JP2019075578A - Semiconductor package and method of manufacturing the same - Google Patents

Semiconductor package and method of manufacturing the same Download PDF

Info

Publication number
JP2019075578A
JP2019075578A JP2019001563A JP2019001563A JP2019075578A JP 2019075578 A JP2019075578 A JP 2019075578A JP 2019001563 A JP2019001563 A JP 2019001563A JP 2019001563 A JP2019001563 A JP 2019001563A JP 2019075578 A JP2019075578 A JP 2019075578A
Authority
JP
Japan
Prior art keywords
semiconductor package
layer
semiconductor device
support substrate
sealing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019001563A
Other languages
Japanese (ja)
Inventor
聖昭 橋本
Masaaki Hashimoto
聖昭 橋本
靖之 竹原
Yasuyuki Takehara
靖之 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amkor Technology Japan Inc
Original Assignee
J Devices Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Devices Corp filed Critical J Devices Corp
Publication of JP2019075578A publication Critical patent/JP2019075578A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/642Capacitive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/647Resistive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54473Marks applied to semiconductor devices or parts for use after dicing
    • H01L2223/54486Located on package parts, e.g. encapsulation, leads, package substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

To provide a semiconductor package in which internal stress generated between a support substrate and an adhesive is reduced and which is therefore highly reliable.SOLUTION: A semiconductor package 100 comprises: a support substrate 101, a stress relaxation layer 102 provided on the main surface of the support substrate; a semiconductor device 104 disposed on the stress relaxation layer; an encapsulation material 105 that covers the semiconductor device and is formed of an insulating material different from that of the stress relaxation layer; a wire 106 penetrating through the encapsulation material and electrically connected to the semiconductor device; and an external terminal 110 electrically connected to the wire. When the support substrate has an elastic modulus of A, the stress relaxation layer has an elastic modulus of B, and the encapsulation material has an elastic modulus of C under the same temperature condition, the relationship of A>C>B or C>A>B is satisfied.SELECTED DRAWING: Figure 2

Description

本発明は、半導体パッケージの実装技術に関する。特に、半導体パッケージの製造工程において発生する応力を緩和するための技術に関する。   The present invention relates to a semiconductor package mounting technology. In particular, the present invention relates to a technique for relieving stress generated in a manufacturing process of a semiconductor package.

従来、支持基板上に、ICチップ等の半導体デバイスを搭載する半導体パッケージ構造が知られている。このような半導体パッケージは、一般的には、支持基板上に、ダイアタッチ材と呼ばれる接着材を介してICチップ等の半導体デバイスを接着し、その半導体デバイスを封止体(封止用樹脂)で覆って保護する構造を採用している。   Conventionally, a semiconductor package structure is known in which a semiconductor device such as an IC chip is mounted on a support substrate. In such a semiconductor package, generally, a semiconductor device such as an IC chip is bonded to a supporting substrate via an adhesive called die attach material, and the semiconductor device is sealed (resin for sealing) The structure to cover and protect with is adopted.

半導体パッケージに用いる支持基板としては、プリント基板、セラミックス基板等の様々な基板が用いられている。特に、近年では、金属基板を用いた半導体パッケージの開発が進められている。金属基板を用いた半導体パッケージは、電磁シールド性や熱特性に優れるといった利点を有し、信頼性の高い半導体パッケージとして注目されている。   As a support substrate used for a semiconductor package, various substrates, such as a printed circuit board and a ceramic substrate, are used. In particular, in recent years, development of a semiconductor package using a metal substrate has been advanced. A semiconductor package using a metal substrate has advantages such as excellent electromagnetic shielding properties and thermal characteristics, and is drawing attention as a highly reliable semiconductor package.

しかし、金属と樹脂とでは熱膨張係数(coefficient of thermal expansion :CTE)に大きな差があるため、金属基板を用いた半導体パッケージの製造工程においては、金属基板と封止体(半導体デバイスを保護するための樹脂)との間における熱膨張係数の差に起因して内部応力が発生し、封止体に反りが発生するという問題が指摘されていた(特許文献1)。   However, since there is a large difference in coefficient of thermal expansion (CTE) between metal and resin, in the process of manufacturing a semiconductor package using a metal substrate, the metal substrate and the sealing body (protect the semiconductor device) It has been pointed out that the internal stress is generated due to the difference of the thermal expansion coefficient between the resin and the resin) to cause warpage in the sealed body (Patent Document 1).

特開2010−40911号公報Unexamined-Japanese-Patent No. 2010-40911

本発明は、上述した問題に鑑みてなされたものであり、支持基板と封止体との間に発生する内部応力を低減し、信頼性の高い半導体パッケージを提供することを課題とするものである。   The present invention has been made in view of the above-described problems, and an object thereof is to provide a highly reliable semiconductor package by reducing internal stress generated between a supporting substrate and a sealing body. is there.

本発明の一実施形態による半導体パッケージは、支持基板と、前記支持基板の主面に設けられた応力緩和層と、前記応力緩和層の上に配置された半導体デバイスと、前記半導体デバイスを覆い、前記応力緩和層とは異なる絶縁材料からなる封止体と、前記封止体を貫通して前記半導体デバイスと電気的に接続された配線と、前記配線と電気的に接続された外部端子と、を備えることを特徴とする。   A semiconductor package according to an embodiment of the present invention covers a support substrate, a stress relieving layer provided on a main surface of the support substrate, a semiconductor device disposed on the stress relieving layer, and the semiconductor device. A sealing body made of an insulating material different from the stress relieving layer, a wiring electrically connected to the semiconductor device through the sealing body, and an external terminal electrically connected to the wiring. And the like.

本発明の一実施形態による半導体パッケージは、支持基板と、前記支持基板の主面に設けられた応力緩和層と、前記応力緩和層の上に設けられた導電層と、前記導電層の上に配置された半導体デバイスと、前記半導体デバイスを覆い、前記応力緩和層とは異なる絶縁材料からなる封止体と、前記封止体を貫通して前記半導体デバイスと電気的に接続された配線と、前記配線と電気的に接続された外部端子と、を備えることを特徴とする。   A semiconductor package according to an embodiment of the present invention includes a support substrate, a stress relieving layer provided on a main surface of the support substrate, a conductive layer provided on the stress relieving layer, and the conductive layer. A semiconductor device disposed, a sealing body covering the semiconductor device and made of an insulating material different from the stress relieving layer, and a wire electrically connected to the semiconductor device through the sealing body. And an external terminal electrically connected to the wiring.

本発明の一実施形態による半導体パッケージは、支持基板と、前記支持基板の主面に設けられた応力緩和層と、前記応力緩和層の上に設けられた導電層と、前記導電層に囲まれ、かつ、前記応力緩和層の上に配置された半導体デバイスと、前記半導体デバイスを覆い、前記応力緩和層とは異なる絶縁材料からなる封止体と、前記封止体を貫通して前記半導体デバイスと電気的に接続された配線と、前記配線と電気的に接続された外部端子と、を備えることを特徴とする。   A semiconductor package according to an embodiment of the present invention is surrounded by a support substrate, a stress relieving layer provided on the main surface of the support substrate, a conductive layer provided on the stress relieving layer, and the conductive layer. And a semiconductor device disposed on the stress relieving layer, a sealing body covering the semiconductor device and made of an insulating material different from the stress relieving layer, and the semiconductor device penetrating the sealing body And an external terminal electrically connected to the wiring.

また、本発明の一実施形態による半導体パッケージの製造方法は、支持基板の主面に応力緩和層を形成する工程と、前記応力緩和層の上に、少なくとも1つの半導体デバイスを配置する工程と、前記半導体デバイスを、前記応力緩和層とは異なる材料からなる封止体で覆う工程と、前記封止体を貫通して前記半導体デバイスと電気的に接続された配線を形成する工程と、前記配線と電気的に接続された外部端子を形成する工程と、を備えることを特徴とする。   In the method of manufacturing a semiconductor package according to an embodiment of the present invention, a step of forming a stress relieving layer on the main surface of a support substrate, a step of disposing at least one semiconductor device on the stress relieving layer, Covering the semiconductor device with a sealing body made of a material different from that of the stress relieving layer; forming a wiring penetrating the sealing body and electrically connected to the semiconductor device; And forming an external terminal electrically connected thereto.

本発明の一実施形態による半導体パッケージの製造方法は、支持基板の主面に応力緩和層を形成する工程と、前記応力緩和層の上に、導電層を形成する工程と、前記導電層の上に、少なくとも1つの半導体デバイスを配置する工程と、前記半導体デバイスを、前記応力緩和層とは異なる材料からなる封止体で覆う工程と、前記封止体を貫通して前記半導体デバイスと電気的に接続された配線を形成する工程と、前記配線と電気的に接続された外部端子を形成する工程と、を備えることを特徴とする。   A method of manufacturing a semiconductor package according to an embodiment of the present invention comprises the steps of: forming a stress relieving layer on the main surface of a supporting substrate; forming a conductive layer on the stress relieving layer; A step of disposing at least one semiconductor device, a step of covering the semiconductor device with a sealing body made of a material different from that of the stress relieving layer, an electrical connection with the semiconductor device through the sealing body And forming an external terminal electrically connected to the wiring.

本発明の一実施形態による半導体パッケージの製造方法は、支持基板の主面に応力緩和層を形成する工程と、前記応力緩和層の上に導電層を形成する工程と、前記導電層をエッチングして前記応力緩和層を露出させる工程と、前記応力緩和層を露出させた領域に、少なくとも1つの半導体デバイスを配置する工程と、前記半導体デバイスを、前記応力緩和層とは異なる材料からなる封止体で覆う工程と、前記封止体を貫通して前記半導体デバイスと電気的に接続された配線を形成する工程と、前記配線と電気的に接続された外部端子を形成する工程と、を備えることを特徴とする。   A method of manufacturing a semiconductor package according to an embodiment of the present invention comprises the steps of: forming a stress relieving layer on the main surface of a support substrate; forming a conductive layer on the stress relieving layer; and etching the conductive layer The step of exposing the stress relieving layer, the step of disposing at least one semiconductor device in the region where the stress relieving layer is exposed, and sealing the semiconductor device from a material different from that of the stress relieving layer And covering the body with a body, forming a wiring electrically connected to the semiconductor device through the sealing body, and forming an external terminal electrically connected to the wiring. It is characterized by

本発明によれば、支持基板と封止体との間に発生する内部応力を低減し、信頼性の高い半導体パッケージを実現することができる。   According to the present invention, the internal stress generated between the support substrate and the sealing body can be reduced, and a highly reliable semiconductor package can be realized.

本発明の第1実施形態に係る半導体パッケージの外観図である。FIG. 1 is an external view of a semiconductor package according to a first embodiment of the present invention. 本発明の第1実施形態に係る半導体パッケージの断面図である。FIG. 1 is a cross-sectional view of a semiconductor package according to a first embodiment of the present invention. 本発明の第1実施形態に係る半導体パッケージの製造工程を示す図である。FIG. 6 is a view showing a manufacturing process of the semiconductor package according to the first embodiment of the present invention. 本発明の第1実施形態に係る半導体パッケージの製造工程を示す図である。FIG. 6 is a view showing a manufacturing process of the semiconductor package according to the first embodiment of the present invention. 本発明の第1実施形態に係る半導体パッケージの製造工程を示す図である。FIG. 6 is a view showing a manufacturing process of the semiconductor package according to the first embodiment of the present invention. 本発明の第1実施形態に係る半導体パッケージの製造工程を示す図である。FIG. 6 is a view showing a manufacturing process of the semiconductor package according to the first embodiment of the present invention. 本発明の第2実施形態に係る半導体パッケージの断面図である。It is sectional drawing of the semiconductor package concerning 2nd Embodiment of this invention. 本発明の第2実施形態に係る半導体パッケージの断面図である。It is sectional drawing of the semiconductor package concerning 2nd Embodiment of this invention. 本発明の第2実施形態に係る半導体パッケージの上面図である。It is a top view of the semiconductor package concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る半導体パッケージの上面図である。It is a top view of the semiconductor package concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る半導体パッケージの断面図である。It is sectional drawing of the semiconductor package concerning 3rd Embodiment of this invention. 本発明の第3実施形態に係る半導体パッケージの断面図である。It is sectional drawing of the semiconductor package concerning 3rd Embodiment of this invention. 本発明の第3実施形態に係る半導体パッケージの断面図である。It is sectional drawing of the semiconductor package concerning 3rd Embodiment of this invention. 本発明の第3実施形態に係る半導体パッケージの上面図である。It is a top view of the semiconductor package concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る半導体パッケージの断面図である。It is sectional drawing of the semiconductor package which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る半導体パッケージの上面図である。It is a top view of the semiconductor package concerning a 4th embodiment of the present invention. 本発明の第5実施形態に係る半導体パッケージの断面図である。It is sectional drawing of the semiconductor package concerning 5th Embodiment of this invention. 本発明の第6実施形態に係る半導体パッケージの上面図である。It is a top view of the semiconductor package concerning a 6th embodiment of the present invention. 本発明の第6実施形態において、一辺が400μmのサイズの開口部を形成した場合における信頼性評価結果である。In 6th Embodiment of this invention, it is a reliability evaluation result in, when the opening of the size whose one side is 400 micrometers is formed. 本発明の第6実施形態において、一辺が500μmのサイズの開口部を形成した場合における信頼性評価結果である。In 6th Embodiment of this invention, it is a reliability evaluation result in, when the opening of the size whose one side is 500 micrometers is formed. 本発明の第6実施形態において、一辺が600μmのサイズの開口部を形成した場合における信頼性評価結果である。In 6th Embodiment of this invention, it is a reliability evaluation result in, when the opening of the size of 600 micrometers is formed in one side. 本発明の第6実施形態において、一辺が400μmのサイズの開口部を形成した場合における信頼性評価結果である。In 6th Embodiment of this invention, it is a reliability evaluation result in, when the opening of the size whose one side is 400 micrometers is formed.

以下、本発明の一実施形態に係る半導体パッケージについて、図面を参照しながら詳細に説明する。以下に示す実施形態は本発明の実施形態の一例であって、本発明はこれらの実施形態に限定されるものではない。   Hereinafter, a semiconductor package according to an embodiment of the present invention will be described in detail with reference to the drawings. The embodiment shown below is an example of the embodiment of the present invention, and the present invention is not limited to these embodiments.

なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、Bなどを付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。   In the drawings referred to in this embodiment, the same portions or portions having similar functions are denoted by the same reference numerals or similar reference numerals (reference numerals with A, B, etc. appended after numbers), and the repetition thereof The description of may be omitted. Further, the dimensional ratio of the drawings may be different from the actual ratio for convenience of explanation, or part of the configuration may be omitted from the drawings.

また、本明細書中における断面図において「上」とは、支持基板の主面(半導体デバイスを配置する面)を基準とした相対的な位置を指し、支持基板の主面から離れる方向が「上」である。図2以降においては、紙面に向かって上方が「上」となる。また、「上」には、物体の上に接する場合(つまり「on」の場合)と、物体の上方に位置する場合(つまり「over」の場合)とが含まれる。   Further, in the cross-sectional view in the present specification, “upper” refers to a relative position based on the main surface (surface on which the semiconductor device is disposed) of the support substrate, and the direction away from the main surface of the support substrate is “ Above. In FIG. 2 and thereafter, the upper side is "up" toward the paper surface. Also, “upper” includes the case of touching the top of the object (that is, in the case of “on”) and the case of being positioned above the object (that is, in the case of “over”).

(第1実施形態)
<パッケージの外観>
図1は、本発明の第1実施形態に係る半導体パッケージ100の外観図である。なお、図1の手前部分は、内部構成の外観を示すために切断面を図示している。
First Embodiment
<Package appearance>
FIG. 1 is an external view of a semiconductor package 100 according to a first embodiment of the present invention. In addition, the front part of FIG. 1 has illustrated the cut surface in order to show the external appearance of an internal structure.

図1において、11は、支持基板であり、12は支持基板の主面に設けられた応力緩和層である。13は、ICチップやLSIチップ等の半導体デバイスであり、14及び15は、半導体デバイスを保護する封止体(封止用樹脂)である。ここでは図示されないが、封止体14、15内には配線が形成され、半導体デバイスの出力端子と、外部端子としてのはんだボール16とを電気的に接続している。   In FIG. 1, reference numeral 11 denotes a support substrate, and reference numeral 12 denotes a stress relaxation layer provided on the main surface of the support substrate. Reference numeral 13 denotes a semiconductor device such as an IC chip or an LSI chip, and reference numerals 14 and 15 denote a sealing body (sealing resin) for protecting the semiconductor device. Although not shown here, wires are formed in the sealing bodies 14 and 15 to electrically connect the output terminals of the semiconductor device and the solder balls 16 as external terminals.

このように、本実施形態に係る半導体パッケージ100は、支持基板11をそのまま基体として用い、積層された樹脂層(封止体14、15)で半導体デバイス13を外気から保護する構造となっている。   As described above, the semiconductor package 100 according to the present embodiment has a structure in which the semiconductor device 13 is protected from the outside air by using the supporting substrate 11 as a base as it is and laminating resin layers (sealing bodies 14 and 15). .

<パッケージ構造>
図2は、図1を用いて説明した半導体パッケージ100の構造を詳細に説明するための断面図である。101は、支持基板であり、ここでは金属基板を用いる。金属基板としては、ステンレス等の鉄合金基板や銅合金基板などの金属基板を用いればよい。勿論、金属基板に限定する必要はなく、用途やコストに応じて、シリコン基板、ガラス基板、セラミックス基板、有機基板などを用いることも可能である。
<Package structure>
FIG. 2 is a cross-sectional view for explaining the structure of the semiconductor package 100 described with reference to FIG. 1 in detail. Reference numeral 101 denotes a support substrate, which uses a metal substrate here. As the metal substrate, a metal substrate such as an iron alloy substrate such as stainless steel or a copper alloy substrate may be used. Of course, it is not necessary to limit to a metal substrate, and it is also possible to use a silicon substrate, a glass substrate, a ceramic substrate, an organic substrate, etc. according to a use or cost.

支持基板101上には、応力緩和層102が設けられている。応力緩和層102は、支持基板101と後述する第1封止体105との間に生じる応力を緩和するために設けられる絶縁層である。応力緩和層102の詳細については後述する。本実施形態に係る半導体パッケージ100では、膜厚が10〜200μmの熱硬化性樹脂若しくは熱可塑性樹脂(例えばエポキシ系樹脂)を用いる。また、熱伝導率を高めた無機材料や金属フィラーを含有した材料であってもよい。   The stress relieving layer 102 is provided on the support substrate 101. The stress relieving layer 102 is an insulating layer provided to relieve the stress generated between the support substrate 101 and the first sealing body 105 described later. Details of the stress relaxation layer 102 will be described later. In the semiconductor package 100 according to the present embodiment, a thermosetting resin or a thermoplastic resin (for example, an epoxy resin) having a thickness of 10 to 200 μm is used. Moreover, the material which contained the inorganic material which raised the heat conductivity, or the metal filler may be sufficient.

応力緩和層102の上には、接着材(ダイアタッチ材)103を介して半導体デバイス104が設けられている。接着材103は、支持基板と半導体デバイスとを接着する公知の接着材(ここでは、応力緩和層102と半導体デバイス104とを接着する接着材)であり、本実施形態では、ダイアタッチフィルムを用いる。   A semiconductor device 104 is provided on the stress relieving layer 102 via an adhesive (die-attach material) 103. The adhesive 103 is a known adhesive for bonding the support substrate and the semiconductor device (here, an adhesive for bonding the stress relaxation layer 102 and the semiconductor device 104), and in this embodiment, a die attach film is used. .

なお、本実施形態では、接着材103を用いて半導体デバイス104を接着しているが、接着材103を省略し、応力緩和層102上に直接半導体デバイス104を設けてもよい。   In this embodiment, the semiconductor device 104 is adhered using the adhesive 103. However, the adhesive 103 may be omitted and the semiconductor device 104 may be provided directly on the stress relaxation layer 102.

半導体デバイス104は、ICチップやLSIチップ等の半導体素子である。公知のダイシング工程、ダイボンディング工程を経て、応力緩和層102上に配置される。なお、図1では、支持基板101上に2つの半導体デバイスを配置する例を示しているが、実際には、支持基板101上にさらに多くの半導体デバイスを配置することが可能である。これにより量産性を向上させることができる。例えば、500mm×400mmといった大型基板上に500個以上の半導体デバイス104を配置してもよい。   The semiconductor device 104 is a semiconductor element such as an IC chip or an LSI chip. It is disposed on the stress relaxation layer 102 through a known dicing process and a die bonding process. Although FIG. 1 shows an example in which two semiconductor devices are arranged on the support substrate 101, it is possible to arrange more semiconductor devices on the support substrate 101 in practice. This can improve mass productivity. For example, 500 or more semiconductor devices 104 may be disposed on a large substrate such as 500 mm × 400 mm.

半導体デバイス104は、第1封止体105によってその上面及び側面を覆われ、外部環境から保護される。第1封止体105としては、エポキシ系樹脂を用いることができるが、その他の公知の封止用樹脂を用いてもよい。   The semiconductor device 104 is covered by the first sealing body 105 on the top and the side, and protected from the external environment. Although an epoxy resin can be used as the first sealing body 105, other known sealing resins may be used.

第1封止体105の上には第1配線層106が形成されている。ここでは、第1配線層106は、銅シード層106aと銅配線106bとで構成されている。勿論、銅に限らず、アルミニウムや銀など、半導体デバイスとの良好な電気的接続が確保できる材料であれば公知の如何なる材料を用いてもよい。   The first wiring layer 106 is formed on the first sealing body 105. Here, the first wiring layer 106 is configured of the copper seed layer 106 a and the copper wiring 106 b. Of course, not only copper but also any known material such as aluminum or silver as long as it can ensure a good electrical connection with the semiconductor device may be used.

第1配線層106上には、さらに第2封止体107、第2配線層108が設けられている。第2封止体107は、第1封止体105と同じものを用いればよく、ここでの説明は省略する。第2配線層108は、第1配線層106と同様に、銅シード層108aと銅配線108bとで構成される。本実施形態では、配線層を第1配線層106と第2配線層108の二層構造としているが、配線層の数は増減可能であり、必要に応じて適宜決定すればよい。   A second sealing body 107 and a second wiring layer 108 are further provided on the first wiring layer 106. The same thing as the 1st sealing body 105 should just be used for the 2nd sealing body 107, and description here is abbreviate | omitted. Similar to the first wiring layer 106, the second wiring layer 108 includes the copper seed layer 108a and the copper wiring 108b. In the present embodiment, the wiring layer has a two-layer structure of the first wiring layer 106 and the second wiring layer 108. However, the number of wiring layers can be increased or decreased, and may be determined as needed.

第2配線層108上には、第3封止体(公知のソルダレジスト)109が設けられ、その上には、開口部を介して外部端子110としてはんだボールが設けられる。ここでは第3封止体109としてソルダレジストを用いるが、第1封止体105や第2封止体107と同じものを用いてもよいし、外気に直接触れるため、より保護膜としての機能性に優れた材料を用いてもよい。また、はんだボールで構成される外部端子110は、260℃前後のリフロー処理により形成すればよい。   A third sealing body (known solder resist) 109 is provided on the second wiring layer 108, and a solder ball is provided thereon as an external terminal 110 through the opening. Although a solder resist is used as the third sealing body 109 here, the same one as the first sealing body 105 and the second sealing body 107 may be used, or the function as a protective film is more because direct contact with the outside air is made. You may use the material which was excellent in the property. Further, the external terminals 110 formed of solder balls may be formed by a reflow process at around 260 ° C.

以上説明した本発明の第1実施形態に係る半導体パッケージ100は、支持基板101の主面に応力緩和層102を設けたことにより、支持基板101と第1封止体105との間の物性値(特に、弾性率や線膨張係数)の差に起因する応力の発生を低減する構造となっている。以下、応力緩和層102の物性について詳細に説明する。   The semiconductor package 100 according to the first embodiment of the present invention described above has physical stress values between the support substrate 101 and the first sealing body 105 by providing the stress relaxation layer 102 on the main surface of the support substrate 101. The structure is designed to reduce the generation of stress caused by the difference between the elastic modulus and the linear expansion coefficient. Hereinafter, the physical properties of the stress relaxation layer 102 will be described in detail.

本発明の第1実施形態に係る半導体パッケージ100において、応力緩和層102の役割は、支持基板101の物性値と第1封止体105の物性値との差に起因する内部応力(支持基板101と第1封止体105の境界面に生じる応力)を低減することである。そのため、応力緩和層102としては、支持基板101及び第1封止体105の弾性率より小さい弾性率を有する絶縁層を用いることが望ましい。   In the semiconductor package 100 according to the first embodiment of the present invention, the role of the stress relieving layer 102 is the internal stress caused by the difference between the physical property value of the support substrate 101 and the physical property value of the first sealing body 105 (support substrate 101 And the stress generated at the interface of the first sealing body 105). Therefore, as the stress relieving layer 102, it is desirable to use an insulating layer having an elastic modulus smaller than that of the support substrate 101 and the first sealing body 105.

具体的には、同一温度条件下で、支持基板101の弾性率をA、応力緩和層102の弾性率をB、第1封止体105の弾性率をCとした場合、A>C>B若しくはC>A>Bが成り立つように、支持基板101、応力緩和層102及び第1封止体105の組み合わせを決定すればよい。   Specifically, assuming that the elastic modulus of the support substrate 101 is A, the elastic modulus of the stress relaxation layer 102 is B, and the elastic modulus of the first sealing body 105 is C under the same temperature conditions, A> C> B Alternatively, the combination of the support substrate 101, the stress relaxation layer 102, and the first sealing body 105 may be determined so that C> A> B.

このように応力緩和層102は、低弾性であることが望ましい。例えば、約25℃(室温)の温度領域で2Gpa以下、かつ、100℃を超える温度領域で100MPa以下の弾性率を有することが望ましい。それぞれの温度領域において弾性率に上限を設けた理由は、それら上限値を超えると応力緩和層102が硬すぎて応力緩和層としての機能が落ちてしまうからである。   Thus, it is desirable that the stress relaxation layer 102 have low elasticity. For example, it is desirable to have an elastic modulus of 2 Gpa or less in a temperature range of about 25 ° C. (room temperature) and 100 MPa or less in a temperature range exceeding 100 ° C. The reason why the elastic modulus is provided with an upper limit in each temperature range is that if the upper limit is exceeded, the stress relaxation layer 102 is too hard and the function as a stress relaxation layer is lost.

すなわち、室温においては、ある程度の硬さがあっても(弾性率が高くても)応力緩和層として十分機能するため、応力緩和層102の弾性率は、少なくとも2GPa以下であればよい。一方、熱硬化性樹脂の硬化温度(170℃前後)付近など、100℃を超える温度領域(例えば150℃を超える温度領域)においては、応力緩和層102の弾性率を100MPa以下とする。そのような高温域で100MPaを上回ると、応力緩和層としての機能を果たせなくなる虞があるからである。   That is, at room temperature, even if there is a certain degree of hardness (even if the modulus of elasticity is high), the modulus of elasticity of the stress relieving layer 102 may be at least 2 GPa or less because it functions sufficiently as a stress relieving layer. On the other hand, in a temperature range exceeding 100 ° C. (eg, a temperature range exceeding 150 ° C.) such as around the curing temperature of the thermosetting resin (about 170 ° C.), the elastic modulus of the stress relaxation layer 102 is 100 MPa or less. If the pressure exceeds 100 MPa in such a high temperature range, there is a possibility that the function as a stress relaxation layer can not be achieved.

なお、弾性率が低ければ低いほど応力緩和層としての機能は高くなるが、あまりにも弾性率が低すぎると流動性が極端に高くなり、もはや層としての形状を維持できなくなる虞がある。したがって、本実施形態では、特に弾性率に下限を設けていないが、室温から260℃(後述するリフロー温度)の範囲内において形状を維持できる範囲の弾性率であることが条件となる。   The lower the elastic modulus, the higher the function as a stress relieving layer. However, if the elastic modulus is too low, the fluidity becomes extremely high, and there is a possibility that the shape of the layer can no longer be maintained. Therefore, in the present embodiment, although the lower limit is not particularly set for the elastic modulus, it is a condition that the elastic modulus is within the range of room temperature to 260 ° C. (reflow temperature described later).

また、応力緩和層102として、上述した弾性率の関係を満たす絶縁層を用いた場合、結果的に、同一温度条件下で、支持基板101の線膨張係数をa、応力緩和層102の線膨張係数をb、第1封止体105の線膨張係数をcとすると、a≦c<b(又は、a≒c<b)が成り立つ。   When an insulating layer satisfying the above-described elastic modulus relationship is used as the stress relaxation layer 102, the linear expansion coefficient of the support substrate 101 is a under the same temperature conditions as a result, and the linear expansion of the stress relaxation layer 102 is consequently obtained. Assuming that the coefficient is b and the linear expansion coefficient of the first sealing body 105 is c, a ≦ c <b (or a ≒ c <b) holds.

一般的に、金属基板の線膨張係数は、20ppm/℃程度であり、封止体の線膨張係数は、数十ppm/℃程度である。そのため、本実施形態に係る半導体パッケージ100では、200℃以下の温度領域において、線膨張係数が100〜200ppm/℃、望ましくは100〜150ppm/℃である絶縁層を用いる。なお、200℃以下の温度領域という条件は、半導体パッケージの製造工程における上限温度が200℃前後であることに因る。少なくとも半導体パッケージの製造工程中において、線膨張係数が前述の範囲に収まることが望ましいという趣旨である。   Generally, the linear expansion coefficient of the metal substrate is about 20 ppm / ° C., and the linear expansion coefficient of the sealing body is about several tens ppm / ° C. Therefore, in the semiconductor package 100 according to the present embodiment, an insulating layer having a linear expansion coefficient of 100 to 200 ppm / ° C., preferably 100 to 150 ppm / ° C. in a temperature range of 200 ° C. or less is used. The condition of the temperature range of 200 ° C. or lower is due to the fact that the upper limit temperature in the manufacturing process of the semiconductor package is around 200 ° C. The effect is that it is desirable that the coefficient of linear expansion falls within the aforementioned range at least during the manufacturing process of the semiconductor package.

さらに、本発明の第1実施形態に係る半導体パッケージ100では、応力緩和層102として、5%重量減少温度が300℃以上である接着材を用いることが望ましい。この条件は、一般的なリフロー温度が260℃前後であるため、リフロー処理を経ても重量減少の少ない絶縁層(すなわち、リフロー耐性のある絶縁層)を用いることにより、半導体パッケージの信頼性の低下を防ぐためである。   Furthermore, in the semiconductor package 100 according to the first embodiment of the present invention, it is desirable to use an adhesive having a 5% weight loss temperature of 300 ° C. or more as the stress relieving layer 102. In this condition, since the general reflow temperature is around 260 ° C., the reliability of the semiconductor package is lowered by using the insulating layer (that is, the insulating layer having reflow resistance) with less weight reduction even after the reflow processing. To prevent

なお、「重量減少温度」とは、物質の耐熱性を示すために用いられる指標の一つであり、窒素ガスや空気を流しながら、室温から徐々に微量の物質を加熱していき、一定の重量減少が起きる温度で示す。ここでは、5%の重量減少が起きる温度を示している。   Note that “weight loss temperature” is one of the indicators used to show the heat resistance of a substance, and while flowing nitrogen gas or air, a trace amount of substance is gradually heated from room temperature, Indicated at the temperature where weight loss occurs. Here, the temperature at which a weight loss of 5% occurs is indicated.

さらに、応力緩和層102として、支持基板(鉄合金や銅合金等の代表的な金属材料で構成される基板)101と第1封止体(エポキシ系、フェノール系、またはポリイミド系などの樹脂)105の双方に対して、JISの碁盤目テープ試験(旧JIS K5400)において「分類0」に分類される密着力を有する樹脂を用いることが望ましい。これにより、支持基板101と第1封止体105との間の密着性を高め、さらに第1封止体105の膜剥がれを抑制することができる。   Furthermore, as the stress relieving layer 102, a support substrate (a substrate composed of a representative metal material such as iron alloy or copper alloy) 101 and a first sealing body (a resin such as epoxy resin, phenol resin, or polyimide resin) It is desirable to use a resin having an adhesive strength that is classified into "Class 0" in both the 105 and the 105 cross-cut tape test (old JIS K5400) of JIS. Thereby, the adhesiveness between the support substrate 101 and the first sealing body 105 can be enhanced, and the film peeling of the first sealing body 105 can be further suppressed.

以上のように、本発明の第1実施形態に係る半導体パッケージ100では、応力緩和層102として、(1)同一温度条件下で、支持基板101の弾性率をA、応力緩和層102の弾性率をB、第1封止体105の弾性率をCとした場合、A>C>B若しくはC>A>Bが成り立つこと、(2)同一温度条件下で、支持基板101の線膨張係数をa、応力緩和層102の線膨張係数をb、第1封止体105の線膨張係数をcとした場合、a≦c<b(又は、a≒c<b)が成り立つこと、の少なくともいずれか1つ(望ましくは全て)を満たす絶縁層を用いる点に特徴がある。   As described above, in the semiconductor package 100 according to the first embodiment of the present invention, as the stress relieving layer 102, (1) under the same temperature conditions, the elastic modulus of the support substrate 101 is A, and the elastic modulus of the stress relieving layer 102 B, and the elastic modulus of the first sealing body 105 is C, that A> C> B or C> A> B holds, (2) the linear expansion coefficient of the support substrate 101 under the same temperature condition Assuming that a, the linear expansion coefficient of the stress relaxation layer 102 is b, and the linear expansion coefficient of the first sealing body 105 is c, at least one of a ≦ c <b (or a ≒ c <b) holds. It is characterized in that an insulating layer that satisfies one or more (preferably all) is used.

これにより、支持基板101と第1封止体105との間の物性値の差に起因する内部応力の発生を低減し、支持基板101や第1封止体105に極力反りを発生させないようにすることができ、半導体パッケージとしての信頼性を向上させることができる。   As a result, the occurrence of internal stress due to the difference in physical property value between the support substrate 101 and the first sealing body 105 is reduced, and the supporting substrate 101 and the first sealing body 105 are prevented from generating warpage as much as possible. Thus, the reliability as a semiconductor package can be improved.

<製造工程>
図3〜図6は、本発明の第1実施形態に係る半導体パッケージ100の製造工程を示す図である。図3(A)において、支持基板101上に、応力緩和層102を形成する。ここでは、支持基板101として鉄合金のステンレス基板(SUS基板)を用いるが、ある程度の剛性を備えた基板であれば他の材料で構成される基板であってもよい。例えば、ガラス基板、シリコン基板、セラミックス基板、有機基板であってもよい。
<Manufacturing process>
3 to 6 are views showing manufacturing steps of the semiconductor package 100 according to the first embodiment of the present invention. In FIG. 3A, the stress relaxation layer 102 is formed on the support substrate 101. Here, a stainless steel substrate (SUS substrate) of iron alloy is used as the support substrate 101, but a substrate made of another material may be used as long as the substrate has a certain degree of rigidity. For example, a glass substrate, a silicon substrate, a ceramic substrate, or an organic substrate may be used.

応力緩和層102としては、膜厚が10〜200μmの熱硬化性樹脂を用いる。前述のとおり、応力緩和層102の物性値は、(1)同一温度条件下で、支持基板101の弾性率をA、応力緩和層102の弾性率をB、第1封止体105の弾性率をCとした場合、A>C>B若しくはC>A>Bが成り立つこと、(2)同一温度条件下で、支持基板101の線膨張係数をa、応力緩和層102の線膨張係数をb、第1封止体105の線膨張係数をcとした場合、a≦c<b(又は、a≒c<b)が成り立つこと、の少なくともいずれか1つ(望ましくは全て)を満たす。   As the stress relaxation layer 102, a thermosetting resin having a thickness of 10 to 200 μm is used. As described above, the physical property values of the stress relaxation layer 102 are: (1) under the same temperature conditions, the elastic modulus of the support substrate 101 is A, the elastic modulus of the stress relaxation layer 102 is B, and the elastic modulus of the first sealing body 105 Where A> C> B or C> A> B, and (2) under the same temperature conditions, the linear expansion coefficient of the support substrate 101 is a, and the linear expansion coefficient of the stress relaxation layer 102 is b. When the linear expansion coefficient of the first sealing body 105 is c, at least any one (desirably all) of a ≦ c <b (or a ≒ c <b) is satisfied.

また、応力緩和層102として、支持基板101と第1封止体105の双方に対して、JISの碁盤目テープ試験(旧JIS K5400)において「分類0」に分類される密着力を有する樹脂を用いることが望ましい。   In addition, as the stress relieving layer 102, a resin having an adhesive force classified into “Class 0” in the cross-cut tape test according to JIS (old JIS K5400) for both the support substrate 101 and the first sealing body 105 It is desirable to use.

応力緩和層102を形成したら、次に、図3(B)に示すように、接着材103を用いて半導体デバイス104を応力緩和層102上に接着する。ここでは、接着材103として、公知のダイアタッチフィルムを用いる。   After the stress relaxation layer 102 is formed, next, as shown in FIG. 3B, the semiconductor device 104 is bonded onto the stress relaxation layer 102 using an adhesive 103. Here, a known die attach film is used as the adhesive 103.

具体的には、まずウェハ上に公知の半導体プロセスによって複数の半導体デバイス(半導体素子)を作り込み、ダイアタッチフィルムを半導体デバイスに貼り付けた状態でバックグラインド工程(ウェハの薄厚化)を行う。その後、ダイシング工程により複数の半導体デバイスを個片化し、接着材103ごと切り離した複数の半導体デバイス104を、応力緩和層102上に接着する。このように、支持基板101上に複数の半導体デバイス104を配置し、パッケージ化した後に個々に切り離すことにより、量産性が大幅に向上する。   Specifically, first, a plurality of semiconductor devices (semiconductor elements) are formed on the wafer by a known semiconductor process, and a back grinding process (wafer thinning) is performed in a state where the die attach film is attached to the semiconductor device. Thereafter, the plurality of semiconductor devices are singulated by a dicing process, and the plurality of semiconductor devices 104 separated together with the adhesive 103 are bonded onto the stress relaxation layer 102. As described above, by arranging the plurality of semiconductor devices 104 on the support substrate 101 and separating them after packaging, mass productivity is greatly improved.

次に、図3(C)に示すように、半導体デバイス104を覆うように第1封止体105を形成する。第1封止体105としては、エポキシ系樹脂、フェノール系樹脂、およびポリイミド系樹脂のいずれかを用いることができる。熱硬化性樹脂であっても、光硬化性樹脂であってもよい。また、第1封止体105は、スクリーン印刷法、スピンコーティング法等、公知の如何なる塗布方法を用いてもよい。   Next, as shown in FIG. 3C, the first sealing body 105 is formed to cover the semiconductor device 104. As the first sealing body 105, any of an epoxy resin, a phenol resin, and a polyimide resin can be used. It may be a thermosetting resin or a photocurable resin. Further, the first sealing body 105 may use any known application method such as a screen printing method or a spin coating method.

第1封止体105を形成したら、次は、第1封止体105に対して公知のフォトリソグラフィ技術または公知のレーザー加工技術によりパターニングを行い、複数の開口部105aを形成する(図4(A))。これら開口部105aは、後に形成する第1配線層106と半導体デバイス104との電気的接続を確保するためのものである。   After forming the first sealing body 105, next, patterning is performed on the first sealing body 105 by a known photolithography technique or a known laser processing technique to form a plurality of openings 105a (FIG. 4 (FIG. A)). The openings 105 a are for ensuring electrical connection between the first wiring layer 106 to be formed later and the semiconductor device 104.

次に、図4(B)に示すように、第1封止体105及び開口部105aを覆うように銅シード層106aを形成する。銅シード層106aは、銅めっき(銅プレーティング)の下地となる銅、ニッケル、ニッケル−クロム(NiCr)、チタンまたはチタン−タングステン(TiW)などを主成分とする薄膜であり、例えばスパッタリング法で形成される。   Next, as shown in FIG. 4B, a copper seed layer 106a is formed so as to cover the first sealing body 105 and the opening 105a. The copper seed layer 106 a is a thin film mainly composed of copper, nickel, nickel-chromium (NiCr), titanium or titanium-tungsten (TiW), etc., which is a base of copper plating (copper plating), for example, by sputtering. It is formed.

次に、図4(C)に示すように、銅シード層106aを形成した後、銅シード層106aを覆うレジストマスク21を形成する。レジストマスク21の形成は、公知の方法(例えばスピンコーティング法)を用いてレジスト材料を塗布した後、フォトリソグラフィ技術または公知のレーザー加工技術により開口部21aを形成すればよい。この開口部21aが、後述する銅配線106bの形成領域として機能する。   Next, as shown in FIG. 4C, after the copper seed layer 106a is formed, a resist mask 21 covering the copper seed layer 106a is formed. The resist mask 21 may be formed by applying a resist material using a known method (for example, a spin coating method) and then forming the opening 21a using a photolithography technique or a known laser processing technique. The opening 21a functions as a formation region of a copper wire 106b described later.

レジストマスク21に対して開口部21aを形成した後、銅プレーティングにより銅シード層106a上に銅配線106bを形成する(図5(A))。銅プレーティングは電気めっきを用いても無電解めっきを用いてもよい。また、本実施形態では、銅プレーティングにより銅配線106bを形成したが、これに限らず、他の方法で銅配線106bを形成してもよい。例えば、スパッタリング法や蒸着法などを用いてもよい。   After the opening 21a is formed in the resist mask 21, a copper wiring 106b is formed on the copper seed layer 106a by copper plating (FIG. 5A). The copper plating may use electroplating or electroless plating. Further, although the copper wiring 106b is formed by copper plating in the present embodiment, the present invention is not limited to this, and the copper wiring 106b may be formed by another method. For example, a sputtering method, an evaporation method, or the like may be used.

次に、図5(B)に示すように、レジストマスク21を除去し、続いて図5(C)に示すように、銅配線106bをマスクとして銅シード層106aをエッチング除去する。銅シード層106aのエッチング除去により銅配線106bが電気的にアイソレートされ、第1配線層106として機能する。   Next, as shown in FIG. 5B, the resist mask 21 is removed, and then, as shown in FIG. 5C, the copper seed layer 106a is etched away using the copper interconnection 106b as a mask. The copper wiring 106 b is electrically isolated by etching and removing the copper seed layer 106 a, and functions as the first wiring layer 106.

銅配線106bを形成した後、次に、第2封止体107を形成し、フォトリソグラフィ技術または公知のレーザー加工技術により開口部107aを形成する(図6(A))。第2封止体107の形成に関しては、第1封止体105と同様であるので説明を省略する。開口部107aは、後述する外部端子110と第1配線層106とを電気的に接続するためのものである。   After forming the copper wiring 106b, next, the second sealing body 107 is formed, and the opening 107a is formed by the photolithography technique or the well-known laser processing technique (FIG. 6A). The formation of the second sealing body 107 is the same as that of the first sealing body 105, so the description will be omitted. The opening 107 a is for electrically connecting an external terminal 110 to be described later and the first wiring layer 106.

次に、図6(B)に示すように、第2封止体107に設けられた開口部107aを埋めるように外部端子(ここでは、はんだボール)110を形成する。外部端子110の形成は、公知の如何なる方法を用いてもよい。ここでは、260℃のリフロー処理により行う。また、はんだボールの代わりに、ピン形状の金属導体を形成してもよい。   Next, as shown in FIG. 6B, the external terminal (here, solder ball) 110 is formed so as to fill the opening 107a provided in the second sealing body 107. The external terminals 110 may be formed by any known method. Here, the reflow process is performed at 260 ° C. Also, instead of solder balls, pin-shaped metal conductors may be formed.

最後に、図6(C)に示すように、支持基板101ごと公知のダイシング工程により切断して個々の半導体デバイス104を切り離す。以上のようにして、複数の半導体パッケージ100a、100bが形成される。   Finally, as shown in FIG. 6C, the entire support substrate 101 is cut by a known dicing process to separate the individual semiconductor devices 104. As described above, the plurality of semiconductor packages 100a and 100b are formed.

なお、図3〜図6に示した製造工程では、第1配線層106に外部端子110を設けた構成としたが、図2に示したように、外部端子110を形成する前に、さらに第2配線層108を形成してもよい。   In the manufacturing steps shown in FIGS. 3 to 6, although the first wiring layer 106 is provided with the external terminal 110, as shown in FIG. The second wiring layer 108 may be formed.

以上のような製造工程を経て、図1に示す本発明の半導体パッケージ100が完成する。本発明によれば、前述した所定の条件を満たす応力緩和層102を支持基板101上に設けた構成とするため、その後の加熱工程(熱硬化性樹脂の硬化処理やはんだボールのリフロー処理)において、支持基板101と第1封止体105との間の物性値の差に起因する内部応力の発生を低減し、全体を通じて反りを極力抑えた半導体パッケージの製造工程が実現される。   Through the above manufacturing steps, the semiconductor package 100 of the present invention shown in FIG. 1 is completed. According to the present invention, in order to provide the stress relieving layer 102 satisfying the above-described predetermined conditions on the support substrate 101, in the subsequent heating step (hardening treatment of thermosetting resin and reflow treatment of solder balls) The generation of internal stress due to the difference in physical property value between the support substrate 101 and the first sealing body 105 is reduced, and the manufacturing process of the semiconductor package in which the warpage is suppressed as much as possible is realized.

(第2実施形態)
図7Aに、本発明の第2実施形態に係る半導体パッケージ200の断面図を示す。第2実施形態に係る半導体パッケージ200は、応力緩和層102上に導電層31を設けた点で、第1実施形態の半導体パッケージ100と異なる。その他の点は、第1実施形態に係る半導体パッケージ100と同様である。
Second Embodiment
FIG. 7A shows a cross-sectional view of a semiconductor package 200 according to a second embodiment of the present invention. The semiconductor package 200 according to the second embodiment differs from the semiconductor package 100 according to the first embodiment in that the conductive layer 31 is provided on the stress relieving layer 102. The other points are the same as those of the semiconductor package 100 according to the first embodiment.

図7Aにおいて、導電層31は、銅に限らず、アルミニウムや銀といった如何なる材料を用いてもよいが、半導体デバイス104からの放熱を効率良く行うためにも熱伝導率の良い金属材料を用いることが望ましい。   In FIG. 7A, the conductive layer 31 is not limited to copper, and any material such as aluminum or silver may be used, but in order to efficiently dissipate the heat from the semiconductor device 104, use a metal material with good thermal conductivity. Is desirable.

なお、図7Aに示す半導体パッケージ200では、半導体デバイス104の下方全体からの放熱効果を高めるために、図8Aに示すように、半導体デバイス104の下方に矩形(本実施形態では正方形)の導電層31を設けている。勿論、導電層31の形状は矩形に限らず、如何なる形状であってもよい。図8Aにおいて、点線は半導体デバイス104の輪郭を示しており、導電層31より内側に半導体デバイス104を配置している。   In the semiconductor package 200 shown in FIG. 7A, in order to enhance the heat radiation effect from the entire lower side of the semiconductor device 104, as shown in FIG. 8A, a rectangular (square in this embodiment) conductive layer below the semiconductor device 104. 31 is provided. Of course, the shape of the conductive layer 31 is not limited to a rectangle, and may be any shape. In FIG. 8A, a dotted line shows the outline of the semiconductor device 104, and the semiconductor device 104 is disposed inside the conductive layer 31.

また、導電層31は、図7Aに示すように、上層の銅配線32、33と電気的に接続させることができる。ここでは、第2封止体107上に形成された第2配線層108と電気的に接続させる例を示したが、第1封止体105上に形成された第1配線層106と電気的に接続させることも可能である。そのため、導電層31を配線として機能させたり、電気容量(キャパシタ)、抵抗、インダクタ等の負荷素子として機能させたりすることが可能である。   Further, as shown in FIG. 7A, the conductive layer 31 can be electrically connected to the copper wirings 32 and 33 in the upper layer. Here, although an example in which the second wiring layer 108 formed on the second sealing body 107 is electrically connected is shown, the first wiring layer 106 formed on the first sealing body 105 is electrically connected. It is also possible to connect to Therefore, the conductive layer 31 can function as a wiring or can function as a load element such as an electric capacity (capacitor), a resistor, or an inductor.

また、図7Bに、本発明の第2実施形態に係る半導体パッケージ200aの断面図を示す。図7Bに示すように、導電層31aを半導体デバイス104の輪郭の内側に設けることも可能である。さらに、本実施形態では、導電層31aによる段差を接着材103aによって埋め込む構造とし、接着材103aを平坦化層として用いる。この場合、接着材103aとしては、半導体デバイス104の接着時に十分な流動性を有する材料を用いることが望ましい。なお、半導体パッケージ200aについては、図8Bに示すように、導電層31aの輪郭は、半導体デバイス104の輪郭の内側に位置する。   Further, FIG. 7B shows a cross-sectional view of a semiconductor package 200a according to a second embodiment of the present invention. As shown in FIG. 7B, the conductive layer 31a can be provided inside the outline of the semiconductor device 104. Furthermore, in the present embodiment, the step formed by the conductive layer 31a is embedded with the adhesive 103a, and the adhesive 103a is used as the planarization layer. In this case, as the adhesive 103 a, it is desirable to use a material having sufficient fluidity when bonding the semiconductor device 104. In the semiconductor package 200a, as shown in FIG. 8B, the outline of the conductive layer 31a is located inside the outline of the semiconductor device 104.

以上のように、第2実施形態の半導体パッケージ200及び200aにおいては、第1実施形態の半導体パッケージ100が奏する効果に加えて、導電層31を用いて各半導体デバイス間を接続する配線や各種機能回路を構成する負荷素子を形成できるため、回路設計の自由度が向上とするという効果を奏する。   As described above, in the semiconductor packages 200 and 200a of the second embodiment, in addition to the effects exhibited by the semiconductor package 100 of the first embodiment, the interconnections and various functions for connecting the semiconductor devices using the conductive layer 31 Since the load elements constituting the circuit can be formed, the degree of freedom in circuit design can be improved.

さらに、半導体デバイス104の下方に熱伝導率のよい金属で構成される導電層を設けることにより、半導体デバイス104からの放熱効果を高めることができ、放熱性に優れた信頼性の高い半導体パッケージを実現することができる。   Furthermore, by providing a conductive layer made of a metal with high thermal conductivity below the semiconductor device 104, the heat dissipation effect from the semiconductor device 104 can be enhanced, and a highly reliable semiconductor package with excellent heat dissipation. It can be realized.

(第3実施形態)
図9Aに、本発明の第3実施形態に係る半導体パッケージ300の断面図を示す。第3実施形態に係る半導体パッケージ300Aは、応力緩和層102上に設ける導電層にパターニングを施して積極的に配線として用いる点で、第2実施形態の半導体パッケージ200と異なる。その他の点は、第2実施形態に係る半導体パッケージ200と同様である。
Third Embodiment
FIG. 9A shows a cross-sectional view of a semiconductor package 300 according to a third embodiment of the present invention. The semiconductor package 300A according to the third embodiment differs from the semiconductor package 200 according to the second embodiment in that the conductive layer provided on the stress relieving layer 102 is subjected to patterning and positively used as wiring. The other points are the same as those of the semiconductor package 200 according to the second embodiment.

図9Aにおいて、導電層41は、銅に限らず、アルミニウムや銀といった如何なる材料を用いてもよい。図中では、複数の導電層41に分離しているように見えるが、実際には、図10に示すように相互に電気的に接続され、半導体デバイスに形成された素子間を接続する配線として機能したり、様々な負荷素子として機能したりしている。   In FIG. 9A, the conductive layer 41 is not limited to copper, and any material such as aluminum or silver may be used. In the drawing, although it appears as being separated into a plurality of conductive layers 41, in actuality, as shown in FIG. 10, it is electrically connected to each other as a wire for connecting elements formed in a semiconductor device. It functions or functions as various load elements.

導電層41で形成可能な負荷素子としては、電気容量(キャパシタ)、抵抗、インダクタなどを挙げることができる。勿論、これ以外にも導電層をパターニングして形成することができる素子であれば如何なる素子を形成してもよい。   Examples of load elements that can be formed by the conductive layer 41 include an electric capacity (capacitor), a resistor, and an inductor. Of course, any other element that can be formed by patterning the conductive layer may be formed.

また、導電層41は、図9Aに示すように、上層の銅配線42、43と電気的に接続させることができる。ここでは、第2封止体107上に形成された第2配線層108と電気的に接続させる例を示したが、第1封止体105上に形成された第1配線層106と電気的に接続させることも可能である。   Also, as shown in FIG. 9A, the conductive layer 41 can be electrically connected to the copper wirings 42 and 43 in the upper layer. Here, although an example in which the second wiring layer 108 formed on the second sealing body 107 is electrically connected is shown, the first wiring layer 106 formed on the first sealing body 105 is electrically connected. It is also possible to connect to

また、図9Bに、本発明の第3実施形態に係る半導体パッケージ300bの断面図を示す。図9Bに示すように、本実施形態では、導電層41のパターンによる段差を接着材103bによって埋め込む構造とし、接着材103bを平坦化層として用いる。この場合、接着材103bとしては、半導体デバイス104の接着時に十分な流動性を有する材料を用いることが望ましい。さらに、図9Cに、本発明の第3実施形態に係る半導体パッケージ300cの断面図を示す。図9Cに示すように、本実施形態では、導電層41のパターンによる段差を平坦化層111によって埋め込む構造とし、平坦化層111の上に接着材103を介して半導体デバイス104を設ける構造としてもよい。このとき、平坦化層111としては、公知の樹脂材料を用いることができる。例えば、応力緩和層102と同じ材料を用いてもよいし、第1封止体105と同じ材料を用いてもよい。   Further, FIG. 9B shows a cross-sectional view of a semiconductor package 300b according to a third embodiment of the present invention. As shown to FIG. 9B, in this embodiment, it is set as the structure which embeds the level | step difference by the pattern of the conductive layer 41 with the adhesive material 103b, and uses the adhesive material 103b as a planarization layer. In this case, it is desirable to use a material having sufficient fluidity when bonding the semiconductor device 104 as the adhesive 103 b. Further, FIG. 9C shows a cross-sectional view of a semiconductor package 300c according to a third embodiment of the present invention. As shown in FIG. 9C, in the present embodiment, the step due to the pattern of the conductive layer 41 is buried by the planarization layer 111, and the semiconductor device 104 is provided on the planarization layer 111 via the adhesive 103. Good. At this time, as the planarization layer 111, a known resin material can be used. For example, the same material as the stress relieving layer 102 may be used, or the same material as the first sealing body 105 may be used.

以上のように、第3実施形態の半導体パッケージ300、300b及び300cにおいては、第2実施形態の半導体パッケージ200が奏する効果に加えて、導電層41を用いて各半導体デバイス間を接続する配線や各種機能回路を構成する負荷素子を形成できるため、回路設計の自由度が向上とするという効果を奏する。   As described above, in the semiconductor packages 300, 300b, and 300c of the third embodiment, in addition to the effects achieved by the semiconductor package 200 of the second embodiment, the interconnections connecting the respective semiconductor devices using the conductive layer 41 and the like. Since load elements constituting various functional circuits can be formed, there is an effect that the degree of freedom in circuit design is improved.

(第4実施形態)
図11に、本発明の第4実施形態に係る半導体パッケージ400の断面図を示す。第4実施形態に係る半導体パッケージ400は、導電層51を半導体デバイス104の下には設けない点で、第2実施形態の半導体パッケージ200と異なる。その他の点は、第2実施形態に係る半導体パッケージ200と同様である。
Fourth Embodiment
FIG. 11 shows a cross-sectional view of a semiconductor package 400 according to the fourth embodiment of the present invention. The semiconductor package 400 according to the fourth embodiment differs from the semiconductor package 200 according to the second embodiment in that the conductive layer 51 is not provided below the semiconductor device 104. The other points are the same as those of the semiconductor package 200 according to the second embodiment.

図11に示した半導体パッケージ400では、半導体デバイス104の下に導電層51を設けないため、導電層51の厚さの分だけ半導体デバイス104と支持基板101との間の距離が縮まることになる。本実施形態の構造とした場合、図12に示すように、導電層51は、半導体デバイス104より若干大きい面積で一部がくり抜かれた形となっている。このような構造は、例えば、導電層51を形成した後、導電層51をエッチングして応力緩和層102を露出させ、応力緩和層102の露出した部分に半導体デバイス104を設ければよい。   In the semiconductor package 400 shown in FIG. 11, since the conductive layer 51 is not provided under the semiconductor device 104, the distance between the semiconductor device 104 and the support substrate 101 is reduced by the thickness of the conductive layer 51. . In the case of the structure of the present embodiment, as shown in FIG. 12, the conductive layer 51 has an area slightly larger than the semiconductor device 104 and is partially hollowed out. In such a structure, for example, after the conductive layer 51 is formed, the conductive layer 51 is etched to expose the stress relieving layer 102, and the semiconductor device 104 may be provided in the exposed part of the stress relieving layer 102.

この場合においても、導電層51は、図11に示すように、上層の銅配線52、53と電気的に接続させることができる。また、第2封止体107上に形成された第2配線層108と電気的に接続させる例を示したが、第1封止体105上に形成された第1配線層106と電気的に接続させることも可能である。   Also in this case, the conductive layer 51 can be electrically connected to the upper copper wires 52 and 53 as shown in FIG. Further, although an example in which the second wiring layer 108 formed on the second sealing body 107 is electrically connected is shown, the first wiring layer 106 formed on the first sealing body 105 is electrically connected. It is also possible to make a connection.

以上のように、第4実施形態の半導体パッケージ400においては、第1実施形態及び第2実施形態に係る半導体パッケージが奏する効果に加えて、半導体パッケージ全体の厚さを薄くすることができるという効果を奏する。   As described above, in the semiconductor package 400 according to the fourth embodiment, in addition to the effects exhibited by the semiconductor packages according to the first and second embodiments, the effect that the thickness of the entire semiconductor package can be reduced. Play.

(第5実施形態)
図13に、本発明の第5実施形態に係る半導体パッケージ500の断面図を示す。第5実施形態に係る半導体パッケージ500は、半導体デバイス104の下に接着材103を設けない点で、第1実施形態の半導体パッケージ100と異なる。その他の点は、第1実施形態に係る半導体パッケージ100と同様である。
Fifth Embodiment
FIG. 13 shows a cross-sectional view of a semiconductor package 500 according to a fifth embodiment of the present invention. The semiconductor package 500 according to the fifth embodiment differs from the semiconductor package 100 according to the first embodiment in that the adhesive 103 is not provided under the semiconductor device 104. The other points are the same as those of the semiconductor package 100 according to the first embodiment.

本発明の第5実施形態に係る半導体パッケージ500では、応力緩和層102上に半導体デバイス104を配置するに当たり、接着材103を用いずに、直接応力緩和層102上に半導体デバイス104を接着することができる。具体的には、応力緩和層102を構成する樹脂を設けた後、キュア(焼成)工程を行う前に半導体デバイス104を搭載し、その状態でキュア工程を行えばよい。   In the semiconductor package 500 according to the fifth embodiment of the present invention, in disposing the semiconductor device 104 on the stress relieving layer 102, the semiconductor device 104 is directly bonded on the stress relieving layer 102 without using the adhesive 103. Can. Specifically, after providing the resin constituting the stress relaxation layer 102, the semiconductor device 104 may be mounted before the curing (baking) step, and the curing step may be performed in that state.

これにより、ダイアタッチフィルム等の接着材を用いる必要がないため、第1実施形態に係る半導体パッケージより応力が発生する可能性を低減でき、さらに接着材の分だけ厚みが減るため、半導体パッケージの小型化を図ることができる。   As a result, since it is not necessary to use an adhesive such as a die attach film, the possibility of generating stress can be reduced compared to the semiconductor package according to the first embodiment, and the thickness is reduced by the adhesive. Miniaturization can be achieved.

(第6実施形態)
上述した第1実施形態から第5実施形態に係る半導体パッケージでは、応力緩和層102の上に半導体デバイス104を設ける構成となるが、その際、半導体デバイス104を正確な位置に配置する必要がある。しかし、支持基板101上に応力緩和層102を設けた場合、支持基板101上にアライメントマークを設けたとしても応力緩和層102の存在により位置確認が困難となることが予想される。
Sixth Embodiment
In the semiconductor packages according to the first to fifth embodiments described above, the semiconductor device 104 is provided on the stress relieving layer 102. At this time, the semiconductor device 104 needs to be disposed at an accurate position. . However, when the stress relieving layer 102 is provided on the support substrate 101, it is expected that the position confirmation will be difficult due to the presence of the stress relieving layer 102 even if the alignment mark is provided on the support substrate 101.

そこで、第6実施形態に係る半導体パッケージ600では、半導体デバイス104を応力緩和層102上に配置する際に正確なアライメントを可能とするアライメントマークを設けることを特徴としている。   Therefore, the semiconductor package 600 according to the sixth embodiment is characterized in that an alignment mark which enables accurate alignment when the semiconductor device 104 is disposed on the stress relaxation layer 102 is provided.

図14(A)は、本発明の第6実施形態に係る半導体パッケージ600の一部を示す上面図であり、図14(B)は、図14(A)に示される点線62で囲まれた領域の拡大図である。   FIG. 14A is a top view showing a part of a semiconductor package 600 according to a sixth embodiment of the present invention, and FIG. 14B is surrounded by a dotted line 62 shown in FIG. 14A. It is an enlarged view of a field.

図14(A)において、支持基板101上には、ほぼ全面に応力緩和層102が設けられており、その上に複数の半導体デバイス104が配置される。第6実施形態に係る半導体パッケージ600では、応力緩和層102の一部に開口部63を設け、半導体デバイス104を配置する際の基準となるアライメントマークとして用いる点に特徴がある。   In FIG. 14A, a stress relieving layer 102 is provided almost all over the supporting substrate 101, and a plurality of semiconductor devices 104 are disposed thereon. The semiconductor package 600 according to the sixth embodiment is characterized in that an opening 63 is provided in a part of the stress relaxation layer 102 and used as an alignment mark serving as a reference when the semiconductor device 104 is disposed.

開口部63は、応力緩和層102に対してエッチングを施して形成すればよく、レーザーエッチングなど公知のエッチング技術を用いることができる。開口部63そのものをアライメントマークとして用いることもできるが、開口部63によって露出する支持基板101の表面にハーフエッチング等を用いて溝や穴等を設けてあってもよい。この場合、応力緩和層102の形成前に予め支持基板101をエッチングして溝や穴を形成してもよいし、開口部63を形成した後にレーザーエッチング等により支持基板101上に溝や穴を形成してもよい。   The opening 63 may be formed by etching the stress relieving layer 102, and a known etching technique such as laser etching can be used. Although the opening 63 itself can be used as an alignment mark, a groove, a hole, or the like may be provided on the surface of the support substrate 101 exposed by the opening 63 using half etching or the like. In this case, the groove or hole may be formed by etching the support substrate 101 before forming the stress relaxation layer 102, or after forming the opening 63, the groove or hole may be formed on the support substrate 101 by laser etching or the like. You may form.

ただし、開口部63のサイズを必要以上に大きくしてしまうと、その開口部63から応力緩和層102が剥がれてしまう虞があるため、開口部63のサイズには一定の制限を設けることが好ましい。   However, if the size of the opening 63 is increased more than necessary, the stress relieving layer 102 may be peeled off from the opening 63. Therefore, it is preferable to set a certain limit on the size of the opening 63. .

本発明者らの実験結果では、開口部63の一辺が480μm(または直径480μm)を超えると応力緩和層102の信頼性に影響が出ることが確認された。そのため、開口部63は、一辺が少なくとも480μm以下の多角形、又は、直径480μm以下の円形であることが望ましい。なお、開口部63のサイズの下限値は、支持基板の材質、開口加工精度やダイアタッチ装置のアライメント性能に応じて多少変動する可能性があるため、適宜決定すればよい。   According to the experimental results of the present inventors, it was confirmed that the reliability of the stress relaxation layer 102 is affected when one side of the opening 63 exceeds 480 μm (or the diameter of 480 μm). Therefore, it is desirable that the opening 63 be a polygon having a side of at least 480 μm or less or a circle having a diameter of 480 μm or less. The lower limit value of the size of the opening 63 may be somewhat determined depending on the material of the support substrate, the accuracy of the opening processing, and the alignment performance of the die attach apparatus, and thus may be determined appropriately.

ここで、本発明者らが行った実験結果について説明する。本発明者らは、図3〜図6を用いて説明したプロセスにより半導体パッケージを作製し、作製した半導体パッケージに対して、JEDEC規格のレベル2に準拠した湿度信頼性テスト(Moisture Reliability Test)を行った。なお、半導体パッケージを作製する際、図14を用いて説明したように、応力緩和層に形成された開口部をアライメントマークとして利用した。   Here, the experimental result which the present inventors performed is demonstrated. The present inventors produced semiconductor packages according to the process described with reference to FIGS. 3 to 6, and the humidity reliability test (Moisture Reliability Test) conforming to level 2 of JEDEC standards was performed on the produced semiconductor packages. went. In addition, when producing a semiconductor package, as demonstrated using FIG. 14, the opening part formed in the stress relaxation layer was utilized as an alignment mark.

湿度信頼性テストは、半導体パッケージを温度85℃、湿度60%の雰囲気中に168時間置いて十分に水分を含ませた後、最高温度260℃の標準的なリフロー条件に4回通すことにより行った。テスト後の評価は、超音波映像装置(Scanning Acoustic Tomograph:SAT)を用いて行った。   The humidity reliability test is performed by placing the semiconductor package in an atmosphere at a temperature of 85 ° C. and a humidity of 60% for 168 hours to sufficiently add moisture and passing four times through standard reflow conditions of a maximum temperature of 260 ° C. The Evaluation after the test was performed using an ultrasonic imaging device (Scanning Acoustic Tomograph: SAT).

図15は、一辺が400μmのサイズの開口部を形成した場合における信頼性評価結果である。図16は、一辺が500μmのサイズの開口部を形成した場合における信頼性評価結果である。図17は、一辺が600μmのサイズの開口部を形成した場合における信頼性評価結果である。   FIG. 15 shows a result of evaluation of reliability in the case where an opening having a size of 400 μm on one side is formed. FIG. 16 is a reliability evaluation result in the case where an opening having a size of 500 μm on one side is formed. FIG. 17 shows the results of evaluation of reliability in the case where an opening having a size of 600 μm on one side is formed.

図15〜図17に示されるように、開口部の一辺が500μm及び600μmの場合には、半導体パッケージの面内に不具合が発生したが、開口部の一辺が400μmの場合には、不具合は発生しなかった。さらに、本発明者らは、より過酷な条件(JEDEC規格のレベル1に準拠した湿度信頼性テスト)を開口部の一辺が400μmである半導体パッケージに対して行い、さらなる実験結果の検証を行った。   As shown in FIGS. 15 to 17, when the side of the opening is 500 μm or 600 μm, a defect occurs in the surface of the semiconductor package, but when the side of the opening is 400 μm, the defect occurs I did not. Furthermore, the present inventors conducted more severe conditions (humidity reliability test conforming to level 1 of JEDEC standard) to the semiconductor package whose one side of the opening is 400 μm, and further experiment results were verified. .

図18は、一辺が400μmのサイズの開口部における信頼性評価結果である。この信頼性評価では、半導体パッケージを温度85℃、湿度85%の雰囲気中に168時間置いて十分に水分を含ませた後、最高温度260℃の標準的なリフロー条件に3回通すことにより行った。テスト後の評価は、前述の超音波映像装置を用いて行った。その結果、図18に示されるように、JEDEC規格のレベル1に準拠した湿度信頼性テストの前後において半導体パッケージの外観に何ら変化はなく、高い信頼性を確保できていることが確認された。   FIG. 18 shows the result of evaluation of reliability in an opening having a size of 400 μm on one side. In this reliability evaluation, the semiconductor package is placed in an atmosphere at a temperature of 85 ° C. and a humidity of 85% for 168 hours to sufficiently add moisture, and then conducted three times under standard reflow conditions of a maximum temperature of 260 ° C. The Evaluation after the test was performed using the above-mentioned ultrasonic imaging apparatus. As a result, as shown in FIG. 18, it was confirmed that there was no change in the appearance of the semiconductor package before and after the humidity reliability test conforming to Level 1 of the JEDEC standard, and high reliability was secured.

これらの結果と、アライメントマークを形成する際の加工精度(σ=6μm)とを考慮すると、500μm±3σの範囲は、不具合が生じる恐れがあると考えられる。つまり、開口部の一辺が480μm(または直径480μm)を超えると応力緩和層の信頼性に影響が出ることが確認されたと言える。   In consideration of these results and the processing accuracy (σ = 6 μm) at the time of forming the alignment mark, it is considered that the range of 500 μm ± 3σ may cause a defect. That is, it can be said that it has been confirmed that the reliability of the stress relaxation layer is affected when one side of the opening exceeds 480 μm (or the diameter of 480 μm).

以上のように、第6実施形態に係る半導体パッケージ600は、半導体デバイス104の近傍(例えば、半導体デバイス104の角部)に、応力緩和層102のエッチングにより形成された開口部63を有し、その開口部63を、半導体デバイス104を応力緩和層102の上に配置する際のアライメントマークとして使用することにより、正確なアライメント作業が可能となり、半導体パッケージの製造工程の歩留りや信頼性の向上を図ることができる。   As described above, the semiconductor package 600 according to the sixth embodiment has the opening 63 formed by etching the stress relaxation layer 102 in the vicinity of the semiconductor device 104 (for example, at the corner of the semiconductor device 104). By using the opening 63 as an alignment mark when placing the semiconductor device 104 on the stress relaxation layer 102, accurate alignment work becomes possible, and the yield and reliability of the manufacturing process of the semiconductor package can be improved. Can be

さらに、開口部63を、一辺が少なくとも480μm以下の多角形、又は、直径480μm以下の円形(さらに好ましくは、一辺が少なくとも400μm以下の多角形、又は、直径400μm以下の円形)とすることにより、応力緩和層102の膜剥がれを防ぐことができる。これにより、第1実施形態からs第5実施形態までの半導体パッケージが備える利点を損なうことなく、半導体パッケージの製造工程の歩留り向上や信頼性向上を図ることができる。   Furthermore, the opening 63 is a polygon having one side of at least 480 μm or less, or a circle with a diameter of 480 μm or less (more preferably, a polygon with one side of at least 400 μm or less, or a circle with a diameter of 400 μm or less). Film peeling of the stress relaxation layer 102 can be prevented. As a result, the yield and reliability of the manufacturing process of the semiconductor package can be improved without losing the advantages of the semiconductor package of the first embodiment to the fifth embodiment.

本発明者らは、次の条件でサンプルを作製して信頼性試験を行い、封止体の剥がれ等が発生しないことを確認した。
(実施例1)
支持基板:金属基板(弾性率:193GPa@25℃、100℃)
応力緩和層:変性エポキシ系樹脂(弾性率:580MPa@25℃、4MPa@100℃)
封止体:エポキシ系樹脂(弾性率:16GPa@25℃、14.7GPa@100℃)
The present inventors produced a sample under the following conditions and conducted a reliability test, and confirmed that peeling of the sealed body did not occur.
Example 1
Supporting substrate: Metal substrate (elastic modulus: 193 GPa @ 25 ° C, 100 ° C)
Stress relaxation layer: Modified epoxy resin (elastic modulus: 580MPa @ 25 ° C, 4MPa @ 100 ° C)
Sealed body: Epoxy resin (elastic modulus: 16 GPa @ 25 ° C, 14.7 GPa @ 100 ° C)

(実施例2)
支持基板:金属基板(弾性率:193GPa@25℃、100℃)
応力緩和層:変性エポキシ系樹脂(弾性率:10MPa@25℃、0.6MPa@100℃)
封止体:エポキシ系樹脂(弾性率:1.8GPa@25℃、1GPa@100℃)
(Example 2)
Supporting substrate: Metal substrate (elastic modulus: 193 GPa @ 25 ° C, 100 ° C)
Stress relaxation layer: Modified epoxy resin (elastic modulus: 10 MPa @ 25 ° C, 0.6 MPa @ 100 ° C)
Sealed body: Epoxy resin (elastic modulus: 1.8 GPa @ 25 ° C, 1 GPa @ 100 ° C)

以上のように、同一温度条件下で、支持基板の弾性率をA、応力緩和層の弾性率をB、封止体の弾性率をCとした場合、A>C>B若しくはC>A>Bが成り立つように各弾性率の関係を調整することにより、支持基板と封止体との間に発生する内部応力を低減し、信頼性の高い半導体パッケージを実現することができる。   As described above, assuming that the elastic modulus of the supporting substrate is A, the elastic modulus of the stress relaxation layer is B, and the elastic modulus of the sealing body is C under the same temperature conditions, A> C> B or C> A> By adjusting the relationship of each elastic modulus so that B may be established, the internal stress generated between the support substrate and the sealing body can be reduced, and a highly reliable semiconductor package can be realized.

100:半導体パッケージ
101:支持基板
102:応力緩和層
103:接着材
104:半導体デバイス
105:第1封止体
106:第1配線層
107:第2封止体
108:第2配線層
109:第3封止体
110:外部端子
111:平坦化層
100: semiconductor package 101: support substrate 102: stress relaxation layer 103: adhesive 104: semiconductor device 105: first sealing body 106: first wiring layer 107: second sealing body 108: second wiring layer 109: second 3 Sealing body 110: external terminal 111: planarization layer

Claims (1)

支持基板と、
前記支持基板の主面に設けられた応力緩和層と、
前記応力緩和層の上に配置された半導体デバイスと、
前記半導体デバイスを覆い、前記応力緩和層とは異なる絶縁材料からなる封止体と、
前記封止体を貫通して前記半導体デバイスと電気的に接続された配線と、
前記配線と電気的に接続された外部端子と、
を備えることを特徴とする半導体パッケージ。
A supporting substrate,
A stress relieving layer provided on the main surface of the support substrate;
A semiconductor device disposed on the stress relieving layer;
An encapsulant covering the semiconductor device and made of an insulating material different from the stress relieving layer;
A wire penetrating through the sealing body and electrically connected to the semiconductor device;
An external terminal electrically connected to the wiring;
A semiconductor package comprising:
JP2019001563A 2014-06-19 2019-01-09 Semiconductor package and method of manufacturing the same Withdrawn JP2019075578A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014125982 2014-06-19
JP2014125982 2014-06-19
JP2015063728 2015-03-26
JP2015063728 2015-03-26

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015106230A Division JP6466252B2 (en) 2014-06-19 2015-05-26 Semiconductor package and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2019075578A true JP2019075578A (en) 2019-05-16

Family

ID=57071549

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015106230A Active JP6466252B2 (en) 2014-06-19 2015-05-26 Semiconductor package and manufacturing method thereof
JP2019001563A Withdrawn JP2019075578A (en) 2014-06-19 2019-01-09 Semiconductor package and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015106230A Active JP6466252B2 (en) 2014-06-19 2015-05-26 Semiconductor package and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JP6466252B2 (en)
KR (2) KR102487894B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971052B2 (en) * 2017-04-20 2021-11-24 京セラ株式会社 Manufacturing method of semiconductor device and semiconductor device
JP2019121733A (en) * 2018-01-10 2019-07-22 東京応化工業株式会社 Method of manufacturing laminate, laminate, and method of manufacturing electronic device
DE102018111989B4 (en) * 2018-05-18 2024-05-08 Rogers Germany Gmbh Electronic module and method for manufacturing the same
US11967542B2 (en) 2019-03-12 2024-04-23 Absolics Inc. Packaging substrate, and semiconductor device comprising same
WO2020185020A1 (en) 2019-03-12 2020-09-17 에스케이씨 주식회사 Loading cassette for substrate including glass and substrate loading method to which same is applied
WO2020185016A1 (en) 2019-03-12 2020-09-17 에스케이씨 주식회사 Packaging substrate and semiconductor device comprising same
KR102314986B1 (en) 2019-03-29 2021-10-19 에스케이씨 주식회사 Packaging glass substrate for semiconductor, packaging substrate for semiconductor and semiconductor device
JP7104245B2 (en) 2019-08-23 2022-07-20 アブソリックス インコーポレイテッド Packaging substrate and semiconductor devices including it
JP7476589B2 (en) 2020-03-16 2024-05-01 住友ベークライト株式会社 Method for manufacturing semiconductor device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043467A (en) * 2000-07-31 2002-02-08 Hitachi Chem Co Ltd Board for semiconductor package, its manufacturing method, semiconductor package using board and manufacturing method of semiconductor package
JP2002050721A (en) * 2000-08-03 2002-02-15 Hitachi Cable Ltd Electronic device and manufacturing method thereof
JP2003051569A (en) * 2001-08-03 2003-02-21 Seiko Epson Corp Semiconductor device and its manufacturing method
JP4654598B2 (en) * 2004-04-30 2011-03-23 ソニー株式会社 Semiconductor device and manufacturing method thereof
JP2006179856A (en) * 2004-11-25 2006-07-06 Fuji Electric Holdings Co Ltd Insulating substrate and semiconductor device
KR101454321B1 (en) * 2008-01-22 2014-10-23 페어차일드코리아반도체 주식회사 Semiconductor package with insulated metal substrate and method of fabricating the same
CN102106198B (en) * 2008-07-23 2013-05-01 日本电气株式会社 Semiconductor device and method for manufacturing same
JP5167022B2 (en) 2008-08-07 2013-03-21 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
TWI501376B (en) * 2009-10-07 2015-09-21 Xintec Inc Chip package and fabrication method thereof
JP2012041422A (en) * 2010-08-18 2012-03-01 Sekisui Chem Co Ltd Curable composition and optical semiconductor device using the same
CN103236492B (en) 2013-05-07 2016-03-02 江苏梁丰照明有限公司 Be exclusively used in LED encapsulation structure and the method for packing of liquid illumination/decoration

Also Published As

Publication number Publication date
KR20230011439A (en) 2023-01-20
JP6466252B2 (en) 2019-02-06
KR20150145697A (en) 2015-12-30
KR102673994B1 (en) 2024-06-12
JP2016178272A (en) 2016-10-06
KR102487894B1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
KR102673994B1 (en) Semiconductor package and method of manufacturing the same
TWI660477B (en) Semiconductor package and manufacturing method thereof
TWI677062B (en) Chip-embedded printed circuit board and semiconductor package using the pcb, and manufacturing method of the pcb
JP4708399B2 (en) Electronic device manufacturing method and electronic device
JP6268990B2 (en) Semiconductor device, semiconductor device manufacturing method, substrate, and substrate manufacturing method
JP2008252087A (en) Structure of semiconductor device package and method of the same
JP2008258621A (en) Semiconductor device package structure and formation method thereof
EP2064740A1 (en) Semiconductor device and manufacturing method thereof
JPWO2011024939A1 (en) Semiconductor device and manufacturing method thereof
US20080224276A1 (en) Semiconductor device package
JP2008210912A (en) Semiconductor device and its manufacturing method
JP6537815B2 (en) Semiconductor package and method of manufacturing the same
US9258890B2 (en) Support structure for stacked integrated circuit dies
JP2008311593A (en) Electronic device
JP4056360B2 (en) Semiconductor device and manufacturing method thereof
JP5370216B2 (en) Manufacturing method of semiconductor device
KR20240086616A (en) Semiconductor package and method of manufacturing the same
JP4131256B2 (en) Semiconductor device and manufacturing method thereof
JP2004072113A (en) Thermally strengthened integrated circuit package
JP2005094040A (en) Semiconductor device and packaging structure of semiconductor device
JP2004319656A (en) Method of manufacturing wafer level csp
JP4817548B2 (en) Semiconductor device and connection structure thereof
JP2020150172A (en) Semiconductor device
JP2010205887A (en) Semiconductor device
JP2008060100A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20191119