JP2019069845A - 固形燃料の排出システム及び固形燃料の排出方法 - Google Patents

固形燃料の排出システム及び固形燃料の排出方法 Download PDF

Info

Publication number
JP2019069845A
JP2019069845A JP2017196881A JP2017196881A JP2019069845A JP 2019069845 A JP2019069845 A JP 2019069845A JP 2017196881 A JP2017196881 A JP 2017196881A JP 2017196881 A JP2017196881 A JP 2017196881A JP 2019069845 A JP2019069845 A JP 2019069845A
Authority
JP
Japan
Prior art keywords
solid fuel
discharge
filling structure
silo
discharge opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017196881A
Other languages
English (en)
Other versions
JP6910915B2 (ja
Inventor
樋口 徹
Toru Higuchi
徹 樋口
陽司 田窪
Yoji Takubo
陽司 田窪
卓夫 重久
Takuo Shigehisa
卓夫 重久
秋山 勝哉
Katsuya Akiyama
勝哉 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017196881A priority Critical patent/JP6910915B2/ja
Publication of JP2019069845A publication Critical patent/JP2019069845A/ja
Application granted granted Critical
Publication of JP6910915B2 publication Critical patent/JP6910915B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

【課題】本発明は、発熱した又は発熱のおそれが高い固形燃料を優先的に排出することができる固形燃料の排出システム及び固形燃料の排出方法を提供することを課題とする。【解決手段】本発明に係る固形燃料の排出システムは、固形燃料が貯蔵され、この固形燃料を排出可能な長尺状の排出開口を底部に有するサイロと、上記排出開口の一部を封止し、この排出開口の軸方向に摺動可能なスライドゲートとを備える。本発明に係る固形燃料の排出方法は、固形燃料が貯蔵され、この固形燃料を排出可能な長尺状の排出開口を底部に有するサイロを用い、上記サイロ内に貯蔵される固形燃料の排出位置を上記排出開口の軸方向に沿って調節する工程を備える。【選択図】図1

Description

本発明は、固形燃料の排出システム及び固形燃料の排出方法に関する。
火力発電装置等の発電用に用いられる石炭等の固形燃料は、発電装置に投入される前に一旦サイロ内に貯蔵される。一般にこのサイロ内には、粒子径等に一定の分布を有する固形燃料が貯蔵され、この固形燃料が全て排出された後に、次の固形燃料が貯蔵される。
このサイロは、固形燃料を排出するための排出開口を底部に有する。例えばサイロの底部にはホッパが設けられており、このホッパの下端に払い出し口が形成されている。このサイロ内に貯蔵される固形燃料は、フィーダーによって上記払い出し口から掻き出される(特開平9−86621号公報参照)。
特開平9−86621号公報
サイロ内は、通常粉塵の飛散を抑制するため密閉構造となっている。そのため、このサイロ内では酸化によって固形燃料が発熱する場合がある。この固形燃料の発熱は発火の原因となり得るため、サイロ内における固形燃料の発熱を抑制することが重要である。
一方、上記公報に記載される従来の構成によると、サイロ内に貯蔵される固形燃料は排出開口近傍位置から順次排出される。つまり、従来の構成によると、発熱した又は発熱のおそれが高い固形燃料を優先的に排出することができず、固形燃料の発火を抑制することが困難である。
本発明は、このような事情に基づいてなされたもので、発熱した又は発熱のおそれが高い固形燃料を優先的に排出することができる固形燃料の排出システム及び固形燃料の排出方法を提供することを課題とする。
上記課題を解決するためになされた本発明に係る固形燃料の排出システムは、固形燃料が貯蔵され、この固形燃料を排出可能な長尺状の排出開口を底部に有するサイロを備え、上記排出開口の一部を封止し、この排出開口の軸方向に摺動可能なスライドゲートを有する。
当該固形燃料の排出システムは、サイロの底部に固形燃料を排出可能な長尺状の排出開口を有し、この排出開口の軸方向にスライドゲートが摺動可能に配設されているので、上記固形燃料の排出位置を上記排出開口の軸方向において調節することができる。そのため、当該固形燃料の排出システムは、上記スライドゲートの位置を調節することで、発熱した又は発熱するおそれが高い固形燃料を優先的に排出することができる。
当該固形燃料の排出システムは、上記サイロ内における上記固形燃料の充填構造をミュオグラフィによって検出する充填構造検出機構と、上記充填構造検出機構で検出された上記充填構造に基づいて上記スライドゲートの位置を制御する制御機構とをさらに備えるとよい。固形燃料の発熱はこの固形燃料の充填構造の影響を受けやすい。そのため、上記サイロ内における上記固形燃料の充填構造をミュオグラフィによって検出する充填構造検出機構と、上記充填構造検出機構で検出された上記充填構造に基づいて上記スライドゲートの位置を制御する制御機構とをさらに備えることによって、発火のおそれを抑えるよう固形燃料の排出をより的確に行うことができる。なお、「ミュオグラフィ」とは、ミューオン(ミュー粒子)を用いた画像化法をいう。
当該固形燃料の排出システムは、上記充填構造検出機構で検出された上記充填構造における発熱しやすい部位を算出する発熱部位算出機構をさらに備え、上記制御機構が、上記発熱部位算出機構によって算出された上記部位における固形燃料を排出するよう上記スライドゲートの位置を制御するとよい。このように、上記充填構造検出機構で検出された上記充填構造における発熱しやすい部位を算出する発熱部位算出機構をさらに備え、上記制御機構が、上記発熱部位算出機構によって算出された上記部位における固形燃料を排出するよう上記スライドゲートの位置を制御することによって、固形燃料の発火をより確実に抑制することができる。
当該固形燃料の排出システムは、上記排出開口の下方に設けられ、この排出開口から排出される固形燃料をこの排出開口の軸方向に搬送するチェーンコンベアをさらに有するとよい。このように、上記排出開口の下方に設けられ、この排出開口から排出される固形燃料をこの排出開口の軸方向に搬送するチェーンコンベアをさらに有することによって、固形燃料の排出を容易かつ確実に行うことができる。
また、上記課題を解決するためになされた本発明に係る固形燃料の排出方法は、固形燃料が貯蔵され、この固形燃料を排出可能な長尺状の排出開口を底部に有するサイロを用い、上記サイロ内に貯蔵される固形燃料の排出位置を上記排出開口の軸方向に沿って調節する工程を備える。
当該固形燃料の排出方法は、サイロ内に貯蔵される固形燃料の排出位置を上記排出開口の軸方向に沿って調節することで、発熱した又は発熱するおそれが高い固形燃料を優先的に排出することができる。
以上説明したように、本発明の固形燃料の排出システム及び固形燃料の排出方法は、発熱した又は発熱のおそれが高い固形燃料を優先的に排出することができる。
本発明の一実施形態に係る固形燃料の排出システムを示す模式図である。 図1の固形燃料の排出システムの排出機構を示す模式的平面図である。 図1の固形燃料の排出システムのミューオン検出部を示す模式図である。 図1の固形燃料の排出システムを用いた固形燃料の排出方法を示すフロー図である。 図4の固形燃料の排出方法の充填構造検出工程の詳細を示すフロー図である。
以下、図面を参照しつつ、本発明の実施の形態を詳説する。
当該固形燃料の排出システムは、固形燃料Fが貯蔵され、この固形燃料Fを排出可能な排出開口2を底部に有するサイロ1を備える。当該固形燃料の排出システムは、排出開口2の一部を封止し、排出開口2の軸方向に摺動可能なスライドゲート3を有する。
また、当該固形燃料の排出システムは、サイロ1内における固形燃料Fの充填構造Xをミュオグラフィによって検出する充填構造検出機構4と、充填構造検出機構4で検出された充填構造Xに基づいてスライドゲート3の位置を制御する制御機構5とを備える。さらに、当該固形燃料の排出システムは、充填構造検出機構4で検出された充填構造Xにおける発熱しやすい部位を算出する発熱部位算出機構6を備える。
(固形燃料)
サイロ1内に貯蔵可能な固形燃料としては、例えば発電用に利用可能な石炭、バイオマス等が挙げられる。上記石炭としては、例えば瀝青炭及び亜瀝青炭が挙げられる。
(サイロ)
サイロ1は有底筒状の本体11を有する。本体11は内部に固形燃料Fを貯蔵する。本体11は、中心軸が鉛直方向に延びる筒状の周壁11aと、周壁11aの下部開口を封止する底壁11bとを有する。周壁11aは鉛直方向に内径が略均一な円筒状、多角筒状等に形成されている。底壁11bは、サイロ1の底部を構成する。また、サイロ1は、周壁11aの上部開口を封止する屋根部12を有する。屋根部12は、周壁11aの上端縁から連続し、上方に向けて周壁11aの中心軸方向に傾斜する傾斜部と、傾斜部の上端縁から連続し、水平方向に配設される天壁部とを有する。
サイロ1内(本体11及び屋根部12の内部空間)に貯蔵可能な固形燃料Fの容量の下限としては、10,000tが好ましく、20,000tがより好ましい。一方、上記容量の上限としては、100,000tが好ましく、70,000tがより好ましい。上記容量が上記下限より小さいと、サイロ1内に貯蔵可能な固形燃料Fの量が不十分となり、十分な量の固形燃料Fを貯蔵するために多数のサイロ1が必要となり、貯蔵スペース及び貯蔵コストが増加するおそれがある。逆に、上記容量が上記上限を超えると、サイロ1内における固形燃料Fの充填構造Xを制御し難くなるおそれがある。
周壁11aの平均内径としては、例えば3m以上50m以下とすることができる。また、周壁11aの平均高さとしては、例えば4m以上60m以下とすることができる。なお、サイロ1が石炭サイロである場合、周壁11aの平均内径としては、例えば20m以上50m以下とすることができ、周壁11aの平均高さとしては、例えば10m以上60m以下とすることができる。
屋根部12には、固形燃料Fを投入するための固形燃料投入口13が形成されている。固形燃料投入口13は、固形燃料Fが本体11内に投入される際に開放されるよう開閉可能に構成されている。また、屋根部12には、固形燃料投入口13を介して本体11内に固形燃料Fを投入するための固形燃料投入用コンベア14と、固形燃料Fが発熱、発火した場合等に固形燃料Fに散水可能な散水部15とが設けられている。
底壁11bには、固形燃料Fを排出可能な上述の排出開口2が形成されている。排出開口2は、サイロ1の内部空間(本体11及び屋根部12の内部空間)とサイロ1内から排出された固形燃料Fを搬送する搬送空間とを区分する。換言すると、サイロ1の内部空間と固形燃料Fの搬送空間とは排出開口2によって連通している。当該固形燃料の排出システムは、図2に示すように、底壁11bに複数の排出開口2が形成されおり、より詳しくは4つの排出開口2が形成されている。複数の排出開口2は、底壁11bの中心部を基準として径方向に放射線状に延びている。複数の排出開口2は、底壁11bの中心部を基準として、底壁11bを周方向に等分するよう配設されている。本実施形態では、底壁11bの中心部を基準として周方向に90°間隔で4つの排出開口2が配設されている。
複数の排出開口2は同形状である。複数の排出開口2は略矩形状に形成されている。複数の排出開口2の軸方向の外側端部は、底壁11bの外縁と略一致する(つまり、平面視で周壁11aと略重なり合う)。各排出開口2の軸方向長さ(長手方向長さ)L1の下限としては、底壁11bの半径の0.3倍が好ましく、0.5倍がより好ましい。一方、各排出開口2の軸方向長さL1の上限としては、底壁11bの半径の0.9倍が好ましく、0.8倍がより好ましい。上記軸方向長さL1が上記下限より小さいと、所望の位置の固形燃料Fを適切に排出することができないおそれがある。逆に、上記軸方向長さL1が上記上限を超えると、排出開口2が不要に大きくなり、固形燃料Fの排出量や排出位置を制御し難くなるおそれがある。
各排出開口2にはスライドゲート3が配設されている。これにより、各排出開口2は、スライドゲート3によって部分的に封止されている。各排出開口2は、スライドゲート3によって封止されていない領域が開放領域Rを構成し、この開放領域Rからサイロ1内の固形燃料Fが上記搬送空間に排出可能に構成されている。
スライドゲート3は板状である。スライドゲート3は、排出開口2の軸方向に摺動するよう排出開口2の幅方向に架け渡されている。スライドゲート3は、開放領域Rの大きさを一定に保ちつつ排出開口2の軸方向における開放領域Rの位置を可変とする。スライドゲート3は、例えば電動又は油圧で駆動するよう構成されている。また、スライドゲート3は、手動でも位置を調節できるよう構成されてもよい。
排出開口2の軸方向におけるスライドゲート3の長さL2の下限としては、排出開口2の軸方向長さL1の0.2倍が好ましく、0.4倍がより好ましい。一方、上記長さL2の上限としては、排出開口2の軸方向長さL1の0.7倍が好ましく、0.6倍がより好ましい。上記長さL2が上記下限より小さいと、開放領域Rの位置を適切に調節することができないおそれがある。逆に、上記長さL2が上記上限を超えると、開放領域Rの大きさが不十分となり、固形燃料Fを適切に排出し難くなるおそれがある。
排出開口2によってサイロ1の内部空間と区分される上記搬送空間には、排出開口2から排出された固形燃料Fを搬送可能なチェーンコンベア7が設けられている。また、チェーンコンベア7の下方には、チェーンコンベア7から排出された固形燃料Fをサイロ1外に搬送可能な固形燃料排出用コンベア8が設けられている。なお、排出開口2、スライドゲート3、チェーンコンベア7及び固形燃料排出用コンベア8は、当該固形燃料の排出システムの排出機構を構成する。
チェーンコンベア7は、排出開口2の下方に設けられている。チェーンコンベア7は、各排出開口2と1対1対応で設けられている。チェーンコンベア7は、平面視で排出開口2の全領域と重なり合うよう設けられている。チェーンコンベア7は、排出開口2から排出される固形燃料Fをこの排出開口2の軸方向に搬送する。当該固形燃料の排出システムは、チェーンコンベア7を有することで、開放領域Rの位置を可変としつつ固形燃料Fの排出を容易かつ確実に行うことができる。
(充填構造検出機構)
充填構造検出機構4は、サイロ1内におけるミューオンを検出する複数のミューオン検出部16と、充填構造算出部17とを有する。充填構造検出機構4は、サイロ1内に固形燃料Fが投入された際にサイロ1内における充填構造を検出してもよく、サイロ1内からの固形燃料Fの排出前に、その都度サイロ1内における充填構造を検出してもよい。
ミューオンは、高エネルギーの一次宇宙線が大気圏に到達した後に大気と反応して生成され、地上に降り注ぐ極めて透過性の高い粒子線である。ミューオンは、他の粒子との間で電磁気力が作用するのみで核力がない。そのため、パイオン、陽子、中性子等の電磁気力及び核力の双方の強度減衰を有するものに比べ、物質貫通力が高く、かつ相互作用の解析も容易である。さらに、電荷を有するため検出が比較的容易である。
ミューオン検出部16はミューオンの強度を検出する。より詳しくは、ミューオン検出部16は、例えばミューオンの飛来量及び飛来方向を検出する。ミューオン検出部16は、サイロ1内におけるミューオンを検出することができる限り、その具体的構成は特に限定されない。ミューオン検出部16は、例えば図3に示す複数のシンチレーション検出器21,22を有する構成とすることができる。
シンチレーション検出器21,22は、第1方向(例えば水平方向)に延びるプラスチックシンチレータ及びその一端に設けられる光電子倍増管を有する複数のモジュールが第1方向と直交する方向(例えば垂直方向)に並列に配設された第1検知用ユニット21a,22aと、第1方向と直交する方向(例えば垂直方向)に延びるプラスチックシンチレータ及びその一端に設けられる光電子倍増管を有する複数のモジュールが第1方向(例えば水平方向)に並列に配設された第2検知用ユニット21b,22bとが積層された構成を有する。ミューオン検出部16は、複数(図2では2つ)のシンチレーション検出器21,22が所定の間隔を空けてユニットの積層方向に配設されている。
ミューオン検出部16によるミューオンの検出機構について説明する。サイロ1内からミューオンが飛来してシンチレーション検出器21,22を通過すると、ミューオンの経路内に配置されたプラスチックシンチレータが発光し、このプラスチックシンチレータに設けられた光電子倍増管からパルス信号が出力される。ミューオン検出部16は、ミューオンが複数のシンチレーション検出器21,22を通過した座標及びこれらのシンチレーション検出器21,22の間隔からミューオンの飛来量及び飛来方向の情報を取得する。
充填構造算出部17は、CPU(Central Processing Unit)と、ROM(Read Only Memory)、RAM(Random Access Memory)等の記憶部とを含んで構成される。充填構造算出部17は、複数のミューオン検出部16で検出されたミューオンの強度分布に基づいて固形燃料Fの充填構造Xを算出する。充填構造算出部17は、例えばミューオンの飛来方向に基づいてミューオンの経路を算出し、経路ごとのミューオンの減衰を検出することで固形燃料Fの充填構造(固形燃料Fの密度分布)を算出する。
複数のミューオン検出部16は、本体11の側方及び下方に設けられている。当該固形燃料の排出システムは、充填構造検出機構4が本体11の側方及び下方に複数のミューオン検出部16を有することによって、充填構造Xを高精度で検出することができる。当該固形燃料の排出システムは、本体11の側方及び下方のそれぞれに複数のミューオン検出部16が固定されていてもよい。また、当該固形燃料の排出システムは、本体11の周壁11a及び底壁11bに沿って移動可能な複数のミューオン検出部16を有してもよい。本体11の周壁11a及び底壁11bに沿ってミューオン検出部16を移動させる構成としては、例えば周壁11a及び底壁11bに沿ってガイドレール(不図示)を設け、ミューオン検出部16をこのガイドレールに摺動可能に配設する構成が挙げられる。当該固形燃料の排出システムは、比較的多くのミューオン検出部16を本体11の側方及び下方に固定しておくことで、サイロ1内のミューオンを複数個所で同時に検出することができ、充填構造Xをより早く(リアルタイムで)検出することができる。一方、当該固形燃料の排出システムは、複数のミューオン検出部16を移動可能に構成する場合、ミューオン検出部16の個数を低減して設備コストを低くすることができる。
本体11の側方に複数のミューオン検出部16が配設される場合、複数のミューオン検出部16は、周壁11aの中心軸を挟んで対向する位置に配設されることが好ましい。複数のミューオン検出部16は、周壁11aの軸方向に沿って2個以上8個以下程度配設されることが好ましい。複数のミューオン検出部16は、周壁11aと密接して配置されてもよいが、サイロ1内の全領域におけるミューオンの飛来量及び飛来方向をより容易かつ確実に検出する観点から、周壁11aと間隔を空けて配置されることが好ましい。複数のミューオン検出部16が周壁11aと間隔を空けて配置される場合、周壁11a及び複数のミューオン検出部16間の間隔としては、例えば10m以上50m以下とすることができる。また、本体11の下方に複数のミューオン検出部16が配設される場合、本体11の下方におけるミューオン検出部16の個数としては、例えば2個以上8個以下とすることができる。
(発熱部位算出機構)
発熱部位算出機構6は、CPUと、ROM、RAM等の記憶部とを含んで構成される。発熱部位算出機構6は、例えば充填構造算出部17と同一のコンピュータによって構成されてもよく、別個のコンピュータによって構成されてもよい。
発熱部位算出機構6は、充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を算出する。サイロ1内には、粒子径等において一定の分布を有する固形燃料Fが貯蔵されており、充填構造Xの空隙はこの粒子径の分布等に基づいて偏在している。充填構造Xの空隙はガスの流路を形成するため、充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を特定することができる。具体的には、例えば充填構造Xの空隙を通気抵抗に換算することで、充填構造Xの発熱しやすい部位を特定することができる。発熱部位算出機構6の記憶部には、例えば予め充填構造の空隙分布と、この充填構造における発熱しやすい部位とを関連付けたデータが格納されている。発熱部位算出機構6は、まず、充填構造算出部17で算出される充填構造Xから、この充填構造Xの空隙分布を算出する(第1算出手段)。続いて、発熱部位算出機構6は、上記第1算出手段で算出された充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を算出する(第2算出手段)。具体的には、上記第2算出手段では、上記第1算出手段で算出された充填構造Xの空隙分布を上記記憶部に格納されたデータと照合することで、この充填構造Xにおける発熱しやすい部位を算出する。また、発熱部位算出機構6は、充填構造Xの空隙分布からこの充填構造Xの発熱しやすい部位をシミュレーションにより算出してもよい。当該固形燃料の排出システムは、発熱部位算出機構6が充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を算出することで、この充填構造Xにおける発熱しやすい部位を容易かつ確実に算出することができる。なお、当該固形燃料の排出システムは、充填構造算出部17が充填構造Xの空隙分布を算出し、発熱部位算出機構6が充填構造算出部17で算出された充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を算出してもよい。
当該固形燃料の排出システムは、サイロ1内に貯蔵される固形燃料Fの充填構造Xのデータとこの固形燃料Fの発熱しやすい部位のデータとが関連付けて蓄積されたデータベース(不図示)を有していてもよい。換言すると、当該固形燃料の排出システムは、充填構造検出機構4で検出された充填構造Xのデータと、発熱部位算出機構6で算出された発熱しやすい部位のデータとを関連付けて上記データベースに蓄積してもよい。この構成によると、上記データベースに十分な量のデータが蓄積された後には、充填構造検出機構4で検出された充填構造Xを上記データベースに蓄積されたデータと照合することで、充填構造Xの発熱しやすい部位を予測することができる。また、上記データベースには、固形燃料Fの充填構造Xのデータ及びこの充填構造Xの発熱しやすい部位のデータと、固形燃料Xの品質(炭種等の種類、粒度分布、付着水分量、HGI(ハードグローブ粉砕性指数)等)とが関連付けて蓄積されていてもよい。この場合、固形燃料Fの品質を加味してデータを照合してもよい。
(制御機構)
制御機構5は、CPUと、ROM、RAM等の記憶部とを含んで構成される。制御機構5は、例えば充填構造算出部17及び/又は発熱部位算出機構6と同一のコンピュータによって構成されてもよく、別個のコンピュータによって構成されてもよい。
制御機構5は、発熱部位算出機構6によって算出された発熱しやすい部位における固形燃料Fを排出するようスライドゲート3の位置を制御する。また、上記データベースに十分な量のデータが蓄積されている場合、制御機構5は、上記データベースに蓄積されたデータを参照することで予測される充填構造Xの発熱しやすい部位における固形燃料Fを排出するようスライドゲート3の位置を制御してもよい。
制御機構5は、例えばスライドゲート3の位置と充填構造Xにおける排出されやすい部位との関係が関連付けられた複数パターンのデータを制御機構5の記憶部に格納しておき、この記憶部に格納されたデータを参照してスライドゲート3の位置を制御する。このデータは、例えば当該固形燃料の排出システムの実施の結果蓄積されたデータであってもよく、シミュレーションによって得られたデータであってもよい。
当該固形燃料の排出システムは、サイロ1内における固形燃料Fの充填構造Xをミュオグラフィによって検出する充填構造検出機構4と、充填構造検出機構4で検出された充填構造Xに基づいてスライドゲート3の位置を制御する制御機構5とを有するので、発火のおそれを抑えるよう固形燃料Fの排出をより的確に行うことができる。
また、当該固形燃料の排出システムは、制御機構5が発熱部位算出機構6によって算出された発熱しやすい部位における固形燃料Fを排出するようスライドゲート3の位置を制御することで、固形燃料Fの発火をより確実に抑制することができる。
<利点>
当該固形燃料の排出システムは、サイロ1の底部に固形燃料Fを排出可能な長尺状の排出開口2を有し、この排出開口2の軸方向にスライドゲート3が摺動可能に配設されているので、固形燃料Fの排出位置を排出開口2の軸方向において調節することができる。そのため、当該固形燃料の排出システムは、スライドゲート3の位置を調節することで、発熱した又は発熱するおそれが高い固形燃料Fを優先的に排出することができる。
[固形燃料の排出方法]
次に、固形燃料が貯蔵され、この固形燃料を排出可能な長尺状の排出開口を底部に有するサイロを用いた固形燃料の排出方法について説明する。以下では、図1の固形燃料の排出システムを用いた固形燃料の排出方法について説明する。
当該固形燃料の排出方法は、図4に示すように、サイロ1内に貯蔵される固形燃料Fの排出位置を排出開口2の軸方向に沿って調節する工程(排出位置調節工程)を備える。また、当該固形燃料の排出方法は、サイロ1内における固形燃料Fの充填構造Xをミュオグラフィによって検出する工程(充填構造検出工程)と、上記充填構造検出工程で検出された充填構造Xにおける発熱しやすい部位を算出する工程(発熱部位算出工程)とを備える。
(充填構造検出工程)
充填構造検出工程(S01)は、図5に示すように、サイロ1内におけるミューオンを検出する工程(ミューオン検出工程)と、サイロ1内の固形燃料Fの充填構造Xを算出する工程(充填構造算出工程)とを有する。ミューオン検出工程(S11)は、複数のミューオン検出部16によって行われる。S11では、例えばサイロ1内におけるミューオンの飛来量及び飛来方向を検出する。充填構造算出工程(S12)は、充填構造算出部17によって行われる。S12では、例えばS11で検出されたミューオンの飛来方向に基づいてミューオンの経路を算出し、経路ごとのミューオンの減衰を検出することで固形燃料Fの充填構造X(固形燃料Fの密度分布)を算出する。S01は、サイロ1内に固形燃料Fを投入した際に行われてもよく、サイロ1内から固形燃料Fを排出する前に、その都度行われてもよい。
(発熱部位算出工程)
発熱部位算出工程(S02)では、充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を算出する。S02は、発熱部位算出機構6によって行われる。S02では、例えばS12で算出された充填構造Xからこの充填構造Xの空隙分布を算出する工程(第1算出工程)と、上記第1算出工程で算出された充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を算出する工程(第2算出工程)とを有する。なお、当該固形燃料の排出方法は、S12が充填構造Xの空隙分布を算出する工程(第1算出工程)を有してもよい。この場合、S02では、S12で算出された充填構造Xの空隙分布に基づいて充填構造Xの発熱しやすい部位を算出すればよい。
(排出位置調節工程)
排出位置調節工程(S03)は、制御機構5によってスライドゲート3の位置を制御することで行われる。S03では、S02で算出された発熱しやすい部位における固形燃料Fを排出するようスライドゲート3の位置を制御する。S03では、例えばスライドゲート3の位置と充填構造Xにおける排出されやすい部位との関係が関連付けられた複数パターンのデータを制御機構5の記憶部に格納しておき、この記憶部に格納されたデータを参照してスライドゲート3の位置を制御する。このデータは、例えば当該固形燃料の排出方法の実施の結果蓄積されたデータであってもよく、シミュレーションによって得られたデータであってもよい。
<利点>
当該固形燃料の排出方法は、サイロ1内に貯蔵される固形燃料Fの排出位置を排出開口2の軸方向に沿って調節する排出位置調節工程(S03)を備えるので、発熱した又は発熱するおそれが高い固形燃料Fを優先的に排出することができる。
[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
例えば上記サイロの具体的構成は上記実施形態の構成に限定されるものではない。また、上記充填構造検出機構は、必ずしも固形燃料の充填構造を直接的に検出する必要はなく、固形燃料の空隙分布を算出することでこの固形燃料の充填構造を間接的に検出してもよい。
上記ミューオン検出部は、必ずしもサイロの本体の側方及び下方に設けられる必要はなく、例えば上記本体の下方及び側方のいずれか一方にのみ設けられてもよい。また、当該固形燃料の排出システムは、例えばサイロ内の充填構造やこの充填構造の発熱しやすい部位が把握できる場合、必ずしもサイロ内の充填構造をミュオグラフィによって検出する必要はない。
上記排出開口及び/又はスライドゲートの具体的配置、形状等は上述の構成に限定されるものではない。また、当該固形燃料の排出システムは、必ずしも上記チェーンコンベア及び上記固形燃料排出用コンベアの両方を有していなくてもよい。また、当該固形燃料の排出システムは、上記チェーンコンベア及び上記固形燃料排出用コンベアに代えて、他の固形燃料搬送用コンベアを有していてもよい。
当該固形燃料の排出方法は、上記排出位置調節工程で調節された上記排出開口の開放領域から排出された固形燃料をチェーンコンベアによって上記排出開口の軸方向に搬送する工程(搬送工程)をさらに備えていてもよい。
当該固形燃料の排出方法は、上記充填構造検出工程で検出された充填構造のデータと、上記発熱部位算出工程で算出された発熱部位のデータとを関連付けて蓄積する工程(蓄積工程)をさらに備えていてもよい。上記蓄積工程では、上記充填構造検出工程で検出された充填構造のデータと、上記発熱部位算出工程で算出された発熱部位のデータとを関連付けてデータベース(不図示)に蓄積する。当該固形燃料の排出方法は、上記蓄積工程を有する場合、上記データベースに十分な量のデータが蓄積された後には、上記充填構造検出工程で検出された充填構造を上記データベースに蓄積されたデータと照合することで、この充填構造の発熱しやすい部位を予測することができる。
上記データベースに十分な量のデータが蓄積されている場合、上記排出位置調節工程では、上記データベースに蓄積されたデータを参照することで予測される充填構造の発熱しやすい部位における固形燃料を排出するよう上記スライドゲートの位置を制御してもよい。
以上説明したように、本発明の固形燃料の排出システム及び固形燃料の排出方法は、発熱した又は発熱のおそれが高い固形燃料を優先的に排出することができるので、サイロ内における固形燃料の発火の抑制に適している。
1 サイロ
2 排出開口
3 スライドゲート
4 充填構造検出機構
5 制御機構
6 発熱部位算出機構
7 チェーンコンベア
8 固形燃料排出用コンベア
11 本体
11a 周壁
11b 底壁
12 屋根部
13 固形燃料投入口
14 固形燃料投入用コンベア
15 散水部
16 ミューオン検出部
17 充填構造算出部
21,22 シンチレーション検出器
21a,22a 第1検知用ユニット
21b,22b 第2検知用ユニット
F 固形燃料
R 開放領域
X 充填構造

Claims (5)

  1. 固形燃料が貯蔵され、この固形燃料を排出可能な長尺状の排出開口を底部に有するサイロを備え、
    上記排出開口の一部を封止し、この排出開口の軸方向に摺動可能なスライドゲートを有する固形燃料の排出システム。
  2. 上記サイロ内における上記固形燃料の充填構造をミュオグラフィによって検出する充填構造検出機構と、
    上記充填構造検出機構で検出された上記充填構造に基づいて上記スライドゲートの位置を制御する制御機構と
    をさらに備える請求項1に記載の固形燃料の排出システム。
  3. 上記充填構造検出機構で検出された上記充填構造における発熱しやすい部位を算出する発熱部位算出機構をさらに備え、
    上記制御機構が、上記発熱部位算出機構によって算出された上記部位における固形燃料を排出するよう上記スライドゲートの位置を制御する請求項2に記載の固形燃料の排出システム。
  4. 上記排出開口の下方に設けられ、この排出開口から排出される固形燃料をこの排出開口の軸方向に搬送するチェーンコンベアをさらに有する請求項1、請求項2又は請求項3に記載の固形燃料の排出システム。
  5. 固形燃料が貯蔵され、この固形燃料を排出可能な長尺状の排出開口を底部に有するサイロを用い、
    上記サイロ内に貯蔵される固形燃料の排出位置を上記排出開口の軸方向に沿って調節する工程を備える固形燃料の排出方法。
JP2017196881A 2017-10-10 2017-10-10 固形燃料の排出システム及び固形燃料の排出方法 Active JP6910915B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017196881A JP6910915B2 (ja) 2017-10-10 2017-10-10 固形燃料の排出システム及び固形燃料の排出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017196881A JP6910915B2 (ja) 2017-10-10 2017-10-10 固形燃料の排出システム及び固形燃料の排出方法

Publications (2)

Publication Number Publication Date
JP2019069845A true JP2019069845A (ja) 2019-05-09
JP6910915B2 JP6910915B2 (ja) 2021-07-28

Family

ID=66441507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017196881A Active JP6910915B2 (ja) 2017-10-10 2017-10-10 固形燃料の排出システム及び固形燃料の排出方法

Country Status (1)

Country Link
JP (1) JP6910915B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882884A (ja) * 1981-11-10 1983-05-18 日立造船株式会社 貯蔵物の排出装置
JP2008145141A (ja) * 2006-12-06 2008-06-26 Nippon Steel Corp 高炉の炉内状況推定方法
JP2012088075A (ja) * 2010-10-15 2012-05-10 Denki Kagaku Kogyo Kk ミュオンを用いた反応炉内部の密度分布推定方法
JP2013154892A (ja) * 2012-01-27 2013-08-15 Kubota Corp サイロおよびサイロの運転方法
JP2017052590A (ja) * 2015-09-08 2017-03-16 電源開発株式会社 固体燃料貯蔵設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882884A (ja) * 1981-11-10 1983-05-18 日立造船株式会社 貯蔵物の排出装置
JP2008145141A (ja) * 2006-12-06 2008-06-26 Nippon Steel Corp 高炉の炉内状況推定方法
JP2012088075A (ja) * 2010-10-15 2012-05-10 Denki Kagaku Kogyo Kk ミュオンを用いた反応炉内部の密度分布推定方法
JP2013154892A (ja) * 2012-01-27 2013-08-15 Kubota Corp サイロおよびサイロの運転方法
JP2017052590A (ja) * 2015-09-08 2017-03-16 電源開発株式会社 固体燃料貯蔵設備

Also Published As

Publication number Publication date
JP6910915B2 (ja) 2021-07-28

Similar Documents

Publication Publication Date Title
AU2015202235B2 (en) Air slide analyzer system and method
US7166844B1 (en) Target density imaging using discrete photon counting to produce high-resolution radiographic images
US8907293B2 (en) Boron coated straw neutron detectors distributed in a moderator material
KR102208231B1 (ko) 뮤온 검출기 어레이 스테이션들
US20120148019A1 (en) Radiation scanning and disabling of hazardous targets in containers
RU2014128989A (ru) Устройство и способ контроля садки в электрических дуговых печах
JP6426210B2 (ja) バルク材料の安全レベルを測定するための方法
CN102269718B (zh) 一种x射线灰分测量装置及方法
Zhang et al. Triboelectric charging behavior of wood particles during pellet handling processes
JP2019069845A (ja) 固形燃料の排出システム及び固形燃料の排出方法
US20180275078A1 (en) Alternative Fuels Analyzer
CN1723388A (zh) 射线照相设备
CN113281354B (zh) 基于中子与x射线的危险品检测装置及方法
Slaughter et al. The nuclear car wash: A system to detect nuclear weapons in commercial cargo shipments
JP2019070485A (ja) 固形燃料の貯蔵システム及び固形燃料の貯蔵方法
CN1198120C (zh) 利用γ射线测量物位的方法
WO2014133687A3 (en) Spectral-segmentation computation in radiation detectors
JP6775903B2 (ja) サイロ内温度測定システム及びサイロ内温度測定方法
CN202230038U (zh) 一种x射线煤灰分测量装置
RU2593766C1 (ru) Способ обнаружения взрывчатого вещества в контролируемом предмете
CN212494040U (zh) 一种放射性污染物在线式检测分选系统
Eitel et al. Measurements of neutron fluxes in the LSM underground laboratory
JP2005337764A (ja) 搬送装置及びそれを用いた危険物検知装置
SK8449Y1 (sk) Zariadenie na odhaľovanie nelegálnych úkrytov v náklade železnej rudy
JP2015099035A (ja) 除去物汚染レベル計測システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210707

R150 Certificate of patent or registration of utility model

Ref document number: 6910915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150