JP2019080430A - 電圧調整装置 - Google Patents

電圧調整装置 Download PDF

Info

Publication number
JP2019080430A
JP2019080430A JP2017205576A JP2017205576A JP2019080430A JP 2019080430 A JP2019080430 A JP 2019080430A JP 2017205576 A JP2017205576 A JP 2017205576A JP 2017205576 A JP2017205576 A JP 2017205576A JP 2019080430 A JP2019080430 A JP 2019080430A
Authority
JP
Japan
Prior art keywords
voltage
phase
transformer
adjustment
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017205576A
Other languages
English (en)
Other versions
JP6959824B2 (ja
Inventor
慎一 三田
Shinichi Mita
慎一 三田
紀明 白土
Noriaki Shirato
紀明 白土
健児 泉
Kenji Izumi
健児 泉
南洋 平野
Namihiro Hirano
南洋 平野
祐也 河内
Yuya Kawauchi
祐也 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2017205576A priority Critical patent/JP6959824B2/ja
Publication of JP2019080430A publication Critical patent/JP2019080430A/ja
Application granted granted Critical
Publication of JP6959824B2 publication Critical patent/JP6959824B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】三相の電圧の大小関係に関わらず、零相電圧(V0)の発生を抑制して三相の電圧を調整することが可能な電圧調整装置を提供する。【解決手段】電圧調整装置は、三相の交流電圧を電源から負荷に配電する配電線に三相分の二次巻線が直列に接続されており、一次巻線がデルタ結線されている直列変圧器と、二次巻線に複数のタップを有し、前記配電線における前記直列変圧器の接続位置よりも前記負荷側の位置に一次巻線がデルタ結線されており、二次巻線がスター結線されている調整変圧器と、該調整変圧器の二次巻線及び前記直列変圧器の一次巻線の間に設けられており、前記直列変圧器に接続するタップを切り換えるための三相分の切換スイッチを有するタップ切換器とを備える。【選択図】図1

Description

本発明は、調整変圧器、タップ切換器及び直列変圧器を用いた配電用の電圧調整装置に関する。
いわゆる間接切換方式による電圧調整装置は、二次巻線が配電線に直列に接続される直列変圧器と、二次巻線に複数のタップが設けられた調整変圧器と、調整変圧器のタップを切り換えるタップ切換器と、タップ切換器を制御する切換制御部とを備えている。調整変圧器は、一次巻線が配電線に並列に接続されている。タップ切換器は、調整変圧器の二次巻線の各タップと直列変圧器の一次巻線との間に設けられている。切換制御部は、調整変圧器から直列変圧器に印加される調整電圧を調整して配電線の電圧を目標範囲に保つようにタップ切換器を制御する。
タップ切換器は、直列変圧器の一次巻線に接続するタップを切り換えるタップ切換スイッチと、タップ切換を行う過程でタップ間に流れる矯絡電流を制限する限流抵抗器等の限流素子と、該限流素子のタップ間への接続及び切り離しを行う接離切換スイッチとを有する。タップ切換器は、更に、調整変圧器の二次巻線から直列変圧器の一次巻線に印加する電圧の極性を切り換える極性切換スイッチを有している。タップ切換器は、切換制御部に制御されてこれらの切換スイッチを所定のシーケンスでオンオフすることにより、調整変圧器から直列変圧器の一次巻線に印加する調整電圧の大きさ及び極性を切り換える。
特許文献1や特許文献2に示されているように、切換スイッチに双方向サイリスタ(双方向性を有しており交流をオンオフできるサイリスタ)を用いて、タップ切換器の無接点化を図った配電用の電圧調整装置が知られている。以下、このサイリスタ式の電圧調整器をTVR(Thyristor type Step Voltage Regulator )と言う。
従来のTVRは、調整変圧器の二次側をV結線とし、直列変圧器の一次側をY結線としたV−Y結線方式が主流である。特許文献3には、調整変圧器をV結線として二相分のタップ切換器を一括制御する従来のTVRをベースに、三相不平衡に対して調整変圧器のV結線の二相電圧を監視し、二相のタップ切換器を個別に制御することにより配電線の三相電圧不平衡を改善する三相電圧不平衡対応機能付TVRが開示されている。
このTVRは、配電線の三相電圧の最大電圧相と最小電圧相に、電圧不平衡対応TVRの電圧監視相(タップ切換を行える二相)を接続することで、電圧不平衡の改善効果が高まるものである。従って三相電圧の最大電圧相と最小電圧相が時間によって変化する系統(各相に接続する単相の負荷や太陽光発電が大きく変動するようなケース)では期待した効果が得られない。また最大電圧相と最小電圧相が不明な系統に適用する場合には事前に計測調査を行った上でTVRの電圧監視相の接続先を決定する必要がある。
これに対し、調整変圧器の二次側をY結線、直列変圧器の一次側をY結線としたY−Y結線方式が実現されている(例えば特許文献4参照)。このような調整変圧器の二次側がY結線のTVRは、三相分のタップ切換器を備えていることから、このタップ切換器を各相について制御すれば三相すべてを個別にタップ切換して三相任意に電圧調整することができ、上記の現行のV−Y結線方式の不平衡対応の課題を解消できるとされている。
特開平8−335119号公報 特開平8−335121号公報 特開2017−85715号公報 特開2016−42279号公報
しかしながら、Y−Y結線方式で相毎に異なるタップ切換を行った場合、直列変圧器に印加される調整電圧に零相電圧(以下、V0と言う)が発生し、系統に重畳される電圧にもV0が生じることから、変電所の地絡継電器が誤動作する等、V0発生による別の大きな問題が生じる。上述のとおり、三相の電圧がいかなる大小関係にあってもV0を発生させずに三相の電圧を調整することが可能な三相不平衡対応の電圧調整装置は、未だに実現されていない。
本発明は斯かる事情に鑑みてなされたものであり、その目的とするところは、三相の電圧の大小関係に関わらず、V0の発生を抑制して三相の電圧を調整することが可能な電圧調整装置を提供することにある。
本発明に係る電圧調整装置は、三相の交流電圧を電源から負荷に配電する配電線に三相分の二次巻線が直列に接続されており、一次巻線がデルタ結線されている直列変圧器と、二次巻線に複数のタップを有し、前記配電線における前記直列変圧器の接続位置よりも前記負荷側の位置に一次巻線がデルタ結線されており、二次巻線がスター結線されている調整変圧器と、該調整変圧器の二次巻線及び前記直列変圧器の一次巻線の間に設けられており、前記直列変圧器に接続するタップを切り換えるための三相分の切換スイッチを有するタップ切換器とを備える。
本発明にあっては、三相分の二次巻線が三相の配電線に直列接続される直列変圧器の一次巻線がデルタ(Δ)結線されており、三相分の一次巻線が配電線にΔ結線される調整変圧器の二次巻線がスター(Y)結線されている。そして、直列変圧器の一次巻線に対して、調整変圧器の二次巻線のタップから、タップ切換器の切換スイッチを介して調整電圧が印加される。従って、調整変圧器のタップを選択して切り換えることにより、配電線の三相の電圧が調整される。
本発明に係る電圧調整装置は、前記直列変圧器は、二次巻線から前記配電線に印加される三相の交流電圧の位相が、標準的なデルタ・スター結線の場合と比較して実質的にπ/3又は4π/3だけ遅れるように結線されている。
本発明にあっては、配電線の三相の交流電圧に対して直列変圧器の二次巻線から直列に印加される交流電圧の位相が、標準的なデルタ・スター(Δ−Y)結線の場合と比較して実質的に60°又は60°+180°だけ遅れるように結線されている。これにより、Δ−Y結線の調整変圧器及び直列変圧器夫々における30°の位相の進みと上記60°の位相の遅れが実質的に相殺される。更に、調整変圧器で生成された調整電圧を直列変圧器で変圧した電圧が、配電線の交流電圧に対して同位相又は逆移相に近づくようにして加算される。
本発明に係る電圧調整装置は、前記切換スイッチは、前記調整変圧器の二次巻線の電圧の極性を切り換えて前記直列変圧器の一次巻線に印加するための極性切換スイッチを含む。
本発明にあっては、直列変圧器の一次巻線に印加される調整電圧の極性が極性切換スイッチによって任意に切り換え可能であるため、配電線の三相の電圧の不平衡を調整する際の自由度が高い。
本発明に係る電圧調整装置は、前記切換スイッチは、サイリスタを含んで構成されている。
本発明にあっては、切換スイッチにサイリスタが用いられているため、タップの切り換えが高速に行える上にタップの寿命を考慮する必要がない。
本発明に係る電圧調整装置は、前記直列変圧器よりも前記負荷側における前記配電線の三相の電圧を検出する電圧検出部と、該電圧検出部が検出した三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に基づいて前記切換スイッチにより前記タップを切り換える切換制御部とを更に備える。
本発明にあっては、調整変圧器の二次巻線のタップから直列変圧器の一次巻線に印加される調整電圧によって調整された三相の配電線の電圧が検出されて目標電圧と比較され、比較結果である偏差に基づいて切換スイッチが制御されてタップが切り換えられる。これにより、配電線の三相の電圧の偏差がゼロに近づくようにフィードバック制御される。
本発明に係る電圧調整装置は、三相の電圧の目標電圧に対する偏差と前記調整変圧器の三相分の変圧比に係る量を関連付けて記憶する記憶部を更に備え、前記切換制御部は、前記偏差を算出した場合、前記記憶部を参照して三相分のタップの切換先を選択し、前記タップを選択した切換先に切り換える。
本発明にあっては、配電線の三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に応じて記憶部から読み出した変圧比に係る量に基づいてタップの切換先を選択し、選択した切換先に応じた切換スイッチを制御する。これにより、切換制御部の実行時に上述の調整電圧をベクトル演算で求める必要がなくなる。
本発明によれば、三相の電圧の大小関係に関わらず、V0の発生を抑制して三相の電圧を調整することが可能となる。
実施形態1に係る電圧調整装置の構成例を示すブロック図である。 実施形態1に係る電圧調整装置における調整変圧器及び直列変圧器間の三相の結線関係を視覚的に示す説明図である。 実施形態1に係る電圧調整装置における調整変圧器及び直列変圧器夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。 直列変圧器の結線の変更方法を説明するための説明図である。 直列変圧器を標準的なΔ−Y結線にて接続した場合を説明するための電圧調整装置のブロック図である。 直列変圧器を図1の場合と同等なΔ−Y結線にて接続してある電圧調整装置の第1例のブロック図である。 直列変圧器を図1の場合と同等なΔ−Y結線にて接続してある電圧調整装置の第2例のブロック図である。 電圧調整装置における調整変圧器及び直列変圧器夫々に印加又は誘起される電圧ベクトルを他の観点から示すベクトル図である。 変形例1に係る電圧調整装置における調整変圧器及び直列変圧器夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。 直列変圧器の結線の変更方法を説明するための説明図である。 変形例2に係る電圧調整装置の構成例を示すブロック図である。 実施形態2に係る電圧調整装置の構成例を示すブロック図である。 実施形態2に係る電圧調整装置で配電線の電圧を調整する切換制御部の処理手順を示すフローチャートである。 検証に用いた配電系統のモデルを示す説明図である。 タップ位置が異なる制御種別毎に二次側電圧及び内部回路電流を解析した結果を示す図表である。 検証に用いた実験回路の構成を示すブロック図である。 複数の制御種別の例についてタップ位置の選択を模式的に示す説明図である。 三相一括降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。 個別降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。 個別昇降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。
以下、本発明をその実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は、実施形態1に係る電圧調整装置の構成例を示すブロック図である。図中1u,1v,1wは、電源から負荷(何れも不図示)へU相,V相,W相の交流電圧を紙面の右向きに配電する配電線である。電圧調整装置は、配電線1u,1v,1w夫々に二次巻線212,222,232が直列に接続される直列変圧器2と、配電線1u,1v,1wに一次巻線311,321,331がΔ結線される調整変圧器3と、調整変圧器3の二次巻線312,322,332及び直列変圧器2の一次巻線211,221,231の間に設けられたタップ切換器4とを備える。
電圧調整装置は、また、Δ−Y結線された三相の計測用変圧器5を介して配電線1u,1v,1wの電圧を検出する電圧検出部62と、該電圧検出部62が検出した電圧を表示して使用者の操作を受け付けるための操作表示部63と、該操作表示部63によって受け付けた操作に基づいて、後述する切換スイッチS1,S2,・・S6,SS及び電磁接触器MCに、駆動部64を介して駆動信号を与える切換制御部61とを備える。切換スイッチS1,S2,・・S6は、何れも極性切換スイッチとして機能する。
電圧検出部62は、配電線1u,1v,1wの線間電圧を検出するものであるが、Δ−Y結線以外の結線方式で結線された計測用変圧器を介して相電圧を検出してもよい。また、計測用変圧器5に代えて、調整変圧器3の一次巻線311,321,331夫々に対応する三次巻線を設けておき、この三次巻線を介して電圧検出部62が配電線1u,1v,1wの電圧を検出してもよいし、電圧調整装置とは別に配電線1u,1v,1wの電圧を検出してもよい。
直列変圧器2は、二次巻線212,222,232夫々に一次巻線211,221,231が対応している。一次巻線211,221,231はΔ結線されている。二次巻線212,222,232夫々の上記負荷側の端子に対応する一次巻線211,221,231の端子をu1,v1,w1とする。また、二次巻線212,222,232夫々の上記電源側の端子に対応する一次巻線211,221,231の端子をu2,v2,w2とする。
調整変圧器3は、一次巻線311が配電線1u,1v間に、一次巻線321が配電線1v,1w間に、一次巻線331が配電線1w,1u間に夫々接続されている。即ち、一次巻線311,321,331が配電線1u,1v,1wに対してΔ結線されている。一次巻線311,321,331夫々には二次巻線312,322,332が対応している。
二次巻線312,322,332の夫々は、一端及び他端から引き出されたタップta及びtcと,タップta及びtcの間から引き出された中間のタップtbとを有する。二次巻線312,322,332夫々が有するタップta〜tcの何れか1つが、タップ切換器4を介して直列変圧器2の一次側の端子u1,v1,w1と、端子v2,w2,u2とに接続される。
タップ切換器4は、調整変圧器3の二次巻線312,322,332夫々が有するタップta,tb,tcを切り換えるための6つの切換スイッチS1,S2,・・S6を三相分有する。二次巻線312,322,332夫々のタップtaは、保護用のヒューズFを介して切換スイッチS1,S4の一端に接続されている。二次巻線312,322,332夫々のタップtbは、保護用のヒューズFを介して切換スイッチS2,S5の一端に接続されている。二次巻線312,322,332夫々のタップtcは、切換スイッチS3,S6の一端に接続されている。切換スイッチS1,S2,S3は他端同士が接続されている。切換スイッチS4,S5,S6は他端同士が接続されている。
二次巻線312のタップta,tb,tc夫々が一端に接続される切換スイッチS1,S2,S3の他端同士は、直列変圧器2の一次側の端子u1及びv2に接続されている。二次巻線312のタップta,tb,tc夫々が一端に接続される切換スイッチS4,S5,S6の他端同士は、中性点Nに接続されている。二次巻線322のタップta,tb,tc夫々が一端に接続される切換スイッチS1,S2,S3の他端同士は、直列変圧器2の一次側の端子v1及びw2に接続されている。二次巻線322のタップta,tb,tc夫々が一端に接続される切換スイッチS4,S5,S6の他端同士は、中性点Nに接続されている。二次巻線332のタップta,tb,tc夫々が一端に接続される切換スイッチS1,S2,S3の他端同士は、直列変圧器2の一次側の端子w1及びu2に接続されている。二次巻線332のタップta,tb,tc夫々が一端に接続される切換スイッチS4,S5,S6の他端同士は、中性点Nに接続されている。
切換スイッチS1,S2,S3の他端同士と、切換スイッチS4,S5,S6の他端同士との間には、限流抵抗器R及び切換スイッチSSの直列回路と、電磁接触器MCとが並列に接続されている。切換スイッチSSは、切換スイッチS1,S2,・・S6によってタップta,tb,tcを切り換える過程で、限流抵抗器Rを介してタップ間を矯絡させておくために、タップ間への限流抵抗器Rの接続及び切り離しを行うためのものである。電磁接触器MCは、切換スイッチS1,S2,・・S6及びSSによってタップta,tb,tcを切り換える運用が停止されている間に、直列変圧器2の一次側の端子u1,v1間、端子v1,w1間及び端子w1,u1間を矯絡して、開放状態にしないようにするためのものである。
タップtbに対するタップtaの電圧は、例えばタップtcに対するタップtbの電圧の2倍となるようにしてあるが、これに限定されるものではない。このように構成された調整変圧器3のタップta,tb,tcを選択することにより、タップtcに対するタップtbの電圧に対して2倍(タップtbに対するタップta)、3倍(タップtcに対するタップta)、−1倍(タップtbに対するタップtc)、−2倍(タップtaに対するタップtb)及び−3倍(タップtaに対するタップtc)の電圧を取り出すことができる。即ち、調整変圧器3から取り出される相対的な調整電圧を1、−1、2、−2、3及び−3から選択することができる。
本実施形態1では、例として図1に黒で塗りつぶした切換スイッチS2,S6のみをオンにしてタップtb,tcを選択することにより、二次巻線312,322,332夫々から取り出される調整電圧の比を1:1:1とする。以下では、二次巻線312のタップtb,tc夫々に対応する端子をU1,U2とし、二次巻線322のタップtb,tc夫々に対応する端子をV1,V2とし、二次巻線332のタップtb,tc夫々に対応する端子をW1,W2とする。ここでの例によれば、端子U2,V2,W2が中性点Nに接続され、端子U1,V1,W1から調整電圧が取り出されるが、例えば調整電圧の比を−1:−1:−1とする場合は、端子U1,V1,W1が中性点Nに接続され、端子U2,V2,W2から調整電圧が取り出される。
次に、端子U1,V1,W1と、端子u1,u2,v1,v2,w1,w2との接続関係及び電圧の関係について説明する。図2は、実施形態1に係る電圧調整装置における調整変圧器3及び直列変圧器2間の三相の結線関係を視覚的に示す説明図である。図3は、実施形態1に係る電圧調整装置における調整変圧器3及び直列変圧器2夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。図4は、直列変圧器2の結線の変更方法を説明するための説明図である。本明細書では、ベクトルを表す文字列に対するドットの表記を省略する。
図1を参照して、図2における接続関係を説明すると、端子U1は、切換スイッチS2を介して端子u1及びv2に接続されている。端子V1は、切換スイッチS2を介して端子v1及びw2に接続されている。端子W1は、切換スイッチS2を介して端子w1及びu2に接続されている。図3の紙面右側に示すベクトル図では、配電線1u,1v,1wの相電圧Eu,Ev,Ewを実線で表し、線間電圧Vuv,Vvw,Vwuを破線で表す。以下、相電圧Euの位相を基準相とする。なお、図面上の凡例は、ベクトルで表される電圧が発生若しくは誘起する部位又は印加される部位を表す(以下同様)。
Δ結線された調整変圧器3の一次巻線311,321,331夫々には、線間電圧Vuv,Vvw,Vwuが印加されるから、図3の紙面左側の実線及び図2に示すように、Y結線された二次巻線312,322,332夫々には、線間電圧Vuv,Vvw,Vwuと同位相で大きさが比例する電圧E’u,E’v,E’wが誘起する。これらの電圧E’u,E’v,E’wが、破線で示すように、Δ結線された直列変圧器2の一次巻線211,221,231に調整電圧として印加される。
図3の紙面左側に破線で示されるように、直列変圧器2の一次巻線211,221,231に印加される三相の調整電圧は、大きさが等しく位相が互いに2π/3だけずれているから、これらの電圧のベクトル和がゼロになる。よって、直列変圧器2の端子u1,v2,v1,w2,w1,u2を通る閉回路には、調整電圧のベクトル和による短絡ループ電流が流れない(図2参照)。そして、三相の調整電圧を直列変圧器2で変圧した電圧が、配電線1u,1v,1wの相電圧に重畳されるため、負荷側の配電線1u,1v,1wの電圧が均等に昇圧される。
なお、タップ切換器4は、切換スイッチS1,S2,・・S6及びSSにサイリスタを用いずに、他の半導体素子、電磁接触器等のスイッチを用いて構成してもよい。また、スイッチを用いたタップ切換器4に代えて、手動式のタップ切換器又はタップ切換台を用いてもよい。この場合であっても、使用者は、操作表示部63に表示された配電線1u,1v,1wの電圧、又は別途検出した配電線1u,1v,1wの電圧に基づいて切換先のタップta,tb,tcを選択し、選択した切換先のタップに手動で切り換えればよい。
次に、図4を用いて直列変圧器2における結線の変更について説明する。図5は、直列変圧器2を標準的なΔ−Y結線にて接続した場合を説明するための電圧調整装置のブロック図である。標準的なΔ−Y結線によれば、調整変圧器3の端子U1,V1,W1夫々からの調整電圧E’u,E’v,E’wのうち、E’uが直列変圧器2の端子u1,w2に印加され、E’vが端子v1,u2に印加され、E’wが端子w1,v2に印加される。そして、一次巻線211,221,231夫々に対応する二次巻線212,222,232が、配電線1u,1v,1wに直列に接続される。図5に示すその他の接続関係については、図1に示すブロック図の場合と同様である。
直列変圧器2の一次巻線211,221,231及び二次巻線212,222,232が、仮に標準的なΔ−Y結線にて接続されている場合、図3の紙面左側に破線で示す端子U1−V1間,端子V1−W1間,端子W1−U1間夫々からの調整電圧が、直列変圧器2の一次巻線211,221,231に印加される。これにより、二次巻線212,222,232には、図4の紙面右側に示すように、上記端子間夫々からの電圧と同位相で大きさが比例する電圧Eu”,Ev”,Ew”が誘起する。これらの電圧Eu”,Ev”,Ew”夫々は、配電線1u,1v,1wの相電圧Eu,Ev,Ewに対してπ/3(60°)だけ位相が進んでいる。これは、Δ−Y結線された調整変圧器3及び直列変圧器2夫々にて位相が30°ずつ進むことに起因している。
ここで、例えばEw”に着目すれば、Ew”の位相を反転させた−Ew”が基準相(即ちEu)と同位相になることが分かる(図4の紙面左側参照)。同様に、−Eu”がEvと同位相になり、−Ev”がEwと同位相になることが分かる。このように、電圧Eu”,Ev”,Ew”夫々をπ/3だけ遅らせた電圧と同等な−Ew”,−E”u,−E”vを、配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算すれば、相電圧Eu,Ev,Ew夫々と同位相の電圧によって配電線1u,1v,1wの電圧を調整することができる。
図6及び図7の夫々は、直列変圧器2を図1の場合と同等なΔ−Y結線にて接続してある電圧調整装置の第1例及び第2例のブロック図である。図6及び図7に示す直列変圧器2のΔ−Y結線を除くその他の接続関係については、図1に示すブロック図の場合と同様である。上述の考察に従い、Eu”,Ev”,Ew”夫々よりもπ/3だけ位相が遅れている−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算するには、図5に示す直列変圧器2の二次巻線212,222,232の結線を、図6に示すように変更して調整すればよい。即ち、電圧E”u,E”v,E”w夫々が誘起する二次巻線212,222,232に対する配線の極性を反転して配電線1v,1w,1uに直列に接続する。
図6に示す直列変圧器2のΔ−Y結線は、図7に示すように変更することができる。即ち、図6に示す一次巻線211,221,231の夫々と、二次巻線212,222,232の夫々とに接続されている配線を、サイクリックにローテーションすることにより、図7に示す接続となる。より具体的には、一次巻線211,221,231夫々に接続されていた配線を、一次巻線221,231,211に接続換えし、二次巻線212,222,232夫々に接続されていた配線を、二次巻線222,232,212に接続換えする。
図7に示す直列変圧器2のΔ−Y結線は、更に、一次巻線211,221,231の夫々と、二次巻線212,222,232の夫々とに接続されている配線の極性を反転させることにより、図1に示す接続となる。このように、図1に示す直列変圧器2のΔ−Y結線と、図6及び図7に示す直列変圧器2のΔ−Y結線とが同等であることが示された。
次に、図1に示す直列変圧器2のΔ−Y結線を導き出す他の方法について説明する。直列変圧器2の二次巻線212,222,232夫々は、配電線1u,1v,1wに直列に接続されているものとする。図8は、電圧調整装置における調整変圧器3及び直列変圧器2夫々に印加又は誘起される電圧ベクトルを他の観点から示すベクトル図である。図8の紙面右側に示すベクトル図は、図3の紙面右側に示すベクトル図と同じである。即ち、配電線1u,1v,1wの相電圧Eu,Ev,Ewを実線で表し、線間電圧Vuv,Vvw,Vwuを破線で表す。
図8の紙面左側の実線に示すように、Y結線された調整変圧器3の二次巻線312,322,332夫々には、線間電圧Vuv,Vvw,Vwuと同位相で大きさが比例する電圧V’uv,V’vw,V’wuが誘起する。これにより、端子W1−U1間,U1−V1間,V1−W1間夫々に、相電圧Eu,Ev,Ewと逆方向の電圧−E’u,−E’v,−E’wが誘起する(破線を参照)。例えばE’uは、相電圧Euと同位相であるから、このE’uが一次巻線211の端子u1−u2間に印加されるようにすればよい。換言すれば、端子W1とu2を接続し、端子U1とu1を接続する。同様に、端子U1とv2,端子V1とv1,端子V1とw2,端子W1とw1を夫々接続する。このようにして、図1に示す直列変圧器2の一次巻線211,221,231に対する接続が導き出される。
(変形例1)
実施形態1では、二次巻線312,322,332夫々について同一のタップから三相の調整電圧を取り出したが、変形例1では、二次巻線312,322,332夫々について相異なるタップから三相の調整電圧を取り出すため、三相の調整電圧の比が1:1:1とは異なるものとなる。変形例1における電圧調整装置のブロック構成は、図1に示すものと同様であるため、実施形態1に対応する箇所には同様の符号を付してその説明を省略する。
例えば、二次巻線312,322夫々について切換スイッチS3,S5をオンにしてタップtc,tbを選択し、二次巻線332について切換スイッチS2,S5をオンにしてタップtbのみを選択することにより、二次巻線312,322,332から取り出される三相の調整電圧の大きさの比を−1:−1:0とすることができる。この場合、二次巻線332について切換スイッチS2,S5の両方をオンにするのは、直列変圧器2の端子u2,w1を開放状態にせずにゼロの電圧を印加するためである。なお、二次巻線332について、切換スイッチS1,S4のみをオンにしてタップtaのみを選択したり、切換スイッチS3,S6のみをオンにしてタップtcのみを選択したりしてもよい。
次にベクトル図を用いて電圧関係について説明する。図9は、変形例1に係る電圧調整装置における調整変圧器3及び直列変圧器2夫々に印加又は誘起される電圧ベクトルを示すベクトル図である。図10は、直列変圧器2の結線の変更方法を説明するための説明図である。図9の紙面右側に示すベクトル図は、図1及び3の紙面右側に示すベクトル図と同じである。即ち、配電線1u,1v,1wの相電圧Eu,Ev,Ewを実線で表し、線間電圧Vuv,Vvw,Vwuを破線で表す。この線間電圧Vuv,Vvw,Vwu夫々が調整変圧器3の一次巻線311,321,331に印加される。
図9の紙面左側に実線で示すように、Y結線された二次巻線312,322,332夫々には、上記線間電圧Vuv,Vvw,Vwuに基づいて大きさが相異なる電圧E’u,E’v,E’wが発生する。この電圧E’u,E’v,E’wは、上記線間電圧Vuv,Vvw,Vwu夫々と同位相で二次巻線312,322,332に誘起する電圧のV0(零相電圧)を基準とする三相電圧であるため、ベクトル和がゼロになる。これらの電圧E’u,E’v,E’wが、破線で示すように、Δ結線された直列変圧器2の一次巻線211,221,231に調整電圧として印加される。
図10に移って、直列変圧器2の一次巻線211,221,231及び二次巻線212,222,232が、仮に標準的なΔ−Y結線にて接続されている場合、図9の紙面左側に破線で示す端子U1−V1間,端子V1−W1間,端子W1−U1間夫々からの調整電圧が、直列変圧器2の一次巻線211,221,231に印加される。これにより、直列変圧器2の二次巻線212,222,232には、図10の紙面右側に示すように、端子U1−V1間,端子V1−W1間,端子W1−U1間夫々からの電圧と同位相で大きさが比例する電圧Eu”,Ev”,Ew”が誘起する。これらの電圧Eu”,Ev”,Ew”夫々は、配電線1u,1v,1wの相電圧Eu,Ev,Ewに対して略π/3(60°)だけ位相が進んでいる。
ここで、実施形態1の図4で説明した場合と同様に図10の紙面左側に示すとおり、Eu”,Ev”,Ew”夫々よりも略π/3だけ位相が遅れている−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算すれば、相電圧Eu,Ev,Ew夫々と略同位相の電圧によって配電線1u,1v,1wの電圧を容易に調整することができる。以上のことから、配電線1u,1v,1w夫々の相電圧Eu,Ev,Ewが時々刻々と変化する場合であっても、V0を変化させないように不平衡電圧を適正に調整することができる。
(変形例2)
実施形態1では、直列変圧器2の二次巻線212,222,232夫々に誘起する電圧−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算したが、変形例2では、電圧−Ew”,−E”u,−E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewから減算する。換言すれば、電圧Ew”,E”u,E”vを配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算する。このことは、電圧Eu”,Ev”,Ew”夫々を4π/3だけ遅らせた電圧と同等なEw”,E”u,E”vを、配電線1u,1v,1wの相電圧Eu,Ev,Ewに加算することを意味する(図4参照)。
図11は、変形例2に係る電圧調整装置の構成例を示すブロック図である。本変形例2では、実施形態1の図1に示す場合に対して、直列変圧器2の二次巻線212,222,232夫々に対する配線の極性を反転して配電線1v,1w,1uに直列に接続する。これにより、調整変圧器3で生成された調整電圧を変圧した電圧が配電線1v,1w,1uの交流電圧に対して逆位相で加算される。従って、タップ切換器4のタップを適当に選択して、調整変圧器3から取り出される相対的な調整電圧の符号(プラス/マイナス)を実施形態1の場合に対して反転させることにより、配電線1u,1v,1wの不平衡電圧を調整する際に、実施形態1の場合と同様の効果を奏する。
本変形例2における直列変圧器2の結線は、図11の場合に限定されない。例えば、図1に示す直列変圧器2の一次巻線211,221,231夫々に接続されている配線を極性反転させてもよいし、図6又は図7に示す直列変圧器2の一次巻線211,221,231夫々若しくは二次巻線212,222,232夫々に接続されている配線の極性を反転させてもよい。
以上のように実施形態1及び変形例1,2によれば、二次巻線212,222,232夫々が配電線1u,1v,1wに直列接続される直列変圧器2の一次巻線211,221,231がΔ結線されており、一次巻線311,321,331が配電線1u,1v,1wにΔ結線される調整変圧器3の二次巻線312,322,332がY結線されている。そして、直列変圧器2の一次巻線211,221,231に対して、調整変圧器3の二次巻線312,322,332夫々のタップta,tb,tcから、タップ切換器4の切換スイッチS1,S2,・・S6を介して調整電圧が印加される。従って、調整変圧器3のタップta,tb,tcを選択して切り換えることにより、配電線1u,1v,1wの三相の電圧を調整することが可能となる。電圧調整装置を、変電所における負荷時タップ切換変圧器(LRT:Load Ratio control Transformer )や、送電線路における自動電圧調整器(SVR:Step Voltage Regulator )に適用することも可能である。
また、実施形態1及び変形例1,2によれば、配電線1u,1v,1wの三相の交流電圧に対して直列変圧器2の二次巻線212,222,232から直列に印加される交流電圧の位相が、標準的なΔ−Y結線の場合と比較して実質的に60°又は60°+180°だけ遅れるように結線されている。従って、Δ−Y結線の調整変圧器3及び直列変圧器2夫々における30°の位相の進みと上記60°の位相の遅れを実質的に相殺することができる。更に、調整変圧器3で生成した調整電圧を直列変圧器2で変圧した電圧を、配電線1u,1v,1wの交流電圧に対して同位相又は逆移相に近づけて加算することができる。
また、実施形態1及び変形例1,2によれば、直列変圧器2の一次巻線211,221,231に印加される調整電圧の極性が切換スイッチS1,S2,・・S6を選択することによって任意に切り換え可能であるため、配電線1u,1v,1wの三相の電圧の不平衡を調整する際の自由度を高くすることができる。
また、実施形態1及び変形例1,2によれば、切換スイッチS1,S2,・・S6にサイリスタが用いられているため、タップta,tb,tcの切り換えが高速に行える上にタップta,tb,tcの寿命を考慮する必要がない。
(実施形態2)
実施形態1は、操作表示部63によって受け付けた操作に基づいて切換制御部61がタップta,tb,tcを切り換えるか、又は使用者が手動式のタップ切換器若しくはタップ切換台を操作する形態であるのに対し、実施形態2は、電圧検出部62が検出した電圧に基づいて、切換制御部61が自動的にタップta,tb,tcを切り換える形態である。図12は、実施形態2に係る電圧調整装置の構成例を示すブロック図である。実施形態2に係る電圧調整装置は、図1に示す実施形態1に係る電圧調整装置と比較して、操作表示部63が削除されており、記憶部65が追加されている。操作表示部63が削除されていなくてもよい。
記憶部65は、配電線1u,1v,1wの三相分の電圧の目標電圧に対する偏差と、調整変圧器3の三相分の変圧比に係る量とを関連付けて記憶するものである。記憶部65は、その記憶内容が切換制御部61から参照可能となるように切換制御部61と接続されているが、記憶部65が切換制御部61に含まれていてもよい。
記憶部65には、三相分の偏差と三相分の変圧比の変化量とを関連付けて記憶してあるが、例えば調整変圧器3のタップta,tb,tcに通番が付されている場合は、三相分の偏差と三相分のタップの切換数とを関連付けて記憶してもよい。その他、実施形態1に対応する箇所には同様の符号を付して、その説明を省略する。
以下では、上述した切換制御部61の動作を、それを示すフローチャートを用いて説明する。以下に示す処理は、切換制御部61に含まれる不図示のROM(Read Only Memory)に予め格納されている制御プログラムに従って、不図示のCPU(Central Processing Unit)により実行される。
図13は、実施形態2に係る電圧調整装置で配電線1u,1v,1wの電圧を調整する切換制御部61の処理手順を示すフローチャートである。この処理手順は、例えば4〜5秒毎に周期的に実行される。切換制御部61に含まれる不図示のRAM(Random Access Memory)には、三相分の現在の変圧比が記憶されているものとする。
図13の処理が起動された場合、切換制御部61の(以下同様)CPUは、負荷側の配電線1u,1v,1wの三相分の線間電圧又は相電圧を電圧検出部62から取得し(S11)、取得した三相分の電圧について目標電圧に対する偏差を算出する(S12)。
次いで、CPUは、偏差に関連付けて記憶部65に記憶されている内容(変圧比の変化量)を読み出して、三相分のタップta,tb,tcの切換先を選択する(S13)。タップta,tb,tcの切換先を選択するには、RAMに記憶されている現在の変圧比に読み出した変化量を加算し、加算結果の変圧比に応じたタップを選択すればよい。加算結果の三相分の変圧比は、現在の変圧比を更新するものとしてRAMに記憶される。
その後、CPUは、三相分の切換スイッチSSをオンしておき(S14)、三相分の切換スイッチS1,S2,・・S6をオフした(S15)後に、選択した切換先のタップに応じた切換スイッチをオンする(S16)。次いで、CPUは、三相分の切換スイッチSSをオフした(S17)後、図13の処理を終了する。
なお、上述のフローチャートにあっては、記憶部65に、三相分の偏差と三相分の変圧比の変化量とを関連付けて記憶してあることを前提としたが、これに限定されるものではない。例えば、記憶部65に、三相分の偏差と三相分のタップの切換数とを関連付けて記憶してある場合は、RAMに三相分の現在のタップ番号を記憶し、ステップS12で算出した偏差に関連付けて記憶部65に記憶されているタップの切換数を、RAMに記憶した現在のタップ番号に加算し、加算結果のタップ番号に応じたタップを選択すればよい。加算結果の三相分のタップ番号は、現在のタップ番号を更新するものとしてRAMに記憶することとなる。
以上のように本実施形態2によれば、調整変圧器3の二次巻線312,322,332のタップta,tb,tcから直列変圧器2の一次巻線211,221,231に印加される調整電圧によって調整された三相の配電線1u,1v,1wの電圧が電圧検出部62で検出されて目標電圧と比較され、比較結果である偏差に基づいて切換スイッチS1,S2,・・S6が制御されてタップta,tb,tcが切り換えられる。従って、配電線1u,1v,1wの電圧の偏差がゼロに近づくようにフィードバック制御することが可能となる。
また、実施形態2によれば、配電線1u,1v,1wの三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に応じて記憶部65から読み出した変圧比の変化量に基づいてタップta,tb,tcの切換先を選択し、選択した切換先に応じた切換スイッチS1,S2,・・S6を制御する。従って、切換制御部61の実行時に上述の調整電圧をベクトル演算で求める必要がなくなる。
(シミュレーション)
以下では、実施形態1に係る電圧調整装置による配電線1u,1v,1wの電圧調整をシミュレーションによって検証した結果について説明する。図14は、検証に用いた配電系統のモデルを示す説明図である。このモデルでは、三相電源100から三相負荷110に三相の交流電圧を配電する配電線1u,1v,1wに、直列変圧器2及び調整変圧器3が接続されている。調整変圧器3は、タップ切換器(不図示)及び電流計測部103を介して直列変圧器に接続されている。
三相電源100は、線間電圧を30Vとし、周波数を50Hzとする。三相の交流電圧は、初期状態が三相の平衡状態にあるものとする。三相負荷110は、100Ωの抵抗がΔ結線された平衡な負荷である。直列変圧器2は、変圧比を10(10:1)とし、調整変圧器3は、変圧比を1(1:1)とする。不図示のタップ切換器は、3段のタップ(素通し,昇圧,降圧)を有する。一般的に、TVRのタップ段数は、素通し、昇圧:3段、及び降圧:3段の計7段であり、段数の増加は調整量の増大に寄与するが、原理的には素通し、昇圧:1段、及び降圧:1段を含む計3段のタップで場合を尽くして解析できるため、ここでは3段のタップを用いる。
上述の構成にて、電圧調整装置の一次側(即ち三相電源100側)及び二次側(即ち三相負荷110側)夫々の電圧を電圧計測部101及び102で計測した結果と、調整変圧器3の二次巻線312、322、332から直列変圧器2の一次巻線211,221,231に流れる三相の内部回路電流を電流計測部103で計測した結果とをシミュレーションによって解析した。解析におけるサンプリング周期は100μsとし、解析時間は0〜5秒とした。
図15は、タップ位置が異なる制御種別毎に二次側電圧及び内部回路電流を解析した結果を示す図表である。図15には、10通りの制御種別について解析した一次側の電圧と、二次側の電圧及び調整電圧と、一次側及び二次側の零相電圧(V0)の差異と、内部回路電流とを数値で示してある。制御種別は、タップ位置の選択に応じて三相素通し、三相一括降圧、素通しの線間を含む個別降圧、個別昇降圧、素通しの線間を含む個別昇圧、及び三相一括昇圧の6種類に分け、そのうち、個別降圧を2通りに、個別昇降圧を3通りに、個別昇圧を2通りに分けて解析した。タップ位置の選択を示す数値については、実施形態1で説明した通りである。なお、制御種別における「素通し」は、調整電圧の大きさを0とするタップ位置を選択することを表す。
図表中のタップ位置に係るUV線間,VW線間,WU線間夫々は、調整変圧器3の二次巻線312,322,332のタップ位置の選択結果に応じた調整電圧の相対的な大きさを表す。二次側電圧に係るUV線間,VW線間,WU線間夫々は、二次側の配電線1u,1v,1wの線間電圧を表す。内部回路電流に係るU相、V相、及びW相夫々は、調整変圧器3からの調整電圧によって直列変圧器2の端子u1,v2、端子v1,w2、及び端子w1,u2に流入する電流を表す(何れも図1参照)。なお、一次側電圧は、三相電源100の電圧そのものであり、全ての制御種別について何れの線間も30.00Vである。また、一次側電圧に調整電圧を加算したものが、二次側電圧となる。
図15に示す解析結果より、何れの制御種別についても、タップ位置の選択結果を示す数値に応じて調整電圧及び二次側電圧が変化していると言える。特にNo.2及び10の場合は、3つの線間の調整量(調整電圧の絶対値:以下同様)が等しくなっており、三相一括で制御できていることが分かる。No.3,5,8,9の場合は、昇圧又は降圧している線間の調整量が、三相一括の場合と比べれば少ないものの、素通しになっている線間の調整量より多くなっており、狙った方向に調整できていることが分かる。No.4(又は7)の場合は、降圧(又は昇圧)している2つの線間の調整量が等しく、昇圧(又は降圧)している1つの線間より調整量が多いものの、2つの線間と1つの線間とで調整方向が逆になっており、狙った方向に調整できていることが分かる。また、No.6の場合は、昇圧及び降圧している2つの線間の調整量は、三相一括の場合と比べれば少ないものの、素通しになっている線間の調整量より多くなっており、狙った方向に調整できていることが分かる。
零相電圧差異は、全ての制御種別について何れも10-14 V程度の値であった。この値は、シミュレーション上の数値計算誤差と考えられ、線間電圧が6600Vである実際の配電系統に適用することで、線間電圧に比例して零相電圧差異が増大したとしても問題のない値であると言える。内部回路電流については、No.10の三相一括昇圧の場合に最も大きくなり、他の制御種別については、三相一括昇圧の場合よりも小さくなっている。これは抵抗で構成される三相負荷に最も大きい電圧が印加されるNo.10の場合に、内部回路にも大きな電流が流れるためである。その他の制御種別については、No.10の場合よりも内部回路電流が小さくなっており、異常電流が発生していないことが分かる。
本シミュレーションでは、電圧調整装置の一次側(三相電源100側)及び二次側(三相負荷110側)夫々の電圧波形と電流波形、並びに調整変圧器3の二次側の電圧(調整電圧)及び電流(内部回路電流)の波形についても検証した。これらの波形の図示は省略するが、何れの波形も短絡や欠相が見られない正常な三相波形であった。
(模擬実験)
以下では、実施形態1係る電圧調整装置による配電線1u,1v,1wの電圧調整時の波形を模擬実験によって検証した結果について説明する。図16は、検証に用いた実験回路の構成を示すブロック図であり、図17は、複数の制御種別の例についてタップ位置の選択を模式的に示す説明図である。この実験回路では、上述のシミュレーションの場合と同様に、三相電源100から三相負荷110に三相の交流電圧を配電する配電線1u,1v,1wに、模擬の直列変圧器2及び調整変圧器3が接続されている。模擬の調整変圧器3と直列変圧器2との間には、模擬のタップ切換器4が接続されている。
三相電源100は、線間電圧を30Vとし、周波数を60Hzとする。三相負荷110は、100Ωの抵抗がΔ結線された平衡な負荷である。直列変圧器2は、変圧比が10である3つの単相変圧器によって模擬されている。調整変圧器3は、変圧比が1である3つの単相変圧器によって模擬されている。タップ切換器4は、3つの単相変圧器夫々の二次巻線のタップを切り換える3組のスイッチ群によって模擬されている。
直列変圧器2の二次巻線212,222,232夫々に対応する単相変圧器(U),(V),(W)の二次巻線は、端子台Aの端子a及びb,端子c及びd,端子e及びfを介して、配電線1u,1v,1wに直列に接続されている。直列変圧器2の一次巻線211,221,231夫々に対応する単相変圧器(U),(V),(W)の一次巻線は、端子台Bの端子a及びb,端子c及びd,端子e及びfを介してΔ結線されている。
調整変圧器3の二次巻線312,322,332夫々に対応する単相変圧器(U),(V),(W)の二次巻線は、タップ切換器4を模擬するスイッチ群と、端子台Cの端子a及びb,端子c及びd,端子e及びfとを介してY結線されている。調整変圧器3の一次巻線311,321,331夫々に対応する単相変圧器(U),(V),(W)の一次巻線は、端子台Dの端子a及びb,端子c及びd,端子e及びfを介して配電線1u,1v,1wにΔ結線されている。
タップ切換器4のタップ段数は、シミュレーションの場合と同様に3段(素通し,昇圧,降圧)とする。従って、タップ切換器4を模擬する各スイッチ群は、調整変圧器3を模擬する3つの単相変圧器(U),(V),(W)夫々の二次巻線における固定的な2つのタップを、端子台Cの端子a及びb,端子c及びd,端子e及びfに並列に接続するか、逆並列に接続するか、素通しにするかの何れかとなるように切り換えを行う。図16に示す接続は、基本的には実施形態1の図1に示す接続と同様であるため、その他の詳細な説明を省略する。
図17には、紙面の左側から順に、三相一括降圧、個別降圧及び個別昇降圧夫々の場合について、模擬のタップ切換器4によるタップの選択結果を示してある。三相一括降圧の場合、単相変圧器(U),(V),(W)夫々の二次巻線は、端子台Cの端子a及びb,端子c及びd,端子e及びfに逆並列に接続される。V,W相を素通しにする個別降圧の場合、単相変圧器(U)の二次巻線は、端子台Cの端子a及びbに逆並列に接続されるのに対し、単相変圧器(V),(W)夫々の二次巻線の一方のタップが、端子台Cの端子c及びd,端子e及びfに接続される。U相を降圧し、W相を昇圧する個別昇降圧の場合、単相変圧器(U)の二次巻線は、端子台Cの端子a及びbに逆並列に接続され、単相変圧器(V)の二次巻線の一方のタップが端子台Cの端子c及びdに接続され、単相変圧器(W)の二次巻線が端子台Cの端子e及びfに並列に接続される。
図18は、三相一括降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。図19は、個別降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。図20は、個別昇降圧の場合における電圧調整装置の一次側及び二次側の線間電圧の計測結果を示す波形図である。図18,19,20夫々には、上段に一次側の線間線圧の波形を示し、下段に二次側の線間電圧の波形を示す。各図の横軸は時間(ms)を表し、縦軸は線間の電圧(V)を表す。また、実線はU,V相間の電圧Vuvを表し、破線はV,W相間の電圧Vvwを表し、一点鎖線はW,U相間の電圧Vwuを表す。
図18では、二次側のVuv,Vvw,Vwuが一次側に対して一様に低下していることが確認される。図19では、二次側にてVuvがVvw及びVwuよりも低下しており、V,U線間の電圧が相対的に降圧されていることが確認される。図20では、二次側にてVvwに対してVuvが低下しすると共にVwuが上昇しており、V,U線間の電圧が相対的に降圧され、W,U線間の電圧が相対的に昇圧されていることが確認される。
以上のシミュレーション及び模擬実験での検証結果から、本発明によれば、配電線1u,1v,1wのV0を変化させることなく、任意の線間電圧を個別に制御できることが示された。シミュレーション及び模擬実験では、三相の平衡状態からタップを切り換える制御を行ったが、実際の配電系統で制御を行う場合は、配電系統に生じている電圧の不平衡を是正する向きに制御を行うことで、三相の不平衡を改善できるものと考えられる。よって、三相の最大電圧相と最小電圧相が時間的に変化する配電系統(各相に接続する単相の負荷や太陽光発電装置からの電力等が大きく変動するような系統)に対しても、本発明に係る電圧調整装置を適用することが可能である。また、最大電圧相及び最小電圧相が不明な配電系統においても、電圧調整装置を接続する接続相を決定するための事前の計測調査などは不要であり、任意の位置に本発明に係る電圧調整装置を接続することができる。
今回開示された実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。また、各実施形態で記載されている技術的特徴は、お互いに組み合わせることが可能である。
1u、1v、1w 配電線
2 直列変圧器
211,221、231 一次巻線
212、222、232 二次巻線
u1、v1、w1 端子
N 中性点
3 調整変圧器
311、321、331 一次巻線
312、322、332 二次巻線
S1、S2、S3、S4、S5、S6、SS 切換スイッチ
U1、U2、V1、V2、W1、W2 端子
F ヒューズ
MC 電磁接触器
R 限流抵抗器
4 タップ切換器
ta、tb、tc タップ
5 計測用変圧器
61 切換制御部
62 電圧検出部
63 操作表示部
64 駆動部
65 記憶部

Claims (6)

  1. 三相の交流電圧を電源から負荷に配電する配電線に三相分の二次巻線が直列に接続されており、一次巻線がデルタ結線されている直列変圧器と、
    二次巻線に複数のタップを有し、前記配電線における前記直列変圧器の接続位置よりも前記負荷側の位置に一次巻線がデルタ結線されており、二次巻線がスター結線されている調整変圧器と、
    該調整変圧器の二次巻線及び前記直列変圧器の一次巻線の間に設けられており、前記直列変圧器に接続するタップを切り換えるための三相分の切換スイッチを有するタップ切換器と
    を備える電圧調整装置。
  2. 前記直列変圧器は、二次巻線から前記配電線に印加される三相の交流電圧の位相が、標準的なデルタ・スター結線の場合と比較して実質的にπ/3又は4π/3だけ遅れるように結線されている請求項1に記載の電圧調整装置。
  3. 前記切換スイッチは、前記調整変圧器の二次巻線の電圧の極性を切り換えて前記直列変圧器の一次巻線に印加するための極性切換スイッチを含む請求項1又は2に記載の電圧調整装置。
  4. 前記切換スイッチは、サイリスタを含んで構成されている請求項1から3の何れか1項に記載の電圧調整装置。
  5. 前記直列変圧器よりも前記負荷側における前記配電線の三相の電圧を検出する電圧検出部と、
    該電圧検出部が検出した三相の電圧の目標電圧に対する偏差を算出し、算出した偏差に基づいて前記切換スイッチにより前記タップを切り換える切換制御部と
    を更に備える請求項1から4の何れか1項に記載の電圧調整装置。
  6. 三相の電圧の目標電圧に対する偏差と前記調整変圧器の三相分の変圧比に係る量を関連付けて記憶する記憶部を更に備え、
    前記切換制御部は、前記偏差を算出した場合、前記記憶部を参照して三相分のタップの切換先を選択し、前記タップを選択した切換先に切り換える
    請求項5に記載の電圧調整装置。
JP2017205576A 2017-10-24 2017-10-24 電圧調整装置 Active JP6959824B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205576A JP6959824B2 (ja) 2017-10-24 2017-10-24 電圧調整装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205576A JP6959824B2 (ja) 2017-10-24 2017-10-24 電圧調整装置

Publications (2)

Publication Number Publication Date
JP2019080430A true JP2019080430A (ja) 2019-05-23
JP6959824B2 JP6959824B2 (ja) 2021-11-05

Family

ID=66628247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205576A Active JP6959824B2 (ja) 2017-10-24 2017-10-24 電圧調整装置

Country Status (1)

Country Link
JP (1) JP6959824B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986752A (zh) * 2023-02-03 2023-04-18 国网北京市电力公司 可调电压源、配电系统以及配电系统的功率调节方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028319A (ja) * 1996-07-08 1998-01-27 Tohoku Electric Power Co Inc 直列補償システムの保護装置
JP2000014009A (ja) * 1998-06-24 2000-01-14 Toshiba Corp 電力系統安定化装置
JP2002091578A (ja) * 2000-09-14 2002-03-29 Toshiba Corp 電圧調整器および位相調整器
JP2006134924A (ja) * 2004-11-02 2006-05-25 Chugoku Electric Power Co Inc:The 瞬時電圧低下防止装置及び瞬時電圧低下防止方法
JP2009005528A (ja) * 2007-06-22 2009-01-08 Hitachi Ltd 限流装置
US20090218993A1 (en) * 2006-03-28 2009-09-03 Abb Research Ltd. Device and a method for control of power flow in a transmission line
JP2014115770A (ja) * 2012-12-07 2014-06-26 Kansai Electric Power Co Inc:The 自動電圧調整装置
JP2016042279A (ja) * 2014-08-18 2016-03-31 関西電力株式会社 自動電圧調整装置
CN106786613A (zh) * 2016-12-16 2017-05-31 湖南世优电力科技股份有限公司 一种调压器及包含所述调压器的调压电路
JP2017117084A (ja) * 2015-12-22 2017-06-29 株式会社ダイヘン 自動電圧調整装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1028319A (ja) * 1996-07-08 1998-01-27 Tohoku Electric Power Co Inc 直列補償システムの保護装置
JP2000014009A (ja) * 1998-06-24 2000-01-14 Toshiba Corp 電力系統安定化装置
JP2002091578A (ja) * 2000-09-14 2002-03-29 Toshiba Corp 電圧調整器および位相調整器
JP2006134924A (ja) * 2004-11-02 2006-05-25 Chugoku Electric Power Co Inc:The 瞬時電圧低下防止装置及び瞬時電圧低下防止方法
US20090218993A1 (en) * 2006-03-28 2009-09-03 Abb Research Ltd. Device and a method for control of power flow in a transmission line
JP2009005528A (ja) * 2007-06-22 2009-01-08 Hitachi Ltd 限流装置
JP2014115770A (ja) * 2012-12-07 2014-06-26 Kansai Electric Power Co Inc:The 自動電圧調整装置
JP2016042279A (ja) * 2014-08-18 2016-03-31 関西電力株式会社 自動電圧調整装置
JP2017117084A (ja) * 2015-12-22 2017-06-29 株式会社ダイヘン 自動電圧調整装置
CN106786613A (zh) * 2016-12-16 2017-05-31 湖南世优电力科技股份有限公司 一种调压器及包含所述调压器的调压电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986752A (zh) * 2023-02-03 2023-04-18 国网北京市电力公司 可调电压源、配电系统以及配电系统的功率调节方法
CN115986752B (zh) * 2023-02-03 2024-01-23 国网北京市电力公司 可调电压源、配电系统以及配电系统的功率调节方法

Also Published As

Publication number Publication date
JP6959824B2 (ja) 2021-11-05

Similar Documents

Publication Publication Date Title
EP2722955A2 (en) Voltage regulator and methods for simulating reactive power in parallel power generation systems
JP2018186598A (ja) 電圧調整装置
US10742028B2 (en) Longitudinal voltage regulation at the line terminals of a phase shifting transformer
JP5986857B2 (ja) 電圧調整装置
JP6959824B2 (ja) 電圧調整装置
US20150124357A1 (en) Excitation inrush current suppressing apparatus and excitation inrush current suppressing method
JP2012080654A (ja) 配電線の電圧調整装置
KR20110002779A (ko) 자동 전압 조절 장치
JP7332441B2 (ja) 負荷時タップ切換器、負荷時タップ切換変圧器及び電圧調整装置
JP5938312B2 (ja) 電圧調整装置
JP7291639B2 (ja) 負荷時タップ切換器
JP6666109B2 (ja) サイリスタ式自動電圧調整器及びその自動電圧調整方法
JP7393965B2 (ja) 電圧調整装置
US10345831B2 (en) Methods and systems for using a tapped transformer to generate voltage sags
JP7332510B2 (ja) 負荷時タップ切換器
KR101338889B1 (ko) 평형 상태에 따른 부하 분배 기능을 내장한 수배전반 및 그 구동 방법
Pedra et al. Effects of balanced and unbalanced voltage sags on DC adjustable-speed drives
Minoza et al. Programmable Logic Controller (PLC) Protected Transformer Banking Trainer Kit for Electrical Engineering Education
Verma et al. Step-less voltage regulation on radial feeder with OLTC transformer-DVR hybrid
JP2024074592A (ja) 電圧調整装置
JP4037967B2 (ja) 配電線の電圧調整方法及び装置
JP2021197891A (ja) 電圧調整装置
Hellman-Wylie et al. Microgrid Protection Student Laboratory
JP6675913B2 (ja) 負荷分担装置
JP2023044242A (ja) 電圧不平衡抑制支援方法、及び電圧不平衡抑制支援装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211008

R150 Certificate of patent or registration of utility model

Ref document number: 6959824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150