JP2019066699A - 発光素子、蛍光光源装置 - Google Patents

発光素子、蛍光光源装置 Download PDF

Info

Publication number
JP2019066699A
JP2019066699A JP2017192973A JP2017192973A JP2019066699A JP 2019066699 A JP2019066699 A JP 2019066699A JP 2017192973 A JP2017192973 A JP 2017192973A JP 2017192973 A JP2017192973 A JP 2017192973A JP 2019066699 A JP2019066699 A JP 2019066699A
Authority
JP
Japan
Prior art keywords
substrate
light
fluorescent plate
fluorescence
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017192973A
Other languages
English (en)
Inventor
井上 正樹
Masaki Inoue
正樹 井上
蕪木 清幸
Kiyoyuki Kaburagi
清幸 蕪木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2017192973A priority Critical patent/JP2019066699A/ja
Priority to PCT/JP2018/034800 priority patent/WO2019069699A1/ja
Publication of JP2019066699A publication Critical patent/JP2019066699A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

【課題】発光面積を限定的にして高い輝度を実現することのできる発光素子及び蛍光光源装置を提供する。【解決手段】発光素子10は、第一基板11と、第一基板11の上層に形成された反射層13と、反射層13の上層に形成された、蛍光体を含む蛍光プレート14と、蛍光プレート14の上層に形成された、透光性の第二基板12とを有する。第二基板12は、蛍光プレート14が形成されている側とは反対側の面から、マイクロメートルオーダーの径を有して蛍光プレート14とは反対側の方向に向かって突出する複数の第一凸部31と、第一凸部31から第一凸部31よりも径の小さいナノメートルオーダーの径を有して、蛍光プレート14とは反対側の方向に向かって突出する複数の第二凸部と、を有する。【選択図】図2B

Description

本発明は、蛍光体を含む発光素子に関する。また、本発明は、前記発光素子及び励起光源を含み、励起光源から射出された励起光によって蛍光体を励起して蛍光を放射する蛍光光源装置に関する。
現在、蛍光体をレーザ光で励起し、当該蛍光体から発せられる蛍光を放射する蛍光光源装置が知られている。
ところで、高いパワー、且つ高いパワー密度の励起光を蛍光体の表面に照射すると、蛍光体の温度が高温になる。蛍光体は、150℃程度の高温になると、発光効率が低下することが知られている。この現象は「温度消光」と呼ばれる。
かかる観点の下、下記特許文献1には、蛍光体の上面に排熱のためのサファイア基板を設けた発光素子が開示されている。
特開2012−109400号公報
図5は、上記特許文献1に開示された発光素子を模式的に示す図面である。図5に示す発光素子100は、蛍光体を含む発光部101と、発光部101の上面に接触して形成された透光性基板102とを有する。透光性基板102の、発光部101とは反対側の面には、ナノメートルオーダーの径を有する微細な凹凸構造103が形成されている。
図6は、発光素子100に対して励起光が照射された場合の光線の進行を模式的に示す図面である。励起光111が、透光性基板102内を透過して発光部101に入射されると、発光部101に含まれる蛍光体が励起され、蛍光112が放射される。この蛍光112は、透光性基板102内を透過して、凹凸構造103から外部に取り出される。
しかし、図6に示すように、蛍光112の一部は、透光性基板102内を基板の面に平行なd2方向に進行する。この結果、透光性基板102から取り出される蛍光は、面方向に拡がりを有する。この結果、発光素子100から射出される蛍光のエタンデュが大きくなってしまう。このようにd2方向に蛍光112の一部が進行する理由としては、発光部101内に含まれる蛍光体粒子の粒界での反射及び拡散、透光性基板102の光取り出し面側の面での反射、並びに透光性基板102の光取り出し面とは反対側の面における反射などが考えられる。なお、透光性基板102は微細な凹凸構造103が形成されているものの、完全には全反射を防止することができず、一部の蛍光112は透光性基板102の面で反射される。
例えば、発光素子100から取り出される蛍光をプロジェクタ用の光源に利用することを想定した場合、プロジェクタに含まれる光学系は、所定の範囲内のエタンデュを有する光束しか取り込めないように構成されることが一般的である。つまり、特許文献1の構成では、取り出された光の一部の光しか利用できないこととなってしまい、光の利用効率が低い。この問題は、プロジェクタ用途に限られず、当該発光素子100から取り出される蛍光を利用する一般的な光学部品に対して生じ得る。
本発明は、上記の課題に鑑み、発光面積を限定的にして高い輝度を実現することのできる発光素子及び蛍光光源装置を提供することを目的とする。
本発明に係る発光素子は、
第一基板と、
前記第一基板の上層に形成された反射層と、
前記反射層の上層に形成された、蛍光体を含む蛍光プレートと、
前記蛍光プレートの上層に形成された、透光性の第二基板とを有し、
前記第二基板は、
前記蛍光プレートが形成されている側とは反対側の面から、マイクロメートルオーダーの径を有して前記蛍光プレートとは反対側の方向に向かって突出する、複数の第一凸部と、
前記第一凸部から、前記第一凸部よりも径の小さいナノメートルオーダーの径を有して、前記蛍光プレートとは反対側の方向に向かって突出する複数の第二凸部と、を有することを特徴とする。
上記の構成によれば、第二基板には、蛍光プレートが形成されている側とは反対側の面から、マイクロメートルオーダーの径を有して蛍光プレートとは反対側の方向に向かって突出する、複数の第一凸部が形成されている。このため、蛍光プレートから放射された蛍光、より詳細には蛍光プレートに含まれる蛍光体から放射された蛍光が、第二基板内を進行するにあたり、当該基板の面に平行な方向に進行したとしても、第一凸部の側面に達した後に外部に取り出されるか、又は進行方向が変更される。すなわち、この第一凸部が存在することによって、蛍光が第二基板内を進行する際に、基板の面に平行な方向に進行する距離が制限される。この結果、第二基板から取り出される蛍光の領域が制限され、高輝度の光源が実現される。
また、本発明に係る発光素子が備える第二基板には、第一凸部から、第一凸部よりも径の小さいナノメートルオーダーの径を有して、蛍光プレートとは反対側の方向に向かって突出する複数の第二凸部が形成されている。このため、蛍光プレートに向かって励起光が照射された際に、当該励起光が第一凸部の面で散乱又は反射する割合が低下し、高効率で蛍光プレートに励起光を導くことができる。
つまり、マイクロメートルオーダーの径を有する複数の第一凸部は、蛍光体で生成された蛍光が、第二基板内を進行する際の、面方向への拡がりを制限する目的で設けられている。これに対し、ナノメートルオーダーの径を有する複数の第二凸部は、蛍光体に向けて外部から照射された励起光が、第二基板(特に、第一凸部の側面)に入射された際に、後方へ散乱・反射してしまう光量を低下させる目的で設けられている。
従って、上記の構成によれば、発光効率を低下させることなく、輝度を高めた発光素子が実現される。
第一凸部の径は、2μm以上100μm以下であるのが好ましく、2μm以上50μm以下であるのがより好ましく、2μm以上10μm以下であるのが更により好ましい。第一凸部の径を上記範囲内に設定することで、第二基板から取り出される蛍光の広がりを抑制する効果が十分に発揮される。なお、第一凸部は、円錐、角錐などの錐体形状や、円錐台、角錐台などの錐台体形状とすることができる。
なお、特に第一凸部を錐台体形状で構成した場合、場所によっては、蛍光プレート内の蛍光体から放射され、第一凸部の面に達した蛍光の、当該第一凸部の面における入射角が臨界角以上となる場合があり得る。しかしながら、上記の構成のように、第一凸部から蛍光プレートとは反対側の方向に向かって突出するナノメートルオーダーの第二凸部が設けられているため、臨界角以上で蛍光が第一凸部を構成する面に入射されることが大幅に抑制される。この結果、第二基板の面に平行な方向に対して大きく拡散することなく、蛍光を外部に取り出すことができる。
第二凸部の径は、200nm以上1000nm以下であるのが好ましく、200nm以上600nm以下であるのがより好ましく、200nm以上500nm以下であるのが更により好ましい。第二凸部の径が大きすぎると、第二基板で後方に反射・散乱してしまう励起光の割合が増加するという問題が生じ、他方、第二凸部の径が小さすぎると、第二基板から外部に取り出される蛍光の割合が低下するという問題が生じる。なお、第二凸部は、円錐、角錐などの錐体形状や、円錐台、角錐台などの錐台体形状とすることができる。
複数の第一凸部及び複数の第二凸部は、それぞれ周期的に形成されるものとすることができる。複数の第二凸部は、いわゆるモスアイ構造を採用できる。なお、入射された励起光を高効率で蛍光プレート(に含まれる蛍光体)に導くためには、第二基板の第一凸部上に設けられる複数の第二凸部は、周期的に形成されるのが好ましい。
第二基板は、波長400nm以上800nm以下の光に対して透光性を有する材料で構成されるものとすることができる。より詳細には、前記第二基板は、サファイア、GaN、MgO、又はSiCのいずれかを少なくとも含む材料で構成されることができる。
前記第二基板は、前記第一基板の面に平行な方向に関し、前記蛍光プレートと同等の幅を有するものとしても構わない。
上述したように、第二基板には複数の第一凸部が設けられており、第二基板の面に平行な方向に係る蛍光の拡がりは、この複数の第一凸部によって制限される。このため、第二基板を蛍光プレートと同等の幅で実現しても、蛍光プレートから発せられた蛍光の全て又は大部分を、第二基板の蛍光プレートが形成されている側とは反対側の面、すなわち光取り出し面から外部に取り出すことができる。
前記第二基板の、前記蛍光プレートが形成されている側とは反対側の面は、
複数の前記第一凸部が形成された第一領域と、
前記第一領域の外側であって、前記第一凸部が形成されていない第二領域とを有するものとすることができる。
上述したように、第二基板に第一凸部が設けられることで、第二基板内を面方向に進行する蛍光の拡がりが制限される。このため、蛍光が進行しない領域には第一凸部の形成を行わない構成とすることができる。かかる構成とすることで、第一凸部を形成する数を少なくすることができるため、製造工程の簡素化が図られる。
本発明に係る蛍光光源装置は、
前記発光素子と、
励起光を射出する励起光源とを有し、
前記励起光は、前記第二基板の、前記蛍光プレートが形成されている側とは反対側の面であって、少なくとも前記第一凸部が形成されている領域内に照射されることを特徴とする。
上記構成によれば、発光効率を低下させることなく、輝度を高めた蛍光光源装置が実現される。
励起光の波長は、例えば400nm以上480nm以下とすることができる。この場合、470nm以上700nm以下の蛍光が放射される蛍光光源が実現される。
前記第一凸部は、前記励起光が照射される領域よりも外側に形成されているものとしても構わない。
上述したように、第一凸部は、第二基板内を面方向に進行する蛍光の拡がりを制限する目的で設けられている。このため、第一凸部が設けられている第二基板の領域に励起光が照射されなくても、上記の効果にほとんど影響がない。かかる構成とすれば、第一凸部を形成する数を少なくすることができるため、製造工程の簡素化が図られる。
本発明によれば、発光面積を限定的にして高い輝度を実現することのできる発光素子及び蛍光光源装置が実現される。
一実施形態の蛍光光源装置の構成を模式的に示す図面である。 発光素子の構成を模式的に示す斜視図である。 発光素子の構成を模式的に示す断面図である。 図2Bの一部拡大図である。 図2Bに示す発光素子の一部分の模式的な俯瞰図である。 発光素子の別の構成を模式的に示す断面図である。 図2Eに示す発光素子の一部分の模式的な俯瞰図である。 発光素子の構成を模式的に示す平面図である。 発光素子の構成を模式的に示す別の平面図である。 発光素子の構成を模式的に示す別の平面図である。 発光素子の構成を模式的に示す別の平面図である。 発光素子に対して励起光が照射されたときの、励起光及び蛍光の光線の進行を模式的に示した図面である。 従来の発光素子を模式的に示す図面である。 従来の発光素子に対して励起光が照射された場合の光線の進行を模式的に示す図面である。
本発明の発光素子及び蛍光光源装置の構成につき、図面を参照して説明する。なお、以下の各図において、図面上の寸法比と実際の寸法比は必ずしも一致しない。
[構成]
図1は、一実施形態の蛍光光源装置の構成を模式的に示す図面である。図1に示す蛍光光源装置1は、励起光源2と、ダイクロイックミラー3と、発光素子10とを備える。
励起光源2は、例えば波長が445nm以上465nm以下の青色領域の光を出射する半導体レーザ素子を含む構成である。励起光源2は、必要に応じてコリメータレンズなどの光学系を備えていても構わない。
発光素子10は、後述するように蛍光体を含む構成である。励起光源2から射出された励起光21が発光素子10に照射されると、発光素子10に含まれる蛍光体が励起され、発光素子10から蛍光22が放射される。蛍光22は、励起光21よりも長波長の光であり、例えば、470nm以上700nm以下の波長を有する。
図1に示される蛍光光源装置1において、ダイクロイックミラー3は、励起光源2から射出される励起光21を透過し、発光素子10から射出される蛍光22を反射するように構成されている。ダイクロイックミラー3は、ミラー面が例えば励起光21の入射角度に対して45°の角度で傾斜するように配置されている。かかる構成とすることで、蛍光22が蛍光光源装置1の外部に取り出され、例えば、図示しない後段の光学系に入射される。
図2Aは、発光素子10の構成を模式的に示す斜視図である。図2Bは、発光素子10の構成を模式的に示す断面図である。
発光素子10は、第一基板11と、第二基板12と、反射層13と、蛍光プレート14と、接合層15とを有する。
(第一基板11)
第一基板11は、蛍光プレート14で発せられた熱を排熱するために設けられている。第一基板11は、例えば熱伝導率が90W/(m・K)以上、具体的には例えば230〜400W/(m・K)である材料で構成される。このような材料の例としては、Cu、銅化合物(MoCu、CuWなど)、Alなどが挙げられる。
第一基板11の厚みは、例えば0.5〜5mmである。また、排熱性などの観点から、第一基板11の表面における面積は、蛍光プレート14の面積よりも大きいことが好ましい。
(接合層15)
接合層15は、第一基板11と蛍光プレート14とを接合する層であり、例えばハンダ材料からなる。排熱性などの観点から、接合層15を構成する材料としては、例えば熱伝導率が40W/(m・K)以上であるものが用いられることが好ましい。より詳細には、例えば、Sn、Pbなどの材料にフラックスやその他の不純物を混ぜてクリーム状(ペースト状)の形態としたクリームハンダ、Sn−Ag−Cu系ハンダ、Au−Sn系ハンダなどを用いることができる。接合層15の厚みは、例えば20〜200μmである。
なお、図示していないが、第一基板11と接合層15との接合性の観点から、第一基板11と接合層15との間に、例えばメッキ法によって形成された、Ni/Au膜よりなる金属膜が形成されているものとしても構わない。この金属膜の厚みは、例えばNi/Au=5000〜1000nm/1000〜30nmとすることができる。
(反射層13)
反射層13は、蛍光プレート14の、第二基板12とは反対側の面に形成されている。この反射層13は、蛍光プレート14で生成された蛍光のうち、第二基板12の光取り出し面12aとは反対側の面(第一基板11側)に進行した蛍光を反射させて、光取り出し面12a側に導くために設けられている。反射層13は、例えば、Al、Ag等の金属膜や、前記金属膜上に誘電体多層膜を形成した増反射膜などで構成されることができる。
なお、図示していないが、蛍光プレート14と接合層15との接合性の観点から、蛍光プレート14の第二基板12とは反対側の面、より具体的には、反射層13の蛍光プレート14とは反対側の面上に、例えば蒸着によって形成されたNi/Pt/Au膜、Ni/Au膜よりなる金属膜が形成されているものとしても構わない。この金属膜の厚みは、例えばNi/Pt/Au=30nm/500nm/500nmとすることができる。
(蛍光プレート14)
蛍光プレート14は、反射層13の上層に形成されている。蛍光プレート14は、励起光源2から射出される励起光21が入射されると、蛍光22を放射する。蛍光プレート14は、一例として矩形平板状の構造を示す。蛍光プレート14の厚みは、例えば0.05〜1mmである。
蛍光プレート14は、蛍光体が含有されてなり、具体的には、単結晶または多結晶の蛍光体よりなるもの、又は、単結晶若しくは多結晶の蛍光体とセラミックバインダーとの混合物の焼結体よりなる。すなわち、蛍光プレート14は、単結晶又は多結晶の蛍光体によって構成される。
蛍光プレート14において用いられる蛍光体とセラミックバインダーとの混合物の焼結体は、例えば、セラミックバインダーとしてアルミナ粒子が用いられる。そして、この焼結体は、蛍光体100質量%に対して数質量%〜数十質量%のセラミックバインダーを混合し、その混合物をプレスした後、焼成することによって得られるものを用いることができる。
蛍光プレート14を単結晶の蛍光体で構成する場合には、例えば、チョクラルスキー法によって得ることができる。具体的には、るつぼ内において種子結晶を溶融された原料に接触させ、この状態で、種子結晶を回転させながら鉛直方向に引き上げて当該種子結晶に単結晶を成長させることにより、単結晶の蛍光体が得られる。
また、蛍光プレート14を多結晶の蛍光体で構成する場合には、例えば以下のようにして得ることができる。まず、母材、賦活材及び焼成助剤などの原材料をボールミルなどによって粉砕処理することによって、原材料微粒子を得る。次いで、この原材料微粒子を用い、例えばスリップキャスト法によって成形体を形成して焼結する。その後、得られた焼結体に対して熱間等方圧加圧加工を施すことによって、気孔率が例えば0.5%以下の多結晶の蛍光体が得られる。
蛍光プレート14を構成する蛍光体は、具体的には、希土類化合物がドープ(賦活)されたYAG蛍光体よりなるものを用いることができる。このような蛍光体において、希土類元素(賦活材)のドープ量は、0.5モル%程度とすることができる。希土類化合物としては、例えばCe、Pr、又はSmなどを挙げることができる。すなわち、蛍光体の具体例としては、YAG:Ce、YAG:Pr、YAG:Sm、LuAG:Ceなどが挙げられる。なお、蛍光プレート14を、蛍光体に金属化合物を含めて構成しても構わない。
蛍光プレート14が単結晶又は多結晶の蛍光体によって構成されることで、高い熱伝導性を有する。蛍光プレート14の熱伝導率としては、例えば熱伝導率が6〜35W/(m・K)程度とするのが好ましい。このように構成されることで、蛍光プレート14で発生した熱が、第一基板11側、及び後述する第二基板12側に効率よく排熱され、蛍光プレート14が高温となることが抑制される。
第一基板11と蛍光プレート14とは、例えば以下のようにして接合することができる。第一基板11の面上に接合層15を介して、反射層13が形成された蛍光プレート14を配置する。その後、例えば大気雰囲気又は窒素ガス雰囲気とされた減圧下において、ハンダ材料の融点以上の温度に加熱して溶融する。その後、ハンダ材料を冷却して固化する。これにより、第一基板11と蛍光プレート14とが接合される。
(第二基板12)
第二基板12は、蛍光プレート14の上層に形成されている。第二基板12は、励起光源2から射出される励起光21、及び蛍光プレート14(蛍光プレート14に含まれる蛍光体)で生成される蛍光22を透過する材料で構成されている。具体的には、第二基板12は、波長400nm以上800nm以下の光に対して透光性を有する材料で構成されている。
また、第二基板12は、第一基板11と同様に、蛍光プレート14で生成された熱を排熱する目的で設けられている。このため、第二基板12は、熱伝導性の高い材料で構成されるのが好ましい。より具体的には、第二基板12は、30W/(m・K)以上の熱伝導率を示す材料で構成されるのが好ましい。
以上の観点から、第二基板12は、サファイア(Al23)、MgO、GaN、SiC、又は、MgAl24などで構成されることができる。第二基板12の厚みは、30μm以上、1000μm以下とすることができる。
上述したように、第二基板12は、蛍光プレート14とは反対側の面12aが光取り出し面を構成する。図2Cは、図2Bにおいて、第二基板12の面12a側近傍を拡大した図面である。
図2B及び図2Cに示すように、第二基板12は、この光取り出し面12a側において、蛍光プレート14とは反対側の方向に向かって突出する、複数の第一凸部31と、第一凸部31から蛍光プレート14とは反対側の方向に向かって突出する、第一凸部31よりも径の小さい第二凸部32とを有する。第一凸部31は、径w1がマイクロメートルオーダーであり、2μm以上100μm以下であるのが好ましく、2μm以上50μm以下であるのがより好ましく、2μm以上10μm以下であるのが更により好ましい。第二凸部32は、径w2がナノメートルオーダーであり、200nm以上1000nm以下であるのが好ましく、200nm以上600nm以下であるのがより好ましく、200nm以上500nm以下であるのが更により好ましい。なお、図2B及び図2Cでは、視覚的に理解させるために、第二凸部32は、第一凸部31を基準として極めて大きく図示されている。
図2Dは、第二基板12のうち、光取り出し面12a側において、第一凸部31が形成されている箇所を模式的に示す俯瞰図である。なお、図2Dでは、第二凸部32の図示は省略されている。図2Dに示されるように、第二基板12は、光取り出し面12a側において、複数の第一凸部31がほぼ周期的に形成されている。
図2B〜図2Dでは、第一凸部31が錐体形状を有する場合が図示されているが、図2E〜図2Fに示すように、第一凸部31が錐台体形状を有するものとしても構わない。図2Eは、第一凸部31が錐台体形状を有する場合における発光素子10の構造を、図2Bにならって図示したものであり、図2Fは、第一凸部31が錐台体形状を有する場合において、第一凸部31が形成されている第二基板12の箇所を模式的に示す俯瞰図であり、図2Dにならって図示したものである。図2Fでは、第二凸部32の図示は省略されている。
第二基板12の光取り出し面12a側に複数の第一凸部31を設けるときの態様は、種々の方法を採用することができる。図3A〜図3Dは、いずれも発光素子10を光取り出し面12a側から見たときの模式的な平面図である。複数の第一凸部31は、光取り出し面12のほぼ全体にわたって配置されても構わないし(図3A参照)、光取り出し面12aの中央付近の領域にのみ配置されても構わない(図3B参照)。
すなわち、図3Bに示す発光素子10においては、第二基板12は、光取り出し面12a側から見たときに、複数の第一凸部31が形成された第一領域41と、この第一領域41の外側であって、第一凸部31が形成されていない第二領域42とを有することになる。後述するように、第一凸部31は、蛍光22を第二基板12の面に平行な方向に拡がって進行するのを抑制する機能を有する。このため、蛍光22が進行しない領域内については第一凸部31を設けなくても構わない。
更に、図3Cに模式的に示すように、図3Bの態様において光取り出し面12の中心の近傍に対応する領域43にのみ第一凸部31を配置しない態様としても構わない。この場合、領域43内に励起光21が照射されるものとしても構わない。
また、複数の第一凸部31の配置形状は任意であり、例えば図3Dに示すように、複数の第一凸部31を千鳥格子状に配置しても構わない。図3B及び図3Cの配置態様において、千鳥格子状に配置しても構わない。第一凸部31は、少なくとも2箇所以上に設けられていればよい。複数の第一凸部31が千鳥格子状に配置されることで、蛍光プレート14から射出される蛍光の広がりが抑制される。
また、複数の第一凸部31は、最密充填的に配置されるものとしても構わない。ここで「最密充填的」とは、隣接する第一凸部31の底面同士がほぼ隙間なく隣接している状態を指す。
第二基板12と蛍光プレート14とは、例えば以下のようにして接合することができる。
第二基板12と蛍光プレート14の表面はCMPにより研磨される。そして、両者が純水によって洗浄され、プラズマ処理によって両者の表面に対して活性化処理が施される。その後、第二基板12と蛍光プレート14とを貼り合わせ、250℃〜1000℃の熱処理が施される。このとき、加圧処理を施しても構わない。かかる処理を行うことで、両者間に良好な接合面が得られる。
第二基板12上に第一凸部31及び第二凸部32を設ける際には、例えば、大きさの異なる粒子を用いてエッチングすることで実現される。より具体的には、第二基板12の光取り出し面12a側に、第一凸部31の径に対応した粒径を有する複数の第一粒子からなる粒子膜を形成した後、当該粒子膜をマスクとしてエッチングを施す。これにより、第一粒子の径に対応した径を有する第一凸部31が第二基板12上に形成される。更に、この第一凸部31上に、第二凸部32の径に対応した粒径を有する複数の第二粒子からなる粒子膜を形成した後、当該粒子膜をマスクとしてエッチングを施す。これにより、第二粒子の径に対応した径を有する第二凸部32が第一凸部31上に形成される。
エッチングを行うに際しては、第二基板12の構成材料に対するエッチング速度と、第一粒子及び第二粒子の構成材料に対するエッチング速度が有意に異なるような、エッチングガスを利用するのが好適である。例えば、第二基板12がサファイアからなり、第一粒子及び第二粒子がシリカからなる場合には、エッチングガスとして、CF4、SF6、CHF3、C26、C38、CH22、及びNF3からなる群より選択される一種類以上のガスを用いることができる。
なお、第二基板12の面に第一凸部31及び第二凸部32を形成した後に、蛍光プレート14と接合するものとしても構わない。
[作用]
上述したように、発光素子10が、第一凸部31を含む第二基板12を備えたことで、排熱性を確保しながらも発光面積を制限できることにつき、説明する。図4は、発光素子10に対して励起光21が照射されたときの、励起光21及び蛍光22の光線の進行を模式的に示した図面である。
励起光21が第二基板12に入射されると、この励起光21は、第二基板12内を透過して進行し、蛍光プレート14に入射される。なお、上述したように、第二基板12の面12a側には、マイクロメートルオーダーの径を有する複数の第一凸部31が形成されると共に、この複数の第一凸部31上に、ナノメートルオーダーの径を有する複数の第二凸部32が形成されている。このため、入射された励起光21のうち、第二基板12の面12aで反射される光量は少なく、大部分の光は第二基板12内へと進行する。
励起光21は、蛍光プレート14内の蛍光体粒子16に入射されると、蛍光体粒子16が励起されて蛍光22が生成される。蛍光22のうち、一部の光は、隣接する蛍光体粒子16の粒界で反射したり、反射層13で反射することで、蛍光プレート14の面に平行なd1方向に拡がりながら進行する。この光は、第二基板12の面12a側に設けられた第一凸部31の側面31aに入射され、当該面から外部に取り出されたり、当該面で反射された後に隣接する第一凸部31の側面31aから取り出される。すなわち、蛍光22が第一凸部31の側面31aに入射されることで、従来の構成と比較して、透光性基板内における反射の回数が強制的に減らされるため、外部に取り出されるまでのd1方向への蛍光22の進行が抑制される。この結果、第二基板12の光取り出し面12a側の、限られた範囲内の領域から蛍光22が取り出される。
加えて、第二基板12には、第一凸部31上にナノメートルオーダーの径を有する第二凸部32が設けられているため、蛍光プレート14側から第二基板12に入射された蛍光22が、蛍光プレート14側に散乱又は反射するのを抑制できる。これにより、第二基板12内における蛍光22の反射回数が削減され、外部に取り出されるまでのd1方向への蛍光22の進行が抑制される。
[別実施形態]
第二基板12に設けられる第一凸部31及び第二凸部32は、必ずしも規則的に配置されていなくても構わない。
また、図1に示したような、ダイクロイックミラー3を含む蛍光光源装置1の光学的な配置方法は、あくまで一例であり、どのような配置態様であっても構わない。
1 : 蛍光光源装置
2 : 励起光源
3 : ダイクロイックミラー
10 : 発光素子
11 : 第一基板
12 : 第二基板
12a : 光取り出し面
13 : 反射層
14 : 蛍光プレート
15 : 接合層
16 : 蛍光体粒子
21 : 励起光
22 : 蛍光
31 : 第一凸部
31a : 凹状孔部の側面
32 : 第二凸部
41 : 第一領域
42 : 第二領域
100 : 従来の発光素子
101 : 発光部
102 : 透光性基板
103 : 凹凸構造
112 : 蛍光

Claims (8)

  1. 第一基板と、
    前記第一基板の上層に形成された反射層と、
    前記反射層の上層に形成された、蛍光体を含む蛍光プレートと、
    前記蛍光プレートの上層に形成された、透光性の第二基板とを有し、
    前記第二基板は、
    前記蛍光プレートが形成されている側とは反対側の面から、マイクロメートルオーダーの径を有して前記蛍光プレートとは反対側の方向に向かって突出する、複数の第一凸部と、
    前記第一凸部から、前記第一凸部よりも径の小さいナノメートルオーダーの径を有して、前記蛍光プレートとは反対側の方向に向かって突出する複数の第二凸部と、を有することを特徴とする発光素子。
  2. 前記第一凸部は、錐体形状又は錐台体形状を有することを特徴とする請求項1に記載の発光素子。
  3. 前記第二基板は、前記第一基板の面に平行な方向に関し、前記蛍光プレートと同等の幅を有することを特徴とする請求項1又は2に記載の発光素子。
  4. 前記第二基板の、前記蛍光プレートが形成されている側とは反対側の面は、
    複数の前記第一凸部が形成された第一領域と、
    前記第一領域の外側であって、前記第一凸部が形成されていない第二領域とを有することを特徴とする請求項1〜3のいずれか1項に記載の発光素子。
  5. 前記第二基板は、波長400nm以上800nm以下の光に対して透光性を有する材料で構成されていることを特徴とする請求項1〜4のいずれか1項に記載の発光素子。
  6. 前記第二基板は、サファイア、GaN、MgO、又はSiCのいずれかを少なくとも含む材料からなることを特徴とする請求項5に記載の発光素子。
  7. 請求項1〜6のいずれか1項に記載の発光素子と、
    励起光を射出する励起光源とを有し、
    前記励起光は、前記第二基板の、前記蛍光プレートが形成されている側とは反対側の面であって、少なくとも前記第一凸部が形成されている領域内に照射されることを特徴とする蛍光光源装置。
  8. 前記第一凸部は、前記励起光が照射される領域よりも外側に形成されていることを特徴とする請求項7に記載の蛍光光源装置。
JP2017192973A 2017-10-02 2017-10-02 発光素子、蛍光光源装置 Pending JP2019066699A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017192973A JP2019066699A (ja) 2017-10-02 2017-10-02 発光素子、蛍光光源装置
PCT/JP2018/034800 WO2019069699A1 (ja) 2017-10-02 2018-09-20 発光素子、蛍光光源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192973A JP2019066699A (ja) 2017-10-02 2017-10-02 発光素子、蛍光光源装置

Publications (1)

Publication Number Publication Date
JP2019066699A true JP2019066699A (ja) 2019-04-25

Family

ID=65995201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192973A Pending JP2019066699A (ja) 2017-10-02 2017-10-02 発光素子、蛍光光源装置

Country Status (2)

Country Link
JP (1) JP2019066699A (ja)
WO (1) WO2019069699A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568706A (zh) * 2019-08-22 2019-12-13 苏州佳世达光电有限公司 投影机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501948A (ja) * 2010-12-09 2014-01-23 コーニンクレッカ フィリップス エヌ ヴェ 光を発生させる照明装置
WO2016035776A1 (ja) * 2014-09-01 2016-03-10 デクセリアルズ株式会社 光学体、表示装置および光学体の製造方法
JP2016080864A (ja) * 2014-10-16 2016-05-16 富士フイルム株式会社 反射防止フィルムの製造方法
JP2016100090A (ja) * 2014-11-18 2016-05-30 スタンレー電気株式会社 発光モジュール及びそれを用いた発光装置
WO2017038868A1 (ja) * 2015-08-31 2017-03-09 旭硝子株式会社 透光性構造体、その製造方法および物品
US20170102486A1 (en) * 2015-05-11 2017-04-13 Wuhan China Star Optoelectronics Technology Co., Ltd Polarizing film and liquid crystal display device comprising the same
WO2017135261A1 (ja) * 2016-02-01 2017-08-10 旭硝子株式会社 透光性構造体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501948A (ja) * 2010-12-09 2014-01-23 コーニンクレッカ フィリップス エヌ ヴェ 光を発生させる照明装置
WO2016035776A1 (ja) * 2014-09-01 2016-03-10 デクセリアルズ株式会社 光学体、表示装置および光学体の製造方法
JP2016080864A (ja) * 2014-10-16 2016-05-16 富士フイルム株式会社 反射防止フィルムの製造方法
JP2016100090A (ja) * 2014-11-18 2016-05-30 スタンレー電気株式会社 発光モジュール及びそれを用いた発光装置
US20170102486A1 (en) * 2015-05-11 2017-04-13 Wuhan China Star Optoelectronics Technology Co., Ltd Polarizing film and liquid crystal display device comprising the same
WO2017038868A1 (ja) * 2015-08-31 2017-03-09 旭硝子株式会社 透光性構造体、その製造方法および物品
WO2017135261A1 (ja) * 2016-02-01 2017-08-10 旭硝子株式会社 透光性構造体

Also Published As

Publication number Publication date
WO2019069699A1 (ja) 2019-04-11

Similar Documents

Publication Publication Date Title
TWI481066B (zh) 具有光子結晶及冷光陶瓷的光發射裝置
CN106030836B (zh) 波长转换元件、发光半导体部件及其制造方法
JP5530165B2 (ja) 光源装置および照明装置
US10544931B2 (en) Wavelength conversion member and light source device having wavelength conversion member
JP6580133B2 (ja) パターニングされた薄膜波長変換器の製造方法
JP6544408B2 (ja) 光学部品及び光学部品の製造方法
JP6511766B2 (ja) 発光装置
CN108139523A (zh) 波长转换元件以及发光装置
JP6248743B2 (ja) 蛍光光源装置
JP2008108952A (ja) 半導体発光装置および半導体発光装置の製造方法
JP6597809B2 (ja) 光源装置
JP2015195098A (ja) 蛍光光源装置
JP2019211670A (ja) 蛍光発光素子
JP2019045844A (ja) 蛍光部材、光学部品、及び発光装置
JP2018107298A (ja) 波長変換部材及びこれを用いた光源装置
JP7086199B2 (ja) 蛍光体素子および照明装置
WO2019069699A1 (ja) 発光素子、蛍光光源装置
JP5781367B2 (ja) 光源装置および照明装置
WO2017064951A1 (ja) 光源装置
JP5975692B2 (ja) 光源装置および照明装置
JP6747285B2 (ja) 発光素子、蛍光光源装置
JP2023001230A (ja) 発光装置及び発光装置の製造方法
JP7363919B2 (ja) 蛍光発光素子、及びその製造方法
JP2016119361A (ja) 発光装置
JP6660484B2 (ja) 蛍光体素子および照明装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005