JP4662483B2 - Conductive filler and medium temperature solder material - Google Patents

Conductive filler and medium temperature solder material Download PDF

Info

Publication number
JP4662483B2
JP4662483B2 JP2006195086A JP2006195086A JP4662483B2 JP 4662483 B2 JP4662483 B2 JP 4662483B2 JP 2006195086 A JP2006195086 A JP 2006195086A JP 2006195086 A JP2006195086 A JP 2006195086A JP 4662483 B2 JP4662483 B2 JP 4662483B2
Authority
JP
Japan
Prior art keywords
mass
metal particles
conductive filler
melting point
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006195086A
Other languages
Japanese (ja)
Other versions
JP2008027588A (en
Inventor
軌人 田中
剛 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2006195086A priority Critical patent/JP4662483B2/en
Publication of JP2008027588A publication Critical patent/JP2008027588A/en
Application granted granted Critical
Publication of JP4662483B2 publication Critical patent/JP4662483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気・電子機器の接合材料に使用される導電性フィラーに関するものであり、特に鉛フリーのはんだ材料、及び導電性接着剤に関するものである。   The present invention relates to a conductive filler used as a bonding material for electric / electronic devices, and more particularly to a lead-free solder material and a conductive adhesive.

はんだは、一般的に金属材料の接合に用いられ、溶融温度域(固相線温度から液相線温度の範囲)が450℃以下の合金材料からなる。従来、電子部品をプリント基板上に実装する場合には、融点183℃のSn−37Pb共晶はんだが用いられ、リフロー熱処理として200℃から230℃程度の温度範囲が主流となっていた。一般に、リフロー熱処理条件は、はんだ合金融点+10〜50℃で設定される。
しかしながら、近年、EUの環境規制(RoHS指令)にあるように、Pbの有害性が問題となり、環境、人体汚染を防止する観点から、はんだの鉛フリー化が急速に進んでいる。このような状況の中で、現在、上記Sn−37Pb共晶はんだの代替としては、融点220℃程度のSn−3.0Ag−0.5Cuからなる鉛フリーはんだ(特許文献1参照)が用いられ、リフロー熱処理として240℃から260℃程度の温度範囲のものが一般的となりつつある。
ところで、上述した融点220℃程度のSn主成分の鉛フリーはんだは、Sn−37Pb共晶はんだと比べ、合金の融点が高いことから、当然、使用時に必要なリフロー熱処理条件もより高温になる。そこで、最近では、電気・電子機器の熱損傷を抑制するため、出来るだけ低温でのはんだ付けが要望されており、従来のSn−37Pb共晶はんだに相当するリフロー熱処理条件と耐熱性能の接合材料が検討されている。
Solder is generally used for joining metal materials, and is made of an alloy material having a melting temperature range (solidus temperature to liquidus temperature range) of 450 ° C. or less. Conventionally, when an electronic component is mounted on a printed circuit board, Sn-37Pb eutectic solder having a melting point of 183 ° C. is used, and a temperature range of about 200 ° C. to 230 ° C. has been mainstream as reflow heat treatment. Generally, the reflow heat treatment conditions are set at a solder alloy melting point + 10 to 50 ° C.
However, in recent years, as in the EU environmental regulations (RoHS directive), the harmfulness of Pb has become a problem, and from the viewpoint of preventing environmental and human body contamination, the lead-free solder has been rapidly advanced. Under such circumstances, as a substitute for the Sn-37Pb eutectic solder, lead-free solder composed of Sn-3.0Ag-0.5Cu having a melting point of about 220 ° C. is currently used (see Patent Document 1). In general, reflow heat treatment is in the temperature range of about 240 ° C. to 260 ° C.
By the way, the lead-free solder containing Sn as a main component and having a melting point of about 220 ° C. has a higher melting point than that of Sn-37Pb eutectic solder. Therefore, recently, in order to suppress thermal damage of electrical and electronic equipment, soldering at a low temperature is required, and a reflow heat treatment condition equivalent to conventional Sn-37Pb eutectic solder and a heat-resistant bonding material. Is being considered.

鉛フリーはんだ合金の融点を下げる成分としては、Bi、In、Zn等の効果が確認されているが、量比により融点低下が不十分だったり、Biは、合金の基材に対する濡れ性を改善するが、凝固時に偏析し易く、その結晶組織は脆く、延性が悪いので、一定量以上の添加は、機械的強度を著しく損なう(特許文献2、3参照)。Inは、希少資源であり、非常に高価な材料であるため、多量に添加すれば大幅なコスト増となる(特許文献4参照)。Znは、安価で、機械的性質も良好であることから、実用化が期待されるが、非常に活性が高く、反応し易い、酸化し易いといった特性を有しているので、ペースト安定性が悪く、耐食性が低い。また、Cuとの接合では、界面にCu−Sn系の化合物層ではなく、Cu−Zn系の化合物層を形成する。Cu−Zn系の化合物層は、高温や高湿環境下で強度劣化が著しい等の問題がある(特許文献5参照)。
本発明者らは、以前Sn−37Pb共晶はんだより低い熱処理温度で接続可能な鉛フリーの導電性材料を提案した(特許文献6、7、8参照)。しかしながら、この導電性材料は加熱処理による接続後に最低融点が300℃以上に上昇し接続安定性を発現することに特徴を有するものであり、Sn−37Pb共晶はんだ材料と同等のリペア性を有するものではなかった。
As components that lower the melting point of lead-free solder alloys, the effects of Bi, In, Zn, etc. have been confirmed, but the melting point is insufficiently lowered depending on the quantity ratio, and Bi improves the wettability of the alloy to the base material. However, since it is easily segregated at the time of solidification, its crystal structure is brittle, and ductility is poor, addition of a certain amount or more remarkably impairs mechanical strength (see Patent Documents 2 and 3). Since In is a scarce resource and a very expensive material, if it is added in a large amount, the cost increases significantly (see Patent Document 4). Since Zn is inexpensive and has good mechanical properties, it is expected to be put to practical use. However, it has very high activity, is easy to react, and is easy to oxidize. Bad and corrosion resistance is low. In bonding with Cu, not a Cu—Sn compound layer but a Cu—Zn compound layer is formed at the interface. The Cu—Zn-based compound layer has problems such as significant strength deterioration under high temperature and high humidity environment (see Patent Document 5).
The present inventors have previously proposed a lead-free conductive material that can be connected at a heat treatment temperature lower than that of Sn-37Pb eutectic solder (see Patent Documents 6, 7, and 8). However, this conductive material is characterized in that the minimum melting point rises to 300 ° C. or higher after connection by heat treatment and expresses connection stability, and has a repair property equivalent to Sn-37Pb eutectic solder material. It was not a thing.

特開平05−050286号公報Japanese Patent Laid-Open No. 05-050286 特開平05−228685号公報Japanese Patent Laid-Open No. 05-228685 特開平08−206874号公報Japanese Patent Laid-Open No. 08-206874 特開平08−187591号公報Japanese Patent Application Laid-Open No. 08-187591 特開平06−238479号公報Japanese Patent Laid-Open No. 06-238479 特開2004−223559号公報JP 2004-223559 A 特開2004−363052号公報JP 2004-363052 A 特開2005−005054号公報JP 2005-005054 A

本発明は、上記の事情を鑑みてなされたもので、Sn−37Pb共晶はんだのリフロー熱処理条件よりも低温条件(ピーク温度181℃以上)で溶融接合でき、Sn−37Pb共晶はんだと同等の耐熱用途(耐熱要求150〜160℃)、リペア温度で使用できる導電性フィラーを提供することを目的とする。また、前記導電性フィラーを用いたはんだペーストを提供することも本発明の目的である。   The present invention has been made in view of the above circumstances, and can be melt-bonded at a temperature lower than the reflow heat treatment condition of the Sn-37Pb eutectic solder (peak temperature of 181 ° C. or higher), which is equivalent to the Sn-37Pb eutectic solder. An object of the present invention is to provide a conductive filler that can be used at heat resistance (heat resistance requirement 150 to 160 ° C.) and repair temperature. It is also an object of the present invention to provide a solder paste using the conductive filler.

本発明者らは、上記課題を解決すべく鋭意検討した結果、本発明を成すに至った。
即ち、本発明の第一は、第1の金属粒子と第2の金属粒子との混合体からなる導電性フィラーであって、該混合体は示差走査熱量測定(DSC)で発熱ピークとして観測される準安定合金相を110〜130℃に少なくとも1つと、吸熱ピークとして観測される融点を120〜140℃と170〜200℃の2箇所に少なくとも1つずつ有しており、該混合体を180〜200℃で熱処理することにより、第1の金属粒子と第2の金属粒子を溶融接合させた後の最低融点が160〜200℃にある導電性フィラーであり、該混合体が第1の金属粒子100質量部と第2の金属粒子20〜100質量部からなり、該第1の金属粒子は、Ag25〜40質量%、Cu5〜15質量%、Bi2〜8質量%、In2〜8質量%、及びSn29〜66質量%の組成を有する合金からなり、該第2の金属粒子は、In30〜45質量%、Ag5〜15質量%、Cu10〜20質量%、及びSn20〜55質量%の組成を有する合金からなることを特徴とする導電性フィラーである。
本発明の第二は、上記の導電性フィラーを含有するはんだペーストである。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reached the present invention.
That is, the first of the present invention is a conductive filler comprising a mixture of first metal particles and second metal particles, and the mixture is observed as an exothermic peak by differential scanning calorimetry (DSC). At least one metastable alloy phase at 110 to 130 ° C, and at least one melting point observed as an endothermic peak at two locations of 120 to 140 ° C and 170 to 200 ° C. by heat treatment at to 200 DEG ° C., the lowest melting point of 160 to 200 ° C. near Ru conductive filler after the first metal particles and second metal particles are melted bonding, the admix is first The metal particles are composed of 100 parts by mass of metal particles and 20 to 100 parts by mass of second metal particles, and the first metal particles comprise 25 to 40% by mass of Ag, 5 to 15% by mass of Cu, 2 to 8% by mass of Bi, and 2 to 8% by mass of In. %, And Sn29-66 quality %, And the second metal particles are made of an alloy having a composition of In 30 to 45 mass%, Ag 5 to 15 mass%, Cu 10 to 20 mass%, and Sn 20 to 55 mass%. The conductive filler is characterized.
The second of the present invention is a solder paste containing the above conductive filler.

本発明の導電性フィラーは、Sn−37Pb共晶はんだのリフロー熱処理条件よりも低温条件(ピーク温度181℃以上)で溶融接合でき、Sn−37Pb共晶はんだと同等の耐熱用途(耐熱要求150〜160℃)、リペア温度の接合材料として使用できるので、実装時の部品や基材、周辺機器への熱損傷を低減できると共に、製造コスト、環境負荷を低減できるという利点がある。   The conductive filler of the present invention can be melt-bonded at a temperature lower than the reflow heat treatment condition of Sn-37Pb eutectic solder (peak temperature of 181 ° C. or higher), and has the same heat resistance as that of Sn-37Pb eutectic solder (heat resistance requirement 150 to 160 [deg.] C.), and can be used as a bonding material at a repair temperature, so that there is an advantage that thermal damage to components, base materials, and peripheral devices during mounting can be reduced, and manufacturing costs and environmental loads can be reduced.

本発明の導電性フィラーは、第1の金属粒子と第2の金属粒子との混合体からなり、該混合体は、示差走査熱量測定(DSC)で発熱ピークとして観測される準安定合金相を110〜130℃に少なくとも1つと、吸熱ピークとして観測される融点を120〜140℃と170〜200℃の2箇所に少なくとも1つずつ有しており、該混合体を180〜200℃で熱処理することにより、第1の金属粒子と第2の金属粒子を溶融接合させた後の最低融点が160〜200℃にあることを特徴とするものである。
尚、本発明における示差走査熱量測定(DSC)の測定温度範囲は、30〜600℃とし、発熱量又は吸熱量が±1.5J/g以上あるものを測定対象物由来のピークとして定量し、それ未満のピークは、分析精度の観点から除外するものとする。
尚、本発明でいう「融点」とは、融解開始温度のことであり、示差走査熱量測定(DSC)において固相線温度を指す。
The conductive filler of the present invention comprises a mixture of first metal particles and second metal particles, and the mixture has a metastable alloy phase observed as an exothermic peak by differential scanning calorimetry (DSC). At least one at 110 to 130 ° C. and at least one melting point observed as an endothermic peak at 120 to 140 ° C. and 170 to 200 ° C., and the mixture is heat-treated at 180 to 200 ° C. Accordingly, the lowest melting point after the first metal particles and the second metal particles are melt-bonded is 160 to 200 ° C.
In addition, the measurement temperature range of differential scanning calorimetry (DSC) in the present invention is 30 to 600 ° C., and a calorific value or an endothermic amount of ± 1.5 J / g or more is quantified as a peak derived from the measurement object, Peaks less than that are excluded from the viewpoint of analysis accuracy.
In the present invention, the “melting point” refers to the melting start temperature and refers to the solidus temperature in differential scanning calorimetry (DSC).

本発明の導電性フィラーとして好ましい第1の金属粒子と第2の金属粒子との混合体を例示すると、示差走査熱量測定(DSC)で発熱ピークとして観測される準安定合金相を110〜130℃に少なくとも1つと、吸熱ピークで観測される融点を170℃〜200℃と320〜380℃の2箇所に少なくとも1つずつ有する第1の金属粒子と、前記発熱ピークを有さず、吸熱ピークで観測される融点を120〜140℃に少なくとも1つ有する第2の金属粒子との混合体が挙げられる。
熱処理により、第2の金属粒子の融点以上の熱履歴が与えられると、該第2の金属粒子が溶融し、第1の金属粒子と接合する。これにより、金属粒子間の熱拡散反応が加速的に進み、準安定合金相が消失して、新たな安定合金相が形成される。即ち、DSCで発熱ピークとして観測される準安定合金相の存在が、該熱拡散反応を助長する効果がある。この新たに形成された安定合金相は、融点が160〜200℃なので、熱処理後の最低融点は160〜200℃となる。
When the mixture of the 1st metal particle and 2nd metal particle preferable as an electroconductive filler of this invention is illustrated, the metastable alloy phase observed as an exothermic peak by differential scanning calorimetry (DSC) will be 110-130 degreeC. And at least one first metal particle having at least one melting point observed at an endothermic peak at 170 ° C. to 200 ° C. and 320 to 380 ° C., and the endothermic peak without the exothermic peak. Examples thereof include a mixture with second metal particles having at least one observed melting point at 120 to 140 ° C.
When a heat history equal to or higher than the melting point of the second metal particles is given by the heat treatment, the second metal particles are melted and joined to the first metal particles. Thereby, the thermal diffusion reaction between the metal particles proceeds at an accelerated rate, the metastable alloy phase disappears, and a new stable alloy phase is formed. That is, the presence of a metastable alloy phase observed as an exothermic peak by DSC has an effect of promoting the thermal diffusion reaction. Since this newly formed stable alloy phase has a melting point of 160 to 200 ° C., the lowest melting point after heat treatment is 160 to 200 ° C.

本発明の導電性フィラーに使用される第1の金属粒子は、前述のように示差走査熱量測定(DSC)で発熱ピークとして観測される準安定合金相を110〜130℃に少なくとも1つと、吸熱ピークで観測される融点を170℃〜200℃と320〜380℃の2箇所に少なくとも1つずつ有する金属粒子が例示される。
このような熱特性を示す金属粒子としては、Ag25〜40質量%、Cu5〜15質量%、Bi2〜8質量%、In2〜8質量%、及びSn29〜66質量%の組成を有する合金からなる金属粒子が好ましく、Ag30〜35質量%、Cu8〜12質量%、Bi2〜8質量%、In2〜8質量%、残部Snの組成を有する合金からなる金属粒子がより好ましい。
第2の金属粒子は、前述のように示差走査熱量測定(DSC)で発熱ピークとして観測される準安定合金相を有さず、吸熱ピークで観測される融点を120〜140℃に少なくとも1つ有する金属粒子が例示される。
As described above, the first metal particles used in the conductive filler of the present invention have at least one metastable alloy phase observed as an exothermic peak in differential scanning calorimetry (DSC) at 110 to 130 ° C., endothermic. Examples are metal particles having at least one melting point observed at the peak at two locations of 170 ° C. to 200 ° C. and 320 to 380 ° C.
As the metal particles exhibiting such thermal characteristics, a metal composed of an alloy having a composition of Ag 25 to 40% by mass, Cu 5 to 15% by mass, Bi 2 to 8% by mass, In 2 to 8% by mass, and Sn 29 to 66% by mass. Particles are preferable, and metal particles made of an alloy having a composition of Ag 30 to 35% by mass, Cu 8 to 12% by mass, Bi 2 to 8% by mass, In 2 to 8% by mass, and the balance Sn are more preferable.
As described above, the second metal particles do not have a metastable alloy phase observed as an exothermic peak by differential scanning calorimetry (DSC), and have a melting point observed at an endothermic peak of 120 to 140 ° C. The metal particle which has is illustrated.

このような熱特性を示す金属粒子としては、In30〜45質量%、Ag5〜15質量%、Cu10〜20質量%、及びSn20〜55質量%の組成を有する合金からなる金属粒子が好ましく、In35〜40質量%、Ag8〜12質量%、Cu12〜18質量%、残部Snの組成を有する合金からなる金属粒子がより好ましい。
第1の金属粒子と第2の金属粒子の混合比は、第1の金属粒子100質量部に対して、第2の金属粒子20〜100質量部が好ましい。
上記金属粒子の粒子サイズは、用途に応じて定めることができる。例えば、はんだペースト用途では、印刷性を重視して、平均粒径で2〜40μmの比較的真球度の高い粒子を使うことが好ましい。また、導電性接着剤用途としては、ビア充填では、穴埋め性を重視して、比較的真球度の高い粒子を使うことが好ましく、部品等の表面実装では、接触面積を増やすため、異形粒子を使うことが好ましい。
尚、通常、微細な金属粒子は表面酸化されていることが多い。従って、上述の用途における熱処理による溶融、熱拡散を促進するためには、酸化膜を除去する活性剤を配合すること、または、加圧することの少なくとも片方を行うことが好ましい。
As the metal particles exhibiting such thermal characteristics, metal particles made of an alloy having a composition of In 30 to 45% by mass, Ag 5 to 15% by mass, Cu 10 to 20% by mass, and Sn 20 to 55% by mass are preferable. Metal particles made of an alloy having a composition of 40% by mass, Ag8-12% by mass, Cu12-18% by mass, and the balance Sn are more preferable.
The mixing ratio of the first metal particles and the second metal particles is preferably 20 to 100 parts by mass of the second metal particles with respect to 100 parts by mass of the first metal particles.
The particle size of the metal particles can be determined according to the application. For example, in solder paste applications, it is preferable to use particles having a relatively high sphericity with an average particle diameter of 2 to 40 μm in consideration of printability. In addition, as a conductive adhesive application, it is preferable to use particles with relatively high sphericity in the filling of vias, with emphasis on hole filling properties. In surface mounting of parts, etc., irregular shaped particles are used to increase the contact area. It is preferable to use
Usually, fine metal particles are often surface oxidized. Therefore, in order to promote melting and thermal diffusion by the heat treatment in the above-mentioned application, it is preferable to add an activator for removing the oxide film or to perform at least one of pressurization.

本発明の導電性フィラーを構成する第1及び第2の金属粒子の製造方法としては、該金属粒子内に準安定合金相や安定合金相を形成させるために、急冷凝固法である不活性ガスアトマイズ法を採用することが望ましい。ガスアトマイズ法では、通常、窒素ガス、アルゴンガス、ヘリウムガス等の不活性ガスが使用されるが、本発明に関しては、比重の軽いヘリウムガスを用いることが好ましく、冷却速度は、500〜5000℃/秒が好ましい。
本発明のはんだペーストは、本発明の導電性フィラー、並びにロジン、溶剤、活性剤、及びチクソ剤等の成分からなるフラックスで構成される。はんだペーストにおける該導電性フィラーの含有率としては、85〜95質量%が好ましい。フラックスは、金属粒子からなる導電性フィラーの表面処理に最適であり、該金属粒子の溶融、及び熱拡散を促進する。フラックスとしては、公知の材料が使用できるが、更に有機アミンを酸化膜除去剤として加えるとより効果的である。また、必要に応じて、公知のフラックスに溶剤を加えて粘度を調整して使用しても良い。
As the method for producing the first and second metal particles constituting the conductive filler of the present invention, in order to form a metastable alloy phase or a stable alloy phase in the metal particles, an inert gas atomization which is a rapid solidification method is used. It is desirable to adopt the law. In the gas atomization method, an inert gas such as nitrogen gas, argon gas, or helium gas is usually used. However, in the present invention, it is preferable to use helium gas having a low specific gravity, and the cooling rate is 500 to 5000 ° C. / Seconds are preferred.
The solder paste of the present invention is composed of the conductive filler of the present invention and a flux composed of components such as rosin, a solvent, an activator, and a thixotropic agent. The content of the conductive filler in the solder paste is preferably 85 to 95% by mass. The flux is optimal for the surface treatment of the conductive filler made of metal particles, and promotes melting and thermal diffusion of the metal particles. A known material can be used as the flux, but it is more effective to add an organic amine as an oxide film removing agent. If necessary, a solvent may be added to a known flux to adjust the viscosity.

以下、本発明を実施例、比較例に基づいて更に具体的に説明するが、本発明はこれら実施例などにより何ら限定されるものではない。
尚、示差走査熱量測定は、島津製作所(株)製「DSC−50」を用い、窒素雰囲気下、昇温速度10℃/分の条件で、30〜600℃の範囲において行った。
[実施例1〜3]
(1)第1の金属粒子の製造
Cu粒子1.0kg(純度99質量%以上)、Sn粒子4.8kg(純度99質量%以上)、Ag粒子3.2kg(純度99質量%以上)、Bi粒子0.5kg(純度99質量%以上)、In粒子0.5kg(純度99質量%以上)を黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気で、高周波誘導加熱装置により1400℃まで加熱、融解した。次に、この溶融金属を坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行い、第1の金属粒子を作製した。この時の冷却速度は2600℃/秒とした。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited at all by these Examples.
The differential scanning calorimetry was performed in a range of 30 to 600 ° C. using a “DSC-50” manufactured by Shimadzu Corporation under a nitrogen atmosphere under a temperature rising rate of 10 ° C./min.
[Examples 1 to 3]
(1) Production of first metal particles 1.0 kg of Cu particles (purity 99% by mass or more), 4.8 kg of Sn particles (99% by mass or more), 3.2 kg of Ag particles (purity 99% by mass or more), Bi 0.5 kg of particles (purity 99% by mass or more) and 0.5 kg of In particles (purity 99% by mass or more) are placed in a graphite crucible and heated and melted to 1400 ° C. with a high-frequency induction heating apparatus in a helium atmosphere of 99% by volume or more. did. Next, after this molten metal is introduced from the tip of the crucible into a spray tank in a helium gas atmosphere, helium gas (purity 99 vol% or more, oxygen concentration 0.1 vol%) is supplied from a gas nozzle provided near the crucible tip. Less than the pressure of 2.5 MPa), atomization was performed to produce first metal particles. The cooling rate at this time was 2600 ° C./second.

得られた第1の金属粒子を走査型電子顕微鏡(日立製作所(株)製:S−2700)で観察したところ球状であった。この金属粒子を気流式分級機(日清エンジニアリング(株)製:TC−15N)を用いて、5μmの設定で分級した後に、そのオーバーカット粉を15μmの設定で、もう一度分級して得られたアンダーカット粉を回収した。この回収された第1の金属粒子の体積平均粒径は4.9μmであった。
このようにして得られた第1の金属粒子を試料とし、示差走査熱量測定を行った。その結果、得られた第1の金属粒子には、196℃、359℃、415℃の吸熱ピークが存在し、複数の融点を有することが確認できた。また、120℃の発熱ピークが存在し、準安定合金相を有することが確認できた。
When the obtained 1st metal particle was observed with the scanning electron microscope (Hitachi, Ltd. product: S-2700), it was spherical. The metal particles were classified using an airflow classifier (Nisshin Engineering Co., Ltd .: TC-15N) at a setting of 5 μm, and then the overcut powder was classified again at a setting of 15 μm. Undercut powder was collected. The collected first metal particles had a volume average particle size of 4.9 μm.
Differential scanning calorimetry was performed using the first metal particles thus obtained as a sample. As a result, it was confirmed that the obtained first metal particles had endothermic peaks of 196 ° C., 359 ° C., and 415 ° C. and had a plurality of melting points. Moreover, the exothermic peak of 120 degreeC exists and it has confirmed having a metastable alloy phase.

(2)第2の金属粒子の製造
Cu粒子1.5kg(純度99質量%以上)、Sn粒子3.75kg(純度99質量%以上)、Ag粒子1.0kg(純度99質量%以上)、In粒子3.75kg(純度99質量%以上)を黒鉛坩堝に入れ、99体積%以上のヘリウム雰囲気で、高周波誘導加熱装置により1400℃まで加熱、融解した。次に、この溶融金属を坩堝の先端より、ヘリウムガス雰囲気の噴霧槽内に導入した後、坩堝先端付近に設けられたガスノズルから、ヘリウムガス(純度99体積%以上、酸素濃度0.1体積%未満、圧力2.5MPa)を噴出してアトマイズを行うことにより、第2の金属粒子を作製した。この時の冷却速度は2600℃/秒とした。
(2) Production of second metal particles 1.5 kg of Cu particles (purity 99% by mass or more), 3.75 kg of Sn particles (purity 99% by mass or more), 1.0 kg of Ag particles (purity 99% by mass or more), In 3.75 kg (purity 99% by mass or more) of particles were placed in a graphite crucible and heated and melted to 1400 ° C. with a high-frequency induction heating apparatus in a helium atmosphere of 99% by volume or more. Next, after this molten metal is introduced from the tip of the crucible into a spray tank in a helium gas atmosphere, helium gas (purity 99 vol% or more, oxygen concentration 0.1 vol%) is supplied from a gas nozzle provided near the crucible tip. The second metal particles were produced by performing atomization by ejecting a pressure of less than 2.5 MPa. The cooling rate at this time was 2600 ° C./second.

得られた第2の金属粒子を走査型電子顕微鏡(日立製作所(株)製:S−2700)で観察したところ球状であった。この金属粒子を気流式分級機(日清エンジニアリング(株)製:TC−15N)を用いて、5μmの設定で分級した後に、そのオーバーカット粉を15μmの設定で、もう一度分級して得られたアンダーカット粉を回収した。この回収された第2の金属粒子の体積平均粒径は5.0μmであった。
このようにして得られた第2の金属粒子を試料とし、示差走査熱量測定を行った。その結果、得られた第2の金属粒子には、136℃に吸熱ピークが存在することが確認できた。また、特徴的な発熱ピークは存在しなかった。
When the obtained 2nd metal particle was observed with the scanning electron microscope (Hitachi Ltd. make: S-2700), it was spherical. The metal particles were classified using an airflow classifier (Nisshin Engineering Co., Ltd .: TC-15N) at a setting of 5 μm, and then the overcut powder was classified again at a setting of 15 μm. Undercut powder was collected. The volume average particle diameter of the recovered second metal particles was 5.0 μm.
Differential scanning calorimetry was performed using the second metal particles thus obtained as a sample. As a result, it was confirmed that the obtained second metal particles had an endothermic peak at 136 ° C. There was no characteristic exothermic peak.

(3)金属粒子混合体、はんだペーストの製造
上記第1の金属粒子、第2の金属粒子を重量比100:91で混合した導電性フィラー(平均粒径4.9μm)を試料とし、示差走査熱量測定を行った。この測定により得られたDSCチャートを図1に示す。この図に示すように、134℃、195℃に吸熱ピークが存在することが確認された。134℃吸熱ピークは、融点128℃(融解開始温度:固相線温度)である。また、特徴的に120℃に発熱ピークが存在していた。
次に、該導電性フィラー90.0質量%、ロジン系フラックス6.4質量%、トリエタノールアミン(酸化膜除去剤)1.6質量%、ステアリン酸(活性剤)0.4質量%、及びエチレングリコールモノヘキシルエーテル(溶剤)1.6質量%を混合し、ソルダーソフナー((株)マルコム製:SPS−1)、脱泡混練機(松尾産業(株)製:SNB−350)に順次かけてはんだペーストを作製した。
(3) Manufacture of metal particle mixture and solder paste Differential scanning using a conductive filler (average particle diameter of 4.9 μm) in which the first metal particles and second metal particles are mixed at a weight ratio of 100: 91. Calorimetry was performed. The DSC chart obtained by this measurement is shown in FIG. As shown in this figure, it was confirmed that endothermic peaks exist at 134 ° C. and 195 ° C. The 134 ° C. endothermic peak has a melting point of 128 ° C. (melting start temperature: solidus temperature). Also, an exothermic peak was present at 120 ° C. characteristically.
Next, the conductive filler 90.0% by mass, rosin-based flux 6.4% by mass, triethanolamine (oxide film removing agent) 1.6% by mass, stearic acid (activator) 0.4% by mass, and 1.6% by mass of ethylene glycol monohexyl ether (solvent) is mixed and sequentially applied to a solder softener (Malcom Co., Ltd .: SPS-1) and a defoaming kneader (Matsuo Sangyo Co., Ltd .: SNB-350). A solder paste was prepared.

(4)融点、接合強度の確認
上記はんだペーストをアルミナ基板に載せ、窒素雰囲気にて、ピーク温度181℃でリフロー熱処理した。
熱処理装置は、光洋サーモシステム(株)製のメッシュベルト式連続熱処理装置を使用した。温度プロファイルは、全工程が5分で、熱処理開始から1分30秒で108℃に達し、その後は徐々に昇温、3分15秒でピーク温度181℃に到達後、徐々に温度が降下、熱処理終了時は、146℃になる条件を採用した(以下「ピーク181℃熱処理」ともいう)。
この熱処理後のはんだペーストを試料とし、示差走査熱量測定を行った。この測定により得られたDSCチャートを図2に示す。この図に示すように、186℃、384℃に吸熱ピークが存在することが確認された。186℃吸熱ピークは、融点164℃である。
(4) Confirmation of melting point and bonding strength The solder paste was placed on an alumina substrate and subjected to reflow heat treatment at a peak temperature of 181 ° C. in a nitrogen atmosphere.
The heat treatment apparatus used was a mesh belt type continuous heat treatment apparatus manufactured by Koyo Thermo System Co., Ltd. The temperature profile is 5 minutes for all processes, reaches 108 ° C. in 1 minute 30 seconds from the start of heat treatment, then gradually increases in temperature, reaches a peak temperature 181 ° C. in 3 minutes 15 seconds, and then gradually decreases in temperature. At the end of the heat treatment, a condition of 146 ° C. was adopted (hereinafter also referred to as “peak 181 ° C. heat treatment”).
Using the solder paste after the heat treatment as a sample, differential scanning calorimetry was performed. The DSC chart obtained by this measurement is shown in FIG. As shown in this figure, it was confirmed that endothermic peaks exist at 186 ° C. and 384 ° C. The 186 ° C. endothermic peak has a melting point of 164 ° C.

また、上記はんだペーストをCu基板に2mm×3.5mmで印刷し、チップを搭載後、窒素雰囲気にて、前記の熱処理方法で、ピーク181℃熱処理してサンプルを作製した。印刷パターン形成は、マイクロテック(株)製の印刷機「MT−320TV」を用い、マスクはメタルマスクで、スキージはウレタン製のものを用いた。マスクの開孔は、2mm×3.5mmであり、厚みは100μmである。印刷条件は、印刷速度10mm/秒、印圧0.1MPa、スキージ圧0.2MPa、背圧0.1MPa、アタック角度20°、クリアランス0mm、印刷回数1回とした。また、チップは、2mm×2mmで、厚みが0.5mmのCuチップを用いた。
更に、常温(25℃)で、前記作製サンプルの剪断方向のチップ接合強度をプッシュ・プルゲージにより、押し速度10mm/minで測定し、単位面積で換算したところ13.7MPaであった。
The solder paste was printed on a Cu substrate with a size of 2 mm × 3.5 mm, and after mounting the chip, a sample was prepared by heat treatment at a peak of 181 ° C. in the nitrogen atmosphere by the heat treatment method described above. For the printing pattern formation, a printing machine “MT-320TV” manufactured by Microtech Co., Ltd. was used, the mask was a metal mask, and the squeegee was made of urethane. The opening of the mask is 2 mm × 3.5 mm and the thickness is 100 μm. The printing conditions were a printing speed of 10 mm / second, a printing pressure of 0.1 MPa, a squeegee pressure of 0.2 MPa, a back pressure of 0.1 MPa, an attack angle of 20 °, a clearance of 0 mm, and a printing frequency of once. The chip used was a 2 mm × 2 mm Cu chip having a thickness of 0.5 mm.
Furthermore, when the chip bond strength in the shear direction of the produced sample was measured at a pushing speed of 10 mm / min with a push-pull gauge at room temperature (25 ° C.) and converted into a unit area, it was 13.7 MPa.

次に上記はんだペーストをアルミナ基板に載せ、窒素雰囲気にて、ピーク温度204℃でリフロー熱処理した。熱処理装置は、前記同様で、温度プロファイルは、全工程が5分で、熱処理開始から1分30秒で111℃に達し、その後は徐々に昇温、3分15秒でピーク温度204℃に到達後、徐々に温度が降下、熱処理終了時は、162℃になる条件を採用した(以下「ピーク204℃熱処理」ともいう)。この温度プロファイルは、一般的なSn−37Pb共晶はんだの接合で使用されるリフロー条件を想定している。
この熱処理後のはんだペーストを試料とし、示差走査熱量測定を行った。その結果、184℃、384℃に吸熱ピークが存在することが確認された。184℃吸熱ピークは、融点164℃である。
Next, the solder paste was placed on an alumina substrate and subjected to reflow heat treatment at a peak temperature of 204 ° C. in a nitrogen atmosphere. The heat treatment apparatus is the same as described above, and the temperature profile is 5 minutes for all processes, and reaches 111 ° C. in 1 minute 30 seconds from the start of heat treatment, and then gradually rises in temperature and reaches peak temperature 204 ° C. in 3 minutes 15 seconds. Thereafter, the temperature gradually decreased, and a condition of 162 ° C. was adopted when the heat treatment was completed (hereinafter also referred to as “peak 204 ° C. heat treatment”). This temperature profile assumes the reflow conditions used in the joining of general Sn-37Pb eutectic solder.
Using the solder paste after the heat treatment as a sample, differential scanning calorimetry was performed. As a result, it was confirmed that endothermic peaks exist at 184 ° C. and 384 ° C. The 184 ° C. endothermic peak has a melting point of 164 ° C.

また、上記はんだペーストを上記と同じ方法で、Cu基板に2mm×3.5mmで印刷し、チップを搭載後、窒素雰囲気にて、前記熱処理方法で、ピーク204℃熱処理してサンプルを作製した。
更に、常温(25℃)で、前記作製サンプルの剪断方向のチップ接合強度をプッシュ・プルゲージにより、押し速度10mm/minで測定し、単位面積で換算したところ19.4MPaであった。
上記の実施例を実施例3とし、第1の金属粒子、第2の金属粒子の混合比を変えた導電性フィラーを実施例1及び実施例2とし、これらを上記と同じ方法によりペースト化、熱処理した後、示差走査熱量、チップ接合強度を測定した結果を実施例1、2として表1に示す。
In addition, the solder paste was printed on a Cu substrate at 2 mm × 3.5 mm by the same method as described above, and after mounting the chip, the sample was heat-treated at a peak of 204 ° C. by the heat treatment method in a nitrogen atmosphere.
Further, the chip bond strength in the shear direction of the prepared sample was measured at a pushing speed of 10 mm / min with a push-pull gauge at room temperature (25 ° C.), and converted to unit area, it was 19.4 MPa.
The above example was set as Example 3, conductive fillers having different mixing ratios of the first metal particles and the second metal particles were set as Examples 1 and 2, and these were pasted by the same method as described above. Table 1 shows the results of measuring the differential scanning calorific value and the chip bonding strength after heat treatment as Examples 1 and 2.

[比較例1〜5]
また、表1には、比較例として第1の金属粒子が単独の場合(比較例1)、第2の金属粒子の混合比が上限を超えた場合(比較例2)及び第2の金属粒子が単独の場合(比較例3)、並びに従来のはんだ材料を測定した結果も示す。比較例4は、Sn−37Pb共晶はんだ、比較例5は、Sn−3.0Ag−0.5Cu鉛フリーはんだである。

Figure 0004662483
[Comparative Examples 1-5]
Table 1 also shows that, as a comparative example, when the first metal particles are alone (Comparative Example 1), when the mixing ratio of the second metal particles exceeds the upper limit (Comparative Example 2), and second metal particles. In the case of a single solder (Comparative Example 3), the result of measuring a conventional solder material is also shown. Comparative Example 4 is Sn-37Pb eutectic solder, and Comparative Example 5 is Sn-3.0Ag-0.5Cu lead-free solder.
Figure 0004662483

表1の結果から明らかなように、実施例3では、ピーク温度204℃熱処理において、Sn−37Pb共晶はんだを上回る接合強度を示している。また、実施例1及び実施例2においても、十分に実用可能なレベルの接合強度である。
また、熱処理後の最低融点に関しては、実施例1、2、3では、160℃以上となっており、Sn−37Pb共晶はんだが使用されるような耐熱要求150〜160℃の表面実装の用途では、問題なく適用できると考えられる。
以上、説明したように本発明の導電性フィラーを用いることで、Sn−37Pb共晶はんだのリフロー熱処理条件よりも低温条件(ピーク温度181℃以上)で溶融接合でき、Sn−37Pb共晶はんだと同等の耐熱用途(耐熱要求150〜160℃)で使用できる接合材料を提供することができる。
As is apparent from the results in Table 1, in Example 3, the bonding strength exceeding the Sn-37Pb eutectic solder is shown in the heat treatment at the peak temperature of 204 ° C. Moreover, also in Example 1 and Example 2, it is a joint strength of the level which can fully be used practically.
Further, the minimum melting point after heat treatment is 160 ° C. or higher in Examples 1, 2, and 3, and the use of surface mounting with a heat resistance requirement of 150 to 160 ° C. in which Sn-37Pb eutectic solder is used. Then, it seems that it can be applied without problems.
As described above, by using the conductive filler of the present invention, it can be melt-bonded at a temperature lower than the reflow heat treatment condition of Sn-37Pb eutectic solder (peak temperature 181 ° C. or higher), and Sn-37Pb eutectic solder and It is possible to provide a bonding material that can be used in equivalent heat resistance applications (heat resistance requirement: 150 to 160 ° C.).

本発明の導電性フィラーは、Sn−37Pb共晶はんだのリフロー熱処理条件よりも低温条件(ピーク温度181℃以上)で溶融接合でき、かつ同等の耐熱用途(耐熱要求150〜160℃)にて接合材料としての活用が期待できる。   The conductive filler of the present invention can be melt-bonded at a temperature lower than the reflow heat treatment condition of Sn-37Pb eutectic solder (peak temperature of 181 ° C. or higher) and bonded in an equivalent heat-resistant application (heat resistance requirement 150 to 160 ° C.). Use as a material can be expected.

実施例3で作製した第1の金属粒子、第2の金属粒子を重量比100:91で混合した導電性フィラーを試料とした示差走査熱量測定により得られたDSCチャートである。It is the DSC chart obtained by the differential scanning calorimetry which used the conductive filler which mixed the 1st metal particle produced in Example 3 and the 2nd metal particle by weight ratio 100: 91 as a sample. 実施例3で作製したはんだペーストを窒素雰囲気にて、ピーク温度181℃でリフロー熱処理したものを試料とした示差走査熱量測定により得られたDSCチャートである。It is the DSC chart obtained by the differential scanning calorimetry which used what reflow-heat-treated the solder paste produced in Example 3 at the peak temperature of 181 degreeC in nitrogen atmosphere.

Claims (2)

第1の金属粒子と第2の金属粒子との混合体からなる導電性フィラーであって、該混合体は示差走査熱量測定(DSC)で発熱ピークとして観測される準安定合金相を110〜130℃に少なくとも1つと、吸熱ピークとして観測される融点を120〜140℃と170〜200℃の2箇所に少なくとも1つずつ有しており、該混合体を180〜200℃で熱処理することにより、第1の金属粒子と第2の金属粒子を溶融接合させた後の最低融点が160〜200℃にある導電性フィラーであり、該混合体が第1の金属粒子100質量部と第2の金属粒子20〜100質量部からなり、該第1の金属粒子は、Ag25〜40質量%、Cu5〜15質量%、Bi2〜8質量%、In2〜8質量%、及びSn29〜66質量%の組成を有する合金からなり、該第2の金属粒子は、In30〜45質量%、Ag5〜15質量%、Cu10〜20質量%、及びSn20〜55質量%の組成を有する合金からなることを特徴とする導電性フィラーA conductive filler comprising a mixture of first metal particles and second metal particles, the mixture having a metastable alloy phase of 110 to 130 observed as an exothermic peak by differential scanning calorimetry (DSC). Having at least one melting point observed as an endothermic peak at 120 ° C. and at least one melting point at 120 to 140 ° C. and 170 to 200 ° C., and heat-treating the mixture at 180 to 200 ° C., the lowest melting point of 160 to 200 ° C. near Ru conductive filler after the first metal particles and second metal particles are melted bonding, the first metal particles admix 100 parts by a second 20 to 100 parts by mass of the first metal particles, Ag 25 to 40% by mass, Cu 5 to 15% by mass, Bi 2 to 8% by mass, In 2 to 8% by mass, and Sn 29 to 66% by mass. Alloy with composition Rannahli, metal particles of said second, In30~45 mass%, Ag5~15 wt%, Cu10~20 mass%, and a conductive filler, characterized in that an alloy having a composition of Sn20~55 mass% . 請求項1に記載の導電性フィラーを含有することを特徴とするはんだペースト。 A solder paste comprising the conductive filler according to claim 1 .
JP2006195086A 2006-07-18 2006-07-18 Conductive filler and medium temperature solder material Active JP4662483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195086A JP4662483B2 (en) 2006-07-18 2006-07-18 Conductive filler and medium temperature solder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195086A JP4662483B2 (en) 2006-07-18 2006-07-18 Conductive filler and medium temperature solder material

Publications (2)

Publication Number Publication Date
JP2008027588A JP2008027588A (en) 2008-02-07
JP4662483B2 true JP4662483B2 (en) 2011-03-30

Family

ID=39118044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195086A Active JP4662483B2 (en) 2006-07-18 2006-07-18 Conductive filler and medium temperature solder material

Country Status (1)

Country Link
JP (1) JP4662483B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975377B2 (en) * 2012-02-09 2016-08-23 株式会社弘輝 Metal filler, solder paste, and connection structure
KR102393302B1 (en) * 2014-03-07 2022-05-03 세키스이가가쿠 고교가부시키가이샤 Conductive paste, connection structure, and production method for connection structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009106A (en) * 2002-06-07 2004-01-15 Tdk Corp Composition for moderate temperature soldering, and method for soldering
JP2004223559A (en) * 2003-01-22 2004-08-12 Asahi Kasei Corp Metallic powder composition for electrode connection and method for connecting electrode
JP2004363052A (en) * 2003-06-06 2004-12-24 Asahi Kasei Corp Conductive material, conductive molding body, and manufacturing method of conductive molding body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004009106A (en) * 2002-06-07 2004-01-15 Tdk Corp Composition for moderate temperature soldering, and method for soldering
JP2004223559A (en) * 2003-01-22 2004-08-12 Asahi Kasei Corp Metallic powder composition for electrode connection and method for connecting electrode
JP2004363052A (en) * 2003-06-06 2004-12-24 Asahi Kasei Corp Conductive material, conductive molding body, and manufacturing method of conductive molding body

Also Published As

Publication number Publication date
JP2008027588A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP5166261B2 (en) Conductive filler
JP4667455B2 (en) Conductive filler and solder material
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP5584909B2 (en) Connection structure
JP4667103B2 (en) Conductive filler and low-temperature solder material
JP2012250240A (en) Metal filler, solder paste, and connected structure
JP2011147982A (en) Solder, electronic component, and method for manufacturing the electronic component
JP4703581B2 (en) Conductive filler and solder paste
JP5188999B2 (en) Metal filler and solder paste
JP6002947B2 (en) Metal filler, solder paste, and connection structure
JP5975377B2 (en) Metal filler, solder paste, and connection structure
JP4662483B2 (en) Conductive filler and medium temperature solder material
JP5147349B2 (en) Bump forming paste and bump structure
JP5724088B2 (en) Metal filler and lead-free solder containing the same
JP2014072398A (en) Semiconductor device and manufacturing method of the same
JP5609774B2 (en) Ternary alloy particles
JP2017177122A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF
JP5652689B2 (en) Manufacturing method of electronic component bonded structure and electronic component bonded structure obtained by the manufacturing method
JP2011062752A (en) Conductive filler, and low-temperature solder material
JP2012250239A (en) Metal filler, solder paste, and connected structure
JP2009200285A (en) Bump and bump connection structure
CN117754178A (en) SnBi lead-free solder, preparation method and application thereof
KR20170097283A (en) Lead-free solder composition and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

R150 Certificate of patent or registration of utility model

Ref document number: 4662483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250