WO2021166651A1 - Radiant tube - Google Patents

Radiant tube Download PDF

Info

Publication number
WO2021166651A1
WO2021166651A1 PCT/JP2021/003974 JP2021003974W WO2021166651A1 WO 2021166651 A1 WO2021166651 A1 WO 2021166651A1 JP 2021003974 W JP2021003974 W JP 2021003974W WO 2021166651 A1 WO2021166651 A1 WO 2021166651A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
heat transfer
protrusions
radiant tube
transfer promoter
Prior art date
Application number
PCT/JP2021/003974
Other languages
French (fr)
Japanese (ja)
Inventor
知之 川島
祥大 小林
典子 小澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2022009757A priority Critical patent/MX2022009757A/en
Priority to EP21757979.6A priority patent/EP4109028A4/en
Priority to CN202180015224.8A priority patent/CN115135953A/en
Priority to JP2021519902A priority patent/JP6904504B1/en
Priority to US17/799,726 priority patent/US20230071781A1/en
Priority to KR1020227027402A priority patent/KR20220124241A/en
Publication of WO2021166651A1 publication Critical patent/WO2021166651A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Definitions

  • the present invention relates to a radiant tube having a heat transfer promoter.
  • the radiant tube includes a pipeline constituting the tube body and a gas generating portion such as a burner arranged on the inlet side of the pipeline to generate combustion gas.
  • the radiant tube indirectly heats the object to be heated outside the pipe by the radiant heat from the pipe heated by the combustion gas generated by the gas generating part.
  • the combustion gas generated by the gas generating portion flows along the gas flow path formed in the pipeline.
  • the pipeline becomes hot due to heat transfer from the combustion gas.
  • heat transfer from the combustion gas to the pipeline progresses, and on the outlet side (downstream side) of the pipeline where the temperature of the combustion gas decreases, the amount of radiant heat transfer decreases and the surface temperature of the pipeline rises. descend. Therefore, in order to increase the heat transfer efficiency from the combustion gas to the pipeline on the downstream side (outlet side) of the radiant tube and increase the heat utilization rate of the radiant tube, heat is transferred to the downstream side of the pipeline.
  • a promoter may be installed.
  • a heat transfer promoter is arranged in the latter half of the pipe line of the radiant tube, and as the heat transfer promoter, a plate-shaped guide blade that spirals the flow path of the combustion gas is provided.
  • the configuration is disclosed.
  • the combustion gas is swirled in a spiral and flows to the outlet of the pipeline to increase the relative velocity between the pipeline and the combustion gas. Increase the convection heat transfer coefficient.
  • the structure of the heat transfer promoter needs to have a complicated shape in order to swirl the combustion gas in a spiral shape. Therefore, the heat transfer promoter described in Patent Document 1 has a high manufacturing cost, and a cheaper heat transfer promoter is required.
  • Patent Document 2 a heat transfer promoter having a cross-shaped cross section having four plate-shaped partitions is provided, and the heat transfer promoter having a cross-section cross-section is changed in phase by 45 degrees. It is disclosed that a plurality of pieces are inserted in series in a pipeline. According to this configuration, since a plurality of heat transfer promoters are fitted and inserted in the conduit, a spiral air flow can be formed at low cost. However, it cannot be said that the heat transfer promoter having a cruciform cross section described in Patent Document 2 has sufficiently high heat transfer efficiency, and further improvement has been required.
  • Patent Document 3 defines the ratio between the cross-sectional area of the heat transfer promoter and the cross-sectional area of the radiant tube, the peripheral length of the cross section of the heat transfer promoter, and the ratio to the peripheral length of the cross section of the radiant tube, and defines the heat transfer efficiency.
  • a star-shaped heat transfer promoter that can be manufactured at low cost by suppressing the increase in pressure loss due to the insertion of the heat transfer promoter has been proposed.
  • Patent Document 3 aims to improve the heat transfer coefficient by reducing the flow path area. With this technique, the gas flow velocity in the flow direction along the pipeline is improved. However, in this technique, since the tip of the protrusion forming the heat transfer promoter is in contact with the inner wall surface of the pipeline, the cross section of each flow path formed between the adjacent protrusions is divided. The flow in the turning direction is suppressed. That is, in Patent Document 3, although the shape of the heat transfer promoter can be manufactured simply and inexpensively, it is not possible to obtain a large heat transfer coefficient by that amount due to the division of the cross sections of the individual flow paths.
  • Patent Document 3 when considering the actual operation of the radiant tube, a deformation allowance considering the thermal deformation of the radiant tube and the heat transfer promoter is also required.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a radiant tube having a heat transfer promoter having a simple structure and capable of further improving heat transfer efficiency.
  • the inventors performed a numerical simulation comparing the heat transfer efficiency from the waste heat reduction rate of the radiant tube for the shape of the heat transfer promoter having a plurality of protrusions as in Patent Document 3.
  • the inventors evaluated the pressure loss due to the insertion of the heat transfer promoter into the pipeline in this experiment. From the results of this numerical simulation, in order to improve the heat transfer efficiency in a heat transfer promoter having a plurality of protrusions on the outer circumference, the distance (gap) between the inner surface of the conduit of the radiant tube and the tip of the protrusion of the heat transfer promoter
  • the present inventors have found that it is effective to keep ⁇ L) at a specific ratio.
  • the inventors have found that it is preferable to simply arrange the heat transfer promoter in the pipeline while forming the gap ⁇ L. Then, the inventors have obtained the finding that the above configuration has a small pressure loss similar to the heat transfer promoter described in Patent Document 3, and that this heat transfer promoter can be manufactured at low cost. ..
  • the "heat transfer efficiency" in the present invention refers to the efficiency of the heat transferred to the radiant tube line among the heat transmitted to the radiant tube line derived from the combustion gas and the waste heat discharged as the sensible heat of the exhaust gas. Point to that. If the waste heat discharged from the exhaust gas without being transferred to the pipeline is reduced, the heat transfer efficiency is improved.
  • one aspect of the present invention is a pipeline heated by a fluid gas flowing in the pipeline and one or two or more arranged in the pipeline along the axis of the pipeline.
  • a radiant tube including the heat transfer promoter, the heat transfer promoter projects from the main body portion arranged on the center side of the pipeline and from the main body portion toward the inner wall surface of the pipeline.
  • a plurality of protrusions are provided, and the plurality of protrusions are formed on the outer periphery of the main body portion so as to be arranged along the circumferential direction of the pipeline, and the plurality of protrusions have a tip portion.
  • the radiant tube 100 of the present embodiment includes a conduit 1 through which combustion gas (hereinafter, also simply referred to as gas) flows, a radiant tube burner 2 that generates combustion gas in the conduit 1, and the like. It is provided with a heat transfer promoter 4.
  • the radiant tube 100 may or may not be provided with various exhaust heat recovery devices 5 such as a recuperator and a heat storage burner, and other known parts.
  • the recuperator is a device that exchanges heat between the combustion gas flowing through the radiant tube 100 and the combustion air.
  • a plurality of heat transfer promoters 4 are arranged coaxially and the protrusions 42 of the plurality of heat transfer promoters 4 are arranged along the pipeline is illustrated.
  • the pipeline 1 of the present embodiment has a zigzag shape having a substantially W shape in a side view. That is, the pipeline 1 has four straight pipe portions 1A to 1D arranged one above the other, and the ends of the adjacent straight pipe portions 1A to 1D are connected by curved pipe portions 1E to 1G extending in an arc shape. Form a gas flow path.
  • Reference numeral 6 is a separator member that prevents the space between adjacent straight pipe portions from becoming narrow.
  • Reference numeral 7 is a support member supported by the overhanging portion 3A and suppressing the downward displacement of the pipeline 1.
  • FIG. 2 shows an example of the transport direction of the object to be heated with reference numeral 50.
  • FIG. 1 illustrates a case where the plurality of straight pipe portions 1A to 1D are arranged in the vertical direction, the arrangement direction of the plurality of straight pipe portions 1A to 1D may be in the horizontal direction.
  • the pipeline shape of the radiant tube 100 is not limited to the side view substantially W shape.
  • the conduit shape of the radiant tube 100 may be another shape such as a U type or a straight type.
  • the opening cross section of the straight pipe portion 1D in which the heat transfer promoter 4 is arranged has an elliptical shape in which the minor axis and the major axis are different as shown in FIG. 2 is taken as an example.
  • FIG. 2 it is preferable to arrange the components so that the major axis side faces in the vertical direction.
  • the opening cross section of the straight pipe portion 1D has an elliptical shape in which the minor axis and the major axis are different
  • the entire conduit 1 has an elliptical shape in which the minor axis and the major axis are different.
  • the present invention can be applied even if the opening cross section of the pipeline 1 has another cross-sectional shape such as a perfect circle or a rectangular shape.
  • a gas generating portion 2A of the radiant tube burner 2 is arranged on the inlet side of the pipeline 1.
  • the gas generation unit 2A injects fuel gas and combustion air along the extending direction of the pipeline 1 to generate combustion gas.
  • the generated combustion gas transfers heat to the pipeline 1 while flowing through the pipeline 1 from the inlet side to the outlet side.
  • the gas generating unit 2A is not particularly limited as long as it can generate combustion gas to be passed through the pipeline 1, and a known burner can be applied.
  • Heat transfer promoter 4 The heat transfer promoter 4 is arranged on the outlet side of the intermediate position in the extending direction in the conduit 1 of the radiant tube 100. The heat transfer promoter 4 is provided in the conduit 1 in order to improve the heat transfer efficiency of the radiant tube 100.
  • a plurality of heat transfer promoters 4 are coaxially arranged along the axis of the pipeline 1. Then, the plurality of heat transfer promoters 4 appropriately adjust the waste heat reduction rate and the pressure loss of the radiant tube 100.
  • Each heat transfer promoter 4 is integrated with the main body 41 located on the cross-sectional center side of the pipeline 1 (the axial side of the conduit 1) and from the main body 41 to the inner wall surface 1a of the conduit 1.
  • a plurality of protrusions 42 that protrude toward the surface are provided.
  • the plurality of protrusions 42 are integrally formed on the outer periphery of the main body 41 so as to be arranged along the circumferential direction of the pipeline 1. Then, the heat transfer promoters 4 are arranged in the conduit 1 so that the protrusions 42 of the heat transfer promoters 4 are aligned in the longitudinal direction of the conduit 1. It is preferable to arrange the adjacent heat transfer promoters 4 so as to be in contact with each other.
  • Each protrusion 42 protrudes outward in the radial direction of the pipeline 1 from the main body 41, and as viewed from the axial direction of the pipeline 1, as shown in FIG. 2, the distance from the main body 41 increases (the wall surface of the conduit 1). The closer to), the smaller the width of the pipeline 1 along the circumferential direction.
  • each protrusion 42 is configured so that the shape along the axial direction of the pipeline 1 is the same. As a result, a space is formed between the two adjacent protrusions 42 in the circumferential direction of the pipeline 1, and the distance between the two adjacent protrusions 42 increases as the distance from the main body 41 increases.
  • the contour that defines the cross-sectional shape of each protrusion 42 does not have to be a straight line.
  • the plurality of protrusions 42 included in one heat transfer promoter 4 are classified into a plurality of first protrusions 42a and second protrusions 42b.
  • the tip of the first protrusion 42a is not in contact with the inner wall surface 1a of the conduit 1, and the tip of the first protrusion 42a is the inner wall surface of the conduit 1 in the radial direction of the conduit 1. It is arranged so as to have a gap ⁇ L with respect to 1a.
  • the tip of the protrusion 42 is in contact with the inner wall surface 1a of the pipeline 1.
  • the second protrusion 42b can position the heat transfer promoter 4 in the pipeline 1 (positioning of the conduit 1 in the axial direction).
  • the number of the second protrusions 42b is preferably 2 or more.
  • the second protrusion 42b can be placed in the conduit 1. There is no secret to contacting the wall surface 1a. It is preferable that the number of the second protrusions 42b is small. In the present embodiment, the number of the second protrusions 42b is smaller than the number of the first protrusions 42a. Preferably, the number of the second protrusions 42b is 1/3 or less, more preferably 1/4 or less of the number of the first protrusions 42a.
  • FIG. 2 illustrates a case where the second protrusions 42b are two, and the heat transfer promoter 4 is supported by its own weight with respect to the pipeline 1 by the two second protrusions 42b located on the lower side. NS.
  • the gap ⁇ L between the tip end portion of the first protrusion 42a and the inner wall surface 1a of the pipeline 1 facing the tip end portion is defined as follows. That is, when the 100% ratio ( ⁇ L / Dt) of the gap ⁇ L to the equivalent diameter Dt of the straight pipe portion 1D of the conduit 1 in which the heat transfer promoter 4 is arranged is x, the following (1) is satisfied. Set so that the gap is ⁇ L. 0.3% ⁇ x ⁇ 7% ⁇ ⁇ ⁇ (1) Further, it is more preferable to satisfy the following equation (2). 0.5% ⁇ x ⁇ 4.5% ⁇ ⁇ ⁇ (2)
  • each heat transfer promoter 4 includes a main body 41 and a plurality of protrusions 42 protruding from the outer periphery of the main body 41 toward the inner wall surface 1a.
  • the main body 41 has a columnar shape having a shape similar to the elliptical shape of the opening cross section of the pipeline 1 or a cross section similar to the elliptical shape. Then, the main body 41 is arranged with a columnar shaft (longitudinal direction) parallel to the shaft of the pipeline 1.
  • the main body 41 limits the area through which the gas flowing in the pipeline 1 flows, and increases the flow velocity of the gas flowing on the outer peripheral side (outer diameter side) of the main body 41. Further, by providing a plurality of protrusions 42 on the outer periphery of the main body 41, the gas flowing through the outer periphery of the main body 41 is divided into a plurality of parts along the circumferential direction by the protrusions 42, and the gas passing through the outer periphery of the main body 41 is divided into a plurality of protrusions 42 between the adjacent protrusions 42. Gas flows through each space.
  • the protrusion 42 of the present embodiment has a substantially triangular cross section (triangular when viewed from the axial direction of the conduit 1), and the base thereof is integrally formed with the outer circumference of the main body 41. Further, the protrusion 42 has a thick plate shape (rectangular shape when viewed from the side) having the same cross-sectional shape in the direction parallel to the axis of the pipeline 1 in the longitudinal direction. As shown in FIG. 2, between the protrusions 42 adjacent to each other along the circumferential direction of the pipeline 1 (when viewed from the axial direction of the pipeline 1), the width becomes wider as the distance from the main body 41 increases. Space S is formed.
  • the gas flowing around the outer periphery of the main body 41 is unlikely to become a swirling flow, and flows along the axis of the pipe portion 1 in a laminar flow along the space S. That is, by providing the plurality of protrusions 42, individual gas flow paths are formed between the protrusions 42 in the circumferential direction, and gas can flow through the respective gas flow paths.
  • the second protrusion 42b is formed by making the lengths of the two lower protrusions 42 longer than those of the other protrusions 42.
  • the tips of the two protrusions 42b come into contact with the lower surface side of the inner wall of the conduit 1, so that the heat transfer promoter 4 is supported in the conduit 1 at a predetermined position.
  • the heat transfer promoter 4 is more stably positioned in the conduit 1 when the uppermost protrusion 42 is also used as the second protrusion 42b and is brought into contact with the inner wall of the conduit 1.
  • the position of the center of gravity P2 of the heat transfer promoter 4 arranged in the conduit 1 is set to the center P1 (center of gravity) of the opening cross section of the conduit 1 by the plurality of second protrusions 42b. It is preferable to set (arrange) them so that they match.
  • the centers of gravity P1 and P2 of both 1 and 4 are arranged so as to coincide with each other, the center of gravity P2 of the heat transfer promoter 4 and the center of gravity in the cross section perpendicular to the combustion flow direction of the radiant tube 100 coincide with each other to promote heat transfer. It is possible to suppress the bias of the body 4 in the direction of gravity and eliminate the deterioration of the heat transfer performance.
  • the first protrusion 42a is formed except for the protrusion 42 constituting the second protrusion 42b, and the tip portions of the plurality of first protrusions 42a and the inner surface of the conduit 1 are connected to each other.
  • the lengths of the first and second protrusions and the dimensions of the main body 41 are set so that a gap ⁇ L is formed between them.
  • the gap ⁇ L satisfies the condition of the above equation (1).
  • the main body 41 limits the area through which the gas flowing in the pipeline 1 flows, and the flow velocity of the gas flowing on the outer peripheral side (outer diameter side) of the main body 41 becomes high.
  • the center of gravity of the cross section of the main body 41 and the center of gravity of the cross section of the pipeline 1 are matched or approximated to make the distribution of the gas flowing on the outer circumference of the main body 41 more even.
  • the space around the main body 41 is divided into a plurality of spaces along the circumferential direction of the pipeline 1 by the plurality of protrusions 42. That is, independent gas flow paths are formed between the adjacent protrusions 42, and gas can flow through each gas flow path.
  • the ratio of the cross-sectional area of the heat transfer promoting body 4 to the opening cross-sectional area of the conduit 1 portion in which the heat transfer promoting body 4 is arranged is set to A, and the opening cross section of the conduit 1 portion in which the heat transfer promoting body 4 is arranged.
  • the ratio of the peripheral length of the cross section of the heat transfer promoter 4 to the peripheral length of the above is B, the heat transfer promoter 4 with respect to the conduit 1 satisfies the following equations (3) and (4). Is preferable.
  • the equations (3) and (4) will be described.
  • be the area of the opening cross section formed by the installation portion of the pipeline 1.
  • the cross-sectional area of the heat transfer promoter 4 is ⁇ .
  • A is ( ⁇ / ⁇ ).
  • c be the peripheral length of the opening cross section of the installation portion of the pipeline 1 (the inner peripheral length of the pipeline 1).
  • the peripheral length of the heat transfer promoter 4 is d.
  • B is (d / c).
  • the heat transfer promoter 4 of the present embodiment is preferably designed so that A and B satisfy the above formulas (4) and (4).
  • A is preferably 0.53 or less. More preferably, A is 0.46 or less.
  • the velocity V of the combustion flow can be expressed by the following equation (5).
  • V ⁇ (Vx 2 + Vy 2 + Vz 2 ) ⁇ ⁇ ⁇ (5)
  • the velocity V is increased by the amount of the swirling flow R formed in the vicinity of the inner wall of the pipeline 1, and the heat transfer efficiency is further improved in the present embodiment.
  • the swirling flow R becomes stronger especially when the flow shifts from a curved surface to a straight surface.
  • the portion where the flow shifts from the curved surface to the straight surface is, for example, the transition portion from the curved pipe portion 1G to the straight pipe portion 1D in FIG. Stagnation is likely to occur at the spatial position. This is due to the bias of the flow caused by the separation of the combustion flow on the curved surface. Therefore, in a heat transfer promoter having no gap or a small gap for which the gap ⁇ L is based on the present invention, different amounts of combustion gas flow between the divided spaces S, resulting in a decrease in heat transfer efficiency.
  • the flow rate balance between the plurality of spaces S partitioned by the protrusions 42 becomes naturally the same.
  • the protrusion 42 that divides the gas flow has a shape that becomes smaller as it approaches the inner wall surface 1a of the pipeline 1. Therefore, as shown in FIG. 3, a swirling flow is likely to occur even in each space S partitioned by the protrusions 42, and the heat transfer efficiency from the combustion flow to the heat transfer promoter increases.
  • the cross section of each space S partitioned by the protrusions 42 becomes wider as it approaches the inner wall surface 1a of the pipeline 1, and the influence of the wall surface is small, so that the flow path resistance is relative. Is small. Therefore, the gas flowing between the protrusions 42 flows on the outer peripheral side rather than the central side. As a result, more gas contributes to the swirling flow R formed in the vicinity of the inner wall surface 1a of the pipeline 1.
  • the shape of the protrusion 42 is not a rectangular shape in cross section, but a substantially triangular shape in which the width in the circumferential direction becomes narrower as it approaches the inner wall of the pipeline 1.
  • the cross section of each space S partitioned by the protrusion 42 is in the circumferential direction per unit length as it goes outward in the radial direction, as compared with the case where the shape of the protrusion 42 is rectangular in cross section.
  • the degree of spread can be set large. As a result, the gas flowing between the protrusions 42 flows closer to the outer peripheral side than to the central side, so that more gas contributes to the swirling flow R formed in the vicinity of the inner wall surface 1a of the pipeline 1.
  • the protrusions 42 preferably have a shape (continuous shape) in which the roots of adjacent protrusions 42 (parts on the main body side) are connected to each other. Further, if the cross section of the space S formed between the protrusions 42 is triangular, it is always aligned with the heat transfer promoter 4, the combustion gas, and the wall surface of the conduit 1, so that radiation is transmitted from the combustion gas, which is a heat source, to the conduit. Does not inhibit heat.
  • a predetermined gap ⁇ L is required between the protrusion 42 of the heat transfer promoter 4 and the inner wall surface 1a of the conduit 1.
  • the predetermined gap ⁇ L is a gap called the viscous bottom layer in which the flow velocity of the combustion gas near the wall surface is equal to or greater than the region width close to zero.
  • the region width of the viscous bottom layer is 0.3% or more with respect to the equivalent diameter, and 0.5% with respect to the equivalent diameter is sufficiently within the transition region. Therefore, in the present embodiment, the 100% ratio x of the above-mentioned gap ⁇ L ratio ( ⁇ L / Dt) to the equivalent diameter Dt of the conduit 1 portion in which the heat transfer promoter 4 is arranged is set to 0.3% or more. Preferably, it was 0.5%. On the other hand, if the gap ⁇ L is too wide, the heat transfer area, particularly the convection heat transfer area from the combustion flow to the heat transfer promoter, becomes small. Therefore, the above x is set to 7% or less, preferably 4.5% or less.
  • the material constituting the heat transfer promoter 4 a material known as the heat transfer promoter 4 may be adopted.
  • the material include refractory heat insulating bricks, refractory metals, ceramics, and castables.
  • a refractory heat insulating brick that is inexpensive and lightweight.
  • the heat transfer promoter 4 is designed to have a specific shape as described above. As a result, the cross-sectional area of the flow path can be narrowed, and the flow velocity of the combustion gas can be increased by reducing the flow path. Further, in the present embodiment, the heat transfer efficiency can be improved without suppressing the swirling flow R in the vicinity of the inner wall surface of the combustion gas while increasing the heat transfer area of the heat transfer promoter 4. Further, since the heat transfer promoter 4 of the present embodiment has a simple shape, it can be manufactured at low cost. Further, by inserting the heat transfer promoter 4 into the radiant tube 100, the combustion gas can be agitated as in the prior art.
  • the heat transfer promoter 4 having a uniform cross section is used along the flow path, but the agitation of the combustion gas can be further promoted by tapering the upstream side of the exhaust gas along the flow path. , The heat transfer efficiency can be further improved.
  • ⁇ P 1/2 (f ⁇ (1 / Dt) ⁇ ⁇ ⁇ u 2).
  • the gap ⁇ L of the present embodiment may be larger than the viscous bottom layer, and may be set as follows.
  • x [%] x 100 d / Dt> 5 ( ⁇ / (u * ⁇ Dt)) ⁇ 0.003 or (0.005)
  • the cross-sectional shape of the tip of the protrusion 42 is preferably a curved surface shape such as a chamfered shape or a rounded shape.
  • the position of the heat transfer promoter 4 near the inner wall surface 1a of the pipeline 1 is the tip of the protrusion.
  • blunting the contour shape by making the tip a chamfered shape or the like the area of the facing portion of the inner wall surface 1a of the pipeline 1 in the protruding portion is increased.
  • the heat transferred from the combustion gas to the heat transfer promoter 4 is efficiently transferred from the tip of the protrusion 42 approaching the inner wall surface 1a of the conduit 1 to the inner wall surface 1a of the conduit 1. improves. That is, the heat transfer area of the heat transfer promoter 4 to the conduit 1 is increased, and a further heat transfer promotion effect is exhibited.
  • the heat transfer promoter 4 has a hollow inside, and the hollow opens on the surface side along the moving direction of the fluid flowing through the conduit 1. doing. According to this configuration, it is possible to reduce the weight of the heat transfer promoter 4 while maintaining a large heat transfer area of the heat transfer promoter 4.
  • the opening cross section of the conduit 1 portion where the heat transfer promoter 4 is arranged may have an elliptical shape in which the minor axis and the major axis have different lengths, and the major axis may be arranged in the vertical direction.
  • the atmosphere in which the radiant tube 100 is arranged becomes a high temperature atmosphere, and a heat load is applied to the pipe line 1.
  • the rigidity of the pipe line 1 is improved, and the load and heat load of the heat transfer promoter 4 are applied to the pipe line 1. It is possible to suppress the deformation of the pipeline 1 even if it is loaded on the pipe. This makes it possible to stably perform indirect heating from the radiant tube 100 to the object to be heated for a longer period of time.
  • the number of the first protrusions 42a is preferably 8 or more and 25 or less, for example. As the number of protrusions 42 increases, the number of flow paths formed on the outer periphery of the main body 41 increases, and it becomes easier to adjust the flow in the uniaxial direction of the pipeline along the circumferential direction. However, if it is too large, the flow path resistance may increase, so 25 or less is preferable.
  • one or more first protrusions 42a are arranged between two adjacent second protrusions 42b. It is possible to suppress the reduction of the location where the swirling flow R is generated along the circumferential direction.
  • a notch 42Ba as shown in FIG. 5 is formed at an intermediate position in the longitudinal direction with respect to the tip of the second protrusion 42b that comes into contact with the surface of the pipeline 1, and the swirling flow is caused by the second protrusion 42b. The suppression of the flow of R may be reduced.
  • the distance ⁇ L1 facing the inner wall surface 1a of the pipeline 1 in the notch 42Ba is set within the same range as the condition facing the inner wall surface 1a of the gap ⁇ L. That is, it is preferable to set so as to satisfy the equation equivalent to the equation (1) above.
  • the body to be heated is conveyed along the arrangement direction of the plurality of pipelines 1 and indirectly heated by the radiant tube 100.
  • the heating efficiency is better when the major axis is set in the alignment direction of the conduit 1.
  • the area of the space between the protrusions 42 arranged on the side facing the heated body is set to be relatively larger than the area of the space between the protrusions 42 at other positions.
  • the minor axis of the ellipse is divided into four regions by two straight lines tilted ⁇ 45 degrees around the center of the ellipse, and the area of the space between the protrusions 42 located in each compartment is divided. So that the total area of the space in the section (the section including the minor axis in the ellipse) arranged on the side facing the object to be heated is relatively larger than the total area of the space in the other sections.
  • a radiant tube 100 including a facilitator 4 the heat transfer facilitator 4 has a main body 41 arranged on the center side of the conduit 1 and projects from the main body 41 toward the inner wall surface 1a of the conduit 1.
  • the plurality of protrusions 42 are formed on the outer periphery of the main body 41 so as to be arranged along the circumferential direction of the pipeline 1, and the plurality of protrusions 42 are formed at the tips thereof.
  • the portion is composed of a plurality of first protrusions 42a having a gap ⁇ L with the inner wall surface 1a of the pipeline 1 and facing each other, and other second protrusions 42b, and the number of the first protrusions 42a is 100 minutes of the ratio ( ⁇ L / Dt) of the gap ⁇ L to the equivalent diameter Dt of the pipe 1 portion in which the heat transfer promoter 4 in the pipe 1 is arranged, which is set to be larger than the number of the second protrusions 42b.
  • the rate is x [%]
  • the following equation is satisfied. 0.3% ⁇ x ⁇ 7%
  • a radiant tube 100 having a heat transfer promoter 4 that can be manufactured at low cost while improving heat transfer efficiency.
  • the heat transfer promoter 4 has a simple structure, a swirling flow R that contributes to heat transfer can be easily formed in the vicinity of the inner wall surface 1a of the pipeline 1, resulting in high heat transfer efficiency. improves.
  • the tip of the second protrusion 42b comes into contact with the inner wall surface 1a of the pipeline 1, so that the heat transfer promoter 4 is positioned with respect to the conduit 1.
  • the number of the second protrusions 42b is 2 or more.
  • the heat transfer promoter 4 can be easily arranged in the pipeline 1 while forming a gap ⁇ L between the first protrusion 42a and the inner wall surface 1a.
  • the tip of the second protrusion 42b does not have to be in contact with the inner wall surface 1a of the pipeline 1. In this case, the gap between the tip of the second protrusion 42b and the inner wall surface 1a of the pipeline 1 does not have to satisfy the gap ⁇ L.
  • the heat transfer promoter 4 is installed so that the center of gravity P2 of the heat transfer promoter 4 coincides with the center P1 (center of gravity) of the opening cross section of the pipeline 1.
  • the center of gravity of the heat transfer promoter 4 and the center of gravity in the cross section perpendicular to the combustion flow direction of the radiant tube 100 coincide with each other, and the heat transfer promoter 4 moves in the direction of gravity. It is possible to suppress the bias of the heat transfer and eliminate the deterioration of the heat transfer performance.
  • each protrusion 42 is such that the width along the circumferential direction of the conduit 1 becomes smaller as the distance from the main body 41 along the radial direction of the conduit 1 decreases. Therefore, a space is formed between the two adjacent protrusions 42 in the circumferential direction of the pipeline 1 so that the distance between the two adjacent protrusions 42 increases as the distance from the main body 41 increases. According to this configuration, even if a space is formed between the two protrusions 42 so that the distance between the two adjacent protrusions 42 increases as the distance from the main body 41 increases, the protrusions 42 have a cross-sectional plate shape. As a result, the gas flow flows to the outer peripheral side more reliably, and the swirling flow R due to the gap ⁇ L at the tip of the protrusion 42 is formed more reliably, and as a result, the heat transfer efficiency can be further improved.
  • the shape of the tip of the protrusion 42 is a chamfered shape or a curved surface shape. According to this configuration, the heat transfer efficiency from the protrusion 42 to the conduit 1 is further improved.
  • the heat transfer promoter 4 has a hollow inside, and the hollow may have a shape in which a surface facing the moving direction of the fluid flowing through the conduit 1 is closed. According to this configuration, the weight of the heat transfer promoter 4 can be reduced, and the deformation of the pipeline 1 due to the heat load can be further suppressed.
  • the opening cross section of the conduit 1 portion in which the heat transfer promoter 4 is arranged has an elliptical shape.
  • the size of the ellipse is different between the minor axis, which has the shortest diameter, and the major axis, which is the diameter orthogonal to the minor axis. It is preferable that the major axis of the ellipse faces in the vertical direction. According to this configuration, the rigidity of the conduit 1 is improved, the deformation of the conduit 1 due to the heat load is further suppressed, and the heat transfer efficiency by the heat transfer promoter 4 of the present embodiment can be further improved.
  • (major diameter Lb / minor diameter La) is 1.1 or more and 1.6 or less.
  • each heat transfer promoter 4 in the longitudinal direction is the same, the shapes of the plurality of heat transfer promoters 4 are the same, and the plurality of heat transfer promoters 4 are coaxial and each tip portion. It is preferable to arrange the positions so that they are aligned in the axial direction. In this case, the swirling flow R can be more reliably generated only in the vicinity of the inner wall surface 1a of the pipeline 1, and the heat transfer efficiency can be further improved even with the heat transfer promoter 4 having a simple structure. Become.
  • the heat transfer accelerator 4 used in the radiant tube 100 was evaluated by the combustion heat transfer simulation using the following finite volume method.
  • (I) Pipeline 1 The shape of the pipeline 1 in the extending direction was the W shape shown in FIG. 1, and the opening cross section of the pipeline 1 was an elliptical shape having a major axis of 236 mm and a minor axis of 188 mm. The total length of the pipeline 1 is 8900 mm.
  • (Iii) Heat transfer promoter 4 It is assumed that 10 heat transfer promoters 4 are arranged from the position of 300 mm on the exit side of the radiant tube 100 of the straight pipe portion located at the most downstream to the position of 950 mm.
  • waste heat reduction ratio As the waste heat reduction ratio, the balance between the amount of heat radiated from the test furnace and the amount of heat of the exhaust gas was calculated, and the ratio of the amount of heat of the exhaust gas to the amount of heat input was calculated. Then, the ratio when the waste heat reduction rate is 1.00 when the total protrusions 42 of the heat transfer promoter 4 of Example 1 described later are in contact with the inner wall of the radiant tube 100 (see FIG. 6) is shown. In this example, when the waste heat reduction ratio is 1.20 or more, preferably when the waste heat reduction ratio is 1.50 or more, the heat transfer efficiency is excellent and the result is passed.
  • Example 1 shown in FIG. 6 all the tips of the plurality of tips of the heat transfer promoter 4 and the inner wall of the pipeline 1 are in contact with each other.
  • Example 2 shown in FIG. 7 the tip portion of the heat transfer promoter 4 is evenly shortened.
  • the heat transfer promoter 4 is biased in the direction of gravity. That is, the position of the center of gravity of the heat transfer promoter 4 is located below the center of the cross section of the pipeline 1.
  • Example 3 shown in FIG. 8 only the two tip portions have the same length as in Example 1 as compared with Example 2, and the center of gravity of the heat transfer promoter 4 and the center of the conduit 1 (on the cylinder) are set as the second protrusion 42b.
  • the shape shown in FIG. 9 of the protrusion 42 even when R was taken for the protrusion 42, the amount of waste heat reduction was almost the same as that of Example 4.
  • FIG. 10 The examination results of Examples 1 to 4 described above are shown in FIG. In FIG. 10, the vertical axis represents the waste heat reduction ratio.
  • the vertical axis represents the waste heat reduction ratio.
  • FIG. 10 by providing a gap ⁇ L at the tip of the protrusion 42 as in Examples 2 to 4, waste heat is wasted as compared with the state where the tip is in contact with the pipeline 1 (Example 1). It was found that the reduction ratio improved. Further, as in Examples 3 and 4, by matching or approximating the center of gravity of the cross section of the pipeline 1 and the center of gravity of the cross section of the heat transfer promoter 4, the waste heat reduction ratio is further improved and the waste heat reduction ratio is increased. It became 1.50 or more.
  • the waste heat reduction ratio was examined by changing the gap ⁇ L between the tip of the star-shaped heat transfer promoter 4 and the inner wall of the pipeline 1.
  • the result is shown in FIG.
  • the waste heat reduction ratio is 1.3 times or more, which is extremely high. It was confirmed that it shows a high effect of improving heat transfer efficiency. More preferably, it was confirmed that if the gap ⁇ L between the tip portion and the inner wall satisfies 0.5 ⁇ x ⁇ 4.5, the waste heat reduction ratio is 1.5 times or more, and a higher heat transfer efficiency improving effect is exhibited.
  • the gap ⁇ L between the tip of the protrusion 42 and the inner wall of the tube with respect to the equivalent diameter of the inner wall of the radiant tube 100 is based on the amount of waste heat when the tip of the heat transfer promoter 4 is in contact with the wall surface of the pipeline 1. It is a condition that a perfect circle and an ellipse are equal.
  • the comparison result is shown in FIG. As can be seen from FIG. 12, it was found that the waste heat reduction ratio is similarly improved regardless of whether the opening cross section of the pipeline 1 is circular or elliptical. Furthermore, the elliptical opening cross section of the pipeline 1 has a circular shape. It was found that the waste heat reduction ratio was improved by about 10% as compared with the case of.
  • Pipeline 1 Inner wall surface 2A Gas generating part 3 Furnace wall 4 Heat transfer promoter 41 Main body part 42 Protruding part 42a First protruding part 42b Second protruding part 100 Radiant tube R Swirling flow ⁇ L Gap

Abstract

Provided is a radiant tube that is of a simplified structure and that has a heat transfer enhancement body capable of achieving a higher heat-transfer efficiency. A heat transfer enhancement body (4) comprises: a body part (41) that is disposed on the center side of a pipeline (1); and a plurality of projecting parts (42) that protrude from the body part (41) toward the inner wall surface (1a) of the pipeline (1). The plurality of projecting parts (42) are formed on the outer circumference of the body part (41) so as to be arranged in the circumferential direction of the pipeline (1). Said projecting parts (42) include a plurality of first projecting parts (42a) opposing the inner wall surface (1a) of the pipeline (1) across a gap (ΔL) with the remainder being second protruding parts (42b). The first projecting parts (42a) are provided in a quantity greater than that of the second projecting parts (42b). When the ratio (ΔL/Dt) of the gap to an equivalent diameter of the pipeline (1) portion where the heat transfer enhancement body (4) is disposed is defined as x[%] in percentage, expression 0.3%<x<7% is satisfied.

Description

ラジアントチューブRadiant tube
 本発明は、伝熱促進体を有するラジアントチューブに関する。 The present invention relates to a radiant tube having a heat transfer promoter.
 ラジアントチューブは、チューブ本体を構成する管路と、その管路の入口側に配置されて燃焼ガスを発生させるバーナー等のガス発生部とを備える。ラジアントチューブは、ガス発生部によって発生した燃焼ガスによって加熱された管路による輻射熱によって、管路外に存在する被加熱物を間接加熱する。
 ラジアントチューブは、ガス発生部によって発生した燃焼ガスが、管路で形成されるガス流路に沿って流れる。これによって、管路は、燃焼ガスからの伝熱によって高温状態となる。このとき、ラジアントチューブは、燃焼ガスから管路への伝熱が進み、燃焼ガスの温度が低下する管路の出口側(下流側)では、輻射伝熱量が減少し、管路の表面温度が低下する。そのため、ラジアントチューブの管路の下流側(出口側)における燃焼ガスからの管路への伝熱効率を高めて、ラジアントチューブの熱利用率を高めるために、管路の下流側に対し、伝熱促進体を設置する場合がある。
The radiant tube includes a pipeline constituting the tube body and a gas generating portion such as a burner arranged on the inlet side of the pipeline to generate combustion gas. The radiant tube indirectly heats the object to be heated outside the pipe by the radiant heat from the pipe heated by the combustion gas generated by the gas generating part.
In the radiant tube, the combustion gas generated by the gas generating portion flows along the gas flow path formed in the pipeline. As a result, the pipeline becomes hot due to heat transfer from the combustion gas. At this time, in the radiant tube, heat transfer from the combustion gas to the pipeline progresses, and on the outlet side (downstream side) of the pipeline where the temperature of the combustion gas decreases, the amount of radiant heat transfer decreases and the surface temperature of the pipeline rises. descend. Therefore, in order to increase the heat transfer efficiency from the combustion gas to the pipeline on the downstream side (outlet side) of the radiant tube and increase the heat utilization rate of the radiant tube, heat is transferred to the downstream side of the pipeline. A promoter may be installed.
 例えば、特許文献1には、ラジアントチューブの管路内の後半部に伝熱促進体を配置し、その伝熱促進体として、燃焼ガスの流路をスパイラル状にする板状の案内羽根を設けた構成が開示されている。この技術によれば、ラジアントチューブの管路内の後半部で、燃焼ガスをスパイラル状に旋回させながら管路の出口へ流すことによって、管路と燃焼ガスとの間の相対速度を上昇させ、対流熱伝達係数を上昇させる。
 しかしながら、特許文献1に記載の方法では、燃焼ガスをスパイラル状に旋回させるために、伝熱促進体の構造を複雑な形状とする必要がある。このため、特許文献1に記載の伝熱促進体は、製造コストが高くなり、より安価な伝熱促進体が求められる。
For example, in Patent Document 1, a heat transfer promoter is arranged in the latter half of the pipe line of the radiant tube, and as the heat transfer promoter, a plate-shaped guide blade that spirals the flow path of the combustion gas is provided. The configuration is disclosed. According to this technique, in the latter half of the radiant tube pipeline, the combustion gas is swirled in a spiral and flows to the outlet of the pipeline to increase the relative velocity between the pipeline and the combustion gas. Increase the convection heat transfer coefficient.
However, in the method described in Patent Document 1, the structure of the heat transfer promoter needs to have a complicated shape in order to swirl the combustion gas in a spiral shape. Therefore, the heat transfer promoter described in Patent Document 1 has a high manufacturing cost, and a cheaper heat transfer promoter is required.
 これに対し、特許文献2では、4枚の板状の仕切部を有する断面十字形状の伝熱促進体を有し、その断面十字形の伝熱促進体を、45度ずつ位相を変えて、管路内に複数個直列に嵌挿することが開示されている。この構成によれば、管路内に複数の伝熱促進体が嵌挿されて構成されるため、安価に螺旋状の気流を形成可能となる。しかし、特許文献2に記載の断面十字形の伝熱促進体では、伝熱効率が十分に高いとは言えず、さらなる改善が求められていた。
 更に、特許文献3では、伝熱促進体断面積とラジアントチューブの断面積に対する比と、伝熱促進体断面の周長さと、ラジアントチューブの断面の周長さに対する比を規定して、伝熱効率を向上させると共に、伝熱促進体の挿入による圧力損失の増加を抑制し、安価に製造可能な星形の伝熱促進体が提案されている。
On the other hand, in Patent Document 2, a heat transfer promoter having a cross-shaped cross section having four plate-shaped partitions is provided, and the heat transfer promoter having a cross-section cross-section is changed in phase by 45 degrees. It is disclosed that a plurality of pieces are inserted in series in a pipeline. According to this configuration, since a plurality of heat transfer promoters are fitted and inserted in the conduit, a spiral air flow can be formed at low cost. However, it cannot be said that the heat transfer promoter having a cruciform cross section described in Patent Document 2 has sufficiently high heat transfer efficiency, and further improvement has been required.
Further, Patent Document 3 defines the ratio between the cross-sectional area of the heat transfer promoter and the cross-sectional area of the radiant tube, the peripheral length of the cross section of the heat transfer promoter, and the ratio to the peripheral length of the cross section of the radiant tube, and defines the heat transfer efficiency. A star-shaped heat transfer promoter that can be manufactured at low cost by suppressing the increase in pressure loss due to the insertion of the heat transfer promoter has been proposed.
特開昭57-112694号公報Japanese Patent Application Laid-Open No. 57-112694 実開昭63-173613号公報Jikkai Sho 63-173613 特開2017-83127号公報Japanese Unexamined Patent Publication No. 2017-83127
 特許文献3の技術は、流路面積を減少させることで熱伝達係数の向上を狙っている。この技術では、管路に沿った流れ方向のガス流速は向上する。しかし、この技術では、伝熱促進体を構成する突起部の先端が管路の内壁面に接していることから、隣り合う突起部間に形成された各流路断面が分断された状態となり、旋回方向の流れが抑制される。
 すなわち、特許文献3では、伝熱促進体の形状が簡易で安価に製造できるものの、個々の流路断面の分断により、その分、大きな熱伝達係数を得ることができない。また、特許文献3では、実際のラジアントチューブの運用を考慮した場合、ラジアントチューブ及び伝熱促進体の熱変形を考慮した変形代も必要になる。
 本発明は、上記のような点に鑑みてなされたもので、構造が簡易で、かつ、より伝熱効率をより向上可能な伝熱促進体を有するラジアントチューブを提供することを目的とする。
The technique of Patent Document 3 aims to improve the heat transfer coefficient by reducing the flow path area. With this technique, the gas flow velocity in the flow direction along the pipeline is improved. However, in this technique, since the tip of the protrusion forming the heat transfer promoter is in contact with the inner wall surface of the pipeline, the cross section of each flow path formed between the adjacent protrusions is divided. The flow in the turning direction is suppressed.
That is, in Patent Document 3, although the shape of the heat transfer promoter can be manufactured simply and inexpensively, it is not possible to obtain a large heat transfer coefficient by that amount due to the division of the cross sections of the individual flow paths. Further, in Patent Document 3, when considering the actual operation of the radiant tube, a deformation allowance considering the thermal deformation of the radiant tube and the heat transfer promoter is also required.
The present invention has been made in view of the above points, and an object of the present invention is to provide a radiant tube having a heat transfer promoter having a simple structure and capable of further improving heat transfer efficiency.
 発明者らは、特許文献3のような複数の突起部をもつ伝熱促進体の形状について、ラジアントチューブの廃熱削減率から伝熱効率を比較する数値シミュレーションを行った。また、発明者らは、この実験で、伝熱促進体を管路に挿入することによる圧力損失を評価した。この数値シミュレーションの結果から、外周に複数の突起部をもつ伝熱促進体において伝熱効率を向上させるためには、ラジアントチューブの管路内面と伝熱促進体の突起先端との間の距離(隙間ΔL)を特定の割合で保つことが有効であることを、本発明者らは見出した。 The inventors performed a numerical simulation comparing the heat transfer efficiency from the waste heat reduction rate of the radiant tube for the shape of the heat transfer promoter having a plurality of protrusions as in Patent Document 3. In addition, the inventors evaluated the pressure loss due to the insertion of the heat transfer promoter into the pipeline in this experiment. From the results of this numerical simulation, in order to improve the heat transfer efficiency in a heat transfer promoter having a plurality of protrusions on the outer circumference, the distance (gap) between the inner surface of the conduit of the radiant tube and the tip of the protrusion of the heat transfer promoter The present inventors have found that it is effective to keep ΔL) at a specific ratio.
 また、発明者らは、上記隙間ΔLを形成しつつ、伝熱促進体を管路内に簡易に配置することが好ましいとの知見を得た。そして、発明者らは、上記構成では、特許文献3に記載の伝熱促進体と同様に圧力損失が小さく、更に、この伝熱促進体は安価に製造することができるとの知見を得た。
 ここで、本発明における「伝熱効率」とは、燃焼ガス由来のラジアントチューブの管路に伝わる熱と排ガスの顕熱として排出される廃熱の内、ラジアントチューブの管路に伝わる熱の効率のことを指す。排ガスから管路へ伝熱せずに排出される廃熱が減少すれば、伝熱効率は向上する。
In addition, the inventors have found that it is preferable to simply arrange the heat transfer promoter in the pipeline while forming the gap ΔL. Then, the inventors have obtained the finding that the above configuration has a small pressure loss similar to the heat transfer promoter described in Patent Document 3, and that this heat transfer promoter can be manufactured at low cost. ..
Here, the "heat transfer efficiency" in the present invention refers to the efficiency of the heat transferred to the radiant tube line among the heat transmitted to the radiant tube line derived from the combustion gas and the waste heat discharged as the sensible heat of the exhaust gas. Point to that. If the waste heat discharged from the exhaust gas without being transferred to the pipeline is reduced, the heat transfer efficiency is improved.
 そして、課題解決のために、本発明の一態様は、管路内を流れる流体ガスで加熱される管路と、その管路内に当該管路の軸に沿って配置される1又は2以上の伝熱促進体とを備えるラジアントチューブであって、上記伝熱促進体は、上記管路の中心側に配置される本体部と、上記本体部から上記管路の内壁面に向けて突出する複数の突起部と、を備え、上記複数の突起部は、上記管路の円周方向に沿って配列するように、上記本体部の外周に形成され、上記複数の突起部は、先端部が管路内壁面と隙間ΔLを有して対向する複数の第1の突起部と、その他の第2の突起部とからなり、第1の突起部の数は、第2の突起部の数よりも多く設定され、上記管路のうちの上記伝熱促進体が配置される管路部分の等価直径Dtに対する上記隙間ΔLの比(ΔL/Dt)の100分率をx[%]とした場合、下記(1)式を満足することを要旨とする。
     0.3% < x < 7%  ・・・(1)
Then, in order to solve the problem, one aspect of the present invention is a pipeline heated by a fluid gas flowing in the pipeline and one or two or more arranged in the pipeline along the axis of the pipeline. A radiant tube including the heat transfer promoter, the heat transfer promoter projects from the main body portion arranged on the center side of the pipeline and from the main body portion toward the inner wall surface of the pipeline. A plurality of protrusions are provided, and the plurality of protrusions are formed on the outer periphery of the main body portion so as to be arranged along the circumferential direction of the pipeline, and the plurality of protrusions have a tip portion. It is composed of a plurality of first protrusions facing the inner wall surface of the pipeline with a gap ΔL, and other second protrusions, and the number of the first protrusions is larger than the number of the second protrusions. When the 100% ratio (ΔL / Dt) of the gap ΔL to the equivalent diameter Dt of the conduit portion in which the heat transfer promoter is arranged is set to x [%]. The gist is that the following equation (1) is satisfied.
0.3% <x <7% ・ ・ ・ (1)
 本発明の態様によれば、伝熱効率を向上させつつ、安価に製造可能な伝熱促進体を有するラジアントチューブが提供可能となる。 According to the aspect of the present invention, it is possible to provide a radiant tube having a heat transfer promoter that can be manufactured at low cost while improving the heat transfer efficiency.
本発明に基づく実施形態に係るラジアントチューブの構成を説明するための図である。It is a figure for demonstrating the structure of the radiant tube which concerns on embodiment based on this invention. 図1のA-A′で切断した、管路断面と本実施形態の伝熱促進体とを説明するための断面図である。It is sectional drawing for demonstrating the cross section of a conduit and the heat transfer promoter of this embodiment, which were cut at AA' of FIG. 内壁面近傍に形成される旋回流Rを説明する管路軸方向からみた模式図である。It is a schematic view seen from the pipeline axial direction explaining the swirling flow R formed in the vicinity of the inner wall surface. 伝熱促進体に空洞を設ける場合の例を説明する図であり、(a)はガスの流れ方向からみた平面図、(b)は、(a)のB-B′断面図である。It is a figure explaining the example in the case of providing a cavity in a heat transfer promoter, (a) is a plan view seen from the gas flow direction, (b) is a cross-sectional view of BB'of (a). 第2の突起部に切欠きを設けた例を説明する拡大図である。It is an enlarged view explaining the example which provided the notch in the 2nd protrusion. 例1(従来例)の伝熱促進体を説明するための図である。It is a figure for demonstrating the heat transfer promoter of Example 1 (conventional example). 例2の伝熱促進体を説明するための図である。It is a figure for demonstrating the heat transfer promoter of Example 2. 例2の伝熱促進体を説明するための図である。It is a figure for demonstrating the heat transfer promoter of Example 2. 例2の伝熱促進体を説明するための図である。It is a figure for demonstrating the heat transfer promoter of Example 2. 本発明の効果を検証した結果を示した図である。It is a figure which showed the result of having verified the effect of this invention. 隙間ΔLの効果を検証した結果を示した図である。It is a figure which showed the result of having verified the effect of the gap ΔL. 管路断面の違いによる効果を検証した結果を示した図である。It is a figure which showed the result of having verified the effect by the difference of the pipeline cross section.
 以下、本発明の実施形態について、図面を参照しつつ説明する。
 ここで、図面は模式的なものであり、各部品の大きさや長さの比率等は現実のものとは異なる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質、形状及び構造等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Here, the drawings are schematic, and the size and length ratio of each part are different from the actual ones. Further, the embodiments shown below exemplify a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, etc. of the constituent parts as follows. It is not something that is specific to something. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.
 (構成)
 本実施形態のラジアントチューブ100は、図1に示すように、燃焼ガス(以下、単にガスとも記す。)が流れる管路1と、管路1内で燃焼ガスを発生するラジアントチューブバーナ2と、伝熱促進体4とを備える。ラジアントチューブ100は、レキュペレータや蓄熱バーナーなどの各種排熱回収装置5、その他の公知の部品を備えていても良いし、そのような部品を備えていなくても構わない。レキュペレータは、ラジアントチューブ100を流れる燃焼ガスと燃焼用空気との間で熱交換する装置である。本実施形態では、複数の伝熱促進体4を同軸に並べ、且つその複数の伝熱促進体4の突起部42が管路に沿って並ぶように配置した場合を例示している。
(composition)
As shown in FIG. 1, the radiant tube 100 of the present embodiment includes a conduit 1 through which combustion gas (hereinafter, also simply referred to as gas) flows, a radiant tube burner 2 that generates combustion gas in the conduit 1, and the like. It is provided with a heat transfer promoter 4. The radiant tube 100 may or may not be provided with various exhaust heat recovery devices 5 such as a recuperator and a heat storage burner, and other known parts. The recuperator is a device that exchanges heat between the combustion gas flowing through the radiant tube 100 and the combustion air. In the present embodiment, a case where a plurality of heat transfer promoters 4 are arranged coaxially and the protrusions 42 of the plurality of heat transfer promoters 4 are arranged along the pipeline is illustrated.
 (管路1)
 本実施形態の管路1は、図1に示すように、側面視略W形状のつづら折り形状となっている。すなわち、管路1は、上下に並ぶ4つの直管部1A~1Dを有し、隣り合う直管部1A~1Dの端部同士が円弧形状に延びる曲管部1E~1Gによって連結されて、ガスの流路を形成する。符号6は、隣り合う直管部間が狭くなることを防止するセパレータ部材である。符号7は、張出部3Aに支持されて、管路1の下方への変位を抑えるサポート部材である。
(Pipeway 1)
As shown in FIG. 1, the pipeline 1 of the present embodiment has a zigzag shape having a substantially W shape in a side view. That is, the pipeline 1 has four straight pipe portions 1A to 1D arranged one above the other, and the ends of the adjacent straight pipe portions 1A to 1D are connected by curved pipe portions 1E to 1G extending in an arc shape. Form a gas flow path. Reference numeral 6 is a separator member that prevents the space between adjacent straight pipe portions from becoming narrow. Reference numeral 7 is a support member supported by the overhanging portion 3A and suppressing the downward displacement of the pipeline 1.
 また、最上流位置の直管部1Aの入口側と最下流位置の直管部1Dの出口側とが炉壁3に固定されることで、管路1は炉壁3に支持されている。
 そして、複数の直管部1A~1Dの並び方向に沿って被加熱体が搬送されることで、当該被加熱体がラジアントチューブ100によって間接加熱される。図2に、被加熱体の搬送方向の例を符号50で示す。図1では、複数の直管部1A~1Dの並び方向が上下方向の場合を例示しているが、複数の直管部1A~1Dの並び方向は左右方向であっても構わない。
 ここで、ラジアントチューブ100の管路形状は、側面視略W形状に限定されない。ラジアントチューブ100の管路形状は、例えば、U型、ストレート型等の他の形状であってもよい。
Further, the pipe line 1 is supported by the furnace wall 3 by fixing the inlet side of the straight pipe portion 1A at the most upstream position and the outlet side of the straight pipe portion 1D at the most downstream position to the furnace wall 3.
Then, the heated body is conveyed along the arrangement direction of the plurality of straight pipe portions 1A to 1D, so that the heated body is indirectly heated by the radiant tube 100. FIG. 2 shows an example of the transport direction of the object to be heated with reference numeral 50. Although FIG. 1 illustrates a case where the plurality of straight pipe portions 1A to 1D are arranged in the vertical direction, the arrangement direction of the plurality of straight pipe portions 1A to 1D may be in the horizontal direction.
Here, the pipeline shape of the radiant tube 100 is not limited to the side view substantially W shape. The conduit shape of the radiant tube 100 may be another shape such as a U type or a straight type.
 本実施形態の管路1は、少なくとも伝熱促進体4が配置される直管部1Dの開口断面が、図2に示すように、短径と長径が異なる楕円形状の場合を例に挙げて説明する。なお、図2のように、長径側が上下方向を向くように配置することが好ましい。直管部1Dの開口断面が短径と長径が異なる楕円形状の場合、管路1全体が短径と長径が異なる楕円形状であることが好ましい。もっとも、管路1の開口断面は、真円や矩形形状など他の断面形状であっても、本発明は適用可能である。 In the pipeline 1 of the present embodiment, at least the case where the opening cross section of the straight pipe portion 1D in which the heat transfer promoter 4 is arranged has an elliptical shape in which the minor axis and the major axis are different as shown in FIG. 2 is taken as an example. explain. As shown in FIG. 2, it is preferable to arrange the components so that the major axis side faces in the vertical direction. When the opening cross section of the straight pipe portion 1D has an elliptical shape in which the minor axis and the major axis are different, it is preferable that the entire conduit 1 has an elliptical shape in which the minor axis and the major axis are different. However, the present invention can be applied even if the opening cross section of the pipeline 1 has another cross-sectional shape such as a perfect circle or a rectangular shape.
 (ラジアントチューブバーナ2)
 管路1の入口側には、ラジアントチューブバーナ2のガス発生部2Aが配置されている。ガス発生部2Aは、管路1の延在方向に沿って燃料ガスと燃焼用空気とを噴射して燃焼ガスを発生する。発生した燃焼ガスは、管路1内を入口側から出口側に向けて流れつつ管路1への伝熱を行う。
 ガス発生部2Aは、管路1内に通流させる燃焼ガスを発生させることが可能であれば、特に限定されず、公知のバーナーを適用することができる。
(Radiant tube burner 2)
A gas generating portion 2A of the radiant tube burner 2 is arranged on the inlet side of the pipeline 1. The gas generation unit 2A injects fuel gas and combustion air along the extending direction of the pipeline 1 to generate combustion gas. The generated combustion gas transfers heat to the pipeline 1 while flowing through the pipeline 1 from the inlet side to the outlet side.
The gas generating unit 2A is not particularly limited as long as it can generate combustion gas to be passed through the pipeline 1, and a known burner can be applied.
 (伝熱促進体4)
 伝熱促進体4は、ラジアントチューブ100の管路1内における延在方向の中間位置よりも出口側に配置される。伝熱促進体4は、ラジアントチューブ100の伝熱効率を向上させるために、管路1内に設けられる。
(Heat transfer promoter 4)
The heat transfer promoter 4 is arranged on the outlet side of the intermediate position in the extending direction in the conduit 1 of the radiant tube 100. The heat transfer promoter 4 is provided in the conduit 1 in order to improve the heat transfer efficiency of the radiant tube 100.
 次に、本実施形態の伝熱促進体4について説明する。
 本実施形態では、管路1の軸に沿って複数の伝熱促進体4が同軸に配置されている。そして、複数の伝熱促進体4は、ラジアントチューブ100の廃熱削減率及び圧力損失を適宜調整する。
 各伝熱促進体4は、管路1の断面中心側(管路1の軸側)に位置する本体部41と、本体部41と一体になり本体部41から管路1の内壁面1aに向けて突出する複数の突起部42と、を備える。
Next, the heat transfer promoter 4 of the present embodiment will be described.
In the present embodiment, a plurality of heat transfer promoters 4 are coaxially arranged along the axis of the pipeline 1. Then, the plurality of heat transfer promoters 4 appropriately adjust the waste heat reduction rate and the pressure loss of the radiant tube 100.
Each heat transfer promoter 4 is integrated with the main body 41 located on the cross-sectional center side of the pipeline 1 (the axial side of the conduit 1) and from the main body 41 to the inner wall surface 1a of the conduit 1. A plurality of protrusions 42 that protrude toward the surface are provided.
 複数の突起部42は、管路1の円周方向に沿って配列するようにして、本体部41の外周に一体に形成されている。そして各伝熱促進体4の各突起部42が、管路1の長手方向で揃うようにて、各伝熱促進体4が管路1内に配置される。隣り合う伝熱促進体4が当接するように配置することが好ましい。
 各突起部42は、本体部41から管路1の径方向外方に向けて突出し、管路1の軸方向からみて、図2のように、本体部41から離れるほど(管路1の壁面に近づくほど)、管路1の円周方向に沿った幅が小さくなる形状となっている。ただし、各突起部42は、管路1の軸方向に沿った形状が同一形状となるように構成されている。この結果、管路1の円周方向で隣り合う2つの突起部42の間にそれぞれ、本体部41から離れるほど、隣り合う2つの突起部42間の距離が広くなる空間が形成される。なお、各突起部42の断面形状を規定する輪郭は、直線でなくても良い。
The plurality of protrusions 42 are integrally formed on the outer periphery of the main body 41 so as to be arranged along the circumferential direction of the pipeline 1. Then, the heat transfer promoters 4 are arranged in the conduit 1 so that the protrusions 42 of the heat transfer promoters 4 are aligned in the longitudinal direction of the conduit 1. It is preferable to arrange the adjacent heat transfer promoters 4 so as to be in contact with each other.
Each protrusion 42 protrudes outward in the radial direction of the pipeline 1 from the main body 41, and as viewed from the axial direction of the pipeline 1, as shown in FIG. 2, the distance from the main body 41 increases (the wall surface of the conduit 1). The closer to), the smaller the width of the pipeline 1 along the circumferential direction. However, each protrusion 42 is configured so that the shape along the axial direction of the pipeline 1 is the same. As a result, a space is formed between the two adjacent protrusions 42 in the circumferential direction of the pipeline 1, and the distance between the two adjacent protrusions 42 increases as the distance from the main body 41 increases. The contour that defines the cross-sectional shape of each protrusion 42 does not have to be a straight line.
 また、1つの伝熱促進体4が有する複数の突起部42は、複数の第1の突起部42aと第2の突起部42bとに分類される。第1の突起部42aは、先端部が管路1の内壁面1aに非接触であって、第1の突起部42aの先端部が、管路1の径方向において、管路1の内壁面1aに対し隙間ΔLを有して対向配置されている。
 一方、本実施形態では、第2の突起部42bは、突起部42の先端部が管路1の内壁面1aに接触している。この場合、第2の突起部42bによって、管路1内における伝熱促進体4の位置決め(管路1の軸直方向への位置決め)を行うことが出来る。なお、この場合には、第2の突起部42bの数は2以上であることが好ましい。
Further, the plurality of protrusions 42 included in one heat transfer promoter 4 are classified into a plurality of first protrusions 42a and second protrusions 42b. The tip of the first protrusion 42a is not in contact with the inner wall surface 1a of the conduit 1, and the tip of the first protrusion 42a is the inner wall surface of the conduit 1 in the radial direction of the conduit 1. It is arranged so as to have a gap ΔL with respect to 1a.
On the other hand, in the present embodiment, in the second protrusion 42b, the tip of the protrusion 42 is in contact with the inner wall surface 1a of the pipeline 1. In this case, the second protrusion 42b can position the heat transfer promoter 4 in the pipeline 1 (positioning of the conduit 1 in the axial direction). In this case, the number of the second protrusions 42b is preferably 2 or more.
 ただし、他の手段によって、管路1内における伝熱促進体4の位置決め(管路1の軸直方向への位置決め)が可能であれば、第2の突起部42bを、管路1の内壁面1aに接触させる秘要はない。
 第2の突起部42bの数は少ない方が好ましい。本実施形態では、第2の突起部42bの数は、第1の突起部42aの数よりも少ない。好ましくは、第2の突起部42bの数は、第1の突起部42aの数の1/3以下、より好ましくは1/4以下である。但し、第2の突起部42bで管路1内における伝熱促進体4の位置決めを行うためには、第2の突起部42bの数は2個以上である必要がある。図2では、第2の突起部42bが2個の場合を例示し、下側に位置する2個の第2の突起部42bで、管路1に対し伝熱促進体4が自重で支持される。
However, if the heat transfer promoter 4 can be positioned in the conduit 1 (positioning of the conduit 1 in the axial direction) by other means, the second protrusion 42b can be placed in the conduit 1. There is no secret to contacting the wall surface 1a.
It is preferable that the number of the second protrusions 42b is small. In the present embodiment, the number of the second protrusions 42b is smaller than the number of the first protrusions 42a. Preferably, the number of the second protrusions 42b is 1/3 or less, more preferably 1/4 or less of the number of the first protrusions 42a. However, in order for the second protrusion 42b to position the heat transfer promoter 4 in the conduit 1, the number of the second protrusions 42b needs to be two or more. FIG. 2 illustrates a case where the second protrusions 42b are two, and the heat transfer promoter 4 is supported by its own weight with respect to the pipeline 1 by the two second protrusions 42b located on the lower side. NS.
 また、本実施形態は、第1の突起部42aの先端部と、その先端部と対向する管路1の内壁面1aとの隙間ΔLは、次のように規定されている。
 すなわち、伝熱促進体4が配置される管路1の直管部1Dの等価直径Dtに対する隙間ΔLの比(ΔL/Dt)の100分率をxとした場合、下記(1)を満足する隙間ΔLとなるように設定する。
 0.3% < x < 7%  ・・・(1)
 更に、以下の(2)式を満たすことがより好ましい。
 0.5% < x < 4.5%  ・・・(2)
Further, in the present embodiment, the gap ΔL between the tip end portion of the first protrusion 42a and the inner wall surface 1a of the pipeline 1 facing the tip end portion is defined as follows.
That is, when the 100% ratio (ΔL / Dt) of the gap ΔL to the equivalent diameter Dt of the straight pipe portion 1D of the conduit 1 in which the heat transfer promoter 4 is arranged is x, the following (1) is satisfied. Set so that the gap is ΔL.
0.3% <x <7% ・ ・ ・ (1)
Further, it is more preferable to satisfy the following equation (2).
0.5% <x <4.5% ・ ・ ・ (2)
 より具体的に、本実施形態の伝熱促進体4の例について説明する。
 各伝熱促進体4は、上述の通り、本体部41と、本体部41の外周から内壁面1aに向けて突出する複数の突起部42からなる。
 本体部41は、図2に示すように、管路1の開口断面の楕円形に相似形若しくは当該楕円形に近似した断面を有する柱状の形状からなる。そして、本体部41は、柱状の形状の軸(長手方向)を管路1の軸と平行に配置される。
 この本体部41によって、管路1内を流れるガスが通流する面積が制限され、本体部41外周側(外径側)を流れるガスの流速が速くなる。
 更に、本体部41の外周に複数の突起部42を設けることで、本体部41外周を通流するガスが、突起部42によって周方向に沿って複数に分断され、隣り合う突起部42間の空間をそれぞれガスが流れる。
More specifically, an example of the heat transfer promoter 4 of the present embodiment will be described.
As described above, each heat transfer promoter 4 includes a main body 41 and a plurality of protrusions 42 protruding from the outer periphery of the main body 41 toward the inner wall surface 1a.
As shown in FIG. 2, the main body 41 has a columnar shape having a shape similar to the elliptical shape of the opening cross section of the pipeline 1 or a cross section similar to the elliptical shape. Then, the main body 41 is arranged with a columnar shaft (longitudinal direction) parallel to the shaft of the pipeline 1.
The main body 41 limits the area through which the gas flowing in the pipeline 1 flows, and increases the flow velocity of the gas flowing on the outer peripheral side (outer diameter side) of the main body 41.
Further, by providing a plurality of protrusions 42 on the outer periphery of the main body 41, the gas flowing through the outer periphery of the main body 41 is divided into a plurality of parts along the circumferential direction by the protrusions 42, and the gas passing through the outer periphery of the main body 41 is divided into a plurality of protrusions 42 between the adjacent protrusions 42. Gas flows through each space.
 本実施形態の突起部42は、断面が略三角形状(管路1の軸方向からみて三角形状)であって、底辺が本体部41の外周と一体に形成されている。また、突起部42は、長手方向においては、管路1の軸と平行な方向に同一の断面形状の厚板形状(側面視長方形形状)となっている。
 管路1の円周方向に沿って(管路1の軸方向から見て)隣り合う突起部42間には、図2のように、本体部41から離れるほど幅が広くなる断面三角形状の空間Sが形成されている。
The protrusion 42 of the present embodiment has a substantially triangular cross section (triangular when viewed from the axial direction of the conduit 1), and the base thereof is integrally formed with the outer circumference of the main body 41. Further, the protrusion 42 has a thick plate shape (rectangular shape when viewed from the side) having the same cross-sectional shape in the direction parallel to the axis of the pipeline 1 in the longitudinal direction.
As shown in FIG. 2, between the protrusions 42 adjacent to each other along the circumferential direction of the pipeline 1 (when viewed from the axial direction of the pipeline 1), the width becomes wider as the distance from the main body 41 increases. Space S is formed.
 複数の突起部42によって、本体部41外周を流れるガスは旋回流となりにくく、空間Sに沿って層流状に管部1の軸に沿って流れるようになる。すなわち、複数の突起部42を設けることで、突起部42間にそれぞれ個別のガス流路が円周方向に形成され、それぞれのガス流路にガスを通流させることができる。
 図2では、下側の2つの突起部42の長さを、他の突起部42よりも長くすることで、第2の突起部42bを構成する。この2つの突起部42bの先端が、管路1の内壁の下面側に当接することで、伝熱促進体4は、管路1内に所定の位置で支持される。なお、一番上方の突起部42も第2の突起部42bとして、管路1内壁に当接させる方が、伝熱促進体4は安定して管路1内に位置決めされる。但し、第2の突起部42bの数は少ない方が好ましい。
Due to the plurality of protrusions 42, the gas flowing around the outer periphery of the main body 41 is unlikely to become a swirling flow, and flows along the axis of the pipe portion 1 in a laminar flow along the space S. That is, by providing the plurality of protrusions 42, individual gas flow paths are formed between the protrusions 42 in the circumferential direction, and gas can flow through the respective gas flow paths.
In FIG. 2, the second protrusion 42b is formed by making the lengths of the two lower protrusions 42 longer than those of the other protrusions 42. The tips of the two protrusions 42b come into contact with the lower surface side of the inner wall of the conduit 1, so that the heat transfer promoter 4 is supported in the conduit 1 at a predetermined position. The heat transfer promoter 4 is more stably positioned in the conduit 1 when the uppermost protrusion 42 is also used as the second protrusion 42b and is brought into contact with the inner wall of the conduit 1. However, it is preferable that the number of the second protrusions 42b is small.
 ここで、図2のように、複数の第2の突起部42bによって、管路1内に配置した伝熱促進体4の重心P2の位置が管路1の開口断面の中心P1(重心)と一致するように設定(配置)することが好ましい。両者1,4の重心P1、P2が一致するように配置すると、伝熱促進体4の重心P2と、ラジアントチューブ100の燃焼流方向に対して垂直な断面における重心部が一致し、伝熱促進体4の重力方向への偏りを抑え伝熱性能の低下を解消することができる。なお、伝熱促進体4の重心とラジアントチューブ100の燃焼流方向に対して垂直な断面における重心部を一致させることは、ラジアントチューブ形状が楕円形状の場合に、非常に効果的である。
 更に、本実施形態では、第2の突起部42bを構成する突起部42以外は第1の突起部42aを構成し、その複数の第1の突起部42aの先端部と管路1内面との間に隙間ΔLが形成されるように、第1及び第2の突起部の長さや、本体部41の寸法を設定する。
 隙間ΔLは、上記の(1)式の条件を満足するものとする。
Here, as shown in FIG. 2, the position of the center of gravity P2 of the heat transfer promoter 4 arranged in the conduit 1 is set to the center P1 (center of gravity) of the opening cross section of the conduit 1 by the plurality of second protrusions 42b. It is preferable to set (arrange) them so that they match. When the centers of gravity P1 and P2 of both 1 and 4 are arranged so as to coincide with each other, the center of gravity P2 of the heat transfer promoter 4 and the center of gravity in the cross section perpendicular to the combustion flow direction of the radiant tube 100 coincide with each other to promote heat transfer. It is possible to suppress the bias of the body 4 in the direction of gravity and eliminate the deterioration of the heat transfer performance. It is very effective to match the center of gravity of the heat transfer promoter 4 with the center of gravity in the cross section perpendicular to the combustion flow direction of the radiant tube 100 when the radiant tube shape is elliptical.
Further, in the present embodiment, the first protrusion 42a is formed except for the protrusion 42 constituting the second protrusion 42b, and the tip portions of the plurality of first protrusions 42a and the inner surface of the conduit 1 are connected to each other. The lengths of the first and second protrusions and the dimensions of the main body 41 are set so that a gap ΔL is formed between them.
The gap ΔL satisfies the condition of the above equation (1).
 (作用)
 次に、本実施形態の伝熱促進体4の作用について説明する。
 本体部41によって、管路1内を流れるガスが通流する面積を制限し、本体部41の外周側(外径側)を流れるガスの流速が速くなる。本実施形態では、本体部41の断面の重心と管路1断面の重心を一致若しくは近似させることで、本体部41の外周を流れるガスの分布をより均等化させる。
 また、複数の突起部42によって、本体部41の外周の空間を、管路1の円周方向に沿って複数の空間に区画する。すなわち、隣り合う突起部42間にそれぞれ独立したガス流路が形成され、それぞれのガス流路にガスを通流させることができる。
(Action)
Next, the action of the heat transfer promoter 4 of the present embodiment will be described.
The main body 41 limits the area through which the gas flowing in the pipeline 1 flows, and the flow velocity of the gas flowing on the outer peripheral side (outer diameter side) of the main body 41 becomes high. In the present embodiment, the center of gravity of the cross section of the main body 41 and the center of gravity of the cross section of the pipeline 1 are matched or approximated to make the distribution of the gas flowing on the outer circumference of the main body 41 more even.
Further, the space around the main body 41 is divided into a plurality of spaces along the circumferential direction of the pipeline 1 by the plurality of protrusions 42. That is, independent gas flow paths are formed between the adjacent protrusions 42, and gas can flow through each gas flow path.
 ここで、伝熱促進体4を配置する管路1部分の開口断面積に対する、伝熱促進体4の断面積の比をAとし、伝熱促進体4を配置する管路1部分の開口断面の周長さに対する、伝熱促進体4の断面の周長さの比をBとしたとき、管路1に対する伝熱促進体4は、以下の式(3)及び式(4)を満たすことが好ましい。
  A ≦ 0.53         ・・・(3)
 (1-A)-4/5×A・B≧2.48  ・・・(4)
Here, the ratio of the cross-sectional area of the heat transfer promoting body 4 to the opening cross-sectional area of the conduit 1 portion in which the heat transfer promoting body 4 is arranged is set to A, and the opening cross section of the conduit 1 portion in which the heat transfer promoting body 4 is arranged. When the ratio of the peripheral length of the cross section of the heat transfer promoter 4 to the peripheral length of the above is B, the heat transfer promoter 4 with respect to the conduit 1 satisfies the following equations (3) and (4). Is preferable.
A ≤ 0.53 ・ ・ ・ (3)
(1-A) -4/5 × A ・ B ≧ 2.48 ・ ・ ・ (4)
 この(3)式及び(4)式に関して説明する。
 ここで、管路1の設置部が形成する開口断面の面積をαとする。また、伝熱促進体4の断面積をβとする。このとき、Aは(β/α)である。また、管路1の設置部の開口断面の周長さ(管路1の内周長さ)をcとする。また、伝熱促進体4の周長さをdとする。このとき、Bは(d/c)である。
 そして、本実施形態の伝熱促進体4では、A及びBについて、上記の式(4)及び式(4)を満たすように設計されることが好ましい。発明者らが検討したところ、上記のAが0.53を超えると、圧力損失が大きく燃焼ガスの流れを著しく抑制することが分かった。そのため、式(3)で規定するように、Aは0.53以下が好ましい。より好ましくは、Aは0.46以下である。
The equations (3) and (4) will be described.
Here, let α be the area of the opening cross section formed by the installation portion of the pipeline 1. Further, the cross-sectional area of the heat transfer promoter 4 is β. At this time, A is (β / α). Further, let c be the peripheral length of the opening cross section of the installation portion of the pipeline 1 (the inner peripheral length of the pipeline 1). Further, the peripheral length of the heat transfer promoter 4 is d. At this time, B is (d / c).
The heat transfer promoter 4 of the present embodiment is preferably designed so that A and B satisfy the above formulas (4) and (4). As a result of examination by the inventors, it was found that when the above-mentioned A exceeds 0.53, the pressure loss is large and the flow of combustion gas is remarkably suppressed. Therefore, as specified in the formula (3), A is preferably 0.53 or less. More preferably, A is 0.46 or less.
 また、上記の式(4)は、本発明者らが、一般的な対流伝熱理論式に基づいて、伝熱促進体4の断面積を小さくするとガス流速が遅くなり対流伝熱の効果が弱まること、及び伝熱面積が伝熱促進体4の外周長さに比例することに着目し見出した式である。そして、本発明者らは、式(4)の左辺が2.48以上であることで、所望の伝熱効率を得ることができることを確認している。
 更に、本実施形態は、第1の突起部42aと管路1の内壁面1aとの間に所定の隙間ΔLを設けることが特徴の1つである。
 管路1の内壁面1a近傍に上記の隙間ΔLを設けることで、図3に示すように、管路1の内壁面近傍に対し、管路1の円周方向に沿った燃焼流の旋回方向の流れ(旋回流R)が形成される。
Further, in the above equation (4), when the present inventors reduce the cross-sectional area of the heat transfer promoter 4 based on a general convection heat transfer theoretical equation, the gas flow velocity becomes slow and the effect of convection heat transfer becomes effective. This equation was found by paying attention to the fact that the heat transfer area is weakened and the heat transfer area is proportional to the outer peripheral length of the heat transfer promoter 4. Then, the present inventors have confirmed that the desired heat transfer efficiency can be obtained when the left side of the formula (4) is 2.48 or more.
Further, one of the features of the present embodiment is that a predetermined gap ΔL is provided between the first protrusion 42a and the inner wall surface 1a of the pipeline 1.
By providing the above gap ΔL in the vicinity of the inner wall surface 1a of the pipeline 1, as shown in FIG. 3, the direction of rotation of the combustion flow along the circumferential direction of the pipeline 1 with respect to the vicinity of the inner wall surface of the pipeline 1. Flow (swirl flow R) is formed.
 ここで、燃焼流の流れ方向の流速をVx、流れ方向に垂直な断面の流速をVy、Vzとすれば燃焼流の速度Vは、下記(5)式で表すことができる。
 V=√(Vx+Vy+Vz) ・・・(5)
 この(5)式から分かるように、管路1の内壁の近傍に形成された旋回流Rの分だけ、速度Vは大きくなり、本実施形態では更に、熱伝達効率も向上する。
Here, if the flow velocity in the flow direction of the combustion flow is Vx and the flow velocity in the cross section perpendicular to the flow direction is Vy and Vz, the velocity V of the combustion flow can be expressed by the following equation (5).
V = √ (Vx 2 + Vy 2 + Vz 2 ) ・ ・ ・ (5)
As can be seen from the equation (5), the velocity V is increased by the amount of the swirling flow R formed in the vicinity of the inner wall of the pipeline 1, and the heat transfer efficiency is further improved in the present embodiment.
 また、旋回流Rは、特に曲面から直線状の面へと流れが移行する際に強くなる。曲面から直線状の面へと流れが移行する部分とは、図1における、例えば、曲管部1Gから直管部1Dへの移行部であり、図1におけるA-A′断面位置辺りにおける上側空間位置でよどみが発生しやすくなる。これは、曲面での燃焼流の剥離により生じる流れの偏りのためである。そのため、隙間ΔLが本発明に基づくだけの隙間がない又は隙間が小さい伝熱促進体では、区分けされた空間S間にそれぞれ異なる量の燃焼ガスが流れる結果、伝熱効率が低下する。一方で、適切な隙間ΔLを設けることで、突起部42で区画された複数の空間S間の流量バランスが自然と同量となる。本実施形態では、ガスの流れを分割する突起部42は、管路1の内壁面1aに近づくほど幅が小さくなる形状である。このため、図3に示すように、突起部42で区画された各空間S内においても旋回流が生じやすく燃焼流から伝熱促進体への伝熱効率が上昇する。 Also, the swirling flow R becomes stronger especially when the flow shifts from a curved surface to a straight surface. The portion where the flow shifts from the curved surface to the straight surface is, for example, the transition portion from the curved pipe portion 1G to the straight pipe portion 1D in FIG. Stagnation is likely to occur at the spatial position. This is due to the bias of the flow caused by the separation of the combustion flow on the curved surface. Therefore, in a heat transfer promoter having no gap or a small gap for which the gap ΔL is based on the present invention, different amounts of combustion gas flow between the divided spaces S, resulting in a decrease in heat transfer efficiency. On the other hand, by providing an appropriate gap ΔL, the flow rate balance between the plurality of spaces S partitioned by the protrusions 42 becomes naturally the same. In the present embodiment, the protrusion 42 that divides the gas flow has a shape that becomes smaller as it approaches the inner wall surface 1a of the pipeline 1. Therefore, as shown in FIG. 3, a swirling flow is likely to occur even in each space S partitioned by the protrusions 42, and the heat transfer efficiency from the combustion flow to the heat transfer promoter increases.
 更に、本実施形態では、突起部42で区画された各空間Sの断面は、管路1の内壁面1aに近づくほど幅が広くなっていて壁面の影響が少ないため、流路抵抗が相対的に小さい。このため、各突起部42間を流れるガスは、中心側よりも外周側により流れる。この結果、より多くのガスが、管路1の内壁面1a近傍に形成される旋回流Rに寄与する。 Further, in the present embodiment, the cross section of each space S partitioned by the protrusions 42 becomes wider as it approaches the inner wall surface 1a of the pipeline 1, and the influence of the wall surface is small, so that the flow path resistance is relative. Is small. Therefore, the gas flowing between the protrusions 42 flows on the outer peripheral side rather than the central side. As a result, more gas contributes to the swirling flow R formed in the vicinity of the inner wall surface 1a of the pipeline 1.
 特に、本実施形態では、突起部42の形状を断面長方形状などではなく、管路1の内壁に近づくほど周方向の幅が狭くなる略三角形状とする。このため、更に、突起部42で区画された各空間Sの断面は、突起部42の形状を断面長方形状とする場合に比べて、径方向外方向に向かうにつれて単位長さ当たりの周方向の広がりの度合いを大きく設定できる。この結果、より各突起部42間を流れるガスは、中心側よりも外周側により流れることで、より多くのガスが、管路1の内壁面1a近傍に形成される旋回流Rに寄与する。 In particular, in the present embodiment, the shape of the protrusion 42 is not a rectangular shape in cross section, but a substantially triangular shape in which the width in the circumferential direction becomes narrower as it approaches the inner wall of the pipeline 1. For this reason, the cross section of each space S partitioned by the protrusion 42 is in the circumferential direction per unit length as it goes outward in the radial direction, as compared with the case where the shape of the protrusion 42 is rectangular in cross section. The degree of spread can be set large. As a result, the gas flowing between the protrusions 42 flows closer to the outer peripheral side than to the central side, so that more gas contributes to the swirling flow R formed in the vicinity of the inner wall surface 1a of the pipeline 1.
 なお、突起部42は、隣り合う突起部42の付け根同士(本体部側の部分)が接続された形状(連続した形状)であることが好ましい。
 更に、突起部42間に形成する空間Sの断面を三角形状とすると、常に伝熱促進体4、燃焼ガス、管路1壁面と並ぶことから、熱源である燃焼ガスから管路への輻射伝熱を阻害しない。
 ここで、上記旋回流Rが管路1の内壁面1a付近で生じるためには、伝熱促進体4の突起部42と管路1の内壁面1aとの間に所定の隙間ΔLが要求される。所定の隙間ΔLとは、粘性底層と呼ばれる壁面付近の燃焼ガスの流速が0に近い領域幅以上となる隙間である。
The protrusions 42 preferably have a shape (continuous shape) in which the roots of adjacent protrusions 42 (parts on the main body side) are connected to each other.
Further, if the cross section of the space S formed between the protrusions 42 is triangular, it is always aligned with the heat transfer promoter 4, the combustion gas, and the wall surface of the conduit 1, so that radiation is transmitted from the combustion gas, which is a heat source, to the conduit. Does not inhibit heat.
Here, in order for the swirling flow R to occur in the vicinity of the inner wall surface 1a of the pipeline 1, a predetermined gap ΔL is required between the protrusion 42 of the heat transfer promoter 4 and the inner wall surface 1a of the conduit 1. NS. The predetermined gap ΔL is a gap called the viscous bottom layer in which the flow velocity of the combustion gas near the wall surface is equal to or greater than the region width close to zero.
 一般的な工業用ラジアントチューブの管内流れでは、粘性底層の領域幅は等価直径に対して0.3%以上であり、等価直径に対し0.5%であれば十分に遷移領域内となる。
 このため、本実施形態では、伝熱促進体4が配置される管路1部分の等価直径Dtに対する上記の隙間ΔLの比(ΔL/Dt)の100分率xを、0.3%以上、好ましくは、0.5%とした。
 一方、隙間ΔLが広すぎると、伝熱面積、特に燃焼流から伝熱促進体への対流熱伝達面積が小さくなる。このため、上記のxを7%以下、好ましくは4.5%以下とした。
In the in-pipe flow of a general industrial radiant tube, the region width of the viscous bottom layer is 0.3% or more with respect to the equivalent diameter, and 0.5% with respect to the equivalent diameter is sufficiently within the transition region.
Therefore, in the present embodiment, the 100% ratio x of the above-mentioned gap ΔL ratio (ΔL / Dt) to the equivalent diameter Dt of the conduit 1 portion in which the heat transfer promoter 4 is arranged is set to 0.3% or more. Preferably, it was 0.5%.
On the other hand, if the gap ΔL is too wide, the heat transfer area, particularly the convection heat transfer area from the combustion flow to the heat transfer promoter, becomes small. Therefore, the above x is set to 7% or less, preferably 4.5% or less.
 ここで、伝熱促進体4を構成する材質は、伝熱促進体4として公知の材料を採用すればよい。例えば、当該材質として、耐火断熱レンガ、耐熱金属、セラミック、キャスタブル等が例示できる。製作コスト低減及び伝熱促進体4重量によるラジアントチューブ100変形抑制のため、安価かつ軽量である耐火断熱レンガとすることが好ましい。 Here, as the material constituting the heat transfer promoter 4, a material known as the heat transfer promoter 4 may be adopted. For example, examples of the material include refractory heat insulating bricks, refractory metals, ceramics, and castables. In order to reduce the production cost and suppress the deformation of the radiant tube 100 by the weight of the heat transfer promoter 4, it is preferable to use a refractory heat insulating brick that is inexpensive and lightweight.
 以上説明したように、本実施形態では、伝熱促進体4を上記のような特定の形状に設計する。これにより、流路断面積を狭め、流路縮小により燃焼ガスの流速を増大させることができる。更に、本実施形態では、伝熱促進体4の伝熱面積を大きくしつつ、燃焼ガスの内壁面近傍での旋回流Rを抑制せずに、伝熱効率を高めることができる。更に、本実施形態の伝熱促進体4は、簡単な形状であるため安価での製造が可能である。また、伝熱促進体4をラジアントチューブ100に挿入することで、従来技術と同様に、燃焼ガスを撹拌することができる。上記の説明では、流路に沿って均一断面の伝熱促進体4を用いたが、流路に沿って排ガス上流側を先細状とすることで、燃焼ガスの撹拌をより促進することもでき、伝熱効率をより高めることもできる。 As described above, in the present embodiment, the heat transfer promoter 4 is designed to have a specific shape as described above. As a result, the cross-sectional area of the flow path can be narrowed, and the flow velocity of the combustion gas can be increased by reducing the flow path. Further, in the present embodiment, the heat transfer efficiency can be improved without suppressing the swirling flow R in the vicinity of the inner wall surface of the combustion gas while increasing the heat transfer area of the heat transfer promoter 4. Further, since the heat transfer promoter 4 of the present embodiment has a simple shape, it can be manufactured at low cost. Further, by inserting the heat transfer promoter 4 into the radiant tube 100, the combustion gas can be agitated as in the prior art. In the above description, the heat transfer promoter 4 having a uniform cross section is used along the flow path, but the agitation of the combustion gas can be further promoted by tapering the upstream side of the exhaust gas along the flow path. , The heat transfer efficiency can be further improved.
 [等価直径について]
 等価直径Dtは、内壁の周長さLと、流れ方向に垂直な管路1の開口断面積Saから、下記式によって求めることが可能である。
  Dt=(4・Sa)/L
[About equivalent diameter]
The equivalent diameter Dt can be obtained by the following formula from the peripheral length L of the inner wall and the opening cross-sectional area Sa of the pipeline 1 perpendicular to the flow direction.
Dt = (4 ・ Sa) / L
 [円管流れの粘性底層の近似的求め方について]
 管摩擦係数fは、コールブルックの式から下記式で表される。
 1/√f=-2log10 (((ε/Dt )/3.7)
      +(2.51/(Re√f)))
 ここで、
 ε:面粗さ
 Re:レイノルズ数((u・Dt)/νで求められる)
 である。
[Approximate method of obtaining the viscous bottom layer of circular tube flow]
The coefficient of friction f is expressed by the following equation from Colebrook's equation.
1 / √f = -2log 10 (((ε / Dt) /3.7)
+ (2.51 / (Re√f)))
here,
ε: Surface roughness Re: Reynolds number (obtained by (u · Dt) / ν)
Is.
 また、円管断面における単位長さ当たりの圧力降下をΔPとすると、
 ΔP=1/2(f・(1/Dt)・ρ・u)と表現できる。
Further, assuming that the pressure drop per unit length in the cross section of the circular pipe is ΔP,
It can be expressed as ΔP = 1/2 (f · (1 / Dt) · ρ · u 2).
 単位長さ当たりの管路1の内壁面1aに生じるせん断応力τと圧力降下ΔPは等しいから、下記のように記載可能である。
 Sa・ΔP=L・τ
 τ=(Sa/(2・l・Dt))f・ρ・u
 摩擦速度uは、u=√(τ/ρ)と表現できる。
 粘性底層の範囲は、 u(y/ν)< 5となる。
Since the shear stress τ 0 generated on the inner wall surface 1a of the pipeline 1 per unit length and the pressure drop ΔP are equal, it can be described as follows.
Sa ・ ΔP = L ・ τ 0
τ 0 = (Sa / (2 ・ l ・ Dt)) f ・ ρ ・ u 2
The friction velocity u * can be expressed as u * = √ (τ 0 / ρ).
The range of the viscous bottom layer is u * (y / ν) <5.
 よって、本実施形態の隙間ΔLは、粘性底層より大きければいいので、下記のように設定すればよい。
 x[%]×100=d/Dt >5(ν/(u・Dt))
         ≒0.003 or(0.005)
Therefore, the gap ΔL of the present embodiment may be larger than the viscous bottom layer, and may be set as follows.
x [%] x 100 = d / Dt> 5 (ν / (u *・ Dt))
≒ 0.003 or (0.005)
 (変形例)
 (1)突起部42の先端の断面形状は、面取り形状又はアール形状などの曲面形状となっていることが好ましい。
 伝熱促進体4のうちの管路1の内壁面1aに近い位置は、突起部の先端である。その先端を面取り形状などとして輪郭形状を鈍らすことで、突起部における、管路1の内壁面1aの対向する対向部の面積を稼いでいる。
 これによって、燃焼ガスから伝熱促進体4に伝熱した熱が、管路1の内壁面1aに接近している突起部42の先端から管路1の内壁面1aへの伝熱する効率が向上する。すなわち、伝熱促進体4の管路1への伝熱面積を大きくし、さらなる伝熱促進効果が発現する。
(Modification example)
(1) The cross-sectional shape of the tip of the protrusion 42 is preferably a curved surface shape such as a chamfered shape or a rounded shape.
The position of the heat transfer promoter 4 near the inner wall surface 1a of the pipeline 1 is the tip of the protrusion. By blunting the contour shape by making the tip a chamfered shape or the like, the area of the facing portion of the inner wall surface 1a of the pipeline 1 in the protruding portion is increased.
As a result, the heat transferred from the combustion gas to the heat transfer promoter 4 is efficiently transferred from the tip of the protrusion 42 approaching the inner wall surface 1a of the conduit 1 to the inner wall surface 1a of the conduit 1. improves. That is, the heat transfer area of the heat transfer promoter 4 to the conduit 1 is increased, and a further heat transfer promotion effect is exhibited.
 (2)伝熱促進体4は、例えば、図4(b)に示すように、内部が空洞となっており、その空洞は、管路1を流れる流体の移動方向に沿った面側に開口している。
 この構成によれば、伝熱促進体4の伝熱面積を大きく保ちつつ、伝熱促進体4の軽量化を図ることが可能となる。
(2) As shown in FIG. 4B, for example, the heat transfer promoter 4 has a hollow inside, and the hollow opens on the surface side along the moving direction of the fluid flowing through the conduit 1. doing.
According to this configuration, it is possible to reduce the weight of the heat transfer promoter 4 while maintaining a large heat transfer area of the heat transfer promoter 4.
 (3)上記のように、伝熱促進体4が配置される管路1部分の開口断面を、短径と長径の長さが異なる楕円形形状とし、長径を上下方向に配置しても構わない。
 ラジアントチューブ100を配置する雰囲気は高温雰囲気となり、管路1に熱負荷が掛かるが、この変形例では、管路1の剛性が向上し、伝熱促進体4の荷重や熱負荷が管路1に負荷されても、管路1の変形を抑えることが可能となる。このことは、ラジアントチューブ100から被加熱体への間接加熱をより長期に亘って安定して実行可能となる。
(3) As described above, the opening cross section of the conduit 1 portion where the heat transfer promoter 4 is arranged may have an elliptical shape in which the minor axis and the major axis have different lengths, and the major axis may be arranged in the vertical direction. No.
The atmosphere in which the radiant tube 100 is arranged becomes a high temperature atmosphere, and a heat load is applied to the pipe line 1. In this modified example, the rigidity of the pipe line 1 is improved, and the load and heat load of the heat transfer promoter 4 are applied to the pipe line 1. It is possible to suppress the deformation of the pipeline 1 even if it is loaded on the pipe. This makes it possible to stably perform indirect heating from the radiant tube 100 to the object to be heated for a longer period of time.
 (4)第1の突起部42aの数は、例えば8以上25以下が好ましい。
 突起部42の数を多くするほど、本体部41外周に形成される流路の数が多くなり、周方向に沿った管路1軸方向の流れの調整が容易となる。ただし、多すぎる場合には、流路抵抗が高くなるおそれがあるため、25以下が好ましい。
(4) The number of the first protrusions 42a is preferably 8 or more and 25 or less, for example.
As the number of protrusions 42 increases, the number of flow paths formed on the outer periphery of the main body 41 increases, and it becomes easier to adjust the flow in the uniaxial direction of the pipeline along the circumferential direction. However, if it is too large, the flow path resistance may increase, so 25 or less is preferable.
 (5)また、隣り合う2つの第2の突起部42b間に、1以上の第1の突起部42aが配置されていることが好ましい。
 周方向に沿った旋回流Rの発生箇所の低減を抑えることができる。
 なお、管路1の面に接触する第2の突起部42bの先端に対し、長手方向途中位置に、図5のような、切欠き42Baを形成して、第2の突起部42bによる旋回流Rの流れの抑制を低減させるようにしてもよい。切欠き42Baにおける管路1の内壁面1aとの対向距離ΔL1は、隙間ΔLの内壁面1aとの対向条件と同じ範囲の大きさで設定する。すなわち、上記(1)式と同等の式を満足するように設定することが好ましい。
(5) Further, it is preferable that one or more first protrusions 42a are arranged between two adjacent second protrusions 42b.
It is possible to suppress the reduction of the location where the swirling flow R is generated along the circumferential direction.
A notch 42Ba as shown in FIG. 5 is formed at an intermediate position in the longitudinal direction with respect to the tip of the second protrusion 42b that comes into contact with the surface of the pipeline 1, and the swirling flow is caused by the second protrusion 42b. The suppression of the flow of R may be reduced. The distance ΔL1 facing the inner wall surface 1a of the pipeline 1 in the notch 42Ba is set within the same range as the condition facing the inner wall surface 1a of the gap ΔL. That is, it is preferable to set so as to satisfy the equation equivalent to the equation (1) above.
 (6)被加熱体は、複数の管路1の並び方向に沿って搬送されてラジアントチューブ100によって間接加熱される。なお、管路1の断面が楕円形の場合、長径を管路1の並び方向に設定した方が、加熱効率がよい。
 この被加熱体と対向する側に配置される突起部42間の空間の面積を、相対的に他の位置の突起部42間の空間の面積よりも多くなるように設定することが好ましい。例えば、楕円形の短軸を楕円形の中心を中心に±45度傾けた2つの直線で、管路1内を4つの領域に区画し、各区画に位置する突起部42間の空間の面積について、より被加熱体と対向する側に配置する区画(楕円形では短軸を含む区画)での空間の全面積が、他の区画での空間の全面積よりも相対的に多くなるように設定する。
(6) The body to be heated is conveyed along the arrangement direction of the plurality of pipelines 1 and indirectly heated by the radiant tube 100. When the cross section of the conduit 1 is elliptical, the heating efficiency is better when the major axis is set in the alignment direction of the conduit 1.
It is preferable that the area of the space between the protrusions 42 arranged on the side facing the heated body is set to be relatively larger than the area of the space between the protrusions 42 at other positions. For example, the minor axis of the ellipse is divided into four regions by two straight lines tilted ± 45 degrees around the center of the ellipse, and the area of the space between the protrusions 42 located in each compartment is divided. So that the total area of the space in the section (the section including the minor axis in the ellipse) arranged on the side facing the object to be heated is relatively larger than the total area of the space in the other sections. Set.
 (効果)
 本実施形態は、次のような効果を奏する。
 (1)本実施形態では、管路1内を流れる流体ガスで加熱される管路1と、その管路1内に当該管路1の軸に沿って配置される1又は2以上の伝熱促進体4とを備えるラジアントチューブ100であって、伝熱促進体4は、管路1の中心側に配置される本体部41と、本体部41から管路1の内壁面1aに向けて突出する複数の突起部42と、を備え、複数の突起部42は、管路1の円周方向に沿って配列するように、本体部41の外周に形成され、複数の突起部42は、先端部が管路1の内壁面1aと隙間ΔLを有して対向する複数の第1の突起部42aと、その他の第2の突起部42bとからなり、第1の突起部42aの数は、第2の突起部42bの数よりも多く設定され、管路1のうちの伝熱促進体4が配置される管路1部分の等価直径Dtに対する隙間ΔLの比(ΔL/Dt)の100分率をx[%]とした場合、下記式を満足する。
     0.3% < x < 7%  
(effect)
This embodiment has the following effects.
(1) In the present embodiment, the conduit 1 heated by the fluid gas flowing in the conduit 1 and one or more heat transfer arranged in the conduit 1 along the axis of the conduit 1. A radiant tube 100 including a facilitator 4, the heat transfer facilitator 4 has a main body 41 arranged on the center side of the conduit 1 and projects from the main body 41 toward the inner wall surface 1a of the conduit 1. The plurality of protrusions 42 are formed on the outer periphery of the main body 41 so as to be arranged along the circumferential direction of the pipeline 1, and the plurality of protrusions 42 are formed at the tips thereof. The portion is composed of a plurality of first protrusions 42a having a gap ΔL with the inner wall surface 1a of the pipeline 1 and facing each other, and other second protrusions 42b, and the number of the first protrusions 42a is 100 minutes of the ratio (ΔL / Dt) of the gap ΔL to the equivalent diameter Dt of the pipe 1 portion in which the heat transfer promoter 4 in the pipe 1 is arranged, which is set to be larger than the number of the second protrusions 42b. When the rate is x [%], the following equation is satisfied.
0.3% <x <7%
 この構成によれば、伝熱効率を向上させつつ安価に製造可能な伝熱促進体4を有するラジアントチューブ100が提供可能となる。
 特に、この構成によれば、伝熱促進体4が簡易な構造にも関わらず、簡易に、管路1の内壁面1a近傍に伝熱に寄与する旋回流Rを形成できる結果、伝熱効率が向上する。
According to this configuration, it is possible to provide a radiant tube 100 having a heat transfer promoter 4 that can be manufactured at low cost while improving heat transfer efficiency.
In particular, according to this configuration, although the heat transfer promoter 4 has a simple structure, a swirling flow R that contributes to heat transfer can be easily formed in the vicinity of the inner wall surface 1a of the pipeline 1, resulting in high heat transfer efficiency. improves.
 (2)本実施形態では、第2の突起部42bの先端が管路1の内壁面1aに当接することで、管路1に対する伝熱促進体4の位置決めが行われている。この場合、第2の突起部42bの数は2以上である。
 この構成によれば、第1の突起部42aと内壁面1aとの間に隙間ΔLを形成しつつ、簡易に、伝熱促進体4を管路1内に配置することが可能となる。
 第2の突起部42bの先端が管路1の内壁面1aに当接していなくても良い。この場合、第2の突起部42bの先端と管路1の内壁面1aとの間の隙間は、隙間ΔLを満足しなくても良い。
(2) In the present embodiment, the tip of the second protrusion 42b comes into contact with the inner wall surface 1a of the pipeline 1, so that the heat transfer promoter 4 is positioned with respect to the conduit 1. In this case, the number of the second protrusions 42b is 2 or more.
According to this configuration, the heat transfer promoter 4 can be easily arranged in the pipeline 1 while forming a gap ΔL between the first protrusion 42a and the inner wall surface 1a.
The tip of the second protrusion 42b does not have to be in contact with the inner wall surface 1a of the pipeline 1. In this case, the gap between the tip of the second protrusion 42b and the inner wall surface 1a of the pipeline 1 does not have to satisfy the gap ΔL.
 (3)本実施形態では、伝熱促進体4は、その伝熱促進体4の重心P2が管路1の開口断面の中心P1(重心)と一致するように設置されている。
 両者の重心が一致するように配置することで、伝熱促進体4の重心とラジアントチューブ100の燃焼流方向に対して垂直な断面における重心部が一致し、伝熱促進体4の重力方向への偏りを抑え伝熱性能の低下を解消することが可能となる。
(3) In the present embodiment, the heat transfer promoter 4 is installed so that the center of gravity P2 of the heat transfer promoter 4 coincides with the center P1 (center of gravity) of the opening cross section of the pipeline 1.
By arranging the two so that the centers of gravity coincide with each other, the center of gravity of the heat transfer promoter 4 and the center of gravity in the cross section perpendicular to the combustion flow direction of the radiant tube 100 coincide with each other, and the heat transfer promoter 4 moves in the direction of gravity. It is possible to suppress the bias of the heat transfer and eliminate the deterioration of the heat transfer performance.
 (4)本実施形態では、各突起部42の断面形状は、本体部41から管路1の径方向に沿って離れるほど、管路1の円周方向に沿った幅が小さくなる形状であって、管路1の円周方向で隣り合う2つの突起部42の間に、本体部41から離れるほど隣り合う2つの突起部42間の距離が広くなる空間が形成されている。
 この構成によれば、2つの突起部42の間に、本体部41から離れるほど隣り合う2つの突起部42間の距離が広くなる空間を形成しても、突起部42が断面板状の場合に比べ、より外周側にガス流が流れるようになって、突起部42先端の隙間ΔLによる旋回流Rがより確実に形成される結果、より伝熱効率を向上さることが可能となる。
(4) In the present embodiment, the cross-sectional shape of each protrusion 42 is such that the width along the circumferential direction of the conduit 1 becomes smaller as the distance from the main body 41 along the radial direction of the conduit 1 decreases. Therefore, a space is formed between the two adjacent protrusions 42 in the circumferential direction of the pipeline 1 so that the distance between the two adjacent protrusions 42 increases as the distance from the main body 41 increases.
According to this configuration, even if a space is formed between the two protrusions 42 so that the distance between the two adjacent protrusions 42 increases as the distance from the main body 41 increases, the protrusions 42 have a cross-sectional plate shape. As a result, the gas flow flows to the outer peripheral side more reliably, and the swirling flow R due to the gap ΔL at the tip of the protrusion 42 is formed more reliably, and as a result, the heat transfer efficiency can be further improved.
 (5)本実施形態では、突起部42の先端部形状が、面取り形状又は曲面形状となっている。
 この構成によれば、突起部42から管路1への伝熱効率がより向上する。
 (6)伝熱促進体4は、内部が空洞となっており、その空洞は、管路1を流れる流体の移動方向に対向する面が閉塞された形状であってもよい。
 この構成によれば、伝熱促進体4の軽量化が図られ、熱負荷による管路1の変形をより抑制可能となる。
(5) In the present embodiment, the shape of the tip of the protrusion 42 is a chamfered shape or a curved surface shape.
According to this configuration, the heat transfer efficiency from the protrusion 42 to the conduit 1 is further improved.
(6) The heat transfer promoter 4 has a hollow inside, and the hollow may have a shape in which a surface facing the moving direction of the fluid flowing through the conduit 1 is closed.
According to this configuration, the weight of the heat transfer promoter 4 can be reduced, and the deformation of the pipeline 1 due to the heat load can be further suppressed.
 (7)本実施形態では、伝熱促進体4が配置される管路1部分の開口断面が、楕円形状である。楕円は、一番直径が短い短径と、その短径に直交する径である長径とは大きさが異なる。その楕円の長径が上下方向を向くことが好ましい。
 この構成によれば、管路1の剛性が向上して熱負荷による管路1の変形をより抑制すると共に、本実施形態の伝熱促進体4による伝熱効率をより向上可能となる。
 楕円は、例えば、(長径Lb/短径La)を1.1以上1.6以下とする。
(7) In the present embodiment, the opening cross section of the conduit 1 portion in which the heat transfer promoter 4 is arranged has an elliptical shape. The size of the ellipse is different between the minor axis, which has the shortest diameter, and the major axis, which is the diameter orthogonal to the minor axis. It is preferable that the major axis of the ellipse faces in the vertical direction.
According to this configuration, the rigidity of the conduit 1 is improved, the deformation of the conduit 1 due to the heat load is further suppressed, and the heat transfer efficiency by the heat transfer promoter 4 of the present embodiment can be further improved.
For the ellipse, for example, (major diameter Lb / minor diameter La) is 1.1 or more and 1.6 or less.
 (8)各伝熱促進体4の長手方向の断面形状を同一の形状とし、複数の伝熱促進体4の形状を同形状とし、その複数の伝熱促進体4を同軸で且つ各先端部の位置が軸方向で並ぶように配置することが好ましい。
 この場合、より確実に旋回流Rを管路1の内壁面1a近傍だけで発生可能となって、簡易な構造の伝熱促進体4であっても、より伝熱効率を向上させることが可能となる。
(8) The cross-sectional shape of each heat transfer promoter 4 in the longitudinal direction is the same, the shapes of the plurality of heat transfer promoters 4 are the same, and the plurality of heat transfer promoters 4 are coaxial and each tip portion. It is preferable to arrange the positions so that they are aligned in the axial direction.
In this case, the swirling flow R can be more reliably generated only in the vicinity of the inner wall surface 1a of the pipeline 1, and the heat transfer efficiency can be further improved even with the heat transfer promoter 4 having a simple structure. Become.
 以下、実施形態に基づく実施例を説明する。
 本例では、下記の有限体積法を用いた燃焼伝熱シミュレーションによりラジアントチューブ100に用いる伝熱促進体4の評価をした。
 (i) 管路1
 管路1の延在方向の形状は、図1に示すW形状とし、管路1の開口断面を、長径236mmで短径188mmの楕円形形状とした。また管路1の全長は8900mmとした。
 (ii) ガス発生部2A
 ガス発生部2Aとしてはバーナーを用いた。燃料は、コークス炉おいて石炭の乾溜中に発生するガスを精製したものを用いた。
 (iii) 伝熱促進体4
 最下流に位置する直管部のラジアントチューブ100出側300mmの位置から950mmの位置までに伝熱促進体4を10個配置するとした。
Hereinafter, examples based on the embodiments will be described.
In this example, the heat transfer accelerator 4 used in the radiant tube 100 was evaluated by the combustion heat transfer simulation using the following finite volume method.
(I) Pipeline 1
The shape of the pipeline 1 in the extending direction was the W shape shown in FIG. 1, and the opening cross section of the pipeline 1 was an elliptical shape having a major axis of 236 mm and a minor axis of 188 mm. The total length of the pipeline 1 is 8900 mm.
(Ii) Gas generator 2A
A burner was used as the gas generating unit 2A. The fuel used was a refined gas generated during the carbonization of coal in a coke oven.
(Iii) Heat transfer promoter 4
It is assumed that 10 heat transfer promoters 4 are arranged from the position of 300 mm on the exit side of the radiant tube 100 of the straight pipe portion located at the most downstream to the position of 950 mm.
 (iv) 廃熱削減比
 廃熱削減比としては、試験炉からの放熱量と排ガスの熱量のバランスを計算し、入熱量に占める排ガスの熱量の割合を算出した。そして、後述の例1の伝熱促進体4の全突起部42がラジアントチューブ100内壁に接地しているとき(図6参照)の廃熱削減率を1.00としたときの比を示す。
 この実施例では、廃熱削減比が1.20以上の場合、好ましくは廃熱削減比が1.50以上の場合伝熱効率が優れるとして合格とした。
(Iv) Waste heat reduction ratio As the waste heat reduction ratio, the balance between the amount of heat radiated from the test furnace and the amount of heat of the exhaust gas was calculated, and the ratio of the amount of heat of the exhaust gas to the amount of heat input was calculated. Then, the ratio when the waste heat reduction rate is 1.00 when the total protrusions 42 of the heat transfer promoter 4 of Example 1 described later are in contact with the inner wall of the radiant tube 100 (see FIG. 6) is shown.
In this example, when the waste heat reduction ratio is 1.20 or more, preferably when the waste heat reduction ratio is 1.50 or more, the heat transfer efficiency is excellent and the result is passed.
 まず、断面星形の伝熱促進体4の基本形状について検討した。
 図6に示す例1は、伝熱促進体4の複数の先端部の全ての先端と、管路1の内壁とが接地しているものである。
 図7に示す例2は、伝熱促進体4の先端部を均等に短くしたものである。ただし、重力方向に伝熱促進体4が偏っている。すなわち、管路1の断面中心に対し、伝熱促進体4の重心位置が下方に位置する場合である。
First, the basic shape of the heat transfer promoter 4 having a star-shaped cross section was examined.
In Example 1 shown in FIG. 6, all the tips of the plurality of tips of the heat transfer promoter 4 and the inner wall of the pipeline 1 are in contact with each other.
In Example 2 shown in FIG. 7, the tip portion of the heat transfer promoter 4 is evenly shortened. However, the heat transfer promoter 4 is biased in the direction of gravity. That is, the position of the center of gravity of the heat transfer promoter 4 is located below the center of the cross section of the pipeline 1.
 図8に示す例3は、例2に対して2本の先端部のみ例1と同じ長さとして第2の突起部42bとして、伝熱促進体4の重心と管路1の中心(円筒上の流れ方向に垂直な方向に対する断面の重心部)を一致させたものである。
 図9に示す例4は、例1の形状から突起部42の先端の隙間ΔLが例3と同様になるように突起部42の先端を面取りしたものである。なお、突起部42の図9に示す形状において、突起部42にRを取った場合もほぼ例4と同程度の廃熱削減量であった。
In Example 3 shown in FIG. 8, only the two tip portions have the same length as in Example 1 as compared with Example 2, and the center of gravity of the heat transfer promoter 4 and the center of the conduit 1 (on the cylinder) are set as the second protrusion 42b. The center of gravity of the cross section with respect to the direction perpendicular to the flow direction of
In Example 4 shown in FIG. 9, the tip of the protrusion 42 is chamfered so that the gap ΔL at the tip of the protrusion 42 is the same as that of Example 3 from the shape of Example 1. In addition, in the shape shown in FIG. 9 of the protrusion 42, even when R was taken for the protrusion 42, the amount of waste heat reduction was almost the same as that of Example 4.
 上記の例1~例4の検討結果を図10に示す。図10では、縦軸は廃熱削減比を表す。
 図10から分かるように、例2~例4のように、突起部42の先端に隙間ΔLを設けることで、先端部を管路1に接した状態(例1)と比較して、廃熱削減比が向上することが分かった。
 更に、例3及び例4のように、管路1断面の重心と伝熱促進体4の断面の重心を一致若しくは近似させることで、より廃熱削減比が向上して、廃熱削減比が1.50以上となった。
The examination results of Examples 1 to 4 described above are shown in FIG. In FIG. 10, the vertical axis represents the waste heat reduction ratio.
As can be seen from FIG. 10, by providing a gap ΔL at the tip of the protrusion 42 as in Examples 2 to 4, waste heat is wasted as compared with the state where the tip is in contact with the pipeline 1 (Example 1). It was found that the reduction ratio improved.
Further, as in Examples 3 and 4, by matching or approximating the center of gravity of the cross section of the pipeline 1 and the center of gravity of the cross section of the heat transfer promoter 4, the waste heat reduction ratio is further improved and the waste heat reduction ratio is increased. It became 1.50 or more.
 次に例4の形状をベースに、星型からなる伝熱促進体4の先端部と管路1内壁との隙間ΔLを変化させて廃熱削減比を検討した。
 その結果を図11に示す。
 図11から分かるように、ラジアントチューブ100内壁の等価直径に対する突起部42先端とチューブ内壁との隙間ΔLが0.3<x<7を満足すれば廃熱削減比1.3倍以上となり非常に高い伝熱効率向上効果を示すことを確認した。更に好ましくは先端部と内壁との隙間ΔLが0.5<x<4.5を満足すれば、廃熱削減比1.5倍以上となりより高い伝熱効率向上効果を示すことを確認した。
Next, based on the shape of Example 4, the waste heat reduction ratio was examined by changing the gap ΔL between the tip of the star-shaped heat transfer promoter 4 and the inner wall of the pipeline 1.
The result is shown in FIG.
As can be seen from FIG. 11, if the gap ΔL between the tip of the protrusion 42 and the inner wall of the tube with respect to the equivalent diameter of the inner wall of the radiant tube 100 satisfies 0.3 <x <7, the waste heat reduction ratio is 1.3 times or more, which is extremely high. It was confirmed that it shows a high effect of improving heat transfer efficiency. More preferably, it was confirmed that if the gap ΔL between the tip portion and the inner wall satisfies 0.5 <x <4.5, the waste heat reduction ratio is 1.5 times or more, and a higher heat transfer efficiency improving effect is exhibited.
 次に管路1が直径188mmの真円形状のものと、楕円形状のものを比較した。
 どちらの場合も、伝熱促進体4の先端部が管路1壁面に接地しているときの廃熱量を基準としてラジアントチューブ100内壁の等価直径に対する突起部42先端とチューブ内壁との隙間ΔLが真円と楕円で等しくなる条件である。
 その比較結果を図12に示す。
 図12から分かるように、管路1の開口断面が円形でも楕円形でも同様に廃熱削減比が向上することが分かった、更に、管路1の開口断面が楕円形状の方が、円形形状の場合に比べ、廃熱削減比が10%程度向上することが分かった。
Next, the one having a perfect circular shape with a diameter of 188 mm and the one having an elliptical shape were compared.
In either case, the gap ΔL between the tip of the protrusion 42 and the inner wall of the tube with respect to the equivalent diameter of the inner wall of the radiant tube 100 is based on the amount of waste heat when the tip of the heat transfer promoter 4 is in contact with the wall surface of the pipeline 1. It is a condition that a perfect circle and an ellipse are equal.
The comparison result is shown in FIG.
As can be seen from FIG. 12, it was found that the waste heat reduction ratio is similarly improved regardless of whether the opening cross section of the pipeline 1 is circular or elliptical. Furthermore, the elliptical opening cross section of the pipeline 1 has a circular shape. It was found that the waste heat reduction ratio was improved by about 10% as compared with the case of.
 ここで、本願が優先権を主張する、日本国特許出願2020-028033(2020年02月21日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。 Here, the entire contents of the Japanese patent application 2020-028033 (filed on February 21, 2020), for which the present application claims priority, form a part of the present disclosure by reference. Although the description has been made with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure are obvious to those skilled in the art.
1 管路
1a 内壁面
2A ガス発生部
3 炉壁
4 伝熱促進体
41 本体部
42 突起部
42a 第1の突起部
42b 第2の突起部
100 ラジアントチューブ
R 旋回流
ΔL 隙間
1 Pipeline 1a Inner wall surface 2A Gas generating part 3 Furnace wall 4 Heat transfer promoter 41 Main body part 42 Protruding part 42a First protruding part 42b Second protruding part 100 Radiant tube R Swirling flow ΔL Gap

Claims (7)

  1.  管路内を流れる流体ガスで加熱される管路と、その管路内に当該管路の軸に沿って配置される1又は2以上の伝熱促進体とを備えるラジアントチューブであって、
     上記伝熱促進体は、上記管路の中心側に配置される本体部と、上記本体部から上記管路の内壁面に向けて突出する複数の突起部と、を備え、
     上記複数の突起部は、上記管路の円周方向に沿って配列するように、上記本体部の外周に形成され、
     上記複数の突起部は、先端部が管路内壁面と隙間ΔLを有して対向する複数の第1の突起部と、その他の第2の突起部とからなり、
     第1の突起部の数は、第2の突起部の数よりも多く設定され、
     上記管路のうちの上記伝熱促進体が配置される管路部分の等価直径Dtに対する上記隙間ΔLの比(ΔL/Dt)の100分率をx[%]とした場合、下記(1)式を満足することを特徴とするラジアントチューブ。
         0.3% < x < 7%  ・・・(1)
    A radiant tube comprising a pipeline heated by a fluid gas flowing through the pipeline and one or more heat transfer promoters arranged along the axis of the pipeline in the pipeline.
    The heat transfer promoter includes a main body portion arranged on the center side of the pipeline and a plurality of protrusions protruding from the main body portion toward the inner wall surface of the pipeline.
    The plurality of protrusions are formed on the outer periphery of the main body so as to be arranged along the circumferential direction of the pipeline.
    The plurality of protrusions are composed of a plurality of first protrusions whose tip portions face each other with a gap ΔL with the inner wall surface of the pipeline, and other second protrusions.
    The number of first protrusions is set larger than the number of second protrusions,
    When the 100% ratio (ΔL / Dt) of the gap ΔL to the equivalent diameter Dt of the pipeline portion where the heat transfer promoter is arranged in the pipeline is x [%], the following (1) A radiant tube characterized by satisfying the formula.
    0.3% <x <7% ・ ・ ・ (1)
  2.  上記第2の突起部の先端が管路内壁面に当接することを特徴とする請求項1に記載したラジアントチューブ。 The radiant tube according to claim 1, wherein the tip of the second protrusion comes into contact with the inner wall surface of the pipeline.
  3.  上記伝熱促進体は、その伝熱促進体の重心が管路の開口断面の中心と一致するように設置されていることを特徴とする請求項1又は請求項2に記載したラジアントチューブ。 The radiant tube according to claim 1 or 2, wherein the heat transfer promoter is installed so that the center of gravity of the heat transfer promoter coincides with the center of the opening cross section of the pipeline.
  4.  上記各突起部の断面形状は、上記本体部から上記管路の径方向に沿って離れるほど、上記管路の円周方向に沿った幅が小さくなる形状であって、上記管路の円周方向で隣り合う2つの突起部の間に、上記本体部から離れるほど隣り合う2つの突起部間の距離が広くなる空間が形成されていることを特徴する請求項1~請求項3のいずれか1項に記載したラジアントチューブ。 The cross-sectional shape of each of the protrusions is such that the width along the circumferential direction of the pipeline becomes smaller as the distance from the main body is along the radial direction of the conduit. Any of claims 1 to 3, wherein a space is formed between the two protrusions adjacent to each other in the direction so that the distance between the two adjacent protrusions increases as the distance from the main body increases. The radiant tube described in item 1.
  5.  上記突起部の先端部形状が、面取り形状又は曲面形状となっていることを特徴とする請求項1~請求項4のいずれか1項に記載したラジアントチューブ。 The radiant tube according to any one of claims 1 to 4, wherein the shape of the tip of the protrusion is a chamfered shape or a curved surface shape.
  6.  上記伝熱促進体は、内部が空洞となっており、その空洞は、上記管路を流れる流体の移動方向に対向する面が閉塞された形状であることを特徴とする請求項1~請求項5のいずれか1項に記載したラジアントチューブ。 The heat transfer promoter has a hollow inside, and the hollow has a shape in which a surface facing the moving direction of the fluid flowing through the pipeline is closed. The radiant tube according to any one of 5.
  7.  上記伝熱促進体が配置される管路部分の開口断面が楕円であることを特徴とする請求項1~請求項6のいずれか1項に記載したラジアントチューブ。 The radiant tube according to any one of claims 1 to 6, wherein the opening cross section of the conduit portion in which the heat transfer promoter is arranged is elliptical.
PCT/JP2021/003974 2020-02-21 2021-02-03 Radiant tube WO2021166651A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2022009757A MX2022009757A (en) 2020-02-21 2021-02-03 Radiant tube.
EP21757979.6A EP4109028A4 (en) 2020-02-21 2021-02-03 Radiant tube
CN202180015224.8A CN115135953A (en) 2020-02-21 2021-02-03 Radiant tube
JP2021519902A JP6904504B1 (en) 2020-02-21 2021-02-03 Radiant tube
US17/799,726 US20230071781A1 (en) 2020-02-21 2021-02-03 Radiant tube
KR1020227027402A KR20220124241A (en) 2020-02-21 2021-02-03 radiant tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-028033 2020-02-21
JP2020028033 2020-02-21

Publications (1)

Publication Number Publication Date
WO2021166651A1 true WO2021166651A1 (en) 2021-08-26

Family

ID=77391986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003974 WO2021166651A1 (en) 2020-02-21 2021-02-03 Radiant tube

Country Status (1)

Country Link
WO (1) WO2021166651A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036818A (en) * 1958-01-29 1962-05-29 Foster Wheeler Francaise Soc Heat exchanger
JPS5852475U (en) * 1981-09-29 1983-04-09 森 康夫 heat exchanger tube
JPS5863421A (en) * 1981-10-13 1983-04-15 Mihama Seisakusho:Kk Synthetic resin heat exchanging tube and manufacture thereof
JP2017083127A (en) * 2015-10-30 2017-05-18 Jfeスチール株式会社 Heat transfer enhancement body and radiant tube
JP2019086180A (en) * 2017-11-02 2019-06-06 カルソニックカンセイ株式会社 Double pipe and manufacturing method thereof
JP2020028033A (en) 2018-08-13 2020-02-20 富士通株式会社 Transmission device, optical termination device, transmission system, and transmission method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3036818A (en) * 1958-01-29 1962-05-29 Foster Wheeler Francaise Soc Heat exchanger
JPS5852475U (en) * 1981-09-29 1983-04-09 森 康夫 heat exchanger tube
JPS5863421A (en) * 1981-10-13 1983-04-15 Mihama Seisakusho:Kk Synthetic resin heat exchanging tube and manufacture thereof
JP2017083127A (en) * 2015-10-30 2017-05-18 Jfeスチール株式会社 Heat transfer enhancement body and radiant tube
JP2019086180A (en) * 2017-11-02 2019-06-06 カルソニックカンセイ株式会社 Double pipe and manufacturing method thereof
JP2020028033A (en) 2018-08-13 2020-02-20 富士通株式会社 Transmission device, optical termination device, transmission system, and transmission method

Similar Documents

Publication Publication Date Title
CN101779001B (en) Blade cooling structure of gas turbine
US7954544B2 (en) Heat transfer unit for high reynolds number flow
KR20130130072A (en) Oxy-fuel burner arrangement
US9017068B2 (en) Top-firing hot blast stove
JP6437719B2 (en) Heat transfer tubes and cracking furnaces using heat transfer tubes
US9134025B2 (en) Rapid energy release burners and methods for using the same
EP2860452B1 (en) Cooling structure for gas turbine combustor liner
EP2993403B1 (en) Gas turbine combustor
JP6587411B2 (en) Radiant tube heating device
JP2008249322A (en) Fluid heating apparatus
WO2021166651A1 (en) Radiant tube
JP6904504B1 (en) Radiant tube
CN109724444B (en) Heat transfer pipe and cracking furnace
CN102628593B (en) Device for fuel combination in the gas turbine
US9410700B2 (en) Burner and a furnace comprising such a burner
JP2017083127A (en) Heat transfer enhancement body and radiant tube
CN105937776B (en) Sequential liner for gas turbine combustor
KR101685796B1 (en) Heat exchanger unit
US20210180870A1 (en) Heat exchanger component with varying twist angle
RU2745819C1 (en) Tubular heater
WO2021161875A1 (en) Radiant tube burner, radiant tube, and method for designing radiant tube burner
KR20200037798A (en) Coal nozzle with narrow flow
JP2022038263A (en) Water heater

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021519902

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227027402

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757979

Country of ref document: EP

Effective date: 20220921