JP2019072724A - Powder for joining and paste for joining using the powder - Google Patents

Powder for joining and paste for joining using the powder Download PDF

Info

Publication number
JP2019072724A
JP2019072724A JP2017198389A JP2017198389A JP2019072724A JP 2019072724 A JP2019072724 A JP 2019072724A JP 2017198389 A JP2017198389 A JP 2017198389A JP 2017198389 A JP2017198389 A JP 2017198389A JP 2019072724 A JP2019072724 A JP 2019072724A
Authority
JP
Japan
Prior art keywords
powder
bonding
tin
copper
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017198389A
Other languages
Japanese (ja)
Inventor
朋彦 山口
Tomohiko Yamaguchi
朋彦 山口
樋上 晃裕
Akihiro Higami
晃裕 樋上
弘樹 村岡
Hiroki Muraoka
弘樹 村岡
広太郎 岩田
Kotaro Iwata
広太郎 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017198389A priority Critical patent/JP2019072724A/en
Publication of JP2019072724A publication Critical patent/JP2019072724A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a powder for joining and a paste for joining where comparatively high temperature reflow and high joining strength in a comparatively high temperature using environment are obtained even when the utilization ratio of rosin in a flux is reduced and the residue of the flux after reflowing is reduced.SOLUTION: In a tin-based powder for joining, the surface of a base powder containing tin and copper where the content of tin is 40 mass% or more and 60 mass% or less and the content of copper is 40 mass% or more and 60 mass% or less is coated with the layer of tin formate and copper formate. The base powder is desirably made of an intermetallic compound of tin and copper or desirably constituted with a coating layer made of a copper core and the intermetallic compound of tin and copper coating the core. A paste for joining contains the powder for joining and a flux and the content of rosin in the flux is 0 mass% or more and 2 mass% or less.SELECTED DRAWING: Figure 1

Description

本発明は、電子部品等の実装に好適に用いられる接合用粉末及びこの粉末を用いた接合ペーストに関する。更に詳しくは、フラックス中のロジンの使用比率を低減しても比較的高温のリフロー及び比較的高温の使用環境で高い接合強度が得られ、リフロー後のフラックスの残渣が減少する接合用粉末及びこの粉末を用いた接合ペーストに関するものである。   The present invention relates to a bonding powder suitably used for mounting electronic parts and the like, and a bonding paste using the powder. More specifically, a bonding powder which achieves high bonding strength in a relatively high temperature reflow and relatively high temperature use environment even if the proportion of rosin used in the flux is reduced, and a flux residue after reflow, The present invention relates to a bonding paste using powder.

接合用ペーストは、携帯電話やパソコン等の情報電子機器や車載等の製造に際し、電子部品の実装、その他部品の接合等に広く使用されている。接合用ペーストに求められる特性は、製造する機器の用途、使用環境等に応じて様々である。例えば、携帯電話等の情報電子機器では携帯性を重視させた薄型化、軽量化が要求されることから、実装部品の小型化とともに、実装に用いられる接合用ペーストについても、接合部品のファインピッチ(狭ピッチ)化や高密度実装に適した特性等が求められる。一方、車載用途等では、実装部品が比較的高温下に晒されることから、実装後のハンダが高温雰囲気で再溶融し、接合強度が低下するのを防止する必要がある。そのため、使用される接合用ペーストには、リフロー(溶融)後のハンダに対して高い耐熱性等を付与する特性が求められる。   The bonding paste is widely used for mounting of electronic parts, bonding of other parts, and the like at the time of manufacturing information electronic devices such as mobile phones and personal computers and vehicles, etc. The characteristics required of the bonding paste vary depending on the application of the apparatus to be produced, the environment of use, and the like. For example, since information electronic devices such as mobile phones are required to be thin and lightweight with emphasis on portability, the fine pitch of bonding parts is also used for bonding paste used for mounting as well as miniaturization of mounting parts. Characteristics and the like suitable for (narrow pitch) and high density mounting are required. On the other hand, in automotive applications and the like, since the mounted components are exposed to relatively high temperatures, it is necessary to prevent the solder after mounting from being remelted in a high temperature atmosphere and the bonding strength being lowered. Therefore, the bonding paste to be used is required to have high heat resistance and the like to the solder after reflow (melting).

このような電子部品の実装等に用いられる接合用ペーストは、接合用粉末とフラックスを混合することによってペースト状に調製される。フラックスには、一般に樹脂成分や溶剤成分の他、活性剤やその他の成分が含まれ、樹脂成分には、電気絶縁性や耐湿性、溶融時のハンダ付性能等に優れたロジンが一般的に広く使用されている。   The bonding paste used for mounting such an electronic component is prepared in the form of a paste by mixing the bonding powder and the flux. The flux generally contains an activator and other components in addition to the resin component and the solvent component, and the resin component generally includes rosin which is excellent in electrical insulation, moisture resistance, and soldering performance at melting. It is widely used.

接合用ペーストを用いた実装では、通常、リフロー後の接合表面に付着する活性成分等を除去するために洗浄を行うが、ロジンを主成分として含むフラックスを用いて調製された接合用ペーストの場合、この洗浄を水だけで行うことはできず、有機溶剤による洗浄が必要となる。しかし、有機溶剤を用いて洗浄を行うと、有機溶剤が大気中に揮発することで火災を引き起こしたり、大気や排水を汚染する原因となることから、実装中の安全衛生面や環境面等で問題があった。   In mounting using a bonding paste, cleaning is usually performed to remove active components and the like adhering to the bonding surface after reflow, but in the case of a bonding paste prepared using a flux containing rosin as a main component However, this washing can not be performed with water alone, and it is necessary to wash with an organic solvent. However, cleaning with an organic solvent causes the fire to occur as the organic solvent volatilizes in the atmosphere, or causes pollution of the atmosphere and drainage, so it is not safe in terms of safety and health during installation, or the environment. There was a problem.

この問題を解決するために、従来、印刷性及び溶融性に優れるとともに、リフロー後、アルカリイオン水のみで洗浄可能であって、粘度の経時安定性に優れたペーストを調製できるハンダペースト(接合用ペースト)が提案されている(例えば、特許文献1参照。)。このハンダペーストは、カルボキシル基を有するアクリル系樹脂とチキソ剤と溶剤と活性剤とを含み、上記アクリル系樹脂は、SP値が9.4〜12の(メタ)アクリル酸エステル単量体と、(メタ)アクリル酸単量体と、(メタ)アクリル酸エステル単量体及び(メタ)アクリル酸単量体と共重合可能な他のビニル基を有する単量体を含有し、上記アクリル系樹脂の酸価値が50〜250mgKOH/g、質量平均分子量が1000〜20000である。   In order to solve this problem, conventionally, it is possible to prepare a paste which is excellent in printability and meltability, can be washed only with alkaline ionized water after reflow, and has excellent viscosity stability over time (for bonding Paste) has been proposed (see, for example, Patent Document 1). This solder paste contains an acrylic resin having a carboxyl group, a thixo agent, a solvent and an activator, and the above acrylic resin has a (meth) acrylic acid ester monomer with an SP value of 9.4 to 12, (Meth) acrylic acid monomer, (meth) acrylic acid ester monomer and other vinyl group copolymerizable with (meth) acrylic acid monomer, containing the above acrylic resin Acid value is 50 to 250 mg KOH / g, and the weight average molecular weight is 1,000 to 20,000.

特開2016−150344号公報(請求項1、段落[0001])JP, 2016-150344, A (claim 1, paragraph [0001])

特許文献1に示されるハンダペースト(接合用ペースト)では、リフロー後の接合表面に付着する活性成分等をアルカリイオン水のみで洗浄可能であるとしているが、フラックス中の樹脂成分であるアクリル系樹脂をSP値が9.4〜12の範囲にある(メタ)アクリル酸エステル単量体等の中から選定する必要があった。そして従来からのフラックス中のロジンの使用比率を低減しても高い接合強度が得られ、リフロー後のフラックスの残渣が減少する接合用粉末及びこの粉末を用いた接合ペーストが求められていた。   In the solder paste (paste for bonding) shown in Patent Document 1, although it is assumed that active components and the like attached to the bonding surface after reflow can be washed only with alkaline ionized water, acrylic resin which is a resin component in flux It was necessary to select from among (meth) acrylate monomers having an SP value in the range of 9.4 to 12, and the like. And, even if the use ratio of rosin in the conventional flux is reduced, a high bonding strength can be obtained, and a bonding powder and a bonding paste using this powder are desired in which the residue of the flux after reflow is reduced.

本発明の目的は、フラックス中のロジンの使用比率を低減しても比較的高温のリフロー及び比較的高温の使用環境で高い接合強度が得られ、リフロー後のフラックスの残渣が減少する接合用粉末及びこの粉末を用いた接合用ペーストを提供することにある。   It is an object of the present invention to provide a bonding powder in which high bonding strength can be obtained in a relatively high temperature reflow and relatively high temperature use environment even if the proportion of rosin used in the flux is reduced, and flux residue after reflow is reduced. And it is providing the paste for joining using this powder.

本発明者らは、母体粉末が銅と錫との金属間化合物であるか、又は銅からなる中心核とこの中心核を被覆する銅と錫との金属間化合物からなる被覆層で構成される錫系接合用粉末について、母体粉末の表面をギ酸錫及びギ酸銅の層で被覆することにより、比較的高温のリフローであってもギ酸錫及びギ酸銅の層で母体粉末の表面を保護する効果があり、フラックス中のロジンの使用比率を低減しても高い接合強度が得られることを知見し、本発明に到達した。   The inventors of the present invention are configured such that the matrix powder is an intermetallic compound of copper and tin, or a central core made of copper and a coating layer made of an intermetallic compound of copper and tin covering the central core. The effect of protecting the surface of the base powder with the tin formate and copper formate layer even with relatively high temperature reflow, by covering the surface of the base powder with the tin format bonding powder, with the surface of the base powder coated with the tin formate and copper formate layer. It has been found that high bonding strength can be obtained even if the proportion of rosin used in the flux is reduced, and the present invention has been achieved.

本発明の第1の観点は、錫の含有割合が40質量%以上60質量%以下であって、銅の含有割合が40質量%以上60質量%以下である錫と銅を含む母体粉末の表面がギ酸錫及びギ酸銅の層で被覆された錫系接合用粉末である。   The first aspect of the present invention is the surface of a base powder containing tin and copper in which the content of tin is 40% by mass to 60% by mass and the content of copper is 40% by mass to 60% by mass. Is a tin-based bonding powder coated with a layer of tin formate and copper formate.

本発明の第2の観点は、第1の観点に基づく発明であって、前記母体粉末が銅と錫との金属間化合物である錫系接合用粉末である。   A second aspect of the present invention is the invention based on the first aspect, wherein the base powder is a tin-based bonding powder which is an intermetallic compound of copper and tin.

本発明の第3の観点は、第1の観点に基づく発明であって、前記母体粉末が銅からなる中心核と前記中心核を被覆する銅と錫との金属間化合物からなる被覆層で構成された錫系接合用粉末(CuコアCuSnシェル粉末ということもある。)である。   A third aspect of the present invention is the invention based on the first aspect, wherein the base powder is composed of a central core consisting of copper and a covering layer consisting of an intermetallic compound of copper and tin for covering the central core. The tin-based bonding powder (also referred to as Cu core CuSn shell powder).

本発明の第4の観点は、第2又は第3の観点に基づく発明であって、前記銅と錫との金属間化合物がCu6Sn5及び/又はCu3Snである錫系接合用粉末である。 A fourth aspect of the present invention is the invention based on the second or third aspect, wherein the intermetallic compound of copper and tin is Cu 6 Sn 5 and / or Cu 3 Sn. It is.

本発明の第5の観点は、第1ないし第4の観点のいずれかの観点に基づく接合用粉末とフラックスを含み、前記フラックス中、ロジンを0質量%以上2質量%以下の割合で含む接合用ペーストである。   According to a fifth aspect of the present invention, there is provided a junction including the powder for bonding and the flux according to any one of the first to fourth aspects, wherein the flux contains rosin at a ratio of 0% by mass or more and 2% by mass or less. Paste.

本発明の第1の観点の接合用粉末は、母体粉末を被覆している最外殻のギ酸錫及びギ酸銅の層がリフロー時に200℃以上で加熱されると錫及び銅にまで還元され、最外殻で覆われていた銅と錫との金属間化合物に融合するため、リフロー後に接合用ペースト中のフラックスに起因して残存する酸化物の除去が不要となるか、又はその除去を軽減でき、接合用ペースト中のフラックスに含まれるロジンの使用比率を低減できる。言い換えれば、リフロー時にギ酸錫及びギ酸銅の層が200℃以上で還元された際に発生する成分は、CO2とH2となって接合面に残存せず、接合面の残渣としての課題も解決される。また比較的高温のリフロー及び比較的高温の使用環境で高い接合強度が得られる。 The bonding powder according to the first aspect of the present invention is reduced to tin and copper when the outermost tin formate and copper formate layer covering the base powder is heated at 200 ° C. or higher during reflow, Because it fuses with the copper and tin intermetallic compound covered with the outermost shell, removal of the oxide remaining due to the flux in the bonding paste after reflow is not necessary, or its removal is reduced It is possible to reduce the use ratio of rosin contained in the flux in the bonding paste. In other words, the components generated when the tin formate and copper formate layers are reduced at 200 ° C. or higher during reflow do not remain on the bonding surface as CO 2 and H 2, and the problem as a residue on the bonding surface is also obtained. Resolved. In addition, high bonding strength can be obtained in relatively high temperature reflow and relatively high temperature use environments.

本発明の第2の観点及び第3の観点の接合用粉末は、上記第1の観点の接合用粉末の特長に加えて、最外殻のギ酸錫及びギ酸銅の層が、銅と錫との金属間化合物を被覆しているため、リフロー後の組成は、融点の高い金属間化合物のみになるか、或いは金属間化合物が主成分になり、こうした金属間化合物は、凝固開始温度が上昇することで再溶融が起こりにくくなる。このため、この接合用粉末は、特に高温雰囲気に晒される電子部品等の実装に用いられる接合用粉末として好適に用いることができる。また、粉末を構成する一つの金属粒子内において、銅と錫が含まれるため、リフロー時の溶融ムラや組成ズレによる接合強度の低下を防止できる。   In the bonding powder according to the second and third aspects of the present invention, in addition to the features of the bonding powder according to the first aspect, the outermost tin formate and copper formate layers are copper and tin In the composition after reflow, only the intermetallic compound having a high melting point or the intermetallic compound becomes a main component, and such an intermetallic compound has an increase in solidification initiation temperature. This makes remelting less likely to occur. For this reason, this bonding powder can be suitably used as a bonding powder used to mount an electronic component or the like that is particularly exposed to a high temperature atmosphere. Further, since copper and tin are contained in one metal particle constituting the powder, it is possible to prevent a decrease in bonding strength due to uneven melting at the time of reflow and compositional deviation.

母体粉末が銅と錫との金属間化合物である第2の観点の接合用粉末は、金属間化合物が脆性物質であるため、溶融後の接合層の応力緩和能力が高くないが、接合層が均一な組成になる特長がある。CuコアCuSnシェル粉末である第3の接合用粉末は、溶融後の接合層に銅が残るため、接合層が不均一な組成になるが、接合層に銅が残ることで接合層の熱伝導性が良好となり、第2の観点の接合用粉末と比べて、接合層の応力緩和能力が高い特長がある。   The bonding powder according to the second aspect, in which the matrix powder is an intermetallic compound of copper and tin, is a brittle substance because the intermetallic compound is a brittle substance, so the stress relaxation capability of the bonding layer after melting is not high. It has the feature of becoming a uniform composition. In the third bonding powder, which is a Cu core CuSn shell powder, copper remains in the bonding layer after melting, so the bonding layer has a non-uniform composition, but copper remains in the bonding layer to cause thermal conduction of the bonding layer. As compared with the bonding powder of the second aspect, the bonding layer has a feature that the stress relaxation capability of the bonding layer is high.

本発明の第4の観点の接合用粉末は、銅と錫との金属間化合物がCu6Sn5及び/又はCu3Snである。こうした金属間化合物のうち、ε相(Cu3Sn)の融点は676℃、η相(Cn6Sn5)の融点は415℃と非常に高いため、凝固開始温度が300〜640℃程度まで上昇することで再溶融が起こりにくくなる。 In the bonding powder of the fourth aspect of the present invention, the intermetallic compound of copper and tin is Cu 6 Sn 5 and / or Cu 3 Sn. Among these intermetallic compounds, the melting point of the ε phase (Cu 3 Sn) is 676 ° C., and the melting point of the (phase (Cn 6 Sn 5 ) is very high at 415 ° C., so the solidification start temperature rises to about 300 to 640 ° C. By doing this, remelting does not occur easily.

本発明の第5の観点の接合用ペーストは、上記接合用粉末とフラックスを含み、フラックス中、ロジンを0質量%以上2質量%以下の割合で含むため、このハンダ用ペーストは、リフロー時及びリフロー後に上記第1ないし第4の観点の接合用粉末の特長を有するとともに、リフロー後のフラックスの残渣が減少する。   The paste for bonding according to the fifth aspect of the present invention contains the powder for bonding and the flux, and contains rosin at a ratio of 0% by mass or more and 2% by mass or less in the flux. While having the features of the bonding powder of the first to fourth aspects after reflow, the residue of the flux after reflow is reduced.

本発明実施形態の接合用粉末の断面構造を模式的に表した図である。図1(a)は母体粉末が銅と錫との金属間化合物からなる接合用粉末の断面構造を示し、図1(b)は母体粉末が銅からなる中心核とこの中心核を被覆する銅と錫との金属間化合物からなる被覆層で構成された接合用粉末の断面構造を示す。It is the figure which represented typically the cross-section of the powder for joining of this invention embodiment. FIG. 1 (a) shows the cross-sectional structure of the bonding powder in which the base powder is an intermetallic compound of copper and tin, and FIG. 1 (b) shows the core of the base powder made of copper and copper covering this core. The cross-section of the powder for joining comprised with the coating layer which consists of an intermetallic compound of and tin is shown. 本発明の接合用粉末の製造装置の構成図である。It is a block diagram of the manufacturing apparatus of the powder for joining of this invention. 本発明の母体粉末にギ酸錫及びギ酸銅の層を形成させるための実験装置の構成図である。It is a block diagram of the experimental apparatus for forming the layer of a tin formate and a copper formate on the base powder of this invention.

<第1の実施形態>
〔接合用粉末〕
先ず本発明を実施するための第1の実施形態を図面に基づいて説明する。図1(a)に示すように、この実施形態の接合用粉末10では、母体粉末11が銅と錫との金属間化合物(CuSn金属間化合物)からなり、この母体粉末11の表面がギ酸錫及びギ酸銅の層12で被覆される。母体粉末11の銅と錫との金属間化合物としては、Cu3Sn、Cu6Sn5、Cu10Sn3及びCu41Sn11からなる群より選ばれた1種又は2種以上の化合物が挙げられるが、実際には、母体粉末11は銅と錫との組成比により、主にCu3Sn、Cu6Sn5のいずれか一方又は双方の化学構造で表される。
First Embodiment
[Powder for bonding]
First, a first embodiment for carrying out the present invention will be described based on the drawings. As shown in FIG. 1 (a), in the bonding powder 10 of this embodiment, the base powder 11 is made of an intermetallic compound of copper and tin (CuSn intermetallic compound), and the surface of the base powder 11 is tin formate. And coated with a layer 12 of copper formate. Examples of the intermetallic compound of copper and tin in the base powder 11 include one or more compounds selected from the group consisting of Cu 3 Sn, Cu 6 Sn 5 , Cu 10 Sn 3 and Cu 41 Sn 11 In practice, however, the base powder 11 is mainly represented by the chemical structure of either one or both of Cu 3 Sn and Cu 6 Sn 5 depending on the composition ratio of copper and tin.

接合用粉末の全体量100質量%に対し、銅の含有割合が40質量%以上60質量%以下である。好ましい銅の含有割合は40質量%以上50質量%以下である。この接合用粉末の銅の割合を上記範囲で含ませることにより、リフロー後に、300〜640℃程度の高い凝固開始温度を有するSn−Cu合金を形成する。なお、銅の含有させることにより、リフロー後は、錫よりも凝固開始温度の高いSn−Cu合金を形成する。これにより、この接合用粉末を含む接合用ペーストのリフローによって形成される接合用バンプでは、耐熱性が大幅に向上し、再溶融及び接合強度の低下を防止することができる。このため、特に高温雰囲気に晒される電子部品等の実装に用いられる接合用粉末として好適に用いることができる。   The content of copper is 40% by mass or more and 60% by mass or less based on 100% by mass of the total amount of the bonding powder. The preferable content rate of copper is 40 mass% or more and 50 mass% or less. By including the proportion of copper of the bonding powder in the above range, a Sn—Cu alloy having a high solidification start temperature of about 300 to 640 ° C. is formed after reflow. Note that, by containing copper, after reflow, an Sn—Cu alloy having a solidification start temperature higher than that of tin is formed. Thereby, in the bonding bump formed by the reflow of the bonding paste containing the bonding powder, the heat resistance can be greatly improved, and the remelting and the decrease in the bonding strength can be prevented. For this reason, it can be suitably used as a bonding powder used to mount an electronic component or the like that is particularly exposed to a high temperature atmosphere.

また、接合用粉末の全体量100質量%に対し、錫の含有割合は、粉末中の上記銅以外の残部となる40質量%以上60質量%以下である。好ましい錫の含有割合は50質量%以上60質量%以下である。錫の含有割合が下限値未満では、接合時において、溶融する錫が不足し、溶融不良を起こし、接合不良を発生する。また錫の含有割合が上限値を超えると、結果的に銅の含有割合が少なくなり、接合層に錫成分が残留し耐熱性が低下し、200℃以上の高温雰囲気下において基板等との接合強度が低下する。   Moreover, the content rate of tin is 40 mass% or more and 60 mass% or less which become remainder parts other than the said copper in powder with respect to 100 mass% of whole quantity of the powder for joining. The preferable content rate of tin is 50 mass% or more and 60 mass% or less. When the content ratio of tin is less than the lower limit value, molten tin is insufficient at the time of bonding, causing melting failure and causing bonding failure. When the content of tin exceeds the upper limit, the content of copper decreases as a result, and the tin component remains in the bonding layer to lower the heat resistance, and bonding with a substrate or the like in a high temperature atmosphere of 200 ° C. or higher. The strength is reduced.

この接合用粉末は、平均粒径が1μm以上30μm以下の範囲にあることが好ましい。接合用粉末の平均粒径を30μm以下に限定したのは、30μmを越えると、接合パターン表面を接合用ペーストで印刷する場合に塗布ムラが生じ、パターン全面を均一に印刷することが困難になるからである。また1μm未満になると、比表面積が高くなり、最外殻のギ酸錫及びギ酸銅の層12が十分に母体粉末11を被覆できていない可能性があるためである。この接合用粉末は、銅と錫との金属間化合物であるCu6Sn5が主体であれば、3〜20μm程度の平均粒径を有することが好ましく、銅と錫との金属間化合物であるCu3Snが主体であれば、2〜5μm程度の平均粒径を有することが好ましい。なお、本明細書において、粉末の平均粒径とは、レーザー回折散乱法を用いた粒度分布測定装置(堀場製作所社製、レーザー回折/散乱式粒子径分布測定装置LA−950)にて測定した体積累積中位径(Median径、D50)をいう。 The bonding powder preferably has an average particle diameter in the range of 1 μm to 30 μm. If the average particle diameter of the bonding powder is limited to 30 μm or less, if it exceeds 30 μm, coating unevenness occurs when the bonding pattern surface is printed with the bonding paste, and it becomes difficult to print the entire pattern uniformly. It is from. When the thickness is less than 1 μm, the specific surface area is increased, and the outermost tin formate and copper formate layer 12 may not sufficiently cover the base powder 11. The bonding powder preferably has an average particle diameter of about 3 to 20 μm as long as it is mainly composed of Cu 6 Sn 5 which is an intermetallic compound of copper and tin, and is an intermetallic compound of copper and tin If Cu 3 Sn is the main component, it is preferable to have an average particle diameter of about 2 to 5 μm. In the present specification, the average particle diameter of the powder is measured with a particle size distribution measuring apparatus (laser diffraction / scattering particle size distribution measuring apparatus LA-950 manufactured by Horiba, Ltd.) using a laser diffraction scattering method. Volume cumulative median diameter (Median diameter, D 50 ).

ギ酸錫及びギ酸銅の層の厚さは10nm以上30nm以下であることが好ましい。ギ酸錫及びギ酸銅の層の厚さはこの範囲で厚い方がより好ましい。ギ酸錫及びギ酸銅の層の形成メカニズムは、母体粉末表面に形成されている自然酸化膜が後述するギ酸含有窒素ガスと接触することでギ酸錫及びギ酸銅の層に化学変化することによる。ギ酸錫及びギ酸銅の層の厚さが10nm以下では上記自然酸化膜が完全にギ酸錫及びギ酸銅に化学変化しておらず、本発明の効果が発現しない。また30nmを超えても本発明の効果は殆ど変わらない。   The thickness of the tin formate and copper formate layer is preferably 10 nm or more and 30 nm or less. The thickness of the tin formate and copper formate layers is more preferable in this range. The formation mechanism of the layer of tin formate and copper formate is based on the fact that the natural oxide film formed on the surface of the base powder is chemically changed to a layer of tin formate and copper formate by contacting with a formic acid containing nitrogen gas described later. When the thickness of the tin formate and copper formate layer is 10 nm or less, the natural oxide film is not completely chemically converted to tin formate and copper formate, and the effect of the present invention is not exhibited. The effect of the present invention is hardly changed even if it exceeds 30 nm.

〔接合用粉末の製造方法〕
第1の実施形態の母体粉末は、中心核が銅で被覆層が錫のCuコアSnシェル粉末を沸点が100℃以上の高沸点溶媒を加えて分散させ、不活性ガス雰囲気下、所定の温度で加熱して中心核の銅と被覆層の錫とが完全に融合することにより得られる。使用される高沸点溶媒としてはエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ヒマシ油等が挙げられる。上記加熱処理は、接合用粉末の平均粒径の大きさ等に応じて、100〜130℃の温度で2〜3時間行うのが好ましい。上記高沸点溶媒を用いて加熱処理する代わりに、CuコアSnシェル粉末を不活性ガス雰囲気下、200〜220℃で1〜2時間維持することにより、銅からなる中心核、中心核を被覆する錫からなる被覆層が反応して、銅と錫の金属間化合物からなる母体粉末を得ることもできる。処理温度又は保持時間が下限値未満では、中心核に金属間化合物が形成されない場合がある。上記範囲内で、加熱温度及び加熱時間が短ければ、Cu6Sn5の金属間化合物からなる母体粉末が得られ、加熱温度及び加熱時間が長ければ、Cu6Sn5とCu3Snが混在した金属間化合物、或いはCu3Snからなる母体粉末が得られる。
[Method of producing bonding powder]
In the matrix powder of the first embodiment, a Cu core Sn shell powder with a core core of copper and a coating layer of tin is dispersed by adding a high boiling point solvent having a boiling point of 100 ° C. or higher, and under an inert gas atmosphere, a predetermined temperature And the copper of the central core and the tin of the covering layer are completely fused. As high boiling point solvents to be used, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, castor oil and the like can be mentioned. The heat treatment is preferably performed at a temperature of 100 to 130 ° C. for 2 to 3 hours, depending on the size of the average particle diameter of the bonding powder and the like. Instead of heat treatment using the high-boiling point solvent, the Cu core Sn shell powder is maintained in an inert gas atmosphere at 200 to 220 ° C. for 1 to 2 hours to coat the copper core and the core nucleus. The coating layer of tin can be reacted to obtain a matrix powder of an intermetallic compound of copper and tin. If the treatment temperature or the holding time is less than the lower limit value, the intermetallic compound may not be formed in the central nucleus. Within the above range, if the heating temperature and the heating time are short, a base powder composed of the intermetallic compound of Cu 6 Sn 5 is obtained, and if the heating temperature and the heating time are long, Cu 6 Sn 5 and Cu 3 Sn are mixed. A base powder made of an intermetallic compound or Cu 3 Sn is obtained.

この母体粉末の表面にギ酸錫及びギ酸銅の層を形成するには、母体粉末を密閉した反応容器に入れ、反応容器内にギ酸含有窒素ガスを流し、反応容器内をギ酸雰囲気にして100〜180℃の温度、好ましくは160〜180℃の温度で30〜60分間母体粉末を加熱する。ギ酸含有窒素ガスは、ギ酸ガスと窒素ガスの混合ガスである。混合ガス中のギ酸ガスの含有割合は2〜10体積%が好ましい。2体積%未満では、ギ酸錫及びギ酸銅の層の形成に時間がかかり過ぎ、10体積%を超えても被膜効果に差はない。これにより、母体粉末の表面にギ酸錫及びギ酸銅の層を形成した接合用粉末が得られる。反応容器から接合用粉末を取り出した後は、接合用粉末を大気雰囲気下に保管すると、ギ酸錫及びギ酸銅の層が大気中の酸素と反応して消失するおそれがあるため、接合用ペーストとして用いるまでは、接合用粉末を不活性雰囲気で保管することが好ましい。   In order to form a layer of tin formate and copper formate on the surface of the matrix powder, the matrix powder is placed in a closed reaction vessel, a formic acid-containing nitrogen gas is flowed into the reaction vessel, The base powder is heated at a temperature of 180 ° C., preferably at a temperature of 160-180 ° C. for 30 to 60 minutes. The formic acid-containing nitrogen gas is a mixed gas of formic acid gas and nitrogen gas. The content ratio of formic acid gas in the mixed gas is preferably 2 to 10% by volume. If it is less than 2% by volume, it takes too long to form a tin formate and copper formate layer, and even if it exceeds 10% by volume, there is no difference in the coating effect. As a result, a bonding powder having a tin formate and a copper formate layer formed on the surface of the base powder is obtained. After the bonding powder is taken out of the reaction vessel, if the bonding powder is stored in the atmosphere, the tin formate and copper formate layers may react with oxygen in the atmosphere and disappear, so as a bonding paste It is preferable to store the bonding powder in an inert atmosphere until it is used.

図2は接合用粉末の製造装置の一例を示す。図2に示すように、接合用粉末の製造装置30は流動床の反応容器30を備える。この反応容器30は、両端が閉止されかつ鉛直方向に延びる円筒状の筒本体31と、この筒本体31の側面に接続され母体粉末11を筒本体31に導入する原料導入管32と、筒本体31内の下端近傍に設けられ母体粉末11を受けるとともに筒本体内のガスを鉛直上方向に整流するスライドゲート式の整流板33と、筒本体31の底部から筒本体31に窒素ガス34又はギ酸ガス36と窒素ガス34の混合ガスであるギ酸含有窒素ガスを導入するガス導入管37とを備える。ガス導入管37の途中には窒素ガス中にギ酸ガスを混入するための切換弁37aが設けられる。筒本体31の下方には不活性ガス雰囲気に維持された回収タンク38が設けられる。筒本体31の底部と回収タンク38との間にはこれらを接続する導出管39が設けられる。円筒状の筒本体31の外周は熱媒が通るジャケット構造になっている。筒本体31の頂部には排ガスを排出するための排気管40が接続される。   FIG. 2 shows an example of a manufacturing apparatus for bonding powder. As shown in FIG. 2, the apparatus 30 for producing a bonding powder includes a reaction vessel 30 of a fluidized bed. The reaction container 30 has a cylindrical cylinder main body 31 closed at both ends and extending in the vertical direction, a raw material introduction pipe 32 connected to the side surface of the cylinder main body 31 and introducing the base powder 11 into the cylinder main body 31, Slide gate type current plate 33 provided near the lower end in 31 to receive base powder 11 and rectify gas in the cylinder main body vertically, nitrogen gas 34 or formic acid from bottom of cylinder main body 31 to cylinder main body 31 And a gas inlet pipe 37 for introducing a formic acid-containing nitrogen gas, which is a mixed gas of a gas 36 and a nitrogen gas 34. In the middle of the gas introduction pipe 37, a switching valve 37a for mixing formic acid gas into nitrogen gas is provided. Below the cylinder main body 31, a recovery tank 38 maintained in an inert gas atmosphere is provided. An outlet pipe 39 is provided between the bottom of the cylinder main body 31 and the recovery tank 38 to connect them. The outer periphery of the cylindrical tube body 31 has a jacket structure through which the heat medium passes. An exhaust pipe 40 for discharging the exhaust gas is connected to the top of the cylinder main body 31.

このように構成された装置30により、接合用粉末を製造するには、ガス導入管37の切換弁37aを切換えて流動床の反応容器30内の雰囲気を窒素ガス34で置換し、筒本体31を熱媒により100〜180℃、好ましくは160〜180℃まで昇温する。この状態で、原料粉末である母体粉末11を原料導入管32により導入し、筒本体内で流動状態にする。切換弁37aを更に切換えてギ酸ガス36を窒素ガス34に混入させ、筒本体31の内部にギ酸含有窒素ガスをガス導入管37より流入させる。流動状態の母体粉末11はギ酸含有窒素ガスと接触し、ギ酸と母体粉末の銅と錫との金属間化合物とが反応し、母体粉末表面にはギ酸錫及びギ酸銅の層12が形成される。反応時間は混合ガス中のギ酸ガスの含有割合(体積%未満)に応じて30〜60分間の範囲に設定される。ギ酸錫及びギ酸銅の層12が形成された後、切換弁37aを切換えて窒素ガス34のみ筒本体31の内部に導入し、筒本体内を降温した後、ガス整流板33を外して、導出管39を介して、筒本体31の底部より回収タンク38にギ酸錫及びギ酸銅の層が形成された母体粉末、即ち接合用粉末10を回収する。   In order to produce the bonding powder with the device 30 configured as described above, the switching valve 37a of the gas introduction pipe 37 is switched to replace the atmosphere in the reaction vessel 30 of the fluidized bed with nitrogen gas 34, and the cylinder main body 31 Is heated to 100 to 180.degree. C., preferably 160 to 180.degree. C., with a heat medium. In this state, the base powder 11 which is a raw material powder is introduced by the raw material introduction pipe 32, and is brought into a fluidized state in the cylinder main body. The switching valve 37 a is further switched to mix the formic acid gas 36 into the nitrogen gas 34, and the formic acid-containing nitrogen gas is made to flow into the inside of the cylinder main body 31 from the gas introduction pipe 37. The base powder 11 in a fluid state is contacted with formic acid-containing nitrogen gas, and the formic acid and the intermetallic compound of copper and tin of the base powder react to form a layer 12 of tin formate and copper formate on the surface of the base powder. . The reaction time is set in the range of 30 to 60 minutes depending on the content (less than volume%) of formic acid gas in the mixed gas. After the layer 12 of tin formate and copper formate is formed, the switching valve 37a is switched to introduce only nitrogen gas 34 into the inside of the cylinder main body 31 and cool the inside of the cylinder main body. The base powder in which the tin formate and copper formate layers are formed is collected in the collection tank 38 from the bottom of the cylinder main body 31 through the pipe 39, that is, the bonding powder 10 is collected.

<第2の実施形態>
〔接合用粉末〕
次に本発明を実施するための第2の実施形態を図面に基づいて説明する。図1(b)に示すように、この実施形態の接合用粉末20では、母体粉末21が銅からなる中心核22とこの中心核22を被覆する銅と錫との金属間化合物(CuSn金属間化合物)からなる被覆層23で構成され(CuコアCuSnシェル粉末で構成され)、そしてこの母体粉末21の表面がギ酸錫及びギ酸銅の層25で被覆される。銅と錫との金属間化合物は第1の実施形態の銅と錫との金属間化合物と同じである。また接合用粉末の全体量100質量%に対する銅の含有割合、同じく錫の含有割合、接合用粉末の平均粒径及びギ酸錫及びギ酸銅の層の厚さは第1の実施形態と同じ範囲にある。
Second Embodiment
[Powder for bonding]
Next, a second embodiment for carrying out the present invention will be described based on the drawings. As shown in FIG. 1 (b), in the bonding powder 20 of this embodiment, the core powder 22 of the base powder 21 is made of copper, and the intermetallic compound of copper and tin (CuSn intermetallic compound covering the core core 22) And the surface of the matrix powder 21 is coated with a layer 25 of tin formate and copper formate. The intermetallic compound of copper and tin is the same as the intermetallic compound of copper and tin in the first embodiment. Further, the content ratio of copper to the total amount 100% by mass of the powder for bonding, the content ratio of tin similarly, the average particle diameter of the powder for bonding and the thickness of the tin formate and copper formate layer are in the same range as the first embodiment. is there.

〔接合用粉末の製造方法〕
第2の実施形態の母体粉末は、中心核が銅で被覆層が錫のCuコアSnシェル粉末の銅と錫の各含有割合が第1の実施形態のそれと同じであれば、このCuコアSnシェル粉末を第1の実施形態と同様に、沸点が100℃以上の高沸点溶媒を加えて分散させ、不活性ガス雰囲気下、所定の温度で加熱するか、或いはCuコアSnシェル粉末を不活性ガス雰囲気下、200〜220℃で30分間〜1時間維持する。第1の実施形態との相違点は、第1の実施形態よりも、加熱時間又は維持時間を短くするか、或いは加熱温度又は維持温度を下げて、中心核の銅と被覆層の錫とを完全に融合させずに、中心核の銅が残存するように、加熱条件又は維持条件を調整する。なお、CuコアSnシェル粉末の銅と錫の各含有割合が第1の実施形態のそれよりもCuの含有割合がSnの含有割合よりも高ければ(Cuリッチであれば)、第1の実施形態と同様に熱処理する。こうすることにより、中心核の銅を、Cu6Sn5の金属間化合物の被覆層、Cu6Sn5とCu3Snが混在した金属間化合物の被覆層又はCu3Snの被覆層で、それぞれ被覆した母体粉末が得られる。
[Method of producing bonding powder]
In the base powder of the second embodiment, if the copper and tin content of the Cu core Sn shell powder whose core is copper and the coating layer is tin is the same as that of the first embodiment, this Cu core Sn As in the first embodiment, the shell powder is dispersed by adding a high boiling point solvent having a boiling point of 100 ° C. or higher, and heated at a predetermined temperature in an inert gas atmosphere, or the Cu core Sn shell powder is inert Maintain at 200 to 220 ° C. for 30 minutes to 1 hour in a gas atmosphere. The difference from the first embodiment is that the heating time or the maintenance time is shorter than in the first embodiment, or the heating temperature or the maintenance temperature is lowered to make the core nucleus copper and the coating layer tin The heating conditions or maintenance conditions are adjusted so that copper of the central core remains without completely fusing. In addition, if each content rate of copper and tin of Cu core Sn shell powder is higher than that of 1st Embodiment than the content rate of Sn (if it is Cu rich), 1st implementation Heat treatment as in the form. By doing this, the core nucleus copper is covered with the intermetallic compound of Cu 6 Sn 5 , the intermetallic compound covering layer in which Cu 6 Sn 5 and Cu 3 Sn are mixed, or the coating layer of Cu 3 Sn, respectively. A coated base powder is obtained.

得られた母体粉末の表面には、第1の実施形態と同様に、図2に示した製造装置を用いるなどして、ギ酸錫及びギ酸銅の層が形成され、第2の実施形態の接合用粉末が得られる。   Similar to the first embodiment, layers of tin formate and copper formate are formed on the surface of the obtained base powder using the manufacturing apparatus shown in FIG. 2 or the like, and the bonding of the second embodiment is performed. Powder is obtained.

〔接合用ペーストの調製〕
以上の第1及び第2の実施形態で製造された接合用粉末は、以下の方法により接合用ペーストに調製される。この接合用ペーストの調製は、接合用粉末とフラックスとを所定の割合で混合してペースト化することにより行われる。接合用ペーストの調製に用いられるフラックスは、特に限定されず、公知の溶剤、ロジン、チキソ剤及び活性剤等の各成分を混合して調製されたフラックスを用いることができる。粘度安定剤を添加剤として加えてもよい。
[Preparation of paste for bonding]
The bonding powder manufactured in the above first and second embodiments is prepared as a bonding paste by the following method. The preparation of the bonding paste is performed by mixing the bonding powder and the flux at a predetermined ratio to form a paste. The flux used for preparing the bonding paste is not particularly limited, and a flux prepared by mixing each component such as a known solvent, rosin, thixo agent and activator can be used. Viscosity stabilizers may be added as additives.

接合用フラックスは、上記各成分を所定の割合で混合することにより得られる。本実施形態の特徴ある点は、フラックス100質量%に対してロジンを0質量%以上2質量%以下の割合で含むことにある。フラックス100質量%に対して、ロジン以外の成分である溶剤の割合は30〜60質量%、チキソ剤の割合は1〜10質量%、活性剤の割合は0.1〜10質量%とするのが好ましい。ロジンを0質量%、即ちロジンレスにすることにより、リフロー後の接合箇所におけるフラックスの残渣を無くすことができ、2質量%以下であれば、その残渣の洗浄を軽減することができる。   The bonding flux is obtained by mixing the above-mentioned components at a predetermined ratio. A characteristic feature of the present embodiment is that the rosin is contained at a ratio of 0% by mass or more and 2% by mass or less with respect to 100% by mass of the flux. The proportion of solvent which is a component other than rosin is 30 to 60% by mass, the proportion of thixo agent is 1 to 10% by mass, and the proportion of activator is 0.1 to 10% by mass with respect to 100% by mass of flux Is preferred. By making the rosin 0% by mass, that is, rosin-free, it is possible to eliminate the residue of the flux at the junction after reflow, and if it is 2% by mass or less, washing of the residue can be alleviated.

溶剤の割合が下限値未満では、フラックスの粘度が高くなりすぎるため、これを用いた接合用ペーストの粘度も応じて高くなり、接合用粉末の充填性低下や塗布ムラが多発する等、印刷性が低下する不具合を生じる場合がある。一方、上限値を越えるとフラックスの粘度が低くなりすぎるため、これを用いた接合用ペーストの粘度も応じて低くなることから、接合粉末とフラックス成分が沈降分離する不具合を生じる場合がある。また、チキソ剤の割合が下限値未満では、接合用ペーストの粘度が低くなりすぎるため、接合粉末とフラックス成分が沈降分離するという不具合を生じる場合がある。一方、上限値を越えると接合用ペーストの粘度が高くなりすぎるため、ペーストの充填性や塗布ムラ等の印刷性低下という不具合を生じる場合がある。また、活性剤の割合が下限値未満では、接合粉末が溶融せず、十分な接合強度が得られないという不具合を生じる場合があり、一方、上限値を越えると保管中に活性剤が接合粉末と反応し易くなるため、接合用ペーストの保存安定性が低下するという不具合を生じる場合がある。   If the proportion of the solvent is less than the lower limit value, the viscosity of the flux becomes too high, so the viscosity of the bonding paste using it also becomes high accordingly, and the filling property of the bonding powder decreases frequently and coating unevenness occurs, printability May cause problems that cause On the other hand, if the upper limit value is exceeded, the viscosity of the flux becomes too low, and the viscosity of the bonding paste using it also decreases accordingly, which may cause a problem that the bonding powder and the flux component precipitate and separate. In addition, when the ratio of the thixotropic agent is less than the lower limit value, the viscosity of the bonding paste is too low, which may cause a problem that the bonding powder and the flux component precipitate and separate. On the other hand, if the upper limit value is exceeded, the viscosity of the bonding paste becomes too high, which may cause problems such as a decrease in the fillability of the paste and a decrease in printability such as uneven coating. In addition, if the ratio of the activator is less than the lower limit, the bonding powder may not be melted, which may cause a problem that a sufficient bonding strength can not be obtained. On the other hand, if the ratio exceeds the upper limit, the activator is bonded during storage. Since it becomes easy to react with, there may occur a problem that storage stability of the bonding paste is lowered.

接合用ペーストを調製する際の接合用フラックスの混合量は、調製後のペースト100質量%中に占める該フラックスの割合が5〜30質量%になる量にするのが好ましい。下限値未満ではフラックス不足でペースト化が困難になり、一方、上限値を越えるとペースト中のフラックスの含有割合が多すぎて金属の含有割合が少なくなってしまい、接合用粉末の溶融時に所望のサイズのバンプを得るのが困難になるからである。   The mixing amount of the bonding flux at the time of preparing the bonding paste is preferably such that the ratio of the flux in 100% by weight of the prepared paste is 5 to 30% by mass. If it is less than the lower limit, the flux will be insufficient and it will become difficult to paste, while if it exceeds the upper limit, the content of the flux in the paste will be too high and the content of the metal will decrease, which is desirable when the bonding powder is melted. It is because it becomes difficult to obtain a bump of a size.

この接合用ペーストは、上記第1及び第2の実施形態の接合用粉末を材料としているため、リフロー後は、溶融する接合用粉末が融点の高い金属間化合物を形成し、耐熱性が上昇するため、熱による再溶融が起こりにくい。このため、第1及び第2の実施形態の接合用粉末を用いた接合用ペーストは、特に高温雰囲気に晒される電子部品等の実装に好適に用いることができる。   Since this bonding paste is made of the bonding powder of the first and second embodiments, after reflow, the bonding powder to be melted forms an intermetallic compound having a high melting point, and the heat resistance is increased. Therefore, remelting by heat does not easily occur. For this reason, the paste for joining using the powder for joining of the 1st and 2nd embodiment can be used suitably for mounting of electronic parts etc. which are especially exposed to high temperature atmosphere.

次に本発明の実施例を比較例とともに詳しく説明する。   Next, an example of the present invention will be described in detail along with a comparative example.

CuSn金属間化合物系サンプルにギ酸錫及びギ酸銅の層を形成する実験を、図3に示す装置で行った。図3に示すように、この実験装置50は、密閉された反応容器51内に複数の加熱ランプ52と試験サンプルを載せる台座53が設けられる。反応容器51の一方の側壁54に窒素ガス又はギ酸含有窒素ガスを導入するガス導入管56が接続され、反応容器51の他方の側壁57に排ガスを排出するための排気管58が接続される。ガス導入管56の近傍にはギ酸濃度98質量%のギ酸水溶液55が入った液槽59が配置される。液槽59内には窒素ガス導入管59aとギ酸ガス排出管59bが設けられる。窒素ガス導入管59aの下端はギ酸水溶液中の液槽底部まで延び、ギ酸ガス排出管59bの下端はギ酸水溶液の液面より上方の液槽頂部に配置される。窒素ガス導入管59a及びギ酸ガス排出管59bとは切換弁56a及び56bを介してガス導入管56にそれぞれ接続される。液槽59には図示しないヒータが設けられる。図3では、台座53上に接合用粉末の母体粉末21を入れた目皿60を載せている。   An experiment for forming a tin formate and a copper formate layer on a CuSn intermetallic compound-based sample was performed using the apparatus shown in FIG. As shown in FIG. 3, the experimental apparatus 50 is provided with a plurality of heating lamps 52 and a pedestal 53 on which a test sample is placed in a sealed reaction container 51. A gas introduction pipe 56 for introducing nitrogen gas or nitrogen gas containing formic acid is connected to one side wall 54 of the reaction vessel 51, and an exhaust pipe 58 for discharging exhaust gas is connected to the other side wall 57 of the reaction vessel 51. In the vicinity of the gas introduction pipe 56, a liquid tank 59 containing a formic acid aqueous solution 55 having a formic acid concentration of 98% by mass is disposed. In the liquid tank 59, a nitrogen gas introduction pipe 59a and a formic acid gas discharge pipe 59b are provided. The lower end of the nitrogen gas introduction pipe 59a extends to the bottom of the liquid tank in the formic acid aqueous solution, and the lower end of the formic acid gas discharge pipe 59b is disposed at the top of the liquid tank above the liquid surface of the formic acid aqueous solution. The nitrogen gas inlet pipe 59a and the formic acid gas outlet pipe 59b are connected to the gas inlet pipe 56 via the switching valves 56a and 56b, respectively. The liquid tank 59 is provided with a heater (not shown). In FIG. 3, a tray 60 in which the base powder 21 of the bonding powder is placed on the pedestal 53.

〔母体粉末の製造と母体粉末へのギ酸錫及びギ酸銅の層の形成〕
次に、CuSn金属間化合物系サンプルとして、図1(b)に示す接合用粉末の母体粉末を図3に示す反応容器51の台座53上の目皿60に入れて、母体粉末の表面にギ酸錫及びギ酸銅の層を形成した。
[Production of matrix powder and formation of tin formate and copper formate layer on matrix powder]
Next, as a CuSn intermetallic compound-based sample, the base powder of the bonding powder shown in FIG. 1 (b) is placed in a tray 60 on the pedestal 53 of the reaction container 51 shown in FIG. Layers of tin and copper formate were formed.

〔母体粉末の製造〕
先ず母体粉末その1を、目標組成としてSnの含有割合が40質量%、Cuの含有割合が60質量%であり、中心核が銅で被覆層が錫の平均粒径8μmのCuコアSnシェル粉末を窒素ガス雰囲気下、200℃の温度で1時間加熱することにより、銅からなる中心核とこの中心核を被覆する銅と錫との金属間化合物からなる被覆層を有するように、製造した。次に母体粉末その2を、目標組成としてSnの含有割合が60質量%、Cuの含有割合が40質量%であり、中心核が銅で被覆層が錫の平均粒径8μmのCuコアSnシェル粉末を窒素ガス雰囲気下、220℃の温度で1.5時間加熱することにより、中心核の銅が消失してすべて銅と錫との金属間化合物からなるように、製造した。
[Production of matrix powder]
First of all, the base powder No. 1 is a Cu core Sn shell powder having an average particle diameter of 8 μm and an average particle diameter of 8 μm, with a central core of copper and a central core of copper as a target composition. Were heated at a temperature of 200 ° C. in a nitrogen gas atmosphere for 1 hour to produce a central core made of copper and a coating layer made of an intermetallic compound of copper and tin covering the central core. Next, for the base powder part 2, a Cu core Sn shell having an average particle diameter of 8 μm and an average particle diameter of 8 μm of a core nucleus of copper and a core nucleus of copper with a content ratio of 60 mass% and 40 mass% of Cu as a target composition The powder was manufactured by heating the powder at a temperature of 220 ° C. for 1.5 hours under a nitrogen gas atmosphere so that the copper of the central core disappeared and all consisted of an intermetallic compound of copper and tin.

〔母体粉末の性状評価〕
母体粉末その1、その2について、誘導結合プラズマ発光分光分析(島津製作所社製 ICP発光分析装置:ICPS−7510)により金属元素含有量を測定し、母体粉末その1のSnの含有割合が40質量%、Cuの含有割合が60質量%であり、母体粉末その2のSnの含有割合が60質量%、Cuの含有割合が40質量%であることをそれぞれ確認した。更に母体粉末その1及びその2を集束イオンビーム(Forcused Ion Beam:FIB)により断面加工し、オージェ電子分光法(Auger Electorn Spectroscopy:AES)にて、中心核及び被覆層元素の同定および定量を行ったところ、母体粉末その1はCuからなる中心核と、このCu中心核の外周に形成された金属間化合物のCu6Sn5からなる被覆層を有していた。また母体粉末その2は、すべてCu6Sn5からなっていた。
[Evaluation of properties of matrix powder]
With respect to the base powder part 1 and part 2, the metal element content is measured by inductively coupled plasma emission spectrometry (ICP emission analyzer: ICPS-7510 manufactured by Shimadzu Corporation), and the content ratio of Sn in the base powder part 1 is 40 mass %, The content ratio of Cu was 60 mass%, it was confirmed that the content ratio of Sn of the base powder part 2 was 60 mass%, and the content ratio of Cu was 40 mass%. Furthermore, base powder part 1 and part 2 are cross-section processed by focused ion beam (Forcused Ion Beam: FIB), and identification and quantification of central core and covering layer elements are carried out by Auger Electron Spectroscopy (AES). The base powder No. 1 had a core composed of Cu and a covering layer composed of Cu 6 Sn 5 of an intermetallic compound formed on the periphery of the Cu core. The base powder No. 2 was all composed of Cu 6 Sn 5 .

〔母体粉末へのギ酸錫及びギ酸銅の層の形成(接合用粉末の製造)〕
<粉末No.1>
上記方法で製造された母体粉末その1(Sn40Cu60(質量%))を粉末No.1の接合用粉末とした。
[Formation of Tin Formate and Copper Formate Layer on Base Powder (Production of Bonding Powder)]
<Powder No. 1>
The base powder No. 1 (Sn 40 Cu 60 (% by mass)) produced by the above method was used as powder for bonding of powder No. 1.

<粉末No.2、粉末No.3>
上記方法で製造された母体粉末その1(Sn40Cu60(質量%))10gを図3に示す反応容器51の台座53上の目皿60に入れて、反応容器51内にガス導入管37から窒素ガスを0.5mL/分の割合で導入し、反応容器51内の雰囲気を窒素ガスで置換し、反応容器51を加熱ランプ52により室温から3℃/秒の速度で180℃まで昇温した。反応容器51内の雰囲気を窒素ガスで置換した後、表1に示すように、ギ酸含有窒素ガス中のギ酸ガスの含有量を変えて、母体粉末表面にギ酸含有窒素ガスを60分間曝し続けた。これによりて粉末No.2及び粉末No.3の接合用粉末を得た。これらの接合用粉末の平均粒径は前述した粒度分布測定装置で測定したところ、表1に示すように、8μmであった。
<Powder No. 2, Powder No. 3>
10 g of the base powder No. 1 (Sn 40 Cu 60 (mass%)) manufactured by the above method is put in the tray 60 on the pedestal 53 of the reaction container 51 shown in FIG. Was introduced at a rate of 0.5 mL / min, the atmosphere in the reaction vessel 51 was replaced with nitrogen gas, and the reaction vessel 51 was heated by a heating lamp 52 from room temperature to 180 ° C. at a rate of 3 ° C./sec. After the atmosphere in the reaction vessel 51 was replaced with nitrogen gas, as shown in Table 1, the content of formic acid gas in the formic acid-containing nitrogen gas was changed to continue exposing the formic acid-containing nitrogen gas to the base powder surface for 60 minutes. . As a result, powders for bonding of powder No. 2 and powder No. 3 were obtained. The average particle diameter of these bonding powders was 8 μm as shown in Table 1 as measured by the above-described particle size distribution analyzer.

<粉末No.4>
上記方法で製造された母体粉末その2(Sn60Cu40(質量%))を粉末No.4の接合用粉末とした。
<Powder No. 4>
The base powder No. 2 (Sn60Cu40 (% by mass)) produced by the above method was used as powder for bonding of powder No. 4.

<粉末No.5、粉末No.6>
上記方法で製造された母体粉末その2(Sn60Cu40(質量%))10gを母体粉末その1と同様にして、表2に示すように、ギ酸含有窒素ガス中のギ酸ガスの含有量を変えて、母体粉末表面にギ酸含有窒素ガスを60分間曝し続けた。これによりて粉末No.5及び粉末No.6の接合用粉末を得た。これらの接合用粉末の平均粒径は前述した粒度分布測定装置で測定したところ、表2に示すように、8μmであった。
<Powder No. 5, Powder No. 6>
10 g of the base powder 2 (Sn 60 Cu 40 (mass%)) manufactured by the above method is the same as the base powder 1 and, as shown in Table 2, the content of formic acid gas in the formic acid containing nitrogen gas is changed, The surface of the base powder was kept exposed to formic acid-containing nitrogen gas for 60 minutes. Thus, a bonding powder of powder No. 5 and powder No. 6 was obtained. The average particle diameter of these bonding powders was 8 μm as shown in Table 2 as measured by the above-described particle size distribution analyzer.

Figure 2019072724
Figure 2019072724

Figure 2019072724
Figure 2019072724

〔接合用粉末を用いた接合用ペーストの調製〕
<実施例1>
粉末No.3の接合用粉末を用いて次の方法により接合用ペーストを調製した。先ず、ロジンを含まず、それ以外の成分が、溶剤としてαテルピネオール、活性剤としてシクロヘキシルアミン臭化水素酸塩1.0質量%と、チキソ剤として硬化ひまし油3.0質量%とを混合してフラックスを調製した。フラックスが12質量%の割合に、得られた接合用粉末が88質量%の割合にそれぞれなるように、フラックスと接合用粉末を混合して接合用ペーストを調製した。
[Preparation of paste for bonding using powder for bonding]
Example 1
A bonding paste was prepared by the following method using powder No. 3 for bonding. First, rosin is not included, the other components are mixed with alpha terpineol as a solvent, 1.0% by mass of cyclohexylamine hydrobromide as an activator, and 3.0% by mass of hydrogenated castor oil as a thixotropic agent. The flux was prepared. The paste for bonding was prepared by mixing the flux and the powder for bonding such that the content of the flux was 12 mass% and the obtained powder for bonding was 88 mass%.

<実施例2〜8、比較例1〜10>
表3に示すように、粉末No.1〜粉末No.6の接合用粉末を用いて、実施例1と比べて、溶剤とロジンの比率を変量するもののフラックスを12質量%と固定して、粉末を88質量%の割合で混合して接合用ペーストをそれぞれ調製した。ロジンを含ませる場合、ロジンとして重合ロジン(軟化点95℃)を用い、ロジンを含ませる分、溶剤を減らした。
Examples 2 to 8 and Comparative Examples 1 to 10
As shown in Table 3, using the bonding powder of powder No. 1 to powder No. 6, the flux of the solvent and rosin ratio is fixed at 12 mass% as compared with Example 1, The powders were mixed at a ratio of 88% by mass to prepare bonding pastes. When rosin was contained, polymerized rosin (softening point 95 ° C.) was used as the rosin, and the solvent was reduced by the amount of rosin contained.

Figure 2019072724
Figure 2019072724

<比較評価>
〔接合強度の評価〕
実施例1〜8及び比較例1〜10で得られた18種類の接合用ペーストを、3mm□の開口部で厚さ50μmのメタルマスクを用いて、銅板上にメタルスキージを使用しペーストの厚さ50μmになるようにそれぞれ印刷した。印刷したペースト上に2.5mm□のSi素子を搭載した。Si素子はペーストと接する面において予めAuスパッタリングをしている。図示しない接合炉(SIKAMA社製 Falcon8500)にて最大保持温度300℃で60秒間加熱処理し、Si素子と銅板とを接合させることにより、18種類の接合サンプルを得た。接合した銅板およびSi素子との接合強度について、室温下で接合シェア強度(MPa)を測定した。
<Comparison evaluation>
[Evaluation of bonding strength]
Using 18 metal pastes obtained in Examples 1 to 8 and Comparative Examples 1 to 10, using a metal mask having a thickness of 50 μm at 3 mm square openings, using a metal squeegee on a copper plate Each printed so as to be 50 μm. A 2.5 mm □ Si element was mounted on the printed paste. In the surface of the Si element in contact with the paste, Au sputtering is performed in advance. Heat treatment was performed for 60 seconds at a maximum holding temperature of 300 ° C. for 60 seconds in a bonding furnace (Falcon 8500 manufactured by SIKAMA) (not shown) to obtain 18 types of bonded samples by bonding the Si element and the copper plate. The bonding shear strength (MPa) was measured at room temperature for the bonding strength between the bonded copper plate and the Si element.

〔接合面の溶融状態、フラックス残渣量の評価〕
接合シェア強度を測定した後の接合サンプルの破断面を電子顕微鏡で観察した。接合用粉末の溶融状況をSi素子側と基板側の各破断面から確認した。接合用粉末が溶融していたものを「溶融」とし、溶融していないものを「未溶融」とし、基板が露出している場合を「下地露出」とした。更にリフロー後、接合箇所におけるフラックスの残渣の有無を調べた。従来のフラックス残渣の洗浄を必要とする程、残渣が有る場合を「有り」とし、従来より軽微な洗浄で済む程度の残渣が僅かに有る場合を「僅かに有り」とし、従来の洗浄を全く必要としない程度の残渣が全く無い場合を「無し」とした。これらの結果を表4に示す。
[Evaluation of molten state of joint surface, amount of flux residue]
The fractured surface of the joined sample after the measurement of the joint shear strength was observed with an electron microscope. The melting condition of the bonding powder was confirmed from each of the fracture surfaces on the Si element side and the substrate side. The material for which the bonding powder was melted was referred to as “melted”, the material not melted was referred to as “unmelted”, and the case where the substrate was exposed was referred to as “base exposure”. Furthermore, after reflow, the presence or absence of the residue of the flux in a joining location was investigated. The presence of the residue is regarded as "present" as the washing of the conventional flux residue is required, and the case where the residue which needs only a slight washing is slight is regarded as "slightly present". The case where there was no residue which was not required at all was regarded as "none". The results are shown in Table 4.

Figure 2019072724
Figure 2019072724

表4から明らかなように、比較例1及び比較例6では、フラックス中の接合用粉末はギ酸錫及びギ酸銅の層がないもののロジン量が十分であったため、Si素子側及び基板側の各接合面において接合用粉末は溶融しており、接合シェア強度は高かったが、フラックスの残渣が有った。   As apparent from Table 4, in Comparative Example 1 and Comparative Example 6, since the bonding powder in the flux had no tin formate and copper formate layers but had a sufficient amount of rosin, each of the Si element side and the substrate side The bonding powder was molten at the bonding surface, and the bonding shear strength was high, but there was a residue of flux.

比較例2及び比較例7では、フラックス中の接合用粉末はギ酸錫及びギ酸銅の層がなくかつロジン量も不十分であったため、Si素子側及び基板側の各接合面において接合用粉末は未溶融となり、接合シェア強度は極めて低く、フラックスの残渣が僅かに有った。   In Comparative Example 2 and Comparative Example 7, the bonding powder in the flux had no layer of tin formate and copper formate and had an insufficient amount of rosin, so the bonding powder was formed on each bonding surface on the Si element side and the substrate side. It became unmelted, the bonding shear strength was extremely low, and there was a slight residue of flux.

比較例3及び比較例8では、フラックス中の接合用粉末はギ酸錫及びギ酸銅の層がなくかつロジンを含まなかったため、Si素子側及び基板側の各接合面において、酸化膜が残り、接合用粉末は未溶融となり、接合シェア強度は極めて低く、フラックスの残渣がなかった。   In Comparative Example 3 and Comparative Example 8, since the bonding powder in the flux has no layer of tin formate and copper formate and does not contain rosin, an oxide film remains on each bonding surface on the Si element side and the substrate side, and bonding is performed. The powder was unmelted, the bonding shear strength was extremely low, and there was no flux residue.

比較例4及び比較例9では、フラックス中の接合用粉末は厚さのあるギ酸錫及びギ酸銅の層を有するもののロジン量が十分であったため、Si素子側及び基板側の各接合面において接合用粉末は溶融しており、接合シェア強度は高かったが、フラックスの残渣が有った。   In Comparative Example 4 and Comparative Example 9, since the bonding powder in the flux has a thick layer of tin formate and copper formate but has a sufficient amount of rosin, bonding is performed on each bonding surface on the Si element side and the substrate side. The powder for use was molten, and although the bonding shear strength was high, there was a residue of flux.

比較例5及び比較例10では、フラックス中の接合用粉末は厚さの薄いギ酸錫及びギ酸銅の層を有するもののロジン量が十分であったため、Si素子側及び基板側の各接合面において接合用粉末は溶融しており、接合シェア強度は高かったが、フラックスの残渣が有った。   In Comparative Example 5 and Comparative Example 10, since the bonding powder in the flux had thin tin formate and copper formate layers but had a sufficient amount of rosin, bonding was performed on each bonding surface on the Si element side and the substrate side. The powder for use was molten, and although the bonding shear strength was high, there was a residue of flux.

これに対して、実施例1〜8では、いずれもフラックス中の接合用粉末は厚さの薄いギ酸錫及びギ酸銅の層を有するため、ロジン量をゼロ又はフラックス中で2質量%にしても接合シェア強度が実用上支障のない15MPa以上あり、フラックスの残渣は無しであるか、僅かに有る程度であった。なお、実施例1、3、5、7では、フラックス残渣が無いため、後洗浄が不要であった。実施例1、2、5、6では、Si素子側及び基板側の各接合面において接合用粉末は溶融していた。実施例3、4、7、8では、Si素子側の接合面では接合用粉末は未溶融であったが、基板側の接合面では接合用粉末は溶融していた。   On the other hand, in each of Examples 1 to 8, since the bonding powder in the flux has a thin layer of tin formate and copper formate, even if the amount of rosin is zero or 2% by mass in the flux The bonding shear strength was 15 MPa or more, which was practically acceptable, and the residue of the flux was either absent or slightly present. In Examples 1, 3, 5, and 7, since there was no flux residue, post-cleaning was unnecessary. In Examples 1, 2, 5 and 6, the bonding powder was melted at each bonding surface on the Si element side and the substrate side. In Examples 3, 4, 7 and 8, the bonding powder was not melted at the bonding surface on the Si element side, but the bonding powder was melted at the bonding surface on the substrate side.

本発明の接合用粉末は、ファインピッチ用鉛フリーの接合用粉末として利用でき、この接合用粉末を原料として得られる接合用ペーストは、微細な電子部品の実装に好適に用いることができる。   The bonding powder of the present invention can be used as a lead-free bonding powder for fine pitch, and the bonding paste obtained using this bonding powder as a raw material can be suitably used for mounting of fine electronic components.

10 接合用粉末
11 母体粉末(CuSn金属間化合物)
12 ギ酸錫及びギ酸銅の層
20 接合用粉末
21 母体粉末
22 中心核(Cu)
23 被覆層(CuSn金属間化合物)
25 ギ酸錫及びギ酸銅の層
10 Bonding powder 11 Base powder (CuSn intermetallic compound)
12 layer of tin formate and copper formate 20 bonding powder 21 base powder 22 central core (Cu)
23 Coating layer (CuSn intermetallic compound)
25 Layer of tin formate and copper formate

Claims (5)

錫の含有割合が40質量%以上60質量%以下であって、銅の含有割合が40質量%以上60質量%以下である錫と銅を含む母体粉末の表面がギ酸錫及びギ酸銅の層で被覆された錫系接合用粉末。   The surface of the base powder containing tin and copper having a tin content of 40% to 60% by mass and a copper content of 40% to 60% by mass is a layer of tin formate and copper formate Coated tin-based bonding powder. 前記母体粉末が銅と錫との金属間化合物である請求項1記載の錫系接合用粉末。   The tin-based bonding powder according to claim 1, wherein the base powder is an intermetallic compound of copper and tin. 前記母体粉末が銅からなる中心核と前記中心核を被覆する銅と錫との金属間化合物からなる被覆層で構成された請求項1記載の錫系接合用粉末。   The tin-based bonding powder according to claim 1, wherein the base powder comprises a central core made of copper and a coating layer made of an intermetallic compound of copper and tin for coating the central core. 前記銅と錫との金属間化合物がCu6Sn5及び/又はCu3Snである請求項2又は3記載の錫系接合用粉末。 The tin-based bonding powder according to claim 2 or 3, wherein the intermetallic compound of copper and tin is Cu 6 Sn 5 and / or Cu 3 Sn. 請求項1ないし4いずれか1項に記載の接合用粉末とフラックスを含み、前記フラックス中、ロジンを0質量%以上2質量%以下の割合で含む接合用ペースト。   A bonding paste comprising the bonding powder according to any one of claims 1 to 4 and a flux, wherein the flux contains rosin in a proportion of 0% by mass or more and 2% by mass or less.
JP2017198389A 2017-10-12 2017-10-12 Powder for joining and paste for joining using the powder Pending JP2019072724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017198389A JP2019072724A (en) 2017-10-12 2017-10-12 Powder for joining and paste for joining using the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017198389A JP2019072724A (en) 2017-10-12 2017-10-12 Powder for joining and paste for joining using the powder

Publications (1)

Publication Number Publication Date
JP2019072724A true JP2019072724A (en) 2019-05-16

Family

ID=66544528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017198389A Pending JP2019072724A (en) 2017-10-12 2017-10-12 Powder for joining and paste for joining using the powder

Country Status (1)

Country Link
JP (1) JP2019072724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114643435A (en) * 2022-03-25 2022-06-21 重庆平创半导体研究院有限责任公司 Low-temperature sintered nano-copper soldering paste, and preparation method and application method thereof
JP7189480B1 (en) 2022-02-09 2022-12-14 千住金属工業株式会社 FLUX COATED BALL AND METHOD FOR MANUFACTURING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7189480B1 (en) 2022-02-09 2022-12-14 千住金属工業株式会社 FLUX COATED BALL AND METHOD FOR MANUFACTURING THE SAME
JP2023116315A (en) * 2022-02-09 2023-08-22 千住金属工業株式会社 Flux-coated ball and manufacturing method thereof
CN114643435A (en) * 2022-03-25 2022-06-21 重庆平创半导体研究院有限责任公司 Low-temperature sintered nano-copper soldering paste, and preparation method and application method thereof

Similar Documents

Publication Publication Date Title
JP4342176B2 (en) Functional alloy particles
JP4753090B2 (en) Solder paste and electronic device
JPWO2006080247A1 (en) Conductive paste
JP6079374B2 (en) Solder powder manufacturing method and solder paste using the powder
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP2005319470A (en) Lead-free solder material, electronic circuit board and their production method
JP2009006337A (en) Ultrafine solder composition
JP6079375B2 (en) Solder powder, method for producing the same, and solder paste using the powder
JP6428407B2 (en) Method for producing solder powder and method for producing solder paste using the powder
JP4722751B2 (en) Powder solder material and bonding material
JP6002947B2 (en) Metal filler, solder paste, and connection structure
JP2019072724A (en) Powder for joining and paste for joining using the powder
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP4703581B2 (en) Conductive filler and solder paste
JP6428408B2 (en) Method for producing solder powder and method for producing solder paste using the powder
TWI670136B (en) Solder powder and method for preparing solder paste using the same
JP5188999B2 (en) Metal filler and solder paste
JP5975377B2 (en) Metal filler, solder paste, and connection structure
JP2018122309A (en) Powder for joining and paste for joining using the powder
JP2013221143A (en) Thermosetting resin composition and conductive paste using the same
JP5724088B2 (en) Metal filler and lead-free solder containing the same
JP6428409B2 (en) Solder powder and solder paste using this powder
JP2010062256A (en) Method of manufacturing semiconductor chip with bump
JP6677231B2 (en) Method for joining electronic components and method for manufacturing joined body
JP4662483B2 (en) Conductive filler and medium temperature solder material