JP2019072694A - 電気式脱イオン水製造装置 - Google Patents

電気式脱イオン水製造装置 Download PDF

Info

Publication number
JP2019072694A
JP2019072694A JP2017202135A JP2017202135A JP2019072694A JP 2019072694 A JP2019072694 A JP 2019072694A JP 2017202135 A JP2017202135 A JP 2017202135A JP 2017202135 A JP2017202135 A JP 2017202135A JP 2019072694 A JP2019072694 A JP 2019072694A
Authority
JP
Japan
Prior art keywords
chamber
exchange membrane
membrane
cation exchange
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017202135A
Other languages
English (en)
Other versions
JP6962774B2 (ja
Inventor
慶介 佐々木
Keisuke Sasaki
慶介 佐々木
健太 合庭
Kenta Aiba
健太 合庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2017202135A priority Critical patent/JP6962774B2/ja
Publication of JP2019072694A publication Critical patent/JP2019072694A/ja
Application granted granted Critical
Publication of JP6962774B2 publication Critical patent/JP6962774B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】電気抵抗の増加を抑えつつ、カチオン交換膜を通じて濃縮水から処理水に炭酸等の弱酸成分が移動する現象を抑制することができるEDI装置を提供する。【解決手段】対向する陰極と陽極との間に少なくとも1つの脱塩処理部が設けられた電気式脱イオン水製造装置であって、前記脱塩処理部は、少なくともアニオン交換体が充填された脱塩室と、該脱塩室の両隣に設けられる一対の濃縮室とを有し、前記脱塩室は、前記一対の濃縮室のうちの前記陰極側の濃縮室にカチオン交換膜を介して隣接するとともに、前記一対の濃縮室のうちの前記陽極側の濃縮室にアニオン交換膜を介して隣接し、前記カチオン交換膜の少なくとも一部が、均質膜と不均質膜とが重なった構造であって、前記均質膜が前記脱塩室に接する向きに配置されている構造を有する。【選択図】図1

Description

本発明は、電気式脱イオン水製造装置に関する。
従来、イオン交換体に被処理水を通水させて脱イオンを行う脱イオン水製造装置が知られている。近年、薬剤による再生が不要な電気式脱イオン水製造装置(以下、「EDI装置」ということがある)が開発され、実用化されている。
EDI装置は、電気泳動と電気透析を組み合わせた装置である。一般的なEDI装置の基本構成は次のとおりである。すなわち、EDI装置は、脱塩室と、脱塩室の両側に配置された一対の濃縮室と、一方の濃縮室の外側に配置された陽極(プラス極)室と、他方の濃縮室の外側に配置された陰極(マイナス極)室とを有する。脱塩室は、対向配置されたアニオン交換膜およびカチオン交換膜と、それら交換膜の間に充填されたイオン交換体(アニオン交換体又は/及びカチオン交換体)とを有する。被処理水中に存在するアニオン成分及びカチオン成分が、それぞれアニオン交換膜およびカチオン交換膜を通って脱塩室から濃縮室に移動し、脱塩室から処理水すなわち脱イオン水が得られ、濃縮室から濃縮水が得られる。
前述のような構成を有する脱イオン水製造装置によって脱イオン水を製造するには、陽極室および陰極室にそれぞれ設けられている電極間に直流電圧を印加した状態で脱塩室に被処理水を通水させる。脱塩室では、アニオン交換体によってアニオン成分(Cl、CO 2−、HCO 、SiO等)が、カチオン交換体によってカチオン成分(Na、Ca2+、Mg2+等)が捕捉される。同時に、例えば脱塩室内のアニオン交換体とカチオン交換体の界面で水の解離反応が起こり、水素イオンと水酸化物イオンが発生する(HO→H+OH)。
イオン交換体に捕捉されたイオン成分は、この水素イオン及び水酸化物イオンと交換されてイオン交換体から遊離する。遊離したイオン成分はイオン交換体を伝ってイオン交換膜(アニオン交換膜またはカチオン交換膜)まで電気泳動し、イオン交換膜で電気透析されて濃縮室へ移動する。濃縮室に移動したイオン成分は、濃縮室を流れる水によって排出される。
以上のように、EDI装置では、水素イオンと水酸化物イオンがイオン交換体を再生する再生剤(酸やアルカリ)として連続的に作用する。このため、薬剤によるイオン交換体の再生が基本的には不要であり、連続運転が可能である。
特許文献1に記載されるように、EDI装置では、濃縮水に含まれる炭酸やシリカ(ケイ酸)、ほう素(ほう酸)に代表される弱酸成分が、濃縮室と脱塩室とを仕切るカチオン交換膜を通過して処理水中に拡散し、処理水の純度を低下させる現象が発生することがある。以下、炭酸を例として、具体的に説明する。
一般的に、カチオン交換膜はカチオンのみ選択的に透過させるイオン交換膜である。その原理は、膜自体にマイナス電荷を持たせ、マイナス電荷を有するアニオンに対して反発力を働かせて透過を阻止するものである。CO 2−やHCO はアニオンなので、カチオン交換膜を通過しない。
一方、炭酸(二酸化炭素)は水溶液中で中性分子または各イオン種の形態を取り、それらは平衡状態にある。
CO+HO ⇔ HCO +H ⇔ CO 2−+2H
上記のような平衡状態において中性分子または各イオン種が全体に占める割合は、pHによって大きく変化する。pHが低い(Hイオン濃度が高い)領域では炭酸の大部分はイオン化していない、つまり電荷を持たないCOとして存在している。
このため、pHが低い領域でカチオン交換膜を用いて炭酸の移動を阻止しようとしても、マイナス電荷による反発力が有効に働かないために、その分子(CO)は容易にカチオン交換膜を通過してしまう。
図11を参照して具体的に説明する。脱塩室23の陰極側には、カチオン交換膜(CEM)44を介して濃縮室24が配置され、さらにその外側にアニオン交換膜(AEM)34を介して、陰極12を備えた陰極室25が配置されている。脱塩室23の陽極側には、アニオン交換膜(AEM)32を介して濃縮室22が配置され、さらにその外側にカチオン交換膜31を介して、陽極11を備えた陽極室21が配置されている。ここで陽極室21には、カチオン交換体としてカチオン交換樹脂(CER)が充填される。濃縮室22及び24ならびに陰極室25には、アニオン交換体としてアニオン交換樹脂(AER)が充填される。脱塩室23には、カチオン交換体およびアニオン交換体として、カチオン交換樹脂とアニオン交換樹脂との混床(MB)が充填される。被処理水が脱塩室23に供給され、処理水(脱イオン水)が脱塩室23から系外に排出される。
脱塩室23から濃縮室24に、被処理水中のカチオン成分と共に、水解離反応により生じる多量の水素イオン(H)が、脱塩室内のカチオン交換体を伝って、さらにカチオン交換膜44を通過して、移動する。濃縮室24にはアニオン交換体が充填されており、カチオン交換膜44を通過した水素イオン(H)は、カチオン交換膜44の濃縮室24側の表面で一斉に放出される。すなわち、カチオン交換膜44の濃縮室24側の表面は、水素イオン(H)が多い状態(すなわちpHが低い状態)になる。一方、濃縮水に含まれる炭酸は、濃縮室22及び24内のアニオン交換体によりイオン(CO 2−やHCO )として捕捉され、アニオン交換体を伝ってカチオン交換膜31及び44の表面まで移動する。カチオン交換膜44の濃縮室24側の表面では、炭酸の濃度が高くなる上に、pHが低くなっている。結果として、pHが低い条件下でイオン化しない炭酸は、濃縮室24内のアニオン交換体から遊離した後に、電荷を失ってCOとなり、カチオン交換膜44を透過し、脱塩室23内の被処理水中に拡散してしまう。このように、カチオン交換膜を通って濃縮室から脱塩室に弱酸成分が拡散する現象は、「逆拡散」と呼ばれることがある。
シリカやほう素の場合も炭酸と同様の逆拡散現象が発生しうる。
なお、ここでは各室にイオン交換体を充填した場合について説明したが、イオン交換体が充填されていない場合であっても、同様の現象が発生しうる。
特許文献1には、このような現象を抑制し、高純度の脱イオン水(処理水)を製造可能なEDI装置が開示される。この装置では、脱塩室が、中間イオン交換膜によって、陽極側の濃縮室に隣接する第1小脱塩室と、陰極側の濃縮室に隣接する第2小脱塩室とに仕切られる。第1小脱塩室にはアニオン交換体が充填され、第2小脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体とカチオン交換体とが充填されている。
国際公開第2011/152226号パンフレット
特許文献1によれば、逆拡散現象を抑制することができ、処理水の純度を高めることができる。しかし、特許文献1の技術とともにまたは特許文献1の技術とは別に利用可能な、逆拡散抑制策が求められていた。また、消費電力の観点から、電気抵抗の増加を抑えることも望まれる。
本発明の目的は、電気抵抗の増加を抑えつつ、カチオン交換膜を通じて濃縮水から処理水に炭酸等の弱酸成分が移動する現象を抑制することができるEDI装置を提供することである。
本発明の一態様により、
対向する陰極と陽極との間に少なくとも1つの脱塩処理部が設けられた電気式脱イオン水製造装置であって、
前記脱塩処理部は、少なくともアニオン交換体が充填された脱塩室と、該脱塩室の両隣に設けられる一対の濃縮室とを有し、
前記脱塩室は、前記一対の濃縮室のうちの前記陰極側の濃縮室にカチオン交換膜を介して隣接するとともに、前記一対の濃縮室のうちの前記陽極側の濃縮室にアニオン交換膜を介して隣接し、
前記カチオン交換膜の少なくとも一部が、均質膜と不均質膜とが重なった構造であって、前記均質膜が前記脱塩室に接する向きに配置されている構造を有する、
電気式脱イオン水製造装置が提供される。
本発明によれば、電気抵抗の増加を抑えつつ、カチオン交換膜を通じて濃縮水から処理水に炭酸等の弱酸成分が移動する現象を抑制することができるEDI装置が提供される。
本発明のEDI装置の一形態を示す概略構成図である。 図1に示した装置において、繰り返し数Nが2の場合の例を示す概略構成図である。 本発明のEDI装置の別の形態を示す概略構成図である。 本発明のEDI装置のさらに別の形態を示す概略構成図である。 本発明のEDI装置のさらに別の形態を示す概略構成図である。 本発明のEDI装置のさらに別の形態を示す概略構成図である。 本発明のEDI装置のさらに別の形態を示す概略構成図である。 本発明のEDI装置のさらに別の形態を示す概略構成図である。 本発明のEDI装置のさらに別の形態を示す概略構成図である。 本発明のEDI装置のさらに別の形態を示す概略構成図である。 従来のEDI装置を示す概略構成図である。
EDI装置では、陰極と陽極との間に直流電流を印加することによって水解離反応(HO→H+OH)を進行させ、そこで発生したHとOHが脱塩室内に充填されたイオン交換体を再生する役割を担う。そのため、EDI装置の性能は、水解離反応のし易さに左右される。
水解離反応は、主に、脱塩室の内部に充填した異種のイオン交換体同士の接点(すなわちアニオン交換体とカチオン交換体との接点)、ならびに脱塩室を区画するイオン交換膜と脱塩室内部の異種のイオン交換体との接点(アニオン交換膜と脱塩室内部のカチオン交換体との接点、及び/又は、カチオン交換膜と脱塩室内部のアニオン交換体との接点)において進行する。特に、脱塩室内部に充填するイオン交換体の形態が単床である場合には、水解離反応は主に、イオン交換膜と異種のイオン交換体との接点において、より詳しくは、イオン交換膜とイオン交換体に含まれる陽イオン交換基と陰イオン交換基との接点で進行すると考えられる。
さて、イオン交換膜は、不均質膜と均質膜に大別することができる。不均質膜は、イオン交換樹脂の微粉末を、適当な結合剤(高分子化合物)、たとえばポリエチレン、ポリスチレン、フェノール樹脂、合成ゴムなどに分散させ、加熱して膜状に成形したものである。不均質膜の膜面には、イオン交換基が存在しない不活性な高分子化合物からなる部分が存在する。不均質膜は製造が容易であり、安定した膜性能を有する。一方、均質膜は、膜状に合成したイオン交換体である。均質膜は、膜全体が高度の架橋によって化学的に結合し、多数のイオン交換基が均一に分布した構造を有し、不均質膜に比べて機械的強度は劣るが電気抵抗が低い点で優れたイオン交換膜である。不均質膜、均質膜ともに機械的強度を向上する目的にて補強体としてメッシュや不織布などが一体化されているのが一般的である。
本発明者らの検討によれば、カチオン交換膜として不均質膜を用いて水解離点を構成したEDI装置と、カチオン交換膜として均質膜を用いて水解離点を構成したEDI装置とを比較すると、同じ大きさの電流を印加したときに、不均質膜の場合のほうが高い電圧を示す(水解離反応が進行しにくい)ことが判明した。これは、不均質膜に不活性な部分が存在すること、すなわちイオン交換基の分布密度が低いことに起因すると考えられる。
一方、前述のように、EDI装置では、濃縮室から脱塩室への炭酸やシリカやほう素などの弱酸成分の逆拡散が発生することがある。
本発明者らの検討によれば、濃縮室と脱塩室との間に不均質膜を配した場合と均質膜を配した場合とを比較すると、不均質膜を配した場合のほうが、逆拡散する弱酸成分が少ないことが判明した。これは、不均質膜に不活性な高分子化合物からなる部分が存在することに起因すると考えられる。
要するに、水解離点を構成するためのイオン交換膜としては、イオン交換基がより均一に分布している均質膜が適しており、濃縮室から脱塩室へのイオンの拡散を防止するためのイオン交換膜としては、膜面に不活性な部分が分布している不均質膜が適していることが判明した。
そして、本発明者らは、脱塩室と濃縮室とを区画するカチオン交換膜に、これらの膜を重ね合わせて使用することによって、均質膜と不均質膜の利点を活かすことができることを見出し、本発明に至った。詳しくは、脱塩室と濃縮室とを区画するカチオン交換膜として、脱塩室側(特には、水解離反応を進行させる箇所)に均質膜すなわち均質カチオン交換膜を用い、濃縮室側に炭酸等の逆拡散を防止する目的で不均質膜すなわち不均質カチオン交換膜を用いる。
以下、図面を参照しつつ本発明の形態について詳細に説明するが、本発明はこれによって限定されるものではない。
図1は、本発明に基づくEDI装置(電気式脱イオン水製造装置)の基本的な態様を示すものである。EDI装置には、対向する陰極12と陽極11との間に、少なくとも1つの脱塩処理部が設けられる。この脱塩処理部は、脱塩室23と、脱塩室23の両隣に設けられる一対の濃縮室22及び24とを有し、またアニオン交換膜32とカチオン交換膜41も有する。
脱塩室23は、一対の濃縮室22、24のうちの陰極側の濃縮室24にカチオン交換膜(CEM)41を介して隣接するとともに、一対の濃縮室22、24のうちの陽極側の濃縮室22にアニオン交換膜(AEM)32を介して隣接する。したがって脱塩室23は、陽極11に向いた側に位置するアニオン交換膜32と陰極12に向いた側に位置するカチオン交換膜41とによって区画されていることになる。
図1に示すEDI装置では、陽極11を備えた陽極室21と、陰極12を備えた陰極室25との間に、陽極室21側から順に、濃縮室22、脱塩室23及び濃縮室24が設けられている。陽極室21と濃縮室22はカチオン交換膜31を隔てて隣接し、濃縮室24と陰極室25はアニオン交換膜34を隔てて隣接している。
脱塩室23内には、少なくともアニオン交換体が充填されている。図1に示した例では、脱塩室23内には、アニオン交換体とカチオン交換体とが混床となって充填されている。ただし、この限りではなく、アニオン交換体のみが脱塩室23に充填されていてもよい。あるいは、一つ以上のアニオン交換体床(アニオン交換体からなる床)と、一つ以上のカチオン交換体床(カチオン交換体からなる床)とが、脱塩室23に設けられていてもよい。
さらにこのEDI装置では、カチオン交換体が陽極室21内に充填され、アニオン交換体が濃縮室22、24及び陰極室25内に充填されている。しかし、陽極室21、濃縮室22、24及び陰極室25には、必ずしもイオン交換体(アニオン交換体またはカチオン交換体)を充填する必要はない。
ただし、濃縮室22、24にアニオン交換体が充填されている場合に、本発明の効果が顕著である。なぜなら、濃縮室22、24にアニオン交換体が充填されている場合、逆拡散現象が顕著である傾向があり、本発明によって逆拡散現象を効果的に抑制できるからである。
アニオン交換体としては例えばアニオン交換樹脂(AER)が使用され、カチオン交換体としては例えばカチオン交換樹脂(CER)が使用される。イオン交換樹脂とは、三次元的な網目構造を持った高分子母体に官能基(イオン交換基)を導入した合成樹脂のことであり、通常使用されるものは、粒子径が0.4〜0.8mm程度の球状の粒子である。イオン交換樹脂の高分子母体としては、スチレン−ジビニルベンゼンの共重合体(スチレン系)や、アクリル酸−ジビニルベンゼンの共重合体(アクリル系)などがある。
イオン交換樹脂は、官能基が酸性を示すカチオン交換樹脂と、塩基性を示すアニオン交換樹脂とに大別され、さらに、導入されるイオン交換基の種類によって、強酸性カチオン交換樹脂、弱酸性カチオン交換樹脂、強塩基性アニオン交換樹脂、弱塩基性アニオン交換樹脂などがある。強塩基性アニオン交換樹脂としては、例えば、第4級アンモニウム基を官能基(イオン交換基)として有するものがあり、弱塩基性アニオン交換樹脂としては、例えば、第1〜第3級アミンを官能基として有するものがある。強酸性カチオン交換樹脂としては、例えば、スルホン酸基を官能基として有するものがあり、弱酸性カチオン交換樹脂としては、例えば、カルボキシル基を官能基として有するものがある。
次に、図1に示したEDI装置による脱イオン水(処理水)の製造について説明する。
陽極室21、濃縮室22、24及び陰極室25に供給水を通水し、陽極11と陰極12との間に直流電圧を印加した状態で、脱塩室23に被処理水を通水する。すると、被処理水中のイオン成分は脱塩室23内のイオン交換体に吸着され、脱イオン化(脱塩)処理が行われ、脱塩室23から処理水として脱イオン水が流出する。このとき脱塩室23では、印加電圧によって主に異種のイオン交換体(イオン交換膜)の界面で水の解離反応が起こり、水素イオン及び水酸化物イオンが生成し、水素イオンと水酸化物イオンとによって、先に脱塩室23内のイオン交換体に吸着されていたイオン成分がイオン交換されてイオン交換体から遊離する。遊離したイオン成分のうちアニオンはアニオン交換膜32を介して陽極側の濃縮室22に移動し、この濃縮室22から濃縮水として排出され、カチオンは、カチオン交換膜41を介して陰極側の濃縮室24に移動し、この濃縮室24から濃縮水として排出される。結局、脱塩室23に供給された被処理水中のイオン成分は濃縮室22、24に移行して排出され、同時に、脱塩室23のイオン交換体も再生される。なお、陽極室21及び陰極室25からは電極水が排出される。
本発明によれば、脱塩室23と濃縮室24とを区画するカチオン交換膜41の少なくとも一部が、均質膜(すなわち均質カチオン交換膜)42と不均質膜(すなわち不均質カチオン交換膜)43とが重なった構造であって、均質膜42が脱塩室23と接する向きに配置されている構造(以下、「二層構造」と呼ぶことがある。)を有する。
カチオン交換膜41が上記二層構造を有することにより、脱塩室内のアニオン交換体と均質膜42とを接触させることができ、その接点において水解離反応を促進することができる。また、不均質膜43によって、炭酸やシリカ、ほう素等の弱酸成分が、濃縮室24からカチオン交換膜41を通って脱塩室23に移動する逆拡散現象を抑制することができる。したがって、電気抵抗の増加を抑えつつも、逆拡散現象を抑制することができる。
図1に示した装置では、脱塩室23と濃縮室24とを区画するカチオン交換膜41の全部が、前記二層構造を有する。したがって、カチオン交換膜41の脱塩室23に面する領域の全部が均質膜42で構成され、カチオン交換膜41の濃縮室24に面する領域の全部が不均質膜43で構成される。しかし、この限りではなく、カチオン交換膜41の一部のみが前記二層構造を有し、残部は二層構造を有さなくてもよい。当該残部は、不均質膜のみからなっていてもよいし、あるいは均質膜のみからなっていてもよい。
均質膜および不均質膜は、前述したとおりのものである。不均質膜を走査型電子顕微鏡(SEM)で観察すると(例えば倍率500倍)、微粒子(イオン交換樹脂の微粉末)が母材(結合材)中に分散していることが観察され、すなわち微粒子と母材との境界を明確に判断することができる。一方、均質膜を同様に観察しても、微粒子を判別することはできない。
不均質膜は、その製法に起因して、膜が厚い傾向がある。一般的な不均質膜の厚さは200μm〜700μm程度、特には400〜600μmである。一方、均質膜は、電気抵抗を低くするために、膜厚が薄い傾向がある。一般的な均質膜の厚さは、100μm〜300μm程度、特には150〜250μmである。
均質膜及び不均質膜として、それぞれEDI装置や電気透析装置(ED)の分野で公知のものを使用することができる。
なお、不均質膜からイオン交換樹脂の微粉末が剥がれ落ちることがある。本発明によれば、均質膜を不均質膜に重ねることによって、このような現象を抑制することもできる。
前記二層構造を形成するためには、均質膜(均質カチオン交換膜)42と不均質膜(不均質カチオン交換膜)43とを、重ねればよい。適宜の手段を用いて、両者を互いに固定することができる。膜を重ねる際には、それぞれの膜を湿潤状態とし、表面の汚れを清浄な純水などで流した上で重ねることが好ましい。
陽極11及び陰極12としては、EDI装置の分野で公知のものを用いることができる。例えば、陰極にはステンレス、陽極には白金などの貴金属、もしくは貴金属めっき電極が用いられる。カチオン交換膜31、アニオン交換膜32、34としても、EDI装置の分野で公知のものを用いることができる。また、図示しないが、陽極11及び陰極12、陽極室21、濃縮室22及び24、脱塩室23、陰極室25、カチオン交換膜31及び41、ならびにアニオン交換膜32及び34を、適宜の枠体(不図示)に収容することができる。
供給水や被処理水としても、EDI装置の分野で公知のものを用いることができる。一般的には逆浸透膜(RO)の透過水が用いられ、RO膜で2段以上処理したものがより好ましい。加えて、脱炭酸塔や脱炭酸膜を用いて炭酸を除去することもある。さらに、近年においては、EDIにて処理した水を供給水や被処理水に用いる場合もある。
図1に示した装置では、陽極室21、濃縮室22及び24、ならびに陰極室25に、下方から供給水を導入し、上方から水(電極水もしくは濃縮水)を排出し、一方、脱塩室23には、上方から被処理水を供給し、下方へ排出している。しかし、その限りではなく、水の流れ方向は適宜決めることができる。さらに、陽極室21に外部から水を供給するのではなく、陰極室25の出口水(電極水)を陽極室21に供給してもよいし、その逆としてもよい。
なお、濃縮室が電極室を兼ねている構成も本発明に含まれる。例えば、図1に示す濃縮室24に陰極を設けて陰極室25を省略してもよい。この場合であっても、脱塩室および一対の濃縮室から構成される脱塩処理部は、陰極と陽極の間に配置される。
EDI装置は、脱塩処理部を複数個有することができる。そのために、[濃縮室|アニオン交換膜(AEM)|脱塩室|カチオン交換膜(CEM)|濃縮室]からなる基本構成(すなわちセルセット)を陽極と陰極との間に複数個並置することができる。このとき、隣接するセルセット間で隣り合う濃縮室を共有することができる。したがって、アニオン交換膜32、脱塩室23、カチオン交換膜41及び濃縮室24で1つのセルセットが構成されるものとして、このセルセットを陽極室21に最も近い濃縮室22と陰極室25との間に複数個配置することができる。図中、「N」はこのセルセットの個数を意味し、Nは1以上の整数である。
以上、本発明に基づくEDI装置の基本的な構成を説明したが、本発明は種々の構成のEDI装置に広く適用できるものである。以下、本発明を適用できるEDI装置の構成例を説明する。
図2を用いて、脱塩処理部を2個有する形態のEDI装置について説明する。このEDI装置は、図1に示した装置において、セルセットを陽極室21に最も近い濃縮室22と陰極室25との間に2個配置したものである。図2において、陰極室25に近いほうのセルセットを構成する構成要素を示す符号には「’(ダッシュ)」を付してある。
陽極室21にはカチオン交換樹脂(CER)が充填され、濃縮室22と陰極室25にはアニオン交換樹脂(AER)が充填される。2つの濃縮室24及び24’にはいずれもアニオン交換樹脂(AER)が充填される。2つの脱塩室23及び23’にはいずれもアニオン交換樹脂とカチオン交換樹脂とが混床(MB)で充填されている。濃縮室22と脱塩室23とはアニオン交換膜32によって区画される。脱塩室23と濃縮室24とはカチオン交換膜41によって区画される。濃縮室24と脱塩室23’とはアニオン交換膜32’によって区画される。脱塩室23’と濃縮室24’とはカチオン交換膜41’によって区画される。濃縮室24’と陰極室25とはアニオン交換膜34によって区画される。
カチオン交換膜41は、均質膜(均質カチオン交換膜)42と不均質膜(不均質カチオン交換膜)43とが重ね合わせられた二層構造を有する。カチオン交換膜41’も、均質膜(均質カチオン交換膜)42’と不均質膜(不均質カチオン交換膜)43’とが重ね合わせられた二層構造を有する。脱塩室23と濃縮室24とを区画するカチオン交換膜41の全部が二層構造を有し、また、脱塩室23’と濃縮室24’とを区画するカチオン交換膜41’の全部が二層構造を有する。
アニオン交換膜32’、脱塩室23’、カチオン交換膜41’及び濃縮室24’の構成は、それぞれアニオン交換膜32、脱塩室23、カチオン交換膜41及び濃縮室24と同じでよいし、あるいは異なっていてもよい。
図1を用いた説明と同様に、均質膜42及び42’の存在によって、それぞれ脱塩室23及び23’における水解離反応を促進することが容易となる。また、不均質膜43によって、炭酸やシリカ、ほう素等の弱酸成分が、濃縮室24からカチオン交換膜41を通って脱塩室23に移動する現象を抑制することができる。さらに、不均質膜43’によって、炭酸やシリカ、ほう素等の弱酸成分が、濃縮室24’からカチオン交換膜41’を通って脱塩室23’に移動する現象を抑制することができる。
ところで、濃縮室24には、脱塩室23’からCO 2−やHCO 等の弱酸由来のアニオンが、アニオン交換膜32’を通って移動してくる。したがって、濃縮室24内には、供給水にもともと含まれていた弱酸成分に加えて、アニオン交換膜32’を通って移動してきた弱酸成分も含まれることになる。従って、濃縮室24内の弱酸成分の濃度は、比較的高くなる。よって、逆拡散現象が顕著になりやすい。本発明はこのような現象を抑制することができるので、本発明は、脱塩処理部を複数備えるEDI装置において特に有効である。
図3は、本発明に基づくEDI装置の別の形態を示している。このEDI装置は図1に示したものと同様のものであるが、ただし脱塩室23内において、被処理水の入口側にカチオン交換樹脂(CER)を配置し、出口側にアニオン交換樹脂(AER)を配置している。つまり、脱塩室23に、カチオン交換樹脂からなる床(カチオン交換樹脂床、したがってカチオン交換体床)と、アニオン交換樹脂からなる床(アニオン交換樹脂床、したがってアニオン交換体床)とが、脱塩室23における通水方向に一つずつ積層されている。したがって、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体床とカチオン交換体床が脱塩室に充填されている。
当然のことながら、この形態でも、アニオン交換膜32、脱塩室23、カチオン交換膜41及び濃縮室24で1つのセルセットが構成されるものとして、このセルセットを陽極室21に最も近い濃縮室22と陰極室25との間にN(Nは1以上の整数)個配置することができる。
図4に示したEDI装置は、図3に示したものと同様のものであるが、ただし脱塩室23をその中での水の流れ方向にしたがって4つの領域に分け、被処理水の入口側から順に、カチン交換樹脂床、アニオン交換樹脂床、カチオン交換樹脂床、アニオン交換樹脂床と並ぶように、それぞれの領域にイオン交換樹脂を配置したものである。
図5に示したEDI装置は、図3に示したものと同様のものであるが、ただしカチオン交換膜41の二層構造における均質膜42の配置が異なる。この形態においては、カチオン交換膜41の、脱塩室23内のアニオン交換体床(アニオン交換樹脂床)に接する部分に均質膜42が設けられる。カチオン交換膜41の、脱塩室23内のカチオン交換体床(カチオン交換樹脂床)に接する部分には、均質膜が設けられていない。また、カチオン交換膜41の濃縮室24に面する領域の全部が不均質膜43で構成される。
カチオン交換体床と均質膜(均質カチオン膜)42とが接していても、その部分では水解離反応は促進されない。この形態では、水解離反応が促進される部分だけに均質膜42を配置することができるので、均質膜42が効果的に利用される。
水解離反応促進の観点から、図5に示すように、カチオン交換膜41の、脱塩室23内のアニオン交換体床に接する部分の全部を均質膜42で形成することが好ましい。ただしその限りではなく、カチオン交換膜41の、脱塩室23内のアニオン交換体床に接する部分の一部が均質膜42で形成されていてもよい。
図6に示したEDI装置は、図4に示したものと同様のものであるが、ただしカチオン交換膜41の二層構造における均質膜42の配置が異なる。この形態においては、カチオン交換膜41の、脱塩室23内の2つのアニオン交換体床(アニオン交換樹脂床)に接する部分にそれぞれ均質膜42が設けられる。カチオン交換膜41の、脱塩室23内の2つのカチオン交換体床(カチオン交換樹脂床)に接する部分には、均質膜が設けられていない。また、カチオン交換膜41の濃縮室24に面する領域の全部が不均質膜43で構成される。この形態においても、水解離反応が促進される部分だけに均質膜42を配置することができるので、均質膜42が効果的に利用される。
本発明に基づくEDI装置では、各脱塩室において陽極側のアニオン交換膜と陰極側のカチオン交換膜との間に中間イオン交換膜(IIEM)を設け、中間イオン交換膜によってその脱塩室を第1小脱塩室及び第2小脱塩室に区画し、第1小脱塩室及び第2小脱塩室のうちの一方の小脱塩室に被処理水が供給されてその小脱塩室から流出する水が他方の小脱塩室に流入するように、第1及び第2の小脱塩室を連通配置することができる。中間イオン交換膜としては、アニオン交換膜及びカチオン交換膜のいずれも使用できる。このとき、陽極側の小脱塩室を第1小脱塩室、陰極側の小脱塩室を第2小脱塩室とする。例えば、第1小脱塩室には少なくともアニオン交換体が充填され、第2小脱塩室には少なくともカチオン交換体が充填される。
図7は、このように脱塩室を中間イオン交換膜によって2つの小脱塩室に区画したEDI装置の例を示している。このEDI装置は、図1に示したEDI装置における各脱塩室23を、中間イオン交換膜36によって、陽極11側の第1小脱塩室26と陰極12側の第2小脱塩室27とに区画した構成を有する。第1小脱塩室26は、アニオン交換膜32と中間イオン交換膜36との間に位置し、第2小脱塩室27は、カチオン交換膜41と中間イオン交換膜36との間に位置する。
第1小脱塩室26にはアニオン交換樹脂を充填する。第2小脱塩室27の入口側にカチオン交換樹脂を配置し、出口側にアニオン交換樹脂を配置する。被処理水は第1小脱塩室26に供給され、第1小脱塩室26の出口水が第2小脱塩室27に送られ、第2小脱塩室27から脱イオン水が処理水として得られる。
中間イオン交換膜36には例えばアニオン交換膜が使用される。したがって、脱塩室には、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体床とカチオン交換体床とが充填されている。
図7に示す装置では、第1小脱塩室26における水の流れと、第2小脱塩室27における水の流れとが、向流となっている。ただし、この限りではなく、これらの流れが並流であってもよい。
第1小脱塩室26に被処理水が供給される。供給された被処理水中のアニオン成分は、被処理水が第1小脱塩室26を通過する過程で捕捉される。第1小脱塩室26において捕捉されたアニオン成分は、第1小脱塩室26とアニオン交換膜32を介して隣接する濃縮室22へ移動し、濃縮室22を通水する濃縮水と共に系外に排出される。
次に、第1小脱塩室26を通過した被処理水は、第2小脱塩室27に供給される。第2小脱塩室27に供給された被処理水は、まずカチオン交換体床を通過し、その後にアニオン交換体床を通過する。その際、被処理水がカチオン交換体床を通過する過程で、被処理水中のカチオン成分が捕捉される。具体的には、第2小脱塩室27内のカチオン交換体によって捕捉されたカチオン成分は、カチオン交換膜41を介して第2小脱塩室27と隣接する濃縮室24へ移動し、濃縮室24から濃縮水と共に系外に排出される。
さらに、第2小脱塩室27においてカチオン交換体床を通過した被処理水は、次段のアニオン交換体床を通過する。この際、被処理水中のアニオン成分が再度捕捉される。具体的には、第2小脱塩室27のアニオン交換体によって捕捉されたアニオン成分は、中間イオン交換膜36を介して第2小脱塩室27と隣接する第1小脱塩室26へ移動する。第1小脱塩室26へ移動したアニオン成分は、アニオン交換膜32を介して第1小脱塩室26と隣接する濃縮室22へ移動し、濃縮室22を通水する濃縮水と共に系外に排出される。
ここで、濃縮室24内の濃縮水に含まれている弱酸成分(炭酸やシリカやほう素)がカチオン交換膜41を通過し、第2小脱塩室27へ移動する逆拡散現象が発生した場合について考える。
濃縮室24から第2小脱塩室27へ移動した炭酸やシリカやほう素は、カチオン交換膜41の陽極側表面上に一様に拡散する。すなわち、炭酸やシリカやほう素は、第2小脱塩室27内のアニオン交換体床と接している領域のみでなく、カチオン交換体床と接している領域にも拡散する。そして、炭酸やシリカやほう素はカチオン交換体によっては捕捉されないので、カチオン交換膜41の陽極側表面のうち、カチオン交換体床と接している領域に拡散した炭酸やシリカやほう素は、被処理水とともにカチオン交換体床を通過する。しかし、第2小脱塩室27には、被処理水の通水方向に沿ってカチオン交換体床とアニオン交換体床とが積層されている。よって、カチオン交換体床を通過した炭酸やシリカやほう素は、次段のアニオン交換体床において再度イオン化されて捕捉され、第1小脱塩室26へ移動する。第1小脱塩室26に移動した炭酸やシリカやほう素は、アニオン交換膜32を通過して、濃縮室22へ移動し、濃縮室22を通水する濃縮水と共に系外に排出される。
このように、この形態では、弱酸成分(炭酸やシリカ、ほう素)がカチオン交換膜41を通過したとしても、その弱酸成分を濃縮室22から排出させることができ、その結果、処理水の純度低下を抑制することができる。
このような作用に加えて、本発明によれば、カチオン交換膜41が二層構造を有することによって弱酸成分のカチオン交換膜41の通過を抑制することができる。ここでは、脱塩室(特には小脱塩室27)と濃縮室24とを区画するカチオン交換膜41の全部が、二層構造を有する。
上記の説明から、脱塩室内、特には第2小脱塩室27内に設けられたイオン交換体床の積層体の最終段がアニオン交換体床であることが好ましいことが理解される。最終段のアニオン交換体床よりも前段のイオン交換体床の種類、積層順序、積層数は特に限定されない。
また、本形態に係るEDI装置では、被処理水が最初に供給される第1小脱塩室26にアニオン交換体が充填され、被処理水が次に供給される第2小脱塩室27には、カチオン交換体床とアニオン交換体床がこの順で積層されている。よって、被処理水は、最初にアニオン交換体床を通過する。これにより、被処理水からアニオン成分が除去され、被処理水のpHが上昇する。
さらに、第1小脱塩室26を通過した被処理水は、カチオン交換体床とアニオン交換体床がこの順で積層されている第2小脱塩室27に供給される。すなわち、第1小脱塩室26内のアニオン交換体床を通過した被処理水は、次いでカチオン交換体床を通過し、続いてアニオン交換体床を再度通過する。要するに、本形態の構成によれば、被処理水は、アニオン交換体床とカチオン交換体床を交互に通過する。
ここで、アニオン交換体のアニオン成分の捕捉能力は、被処理水のpHが低い場合に高まり、カチオン交換体のカチオン成分の捕捉能力は、被処理水のpHが高い場合に高まる。よって、被処理水が最初にアニオン交換体床を通過し、その後にカチオン交換体床とアニオン交換体床を交互に通過することになる本形態の構成によれば、アニオン交換体を通過することによってアニオン成分が除去され、pHが上昇した被処理水が続けてカチオン交換体床を通過する。よって、カチオン交換体によるカチオン除去反応が通常よりも促進される。
さらに、カチオン交換体床を通過することによってカチオン成分が除去され、pHが低下した被処理水が続けてアニオン交換体床を通過する。よって、アニオン交換体によるアニオン除去反応が通常よりも促進される。よって、炭酸やシリカやほう素を含むアニオン成分の除去能力がさらに向上するのみでなく、カチオン成分の除去能力も向上し、よって処理水の純度がより一層向上する。
上述のように、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、カチオン交換体床とアニオン交換体床とを交互に用いることが好ましい。これは、図7に示した形態だけでなく、図3〜10に示す形態の全てについて言えることである。
図8に示すEDI装置は、図7に示したものと同様のものであるが、ただしカチオン交換膜41の二層構造における均質膜42の配置が異なる。この形態においては、カチオン交換膜41の、脱塩室(特には小脱塩室27)内のアニオン交換体床に接する部分が均質膜42で形成される。カチオン交換膜41の、脱塩室(特には小脱塩室27)内のカチオン交換体床に接する部分には、均質膜が設けられていない。また、カチオン交換膜41の濃縮室24に面する領域の全部が不均質膜43で構成される。
水解離反応促進の観点から、図8に示すように、カチオン交換膜41の、脱塩室23内のアニオン交換体床に接する部分の全部を均質膜42で形成することが好ましい。ただしその限りではなく、カチオン交換膜41の、脱塩室23内のアニオン交換体床に接する部分の一部が均質膜42で形成されていてもよい。
図9に示すEDI装置は、図7に示したものと同様であるが、ただし、第1小脱塩室26には、アニオン交換体のみが充填され、カチオン交換体は充填されない。第2小脱塩室27には、アニオン交換体とカチオン交換体との混床が充填される。すなわち、第1小脱塩室26にはアニオン交換体床が一つ、第2小脱塩室27には、混床が一つ形成されている。
図10に示すEDI装置は、図7に示したものと同様であるが、ただしカチオン交換膜41の二層構造における不均質膜43の配置が異なる。この形態においては、カチオン交換膜41の、濃縮室24に面する領域の一部(特には脱塩室の出口側、すなわち第2小脱塩室の出口側に位置する部分)が不均質膜43で構成される。カチオン交換膜41の、濃縮室24に面する領域の残部には不均質膜43が設けられていない。カチオン交換膜41の、脱塩室(特には小脱塩室27)に面する領域の全部が均質膜42で構成される。
〔実施例1〕
図7に示す構成を有するEDI装置を用いて、被処理水を処理し、処理水(脱イオン水)を得た。
EDI装置の仕様および試験条件を以下に示す。なお、濃縮室22、24及びこれらから得られる濃縮水の仕様・条件は共通である。また、陽極室21、第2小脱塩室27の一部(上流側)に充填したカチオン交換樹脂(CER)は共通である。陰極室25、濃縮室22,24、第1小脱塩室26、第2小脱塩室27の残部(下流側)に充填したアニオン交換樹脂(AER)は共通である。また、以下において、「縦」は図における紙面上下方向(水の流れ方向に沿う方向)を意味し、「横」は紙面奥行き方向を意味する。
・セルセット数(N):1個
・陽極室:寸法 縦100×横100×厚さ10mm、CER充填
・陰極室:寸法 縦100×横100×厚さ10mm、AER充填
・濃縮室:寸法 縦100×横100×厚さ10mm、AER充填
・第1小脱塩室26:寸法 縦100×横100×厚さ10mm、AER充填
・第2小脱塩室27:寸法 縦100×横100×厚さ10mm、CER(上流側1/2の領域)およびAER(下流側1/2の領域)充填
・CER:強酸性カチオン交換樹脂
・AER:強塩基性アニオン交換樹脂
・中間イオン交換膜36:アニオン交換膜
・供給水及び被処理水:2段RO(逆浸透膜)透過水、導電率2.0〜2.5μS/cm
・処理水(脱イオン水)流量:25L/h
・濃縮水流量:6L/h
・電極水流量:5L/h(陽極、陰極に共通)
・印加電流値:0.5A。
〔実施例2〕
均質膜42を、図8に示すように、カチオン交換膜41のアニオン交換樹脂床に接する部分だけに均質膜42を設けた。それ以外は、実施例1と同様にして、被処理水を処理し、処理水(脱イオン水)を得た。
〔比較例1〕
二層構造を有するカチオン交換膜41の替わりに、均質膜42のみからなる単層構造のカチオン交換膜を有するEDI装置を用いた。これ以外は、実施例1と同様にして、被処理水を処理し、処理水(脱イオン水)を得た。
〔比較例2〕
二層構造を有するカチオン交換膜41の替わりに、不均質膜43のみからなる単層構造のカチオン交換膜を有するEDI装置を用いた。これ以外は、実施例1と同様にして、被処理水を処理し、処理水(脱イオン水)を得た。
〔評価1〕
各例において、約500時間連続運転を実施した後に、陽極11と陰極12の間の電圧を測定した。その結果を表1に示す。実施例1、2及び比較例1については有意差が認められなかったが、比較例2においては、明らかに電圧が高かった。すなわち電極間の電気抵抗が高かった。
Figure 2019072694
この理由は次のように考えられる。実施例1及び2では、脱塩室(特には小脱塩室27)とその陰極側に隣接する濃縮室24との間に位置するカチオン交換膜41が前記二層構造を有していた。そのため、均質カチオン交換膜42の表面に高密度で存在する陽イオン交換基と、脱塩室(特には小脱塩室27)内のアニオン交換樹脂に存在する陰イオン交換基との間で、水解離反応が促進された。比較例1においても、同様である。一方、比較例2においては、カチオン交換膜41として不均質膜(単層)を用いた。均質カチオン交換膜と比較して、不均質カチオン交換膜の表面に存在する陽イオン交換基の密度が低いため、水解離反応が進行しにくかった。
〔評価2〕
実施例1、2及び比較例1について、処理水中の全炭酸の濃度(CO、HCO 及びCO 2−の濃度を合計した値)を測定し、また、処理水の比抵抗を測定した。その結果を表2に示す。全炭酸の濃度は、濃縮水から処理水に移動した炭酸の濃度を示す指標になる。比抵抗の値は、炭酸に限らず、他のイオンも含めて、処理水の純度の指標となる。なお表2には、全炭酸の濃度及び比抵抗のいずれについても、実施例2及び比較例1の各測定値の、実施例1の測定値に対する差を示した。
実施例1と比較して、実施例2においては若干炭酸の移動が多く、また処理水純度が低かった。比較例1においては、実施例1と比較して、明らかに炭酸の移動が多く、処理水純度も低かった。
Figure 2019072694
実施例1及び2では、脱塩室(特には小脱塩室27)と、その陰極側に隣接する濃縮室24との間に位置するカチオン交換膜41が不均質カチオン交換膜43を有していたため、炭酸の移動が少なかったと考えられる。一方、比較例1では、脱塩室(特には小脱塩室27)とその陰極側に隣接する濃縮室24との間に位置するカチオン交換膜が均質膜であったため、炭酸の移動が多かったと考えられる。
11 陽極
12 陰極
21 陽極室
22、24 濃縮室
23 脱塩室
25 陰極室
26 第1小脱塩室
27 第2小脱塩室
31、41、44 カチオン交換膜(CEM)
32、34 アニオン交換膜(AEM)
36 中間イオン交換膜(IIEM)
42 均質膜(均質カチオン交換膜)
43 不均質膜(不均質カチオン交換膜)

Claims (5)

  1. 対向する陰極と陽極との間に少なくとも1つの脱塩処理部が設けられた電気式脱イオン水製造装置であって、
    前記脱塩処理部は、少なくともアニオン交換体が充填された脱塩室と、該脱塩室の両隣に設けられる一対の濃縮室とを有し、
    前記脱塩室は、前記一対の濃縮室のうちの前記陰極側の濃縮室にカチオン交換膜を介して隣接するとともに、前記一対の濃縮室のうちの前記陽極側の濃縮室にアニオン交換膜を介して隣接し、
    前記カチオン交換膜の少なくとも一部が、均質膜と不均質膜とが重なった構造であって、前記均質膜が前記脱塩室に接する向きに配置されている構造を有する、
    電気式脱イオン水製造装置。
  2. 前記脱塩室は、前記アニオン交換膜と前記カチオン交換膜との間に位置するイオン交換膜である中間イオン交換膜を備えて前記中間イオン交換膜によって第1小脱塩室及び第2小脱塩室に区画され、
    前記第1小脱塩室は、前記アニオン交換膜と前記中間イオン交換膜との間に位置し、
    前記第2小脱塩室は、前記カチオン交換膜と前記中間イオン交換膜との間に位置し、
    前記第1小脱塩室及び前記第2小脱塩室のうちの一方の小脱塩室に前記被処理水が供給されて当該一方の小脱塩室から流出する水が他方の小脱塩室に流入するように、前記第1小脱塩室及び前記第2小脱塩室が連通している、請求項1に記載の電気式脱イオン水製造装置。
  3. 前記脱塩室が、被処理水が最後に通過するイオン交換体がアニオン交換体となる順序で、アニオン交換体からなる床であるアニオン交換体床を一つ以上と、カチオン交換体からなる床であるカチオン交換体床を一つ以上含む、請求項1または2に記載の電気式脱イオン水製造装置。
  4. 前記カチオン交換膜が前記アニオン交換体床に接する部分と、前記カチオン交換膜が前記カチオン交換体床に接する部分とを有し、
    前記カチオン交換膜の、前記アニオン交換体床に接する部分には、前記均質膜が設けられ、
    前記カチオン交換膜の、前記カチオン交換体床に接する部分には、前記均質膜が設けられていない、
    請求項3に記載の電気式脱イオン水製造装置。
  5. 前記一対の濃縮室に、少なくともアニオン交換体が充填されている、請求項1〜4のいずれか一項に記載の電気式脱イオン水製造装置。
JP2017202135A 2017-10-18 2017-10-18 電気式脱イオン水製造装置 Active JP6962774B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017202135A JP6962774B2 (ja) 2017-10-18 2017-10-18 電気式脱イオン水製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017202135A JP6962774B2 (ja) 2017-10-18 2017-10-18 電気式脱イオン水製造装置

Publications (2)

Publication Number Publication Date
JP2019072694A true JP2019072694A (ja) 2019-05-16
JP6962774B2 JP6962774B2 (ja) 2021-11-05

Family

ID=66542953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202135A Active JP6962774B2 (ja) 2017-10-18 2017-10-18 電気式脱イオン水製造装置

Country Status (1)

Country Link
JP (1) JP6962774B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657339A (zh) * 2019-10-15 2021-04-16 中国石油化工股份有限公司 电渗析装置和电渗析系统以及乙醇酸原料的精制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050103630A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
JP2008036473A (ja) * 2006-08-01 2008-02-21 Kurita Water Ind Ltd 電気脱イオン装置
JP2011000576A (ja) * 2009-06-22 2011-01-06 Japan Organo Co Ltd 電気式脱イオン水製造装置及び脱イオン水の製造方法
JP2017018847A (ja) * 2015-07-07 2017-01-26 オルガノ株式会社 電気式脱イオン水製造装置及び脱イオン水製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050103630A1 (en) * 2003-11-13 2005-05-19 United States Filter Corporation Water treatment system and method
JP2008036473A (ja) * 2006-08-01 2008-02-21 Kurita Water Ind Ltd 電気脱イオン装置
JP2011000576A (ja) * 2009-06-22 2011-01-06 Japan Organo Co Ltd 電気式脱イオン水製造装置及び脱イオン水の製造方法
JP2017018847A (ja) * 2015-07-07 2017-01-26 オルガノ株式会社 電気式脱イオン水製造装置及び脱イオン水製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112657339A (zh) * 2019-10-15 2021-04-16 中国石油化工股份有限公司 电渗析装置和电渗析系统以及乙醇酸原料的精制方法

Also Published As

Publication number Publication date
JP6962774B2 (ja) 2021-11-05

Similar Documents

Publication Publication Date Title
JP5845237B2 (ja) 流体力学的分流を備える電気脱イオン化方法
JP5719842B2 (ja) 電気式脱イオン水製造装置
KR102210335B1 (ko) 탈이온수 제조 시스템, 전기식 탈이온수 제조장치 및 탈이온수 제조방법
JP2017018847A (ja) 電気式脱イオン水製造装置及び脱イオン水製造方法
JP3305139B2 (ja) 電気脱イオン法による脱イオン水の製造方法
JP5015990B2 (ja) 電気式脱イオン水製造装置
KR101526093B1 (ko) 전기식 탈이온수 제조 장치
JP7224994B2 (ja) 電気式脱イオン水製造装置および脱イオン水の製造方法
JP4609924B2 (ja) 電気式脱イオン水製造装置
WO1997046491A1 (fr) Procede de production d'eau deionisee par une technique de deionisation electrique
JP5385457B2 (ja) 電気式脱イオン水製造装置
JP5489867B2 (ja) 電気式脱イオン水製造装置
JP6962774B2 (ja) 電気式脱イオン水製造装置
JP6532554B1 (ja) 電気式脱イオン水製造装置
JP7077172B2 (ja) 電気式脱イオン水製造装置
JP7262353B2 (ja) 脱イオン水の製造方法および製造システム
JP7374400B1 (ja) 電気式脱イオン水製造装置及び純水製造方法
JP5689032B2 (ja) 電気式脱イオン水製造装置
JP2001170646A (ja) 電気式脱イオン水製造装置の通水方法
JP2013000720A (ja) 電気式脱イオン水製造装置
JP2013000721A (ja) 電気式脱イオン水製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211014

R150 Certificate of patent or registration of utility model

Ref document number: 6962774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150