube.
[0048]
As a condition of the FEM analysis, a bending method using a draw bender shown in FIG. 4A is used. In the present invention, as shown in FIG. The average bending radius Ri on the bending start side was set to a constant 8.5 mm, the average bending radius R0 on the bending end side was set to a constant 10.0 mm, and R0 > Ri. On the other hand, the same bending radius R 1 of the conventional example was fixed at 9.25 mm. The prerequisite copper tube condition is a copper tube made of the above-mentioned C1201 phosphorous deoxidized copper 1A type, having a wall thickness of 0.2 mm, an outer diameter D of φ7 mm of φ10 mm or less, and a bending pitch t of 32 mm of 40 mm or less. The clearance C between the mandrel 4 and the copper tube 1 was 0.1 mm.
[0049]
Therefore, from the result of this FEM analysis, even if the outer diameter D of the copper tube is Φ10 mm or less and the bending pitch t is 40 mm or less, the present invention is generated inside the bending portion of the hairpin bending portion of the copper tube. It can be seen that wrinkling can be suppressed and bending can be performed without breaking the copper tube.
[0050]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, even if the outer diameter of a copper pipe is 10 mm or less and bending pitch is 40 mm or less, the small diameter hairpin bending copper pipe which suppressed the wrinkle of the hairpin bending part, and the hairpin bending process of the copper pipe We can provide a method. Further, in the hairpin bent copper tube of the present invention, although the hairpin bent portion has a different average bending radius, there is no change in the inner diameter of the copper tube, and there is no influence on the flow of the refrigerant or the heat medium passing through the inside, and In such cases, there is no adverse effect on miniaturization, weight reduction, and improvement in heat transfer performance. And, on the contrary, the suppression of the generation of wrinkles in the bent portion of the hairpin eliminates the adverse effect on the flow of the refrigerant and the heat medium passing through the inside of the copper tube, so that in an air conditioner or the like, miniaturization, weight reduction, and improvement in heat transfer performance can be achieved. The benefits are great.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a hairpin bent copper tube of the present invention.
FIGS. 2A and 2B are front views showing a state of a bent portion at the time of hairpin bending of a copper tube, wherein FIG. 2A shows an initial stage of bending and FIG. 2B shows an end of bending.
FIG. 3 is an explanatory diagram showing a relationship between a bending angle of a copper tube at the time of a hairpin bending process and an amount of strain applied to a bending inner portion of the copper tube.
FIGS. 4A and 4B schematically show bending of a copper tube by a draw bender according to the present invention. FIG. 4A is a cross-sectional view showing an initial state of bending, and FIG. is there.
5A and 5B are explanatory diagrams showing a hairpin bent copper tube analyzed by FEM, FIG. 5A showing an example of the present invention, and FIG. 5B showing an example of a conventional example.
FIG. 6 is a perspective view showing a general heat exchanger using a hairpin bent copper tube.
[Explanation of symbols]
1: Copper pipe 2: Hairpin bent part, 1a, 1b: Copper pipe straight part,
2a: a bent portion on which hairpin bending is started,
2b: a bent portion on the side where the hairpin bending process is finished,
R 0 : average bending radius of bending portion 2b, Ri: average bending radius of bending portion 2a,
3: Inside the bend,

Claims (6)

銅管のヘアピン曲げ部分において銅管直線部から各々円弧状に立ち上がる二つの曲げ部分の内、ヘアピン曲げ加工が終了される側であるいずれかの曲げ部分の平均曲げ半径が、ヘアピン曲げ加工が開始される側である他方の曲げ部分の平均曲げ半径よりも大きいことを特徴とするヘアピン曲げ銅管。At the hairpin bending part of the copper pipe, the average bending radius of one of the two bending parts that rises from the straight part of the copper pipe in an arc shape on the side where the hairpin bending processing ends is the hairpin bending processing. A hairpin-bent copper tube having a larger bending radius than the average bending radius of the other bending portion on the side to be bent. 前記略平行な銅管同士の軸心間距離が40mm以下で、銅管の外径がΦ10mm以下である請求項1に記載のヘアピン曲げ銅管。The hairpin bent copper tube according to claim 1, wherein the distance between the axes of the substantially parallel copper tubes is 40mm or less, and the outer diameter of the copper tube is 10mm or less. 前記銅管が耐力100MPa以上の高強度銅管である請求項1または2に記載のヘアピン曲げ銅管。The hairpin bent copper pipe according to claim 1 or 2, wherein the copper pipe is a high-strength copper pipe having a proof stress of 100 MPa or more. 銅管をヘアピン曲げ加工する方法であって、銅管のヘアピン曲げ部分において銅管直線部から各々円弧状に立ち上がる二つの曲げ部分の内、ヘアピン曲げ加工が終了される側の曲げ部分の平均曲げ半径を、ヘアピン曲げ加工が開始される側の曲げ部分の平均曲げ半径よりも大きくして、ヘアピン曲げ加工を行なうことを特徴とする銅管のヘアピン曲げ加工方法。A method of bending a copper tube by a hairpin, wherein an average bending of a bending portion on a side where the hairpin bending process is completed is included in two bending portions rising in an arc shape from a straight portion of the copper tube in a hairpin bending portion of the copper tube. A hairpin bending method for a copper pipe, wherein the radius is larger than an average bending radius of a bending portion on a side where hairpin bending is started, and the hairpin bending is performed. 前記略平行な銅管同士の軸心間距離が40mm以下で、銅管の外径がΦ10mm以下である請求項4に記載の銅管のヘアピン曲げ加工方法。5. The copper tube hairpin bending method according to claim 4, wherein the distance between the axes of the substantially parallel copper tubes is 40 mm or less, and the outer diameter of the copper tubes is 10 mm or less. 前記銅管が耐力100MPa以上の高強度銅管である請求項4または5に記載の銅管のヘアピン曲げ加工方法。The method according to claim 4 or 5, wherein the copper pipe is a high-strength copper pipe having a proof stress of 100 MPa or more.
JP2003119412A 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube Expired - Lifetime JP4598371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119412A JP4598371B2 (en) 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119412A JP4598371B2 (en) 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube

Publications (2)

Publication Number Publication Date
JP2004322141A true JP2004322141A (en) 2004-11-18
JP4598371B2 JP4598371B2 (en) 2010-12-15

Family

ID=33498636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119412A Expired - Lifetime JP4598371B2 (en) 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube

Country Status (1)

Country Link
JP (1) JP4598371B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009016946A1 (en) * 2007-07-27 2010-10-14 マニー株式会社 Bending method for medical suture needle
JP2012042125A (en) * 2010-08-19 2012-03-01 Corona Corp Heat exchanger for hot water supply
JP4976596B1 (en) * 2011-06-24 2012-07-18 株式会社太洋 Oil-free hairpin pipe bender
CN109277440A (en) * 2018-09-04 2019-01-29 浙江和良智能装备有限公司 A kind of production line manufacturing D connection
CN113231511A (en) * 2021-06-03 2021-08-10 四川航天长征装备制造有限公司 Rapid forming method for manual outer pulling edges at four corners of box-shaped sheet metal part
CN116274589A (en) * 2022-07-22 2023-06-23 广东思豪流体技术有限公司 Preparation method of ultra-small caliber ultra-thin copper pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756514U (en) * 1980-09-17 1982-04-02
JPS5994722U (en) * 1982-12-15 1984-06-27 京葉ベンド鋼管株式会社 Pipe bender deformation mold
JPS62176616A (en) * 1986-01-29 1987-08-03 Dai Ichi High Frequency Co Ltd Bending method for metal tube
JPH01309732A (en) * 1988-06-06 1989-12-14 Furukawa Electric Co Ltd:The U-shaped bending formed metallic tube and its manufacture
JPH03204120A (en) * 1989-12-28 1991-09-05 Suzuki Motor Corp Pipe bending device
JP2002146454A (en) * 2000-11-08 2002-05-22 Mitsubishi Shindoh Co Ltd Heat transfer tube for antifreezing solution and refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756514U (en) * 1980-09-17 1982-04-02
JPS5994722U (en) * 1982-12-15 1984-06-27 京葉ベンド鋼管株式会社 Pipe bender deformation mold
JPS62176616A (en) * 1986-01-29 1987-08-03 Dai Ichi High Frequency Co Ltd Bending method for metal tube
JPH01309732A (en) * 1988-06-06 1989-12-14 Furukawa Electric Co Ltd:The U-shaped bending formed metallic tube and its manufacture
JPH03204120A (en) * 1989-12-28 1991-09-05 Suzuki Motor Corp Pipe bending device
JP2002146454A (en) * 2000-11-08 2002-05-22 Mitsubishi Shindoh Co Ltd Heat transfer tube for antifreezing solution and refrigerator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009016946A1 (en) * 2007-07-27 2010-10-14 マニー株式会社 Bending method for medical suture needle
KR101452549B1 (en) 2007-07-27 2014-10-21 마니 가부시키가이샤 Bending method of medical suture neddle
JP2012042125A (en) * 2010-08-19 2012-03-01 Corona Corp Heat exchanger for hot water supply
JP4976596B1 (en) * 2011-06-24 2012-07-18 株式会社太洋 Oil-free hairpin pipe bender
WO2012176326A1 (en) * 2011-06-24 2012-12-27 株式会社太洋 Non-lubricated hairpin pipe bender
CN103153499A (en) * 2011-06-24 2013-06-12 株式会社太洋 Non-lubricated hairpin pipe bender
CN109277440A (en) * 2018-09-04 2019-01-29 浙江和良智能装备有限公司 A kind of production line manufacturing D connection
CN109277440B (en) * 2018-09-04 2023-05-16 浙江和良智能装备有限公司 Production line for manufacturing D connecting pipe
CN113231511A (en) * 2021-06-03 2021-08-10 四川航天长征装备制造有限公司 Rapid forming method for manual outer pulling edges at four corners of box-shaped sheet metal part
CN113231511B (en) * 2021-06-03 2023-03-28 四川航天长征装备制造有限公司 Rapid forming method for manual outer pulling edges at four corners of box-shaped sheet metal part
CN116274589A (en) * 2022-07-22 2023-06-23 广东思豪流体技术有限公司 Preparation method of ultra-small caliber ultra-thin copper pipe
CN116274589B (en) * 2022-07-22 2023-11-03 广东思豪流体技术有限公司 Preparation method of ultra-small caliber ultra-thin copper pipe

Also Published As

Publication number Publication date
JP4598371B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US6834523B2 (en) Method for producing seamless tube with grooved inner surface
KR20130043659A (en) Internally grooved aluminum alloy heat transfer pipe
JP6169538B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
WO2012096295A1 (en) Internally grooved pipe, manufacturing method therefor, and manufacturing device therefor
JP2004322141A (en) Hairpin bent copper tube and hairpin bending method for copper tube
JP6388398B2 (en) Internal grooved tube for heat exchanger and its manufacturing method
JP6584027B2 (en) Twisted tube with internal spiral groove and heat exchanger
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
CN103415643B (en) Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
JP6114939B2 (en) Seamless pipe, level wound coil, cross fin tube type heat exchanger and method for manufacturing the same
JP2004230450A (en) Inside grooved tube and apparatus and method for manufacturing the same
JP2014109040A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
WO2018088396A1 (en) Built-in fin-equipped pipe
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP2005138149A (en) Method and device for manufacturing inside grooved tube
JP6101969B2 (en) Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
JP6316696B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
WO2013157461A1 (en) Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger
JP2004298899A (en) Device and method for manufacturing pipe with grooved inner face
JP2010077497A (en) Method for producing seamless aluminum alloy tubular material
JP2002102916A (en) Method for manufacturing inside grooved tube
JPH02127919A (en) Flat pipe and its manufacture
JP2014109041A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
JP2001071024A (en) Production of inner face grooved tube
JPS63294496A (en) Heat exchanger for air conditioner using internally grooved tube and manufacture thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Ref document number: 4598371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term