JP2019041013A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2019041013A
JP2019041013A JP2017162423A JP2017162423A JP2019041013A JP 2019041013 A JP2019041013 A JP 2019041013A JP 2017162423 A JP2017162423 A JP 2017162423A JP 2017162423 A JP2017162423 A JP 2017162423A JP 2019041013 A JP2019041013 A JP 2019041013A
Authority
JP
Japan
Prior art keywords
dielectric constant
semiconductor device
high dielectric
mass
thermal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017162423A
Other languages
English (en)
Other versions
JP7013728B2 (ja
Inventor
直之 金井
Naoyuki Kanai
直之 金井
谷口 克己
Katsumi Taniguchi
克己 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017162423A priority Critical patent/JP7013728B2/ja
Publication of JP2019041013A publication Critical patent/JP2019041013A/ja
Application granted granted Critical
Publication of JP7013728B2 publication Critical patent/JP7013728B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】 パワー半導体モジュールの裏面導電性板と冷却器間の電位差を抑え、信頼性の高い半導体装置を提供する。【解決手段】 半導体素子1を実装した積層基板2と、封止材8とを備える半導体モジュール10と、比誘電率が10以上の高誘電率粒子を含む充填材と、基油とを含むサーマルコンパウンド11を介して、前記半導体モジュール10に配設された冷却器12とを含む半導体装置【選択図】 図1

Description

本発明は半導体装置に関する。本発明は、特には耐放電特性に優れ、信頼性の高い半導体装置に関する。
パワー半導体モジュールは、効率的な電力変換が求められる分野で広く適用されている。例えば、近年注目を浴びている太陽光発電や風力発電などの再生可能エネルギー分野、ハイブリッド自動車や電気自動車などの車載分野、車両などの鉄道分野が挙げられる。これらのパワー半導体モジュールには、スイッチング素子とダイオードが内蔵されており、従来、素子にはSi(シリコン)半導体が用いられてきた。
近年は、SiC(シリコンカーバード)半導体などのワイドバンドギャップ半導体が用いられ始めている。SiC半導体は、Si半導体に比べ高耐圧、高耐熱、低損失といった特徴があり、パワー半導体モジュールに用いることにより、装置の小型化や低損失化が可能となる。その際に、パワー半導体素子は、耐湿性、耐熱性、機械特性に優れたエポキシ樹脂を含む封止材で封止される。
Si半導体が用いられたパワー半導体モジュールは、シリコーンゲルで封止していたため、シリコーンゲルを保持するためのケース及び放熱ベース(ベース)が必要であった。一方、エポキシ樹脂封止のパワー半導体モジュールでは、絶縁性であり、形状が担保できるため、ケースレス・ベースレス構造とすることができる。その際に、どちらのパワー半導体モジュールもサーマルコンパウンドを介して冷却器に設置され、パワー半導体装置として用いられる。
金属製の放熱ベース上に、半導体チップ設けた積層基板を備え、かつ放熱ベースの裏面にサーマルコンパウンドを介して冷却器を設けた半導体装置が知られている(例えば、特許文献1を参照)。放熱ベースとしては、通常、銅板等の金属板が用いられ、サーマルコンパウンドとしては、シリカなどのフィラーを含有した有機油が用いられている。サーマルコンパウンド層は、半導体チップで発生する熱を冷却器等に逃がすために、放熱ベース板またはパワー半導体モジュール裏面の導電性板と冷却器の間に形成される接合層で、熱伝導性と絶縁性が求められる。また、パワー半導体モジュールは熱応力による反りなどの形状変化を伴うことから、それに追従できるように、サーマルコンパウンド層ははんだ等の高剛性材料ではなく、有機油等の高粘性材料が求められる。
特開2017-59677号公報
金属製の放熱ベースを備えるパワー半導体モジュールを冷却器に設置する場合では、サーマルコンパウンドを介しながら、放熱ベースと冷却器とを金属製のナットなどで固定する。そのため、冷却器とパワー半導体モジュール裏面の導電性板(積層基板を構成する導電性板のうち、半導体素子と接していない導電性板)は同電位となっていた。しかしながら、放熱ベースを用いることなくエポキシ樹脂等の熱硬化性樹脂で封止したパワー半導体モジュールを、サーマルコンパウンドを介して冷却器上に設置する場合、パワー半導体モジュール裏面の導電性板と冷却器が同電位とならず、サーマルコンパウンドを挟んで電位差が生じてしまう。このような電位差が生じると、特に高耐圧(3.3kV以上)パワー半導体装置では、定格電圧のおよそ半分程度電圧で使用することもあるため、部分放電が発生しやすくなる。部分放電はノイズの発生源となるため、駆動回路に誤動作を起こす場合があり、半導体装置の信頼性を損ねる原因となりうる。
このような半導体モジュール裏面の導電性板と冷却器が電気的に絶縁されているモジュールにおいて、裏面導電性板と冷却器間の電位差を抑え、信頼性の高い半導体装置を提供することが求められる。
本発明者らは、鋭意検討の結果、モジュールと冷却器との接着層として機能するサーマルコンパウンドの比誘電率を高くすることを考えた。特には、サーマルコンパウンドの比誘電率を、積層基板中の絶縁基板の比誘電率より大きくすることにより、サーマルコンパウンドにかかる電圧負担を小さくすることを考えた。そして、サーマルコンパウンドに高誘電率粒子を含有させることで、サーマルコンパウンドの比誘電率を高くするができることを見出し、本発明を完成するに至った。
すなわち、本発明は、一実施形態によれば、半導体装置であって、半導体素子を実装した積層基板と、封止材とを備える半導体モジュールと、比誘電率が10以上の高誘電率粒子を含む充填材と、基油とを含むサーマルコンパウンドを介して、前記半導体モジュールに配設された冷却器とを含む。
前記半導体装置において、前記高誘電率粒子が粉末状ポリフッ化ビニリデンを含むことが好ましい。
前記半導体装置において、前記高誘電率粒子が、チタン酸バリウム、チタン酸ストロンチウム、酸化ハフニウム(IV)、五酸化タンタル、酸化銅(CuO)から選択される1以上の無機粒子を含むことが好ましい。
前記半導体装置において、前記充填材の含有量が、サーマルコンパウンドの総質量に対し、70質量%以上であって95質量%以下であり、前記充填材が高誘電率粒子からなることが好ましい。
前記半導体装置において、前記充填材の含有量が、サーマルコンパウンドの総質量に対し、70質量%以上であって95質量%以下であり、前記高誘電率粒子が、前記充填材の総質量に対し、50質量%以上であって100%未満の量で含まれることが好ましい。
前記充填材の総質量に対し、50質量%以上であって100%未満の量で高誘電率粒子を含む半導体装置において、前記高誘電率粒子が、チタン酸バリウム、酸化チタン(IV)、ジルコニア、五酸化タンタルから選択される1つ以上の無機粒子であることが好ましい。
前記半導体装置において、前記高誘電率粒子の平均粒子径が、1μm以上であって50μm以下であることが好ましい。
前記半導体装置において、前記サーマルコンパウンドが、50μm以上であって300μm以下の厚みで形成されることが好ましい。
前記半導体装置において、前記封止材が、エポキシ樹脂を含むことが好ましい。
前記半導体装置において、前記サーマルコンパウンドが、前記積層基板に接して設けられることが好ましい。
本発明に係る半導体装置によれば、サーマルコンパウンドからなる接着層を高誘電率とすることで、半導体モジュール裏面の導電性板と冷却器間の電位差を抑え、放電による駆動回路の誤作動をなくして、信頼性の高い半導体装置を提供することができる。
図1は、本発明に係る半導体装置の断面構造を示す概念図である。
以下に、図面を参照して、本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。
本発明は一実施形態によれば、半導体装置であって、半導体素子を実装した積層基板と、封止材とを備える半導体モジュールと、比誘電率が10以上の高誘電率粒子を含む充填材と、基油とを含むサーマルコンパウンドを介して、前記半導体モジュールに配設された冷却器とを含む。
図1は、本発明の一実施形態に係る半導体装置の一例を示す概念図である。図1において、半導体素子1は、はんだ等の接合層3を介して、積層基板2上に実装される。半導体素子1の上面には、はんだ等の接合層3を介して、インプラントピン6を備えたインプラント方式プリント基板7が取り付けられている。これらの部材は、封止材8で封止されている。このような、少なくとも半導体素子1が実装された積層基板2を含む被封止部材を封止材8で封止して得られる部材を、半導体モジュール10と指称する。図示する実施形態においては、半導体モジュール10の積層基板2の裏面、すなわち半導体素子1が実装されているのとは反対側の面には、放熱ベースが設けられていない。また、封止材8を保持し、収容するためのケースも設けられていない。半導体モジュール10と冷却器12は、接着層としてのサーマルコンパウンド11を介して配置され、ねじ13で取り付けられる。なお、本明細書において、上面、下面とは、説明の目的で、図中の上下を指す相対的な用語であって、半導体装置の使用態様等との関係で上下を限定するものではない。また、以下の本明細書において、半導体素子1、積層基板2を含み、通常の封止態様により封止樹脂により絶縁封止される部材を、被封止部材と指称する。図示する実施形態においては、被封止部材は、半導体素子1、積層基板2、接合層3、インプラントピン6、プリント基板7を含む。
半導体素子1は、IGBTあるいはダイオードチップ等のパワーチップであり、種々のSiデバイス、SiCデバイス、GaNデバイスなどを用いることができる。また、これらのデバイスを組み合わせて用いても良い。例えば、Si−IGBTとSiC−SBDを用いたハイブリッドモジュールなどを用いることができる。半導体素子1の搭載数は、図示する形態に限定されるものではなく、複数搭載することもできる。
積層基板2は、絶縁基板22とその一方の面に形成される第2導電性板21と、他方の面に形成される第1導電性板23とから構成される。絶縁基板22としては、電気絶縁性、熱伝導性に優れた材料を用いることができる。絶縁基板22の材料としては、例えば、Al23、AlN、SiNなどが挙げられる。特に高耐圧用途では、電気絶縁性と熱伝導率を両立した材料が好ましく、AlN、SiNを用いることができるが、これらには限定されない。第2導電性板21、第1導電性板23としては、加工性の優れているCu、Alなどの金属材料を用いることができる。本明細書において、Cuからなる第1導電性板23を、裏面銅箔と指称することもある。また、防錆などの目的で、Niメッキなどの処理を行ったCu、Alであっても良い。絶縁基板22上に導電性板21、23を配設する方法としては、直接接合法(Direct Copper Bonding法)もしくは、ろう材接合法(Active Metal Brazing法)が挙げられる。
接合層3は、鉛フリーはんだを用いて形成することができる。例えば、Sn−Ag−Cu系、Sn−Sb系、Sn−Sb−Ag系、Sn−Cu系、Sn−Sb−Ag−Cu系、Sn−Cu−Ni系、Sn−Ag系などを用いることができるが、これらには限定されない。
プリント基板7としては、ポリイミドフィルム基板やエポキシフィルム基板にCu、Alなどの導電層が形成されているものを用いることができる。インプラントピン6としては、銅を用いた銅ピンを用いることができる。プリント基板7の導電層も、インプラントピン6も、CuやAlに、防錆などの目的でNiメッキなどの処理を施したものであってもよい。このプリント基板7とインプラントピン6は、半導体素子1どうし、もしくは、半導体素子1と積層基板2の間を電気的に接続する。インプラントピン6と積層基板2もしくは半導体素子1とは、上述のはんだ接合層3により接合することができる。また、図示はしないが、積層基板2上からインプラントピン6を封止材8の外部にまで引き出すことにより、インプラントピン6を外部接続端子とすることができる。
本実施形態においては、半導体素子1、積層基板2、インプラントピン6、プリント基板7を含み、図示しないその他の端子等を含んでもよい被封止部材が、封止材8で絶縁封止されている。封止材8は、熱硬化性樹脂を含み、例えば、エポキシ樹脂、マレイミド樹脂、シアネート樹脂、あるいはそれらの混合物であることが好ましく、特には、エポキシ樹脂を含むことが好ましい。封止材8は、最も好ましい態様においては、エポキシ樹脂主剤と、硬化剤とを含み、任意選択的に無機充填材やその他の添加剤を含んでもよいエポキシ樹脂組成物により形成することができる。エポキシ樹脂主剤としては、脂肪族エポキシ、または脂環式エポキシを用いることができる。
脂肪族エポキシとは、エポキシ基が直接結合する炭素が、脂肪族炭化水素を構成する炭素であるエポキシ化合物をいうものとする。したがって、主骨格に芳香環が含まれている化合物であっても、上記条件をみたすものは、脂肪族エポキシに分類される。脂肪族エポキシ樹脂としては、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、ビスフェノールAD型エポキシ、ビフェニル型エポキシ、クレゾールノボラック型エポキシ、3官能以上の多官能型エポキシ等が挙げられるが、これらには限定されない。これらを単独で、または二種類以上混合して使用することができる。
脂環式エポキシ樹脂とは、エポキシ基を構成する2つの炭素原子が、脂環式化合物を構成するエポキシ化合物をいうものとする。脂環式エポキシ樹脂としては、単官能型エポキシ、2官能型エポキシ、3官能以上の多官能型エポキシ等が挙げられるが、これらには限定されない。脂環式エポキシ樹脂も、単独で、または異なる二種以上の脂環式エポキシ樹脂を混合して用いることができる。
硬化剤としては、エポキシ樹脂主剤と反応し、硬化しうるものであれば特に限定されないが、酸無水物系硬化剤を用いることが好ましい。酸無水物系硬化剤としては、例えば芳香族酸無水物、具体的には無水フタル酸、無水ピロメリット酸、無水トリメリット酸等が挙げられる。あるいは、環状脂肪族酸無水物、具体的にはテトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水メチルナジック酸等、もしくは脂肪族酸無水物、具体的には無水コハク酸、ポリアジピン酸無水物、ポリセバシン酸無水物、ポリアゼライン酸無水物等を挙げることができる。硬化剤の配合量は、エポキシ樹脂主剤100質量部に対し、50質量部以上であって170質量部以下程度とすることが好ましく、80質量部以上であって150質量部以下程度とすることがより好ましい。硬化剤の配合量が50質量部未満であると架橋不足からガラス転移温度が低下する場合があり、170質量部より多くなると耐湿性、高熱変形温度、耐熱安定性の低下を伴う場合がある。
エポキシ樹脂組成物には、さらに、任意選択的な成分として、硬化促進剤を添加することができる。硬化促進剤としては、イミダゾールもしくはその誘導体、三級アミン、ホウ酸エステル、ルイス酸、有機金属化合物、有機酸金属塩等を適宜配合することができる。硬化促進剤の添加量は、エポキシ樹脂主剤100質量部に対して、0.01質量部以上であって50質量部以下とすることが好ましく、0.1質量部以上であって20質量部以下とすることがより好ましい。
また、エポキシ樹脂組成物が任意選択的な成分として含んでもよい無機充填材としては、例えば、溶融シリカ、シリカ、アルミナ、水酸化アルミニウム、チタニア、ジルコニア、窒化アルミニウム、タルク、クレー、マイカ、ガラス繊維等が挙げられるが、これらには限定されない。これらの無機充填材により、硬化物の熱伝導率を高め、熱膨張率を低減することができる。これらの無機充填材は、単独で用いてもよいが、2種以上を混合して用いてもよい。また、これらの無機充填材は、マイクロフィラーであってもよく、ナノフィラーであってもよく、粒径及びまたは種類が異なる2種以上の無機充填材を混合して用いることもできる。特には、平均粒径が、0.2μm以上であって20μm以下程度の無機充填材を用いることが好ましい。無機充填材の添加量は、エポキシ樹脂主剤と硬化剤との総質量を100質量部としたとき、100質量部以上であって600質量部以下であることが好ましく、200質量部以上であって400質量部以下であることがさらに好ましい。無機充填材の配合量が100質量部未満であると封止材の熱膨張係数が高くなって剥離やクラックが生じ易くなる場合がある。配合量が600質量部よりも多いと組成物の粘度が増加して押出し成形性が悪くなる場合がある。
エポキシ樹脂組成物には、また、その特性を阻害しない範囲で、任意選択的な添加剤を含んでいてもよい。添加剤としては、例えば、難燃剤、樹脂を着色するための顔料、耐クラック性を向上するための可塑剤やシリコンエラストマーが挙げられるが、これらには限定されない。これらの任意成分、およびその添加量は、半導体装置及び/または封止材に要求される仕様に応じて、当業者が適宜決定することができる。
図示するようなケース、放熱ベースを含まない半導体モジュール10の製造は、被封止部材を適切な金型に載置し、封止材8を金型に充填して加熱硬化することにより実施することができる。このような封止体の成形法としては、真空注型、トランスファー成形、液状トランスファー成形が挙げられるが、所定の成形法には限定されない。このような成形法を用いることで、被封止部材のうち、第1導電性板23(裏面銅箔)の一方の面および必要な外部端子が露出し、他の部材は封止材8により絶縁封止された半導体モジュール10を製造することができる。
ねじ13は、半導体モジュール10と、冷却器12とを固定できるものであれば特に制限はなく、金属、樹脂、セラミック材料を用いることができる。ただし、図示していないが、通常、ねじを取り付けるために金属製の端子リングを封止材8に設けるため、冷却器12と封止材8とを同電位とするためには、金属製のねじを用いることが好ましい。
サーマルコンパウンド11は、比誘電率が10以上の高誘電率粒子を含む充填材と、基油とを含む組成物から構成され、半導体モジュール10と冷却器12との接着層として、並びに半導体モジュール10が生成する熱の放熱層として機能する。したがって、放熱性の観点からサーマルコンパウンド11は、熱伝導率が1W/(m・K)以上であって10W/(m・K)以下程度となることが好ましい。サーマルコンパウンド11は、封止材8から露出した第1導電性板23を含む半導体モジュール10の裏面に、例えば、厚さ50μm以上であって300μm以下程度に塗布することができる。サーマルコンパウンド層の厚さは、さらに好ましくは、50μm以上であって150μm以下であり、この範囲の厚さにすることで、静電容量の観点から好ましい。例えば、50μm以上であって90μm以下程度とすることもできるが、特定の厚さには限定されない。サーマルコンパウンドには、絶縁性も求められる。導電性であると、離散した場合にショートの原因になるからである。さらに、パワー半導体モジュールは熱応力による反りなどの形状変化を伴うことから、それに追従できるように、高剛性材料ではなく、有機油等の高粘性、低弾性が求められる。従って、本実施形態による半導体モジュール10においては、絶縁基板の裏面側導電性板である、積層基板の第1導電性板23は、周囲を絶縁材料に囲まれており、電気的に絶縁されている。
次に、サーマルコンパウンド11を構成する組成物について説明する。基油としては、絶縁性のノンシリコーン系の有機油あるいはシリコーン系の有機油を用いることができる。ノンシリコーン系の有機油としては、例えば、鉱油、合成炭化水素油などの炭化水素油、エステル油、エーテル油、フッ素油等を主成分として含む組成物が挙げられるが、これらには限定されない。シリコーン系の有機油としては、オルガノポリシロキサンを主成分とする組成物が挙げられ、特には、1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有するオルガノポリシロキサンを主成分とする組成物が好ましいが、これらには限定されない。本実施形態における基油は、絶縁性及び、150℃程度の耐熱性を持つ一般的な半導体装置用サーマルコンパウンドの基油として用いられるものであればよく、特定の組成を備えるものには限定されない。
本実施形態においては、サーマルコンパウンド11を構成する組成物に含まれる充填材が、高誘電率粒子を含むことを特徴とする。本発明において、高誘電率粒子とは、比誘電率εが、10以上、好ましくは15以上の粒子状化合物をいうものとする。高誘電率粒子として用いることができる有機粒子としては、例えば、粉末状ポリフッ化ビニリデン(PVDF粒子、比誘電率ε=13)などが挙げられるが、これらには限定されない。PVDF粒子は、比誘電率が高く、耐熱性も高いため、サーマルコンパウンド11使用温度範囲で溶解したり、基油と反応したりすることはなく、実質的に添加前の粒子形態のまま基油中に分散させる充填材として好適である。
高誘電率粒子として用いることができる無機粒子としては、チタン酸バリウム(BaTiO、比誘電率ε=1450)、チタン酸ストロンチウム(SrTiO、比誘電率ε=330)、チタン酸鉛(PbTiO、比誘電率ε=250)などが挙げられる。これらは、組成式がABOで表記されるペロブスカイト型結晶構造を有しており、A元素としては、Ba、Pb,Laなど、B元素としてはTi,Zrなどが該当するが、これらには限定されない。また、チタン酸ジルコン酸鉛(PZT、比誘電率ε=1300〜2100)、ニオブ酸鉛(PbNb2O6、ε=370)、酸化ハフニウム(IV)(HfO、比誘電率ε=15)、五酸化タンタル(Ta、比誘電率ε=22)、酸化チタン(IV)(TiO、アナターゼ型TiOの比誘電率ε=48)、酸化ジルコニウム(ZrO、比誘電率ε=33)、イットリア(Y、比誘電率ε=11)、酸化クロム(Cr、比誘電率ε=13.3)、酸化銅(CuO、比誘電率ε=18.1)、酸化ニッケル(NiO、比誘電率ε=11.9)、ニオブ酸リチウム(LiNbO、比誘電率ε=29)、シリコン(Si、比誘電率ε=12)、ダイヤモンド(比誘電率ε=26)などがある。これらから選択される1以上の無機粒子を本実施形態による充填材に含めることができるが、これらには限定されない。
高誘電率粒子の形状は特には限定されず、球状、針状、箔状、繊維状などであってよいが、特には球状粒子であることが好ましい。また、高誘電率粒子の平均粒径は、例えば、約1μm以上であって50μm以下程度であり、約1μm以上であって10μm以下程度であることが好ましく、約5μm以上であって10μm以下程度であることがより好ましい。高誘電率粒子の粒径は、サーマルコンパウンド11の層厚みとの関係でも決定され、サーマルコンパウンド11の厚みよりも小さい粒径であることが好ましい。
本実施形態においては、充填材が高誘電率粒子のみからなる態様であってもよく、高誘電率粒子と従来から用いられている比誘電率の比較的小さい無機粒子との混合物であってもよい。いずれの場合であっても、基油と充填材を混合して得られるサーマルコンパウンド11用の組成物の比誘電率の値εが、10以上、特には15以上であることが好ましい。組成物の比誘電率は、組成物の静電容量を測定することで求めることができる。サーマルコンパウンド11用の組成物の比誘電率の値εが上記範囲になるように、高誘電率粒子の種類及び含有量を選定することができる。
基油に含まれる高誘電率粒子の含有量は、サーマルコンパウンド用の組成物が所望の比誘電率及び放熱性(熱伝導性)を付与できる程度に含まれていればよく、特には限定されない。例えば、充填材が高誘電率粒子のみからなる場合は、サーマルコンパウンドの総質量に対して、70質量%以上であって95質量%以下程度で含まれることが好ましい。上記の高誘電率粒子の充填率であれば、サーマルコンパウンドの比誘電率を十分に高めることができる。さらに、放熱性も満足することができる。また、充填材が多くなりすぎると粘性が増加し、作業性が悪くなるが、上記の範囲であれば問題ない。絶縁基板22として用いられうるSiN、AlNの比誘電率の値εが8程度であるため、絶縁基板22と、サーマルコンパウンド11の比誘電率との間に差があると、サーマルコンパウンド11に大きな電位差が発生し、部分放電が発生する場合があった。本発明においては高誘電率粒子を充填材としてサーマルコンパウンド11に含めることで、サーマルコンパウンド11の比誘電率を絶縁基板のセラミック材に近づけることができ、電位差を小さく抑えることができる。また、これらの高誘電率粒子は熱伝導率も高いことから、放熱性能も満足することができる。
基油に含まれる充填材が、高誘電率粒子と、従来から一般的に使用されているシリカ、アルミナなどの比誘電率が比較的小さい、例えば、比誘電率の値εが10未満の無機粒子との混合物である場合、高誘電率粒子としては、特に比誘電率が100以上と高い、チタン酸バリウム、酸化チタン(IV)、ジルコニア、五酸化タンタルなどの高誘電率材料を用いることが好ましい。またこの場合も、所定の比誘電率及び放熱性を付与できる程度であれば、充填材の含有量は限定されないが、サーマルコンパウンドの総質量に対して、70質量%以上であって95質量%以下程度であることが好ましい。そして、充填材の総質量に対し、50質量%以上であって100%未満の量の高誘電率粒子を含むことが好ましい。これらの高誘電率粒子を所定量で用いることで、比誘電率εが比較的小さい充填材を併用した場合であっても、サーマルコンパウンド全体としては高い比誘電率を確保することができる。
サーマルコンパウンド11を構成する組成物には、基油と充填材の他に、その特性を阻害しない範囲で、任意選択的な添加剤を含んでいてもよい。添加剤としては、例えば、酸化防止剤や改質剤が挙げられるが、これらには限定されない。サーマルコンパウンド11は絶縁性であることが好ましく、金属粒子などの導電性材料を含まないことが好ましい。サーマルコンパウンド11が飛散した場合に、半導体装置の配線などをショートさせるおそれがあるためである。サーマルコンパウンド11として用いる組成物は、高誘電率粒子を含む充填材を、基油に混合し、好ましくは均一に分散することで得ることができる。
冷却器12としては、熱伝導性能が優れ、導電性を有している部材が用いられる。例えば、Cu、Alなどの金属部材が用いられ、より軽量性も求められる場合は、Alが好ましい。また、Al部材の冷却器12には必要に応じNi,Cr等のめっき処理などをして、少なくともサーマルコンパウンドと接する個所においては導電性を有する構成とすることができる。冷却器12の形状や仕様は、半導体モジュールの使用目的等に適合するように任意に選択することができ、特定のものには限定されない。つまり、冷却器は、板状でもよく、またフィンなどの空冷機構や水冷機構を有してもよい。
本実施形態に係る半導体装置によれば、高誘電率粒子を含み、比誘電率の高いサーマルコンパウンド11からなる接着層を設けることにより、冷却器12と、半導体モジュール10の導電性板23との間の電位差を小さくし、部分放電の発生を抑制して、半導体装置の駆動回路の誤動作をなくし、信頼性の高い高耐圧の半導体装置を提供することができる。つまり、電気的に絶縁された導電性板と冷却器等の導電性材料が比誘電率の高いサーマルコンパウンドによって接合されることにより部分放電を抑制することができる。
なお、本発明は、図示する形態の半導体モジュールに限定されず、半導体モジュールの導電性板と冷却器が絶縁された構成をもつ任意の半導体装置を含む。例えば、図1の銅ピンに代えて、ワイヤボンディングや、リードフレームなどの導電性接続部材を用いた態様の半導体モジュールや、プリント基板を封止材の内部に設けない態様の半導体モジュールに対しても、同様に、封止材から露出した第1導電性板の表面にサーマルコンパウンドを塗布し、冷却器を配設して本発明に係る半導体装置とすることができる。
以下に、本発明の実施例を挙げて、本発明をより詳細に説明する。しかし、本発明は、以下の実施例の範囲に限定されるものではない。
<実施例1>
部分放電評価用に、3.3kV用のパワー半導体装置を作製した。積層基板としては、Cu導電性板厚さ0.3mm、絶縁基板厚さ0.625mmのデンカSINプレート(電気化学工業製、額縁長1.0mm)を用いた。積層基板上に、はんだ及びSiパワー半導体素子、はんだ及び銅ピン、プリント基板を、Nリフロー炉ではんだ接合することにより配設して、被封止部材を得た。次に被封止部材を金型にセットした。封止材としては、脂肪族エポキシ樹脂主剤:jER630(三菱化学製)、硬化剤:jERキュア113(三菱化学製)、無機充填剤(シリカ):エクセリカ 平均粒径数μm〜数十μm(トクヤマ)を、質量比10:5:3で混合したものを用いた。この封止材を真空脱泡し、金型に注入した。これを、100℃、1時間で一次硬化後、150℃、3時間で二次硬化して、パワー半導体モジュールを得た。
次に、ノンシリコーン系の基油(主成分:合成炭化水素油)に、高誘電率粒子として粉末状ポリフッ化ビニリデン(PVDF粒子、比誘電率ε=13、平均粒子径10μm)を混合し、均一に分散して、サーマルコンパウンドを得た。粉末状ポリフッ化ビニリデンの含有量は、サーマルコンパウンドの総質量を100%とした場合に、90質量%とした。パワー半導体モジュールの積層基板の露出した導電性板及びこれと同平面をなす封止材の表面に、厚さ約100μmのサーマルコンパウンド層を形成した。次いで、サーマルコンパウンド層を介して、パワー半導体モジュールに、アルミニウム製冷却器を、ねじで配設し、実施例1のパワー半導体装置を得た。
<実施例2>
高誘電率粒子として酸化銅(CuO)粒子(比誘電率ε=18、平均粒子径1μm)を用いたこと以外は実施例1と同様にして、実施例2のパワー半導体装置を得た。
<実施例3>
高誘電率粒子としてチタン酸バリウム(TiBaO)粒子(比誘電率ε=1450、平均粒子径5μm)を用いたこと以外は実施例3と同様にして、実施例2のパワー半導体装置を得た。
<比較例1>
サーマルコンパウンドの調製において、高誘電率粒子としてアルミナフィラー(Al粒子、比誘電率ε=8.3、平均粒子径10μm)を混合したこと以外は実施例1と同様にして、比較例のパワー半導体装置を得た。
[評価]
実施例1〜3、比較例1のパワー半導体装置について、部分放電評価を実施した。部分放電評価は、AC3.3kVまで徐々に印加し、1分後の放電電荷量が10pC以下の場合に、部分放電が見られなかったものとした。評価結果を表1に示す。部分放電が見られなかった場合、評価は「良好」とし、部分放電が見られた場合は、その場合の電圧を表示した。
Figure 2019041013
粉末状ポリフッ化ビニリデン、粉末状ポリフッ化ビニル、チタン酸バリウムといった高誘電率粒子を用いた実施例1〜3では、AC3.3kVの電圧印加では、部分放電が発生しなかった。理論に拘束される意図はないが、実施例の結果は、絶縁基板のセラミックとの比誘電率とサーマルコンパウンドとの比誘電率が近くなったため、サーマルコンパウンドにかかる電圧分担が低減し、放電が発生しなかったと考えられる。比較例1では、絶縁基板のセラミックと、サーマルコンパウンドとの比誘電率差が大きいために、1.2kVから10pC以上の放電が発生したと考えられる。
本発明の実施例により、高誘電率粒子を混合したサーマルコンパウンドを用いることで、半導体装置の部分放電を抑えることができることがわかった。本発明は、信頼性の高いパワー半導体装置を提供することができる。
1 半導体素子、2 積層基板、21 第2導電性板、22 絶縁基板、23 第1導電性板、3 接合層、6 インプラントピン、7 プリント基板、8 封止材、10 半導体モジュール、11 サーマルコンパウンド、12 冷却器、13 ねじ

Claims (10)

  1. 半導体素子を実装した積層基板と、封止材とを備える半導体モジュールと、
    比誘電率が10以上の高誘電率粒子を含む充填材と、基油とを含むサーマルコンパウンドを介して、前記半導体モジュールに配設された冷却器と
    を含む半導体装置。
  2. 前記高誘電率粒子が、粉末状ポリフッ化ビニリデンを含む、請求項1に記載の半導体装置。
  3. 前記高誘電率粒子が、チタン酸バリウム、チタン酸ストロンチウム、酸化ハフニウム(IV)、五酸化タンタル、酸化銅(CuO)から選択される1以上の無機粒子を含む、請求項1または2に記載の半導体装置。
  4. 前記充填材の含有量が、サーマルコンパウンドの総質量に対し、70質量%以上であって95質量%以下であり、前記充填材が高誘電率粒子からなる、請求項1〜3のいずれか1項に記載の半導体装置。
  5. 前記充填材の含有量が、サーマルコンパウンドの総質量に対し、70質量%以上であって95質量%以下であり、前記高誘電率粒子が、前記充填材の総質量に対し、50質量%以上であって100%未満の量で含まれる、請求項1〜3のいずれか1項に記載の半導体装置。
  6. 前記高誘電率粒子が、チタン酸バリウム、酸化チタン(IV)、ジルコニア、五酸化タンタルから選択される1つ以上の無機粒子である、請求項5に記載の半導体装置。
  7. 前記高誘電率粒子の平均粒子径が、1μm以上であって50μm以下である、請求項1〜6のいずれか1項に記載の半導体装置。
  8. 前記サーマルコンパウンドが、50μm以上であって300μm以下の厚みで形成される、請求項1〜7のいずれか1項に記載の半導体装置。
  9. 前記封止材が、エポキシ樹脂を含む、請求項1〜8のいずれか1項に記載の半導体装置。
  10. 前記サーマルコンパウンドが、前記積層基板に接して設けられる、請求項1〜9のいずれか1項に記載の半導体装置。
JP2017162423A 2017-08-25 2017-08-25 半導体装置 Active JP7013728B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017162423A JP7013728B2 (ja) 2017-08-25 2017-08-25 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162423A JP7013728B2 (ja) 2017-08-25 2017-08-25 半導体装置

Publications (2)

Publication Number Publication Date
JP2019041013A true JP2019041013A (ja) 2019-03-14
JP7013728B2 JP7013728B2 (ja) 2022-02-01

Family

ID=65726730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162423A Active JP7013728B2 (ja) 2017-08-25 2017-08-25 半導体装置

Country Status (1)

Country Link
JP (1) JP7013728B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103955A (ja) * 2011-11-10 2013-05-30 Bridgestone Corp 伝熱シートの製造方法
JP2016054249A (ja) * 2014-09-04 2016-04-14 三菱電機株式会社 半導体装置
JP2016058563A (ja) * 2014-09-10 2016-04-21 三菱電機株式会社 半導体装置およびその製造方法
JP2016192497A (ja) * 2015-03-31 2016-11-10 日立化成株式会社 半導体装置及びそれを備えるパワーモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103955A (ja) * 2011-11-10 2013-05-30 Bridgestone Corp 伝熱シートの製造方法
JP2016054249A (ja) * 2014-09-04 2016-04-14 三菱電機株式会社 半導体装置
JP2016058563A (ja) * 2014-09-10 2016-04-21 三菱電機株式会社 半導体装置およびその製造方法
JP2016192497A (ja) * 2015-03-31 2016-11-10 日立化成株式会社 半導体装置及びそれを備えるパワーモジュール

Also Published As

Publication number Publication date
JP7013728B2 (ja) 2022-02-01

Similar Documents

Publication Publication Date Title
JP6047102B2 (ja) 大容量モジュール用基板、及び当該基板の製造方法
Murayama et al. High-temperature electro-ceramics and their application to SiC power modules
US10597526B2 (en) Resin composition
WO2018056287A1 (ja) 半導体装置および電力変換装置
JP6657616B2 (ja) 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
WO2012157373A1 (ja) 大容量モジュールの周辺回路用の回路基板、及び当該回路基板を用いる周辺回路を含む大容量モジュール
JP6829809B2 (ja) 半導体装置
US10256169B2 (en) Semiconductor device
US5547758A (en) Insulating material
WO2012081434A1 (ja) 半導体装置
JP2008270678A (ja) 絶縁シートおよび半導体装置
JP2016094599A (ja) 熱伝導性シート用樹脂組成物、基材付き樹脂層、熱伝導性シートおよび半導体装置
JP7301492B2 (ja) 樹脂組成物の製造方法
JP7013728B2 (ja) 半導体装置
JP6572643B2 (ja) 熱伝導性シート、熱伝導性シートの硬化物および半導体装置
JPWO2014109208A1 (ja) 半導体装置
JP2017183695A (ja) 半導体装置
WO2015104808A1 (ja) パワー半導体装置および電力変換装置
JP2020035965A (ja) パワーモジュール
JP2013229534A (ja) 半導体装置
JP2013229535A (ja) 半導体装置
JP2019133851A (ja) 絶縁材組成物
JP7119528B2 (ja) 半導体装置
JP2017028130A (ja) パワーモジュール用基板、パワーモジュール用回路基板およびパワーモジュール
JP2021114537A (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220103