JP2019037912A - Denitrification treatment method and denitrification treatment apparatus for ammonia nitrogen containing wastewater - Google Patents

Denitrification treatment method and denitrification treatment apparatus for ammonia nitrogen containing wastewater Download PDF

Info

Publication number
JP2019037912A
JP2019037912A JP2017159535A JP2017159535A JP2019037912A JP 2019037912 A JP2019037912 A JP 2019037912A JP 2017159535 A JP2017159535 A JP 2017159535A JP 2017159535 A JP2017159535 A JP 2017159535A JP 2019037912 A JP2019037912 A JP 2019037912A
Authority
JP
Japan
Prior art keywords
raw water
aeration
reaction
introduction
ammonia nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017159535A
Other languages
Japanese (ja)
Other versions
JP6919413B2 (en
Inventor
将士 武川
Masashi Takegawa
将士 武川
孝明 徳富
Takaaki Tokutomi
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017159535A priority Critical patent/JP6919413B2/en
Publication of JP2019037912A publication Critical patent/JP2019037912A/en
Application granted granted Critical
Publication of JP6919413B2 publication Critical patent/JP6919413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

To perform stable ANAMMOX denitrification treatment by reducing pH rise when introducing raw water to maintain a pH range where activity of an ANAMMOX reaction is not decreased without using a pH adjuster or after reducing an amount of its use, when treating ammonia waste water containing high pH or high IC concentration by subjecting it to SBR single tank type ANAMMOX treatment.SOLUTION: There is provided a denitrification treatment method for ammonia nitrogen containing wastewater, which is a batch denitrification treatment using a reaction tank containing mixed sludge of ammonia oxidizing bacteria and ANAMMOX bacteria using ammonia nitrogen containing wastewater as raw water. In this method, a raw water introduction step of introducing the raw water into the reaction tank and an aeration step are performed simultaneously.SELECTED DRAWING: Figure 1

Description

本発明は、回分式(SBR)の一槽型ANAMMOXプロセスで、アンモニア性窒素含有排水、特にアンモニア性窒素を含む高pH又は高無機炭酸濃度の排水、例えばメタン発酵消化液の脱水濾液や化学工場排水等を処理する際に、pH調整剤の使用量を削減するアンモニア性窒素含有排水の脱窒処理方法及び脱窒処理装置に関する。
ここで、一槽型ANAMMOXプロセスとは、アンモニア酸化細菌とANAMMOX細菌の混合汚泥によってアンモニア性窒素の亜硝酸化とANAMMOX反応による脱窒を同一槽内で行って、窒素を除去する排水処理プロセスを指す。
The present invention is a batch-type (SBR) one-tank type ANAMOX process, which contains ammoniacal nitrogen-containing wastewater, particularly wastewater with high pH or high inorganic carbonate concentration containing ammoniacal nitrogen, such as dehydrated filtrate of methane fermentation digestive juice and chemical factory. The present invention relates to a denitrification treatment method and denitrification treatment apparatus for ammonia nitrogen-containing wastewater that reduces the amount of pH adjuster used when treating wastewater and the like.
Here, the one tank type ANAMMOX process is a waste water treatment process in which ammonia nitrogen nitritation and denitrification by the ANAMOX reaction are carried out in the same tank by using mixed sludge of ammonia oxidizing bacteria and ANAMMOX bacteria to remove nitrogen. Point to.

アンモニア性窒素含有排水の脱窒処理プロセスとして、アンモニア性窒素を電子供与体とし、亜硝酸性窒素を電子受容体とする独立栄養性微生物であるANAMMOX細菌を利用し、アンモニア性窒素と亜硝酸性窒素とを反応させて脱窒するANAMMOXプロセスが知られている。   As a denitrification process for ammonia nitrogen-containing wastewater, ANAMMOX bacteria, which are autotrophic microorganisms using ammonia nitrogen as an electron donor and nitrite nitrogen as an electron acceptor, are used. An ANAMOX process in which nitrogen is reacted to denitrify is known.

ANAMMOX反応を利用した排水処理プロセスは、従来、亜硝酸型硝化槽とANAMMOX脱窒槽とを設け、亜硝酸化→ANAMMOX反応の順に処理を行う二槽型で行われていたが、近年、アンモニア酸化細菌とANAMMOX細菌とを共生させた汚泥により、亜硝酸化とANAMMOX反応を一つの槽内で行う、一槽型ANAMMOXプロセスが開発された(特許文献1)。   The wastewater treatment process using the ANAMMOX reaction has been conventionally performed in a two-tank type in which a nitrite-type nitrification tank and an ANAMMOX denitrification tank are provided and the treatment is performed in the order of nitritation → ANAMMOX reaction. A one-tank type ANAMMOX process has been developed in which nitritation and ANAMMOX reaction are carried out in one tank using sludge in which bacteria and ANAMMOX bacteria coexist (Patent Document 1).

一槽型ANAMMOXプロセスは、回分式(SBR)(特許文献2)と連続式(特許文献3)のいずれの反応槽でも処理を行うことができるが、固液分離装置が不要で装置構造が簡単であるSBR式反応槽が利用されることが多い。   The single tank type ANAMMOX process can be processed in either batch (SBR) (Patent Document 2) or continuous (Patent Document 3) reaction tanks, but a solid-liquid separation device is not required and the device structure is simple. Often, an SBR reactor is used.

SBR式反応槽とは下記のような運転を行う反応槽である。
1.原水を反応槽に投入する。
2.反応槽内を曝気することで、一槽型ANAMMOX反応を進行させてアンモニア性窒素を窒素ガスにして水中から除去する。
3.曝気を止めて静置し、アンモニア酸化細菌とANAMMOX細菌を含む汚泥を沈殿させる。
4.上澄水を処理水として排出する。
5.新しい原水を再び反応槽に投入し、2〜4を繰り返し運転する。
The SBR type reaction tank is a reaction tank that performs the following operation.
1. Raw water is put into the reaction tank.
2. By aeration in the reaction tank, the one-tank type ANAMOX reaction is advanced to remove ammonia nitrogen from the water as nitrogen gas.
3. Stop aeration and let it stand to settle sludge containing ammonia-oxidizing bacteria and ANAMMOX bacteria.
4). The supernatant water is discharged as treated water.
5. New raw water is charged again into the reaction vessel, and operations 2 to 4 are repeated.

ANAMMOX細菌の活性は、pH8.3を超える高pH領域では、pH6.7〜8.3の場合の活性と比較して低下することが知られており(非特許文献1)、反応槽内液のpHはANAMMOX細菌の活性が低下しないように例えばpH7〜8程度に調整する必要がある。
しかし、原水のpHが高い場合には、反応槽への原水投入時に槽内液のpHが上昇する。
It is known that the activity of ANAMOX bacteria decreases in the high pH region exceeding pH 8.3 compared with the activity at pH 6.7 to 8.3 (Non-patent Document 1). It is necessary to adjust the pH to about 7-8 so that the activity of the ANAMOX bacteria does not decrease.
However, when the pH of the raw water is high, the pH of the liquid in the tank rises when the raw water is charged into the reaction tank.

そこで、特許文献2では、図3に示すSBR式反応槽において、以下の手順で原水に酸を添加してpH調整を行っている。
(1)原水導入路L1からポンプP1により原水を反応槽1に導入する。
(2)酸素含有ガスとして空気を空気導入路L4から反応槽1に導入して亜硝酸化とANAMMOX反応を同時に進行させる。
(3)このとき、pH測定装置pHにより反応液のpHが7〜8になるようにポンプP2を制御して、薬剤導入路L2からpH調整剤として炭酸ナトリウムを注入する。
(4)反応終了後、曝気を止めて静置し、アンモニア酸化細菌とANAMMOX細菌を含む汚泥を沈殿させる。
(5)ポンプP3により処理水取出路3から上澄水を処理水として排出する。
(6)新しい原水を再び反応槽1に投入し、上記(2)〜(5)を繰り返し運転する。
なお、図3中、3はANAMMOX細菌およびアンモニア酸化細菌を含む生物汚泥2が分散した反応液3であり、4は散気装置、5は取出部、6は制御装置である。反応槽1内の溶存酸素濃度は溶存酸素濃度測定装置DOにより測定され、この溶存酸素濃度測定装置DOの測定値とpH測定装置pHの測定値は制御装置6に入力される。
Therefore, in Patent Document 2, in the SBR reactor shown in FIG. 3, the pH is adjusted by adding acid to the raw water according to the following procedure.
(1) Raw water is introduced into the reaction tank 1 from the raw water introduction path L1 by the pump P1.
(2) Air as an oxygen-containing gas is introduced into the reaction tank 1 from the air introduction path L4, and the nitritation and the ANAMOX reaction proceed simultaneously.
(3) At this time, the pump P2 is controlled by the pH measuring device pH so that the pH of the reaction solution becomes 7 to 8, and sodium carbonate is injected as a pH adjuster from the drug introduction path L2.
(4) After completion of the reaction, aeration is stopped and the mixture is allowed to stand to precipitate sludge containing ammonia-oxidizing bacteria and ANAMMOX bacteria.
(5) The supernatant water is discharged as treated water from the treated water extraction passage 3 by the pump P3.
(6) Fresh raw water is again charged into the reaction tank 1, and the above operations (2) to (5) are repeated.
In FIG. 3, 3 is a reaction liquid 3 in which biological sludge 2 containing ANAMOX bacteria and ammonia oxidizing bacteria is dispersed, 4 is an air diffuser, 5 is a take-out part, and 6 is a control device. The dissolved oxygen concentration in the reaction tank 1 is measured by the dissolved oxygen concentration measuring device DO, and the measured value of the dissolved oxygen concentration measuring device DO and the measured value of the pH measuring device pH are input to the control device 6.

特表2001−506535号公報Special table 2001-506535 gazette 特許第5347221号公報Japanese Patent No. 5347221 特開2010−221193号公報JP 2010-221193 A

Wastewater Engineering 5th EditionWastewater Engineering 5th Edition

原水による槽内液のpH上昇を防止するために、特許文献2のように、pH調整剤(例えば炭酸ナトリウム)を添加してpH調整すると、pH調整剤の添加が必要な上に、ANAMMOX反応や硝化反応に必要な無機炭素(IC)が解離平衡でCOガスとして揮散してしまうため、これを補うためにANAMMOX反応槽へのICの添加量が増えてしまう。
また、原水のpHが8.3以下であっても、無機炭素(IC)を高濃度で含む原水では、曝気による炭酸ストリッピングによりpHが上昇する場合があり、この場合にも上記と同じ問題に直面する。
In order to prevent the pH of the liquid in the tank from being increased by the raw water, when a pH adjuster (for example, sodium carbonate) is added to adjust the pH as in Patent Document 2, it is necessary to add the pH adjuster and the ANAMOX reaction. Further, inorganic carbon (IC) necessary for the nitrification reaction is volatilized as CO 2 gas at dissociation equilibrium, so that the amount of IC added to the ANAMOX reaction tank increases to compensate for this.
Even if the pH of the raw water is 8.3 or less, the raw water containing a high concentration of inorganic carbon (IC) may increase in pH due to carbonic acid stripping due to aeration. To face.

このように原水pHが高い場合や原水にICが多く含まれる場合には、反応槽内液のpHが上昇してしまうことがあるが、単純にpH調整剤を添加してpH調整することは望ましくない。   As described above, when the raw water pH is high or when the raw water contains a large amount of IC, the pH of the solution in the reaction tank may increase, but it is not possible to simply adjust the pH by adding a pH adjuster. Not desirable.

本発明は、SBR式の一槽型ANAMMOXプロセスで高pH又は高IC濃度のアンモニア性窒素含有排水を処理する場合において、原水導入時に反応槽のpHが上昇して、ANAMMOX細菌の活性低下が起こり、窒素除去率が低下することを、pH調整剤を使用することなく、或いはその使用量を低減した上で防止する技術を提供することを目的とする。   In the present invention, when wastewater containing ammonia nitrogen containing high pH or high IC concentration is treated in the SBR single tank type ANAMMOX process, the pH of the reaction tank rises when raw water is introduced, and the activity of the ANAMOX bacteria decreases. An object of the present invention is to provide a technique for preventing a decrease in nitrogen removal rate without using a pH adjuster or after reducing the amount of use.

本発明者らは、上記課題を解決すべく検討を重ねた結果、ANAMMOX反応槽への原水導入時に曝気を行うことで、原水導入時にも亜硝酸化とANAMMOX反応を進行させてアンモニア性窒素を除去し、アンモニア性窒素の除去でpHを低下させることにより、高pHの原水が流入することによるpH上昇を抑えることができることを見出した。
即ち、本発明は以下を要旨とする。
As a result of repeated investigations to solve the above problems, the present inventors conducted aeration at the time of introducing raw water into the ANAMMOX reaction tank, so that the nitritation and the ANAMMOX reaction proceeded even at the time of introducing raw water, thereby generating ammonia nitrogen. It was found that the pH increase due to the inflow of high pH raw water can be suppressed by removing and reducing the pH by removing ammoniacal nitrogen.
That is, the gist of the present invention is as follows.

[1] アンモニア性窒素含有排水を原水として、アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した反応槽を用いて回分式で脱窒処理する方法であって、該反応槽への原水導入工程において曝気工程を同時に行うことを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [1] A method of batch-type denitrification using ammonia nitrogen-containing wastewater as raw water and a reaction tank containing mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria, in the raw water introduction step to the reaction tank A method for denitrification of wastewater containing ammoniacal nitrogen, wherein the aeration step is performed simultaneously.

[2] [1]において、前記原水導入工程の時間(以下「原水導入時間」という。)と曝気工程の時間(以下「曝気時間」という。)との比(原水導入時間/曝気時間の百分率)を40〜100%とすることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [2] In [1], the ratio of the raw water introduction process time (hereinafter referred to as “raw water introduction time”) and the aeration process time (hereinafter referred to as “aeration time”) (raw water introduction time / percentage of aeration time) 40) to 100%, a denitrification method for ammonia nitrogen-containing wastewater.

[3] [1]において、前記反応槽内のpHを測定し、該pH測定値が8.3を超える場合には前記原水の導入を停止することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [3] In [1], the pH in the reaction vessel is measured, and when the measured pH value exceeds 8.3, the introduction of the raw water is stopped. Nitrogen treatment method.

[4] [1]ないし[3]のいずれかにおいて、前記原水のpHが8.3を超え10以下であることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [4] The denitrification method for ammonia nitrogen-containing wastewater according to any one of [1] to [3], wherein the pH of the raw water is more than 8.3 and 10 or less.

[5] [1]ないし[4]のいずれかにおいて、前記原水の無機炭酸濃度が150〜3,000mg/Lであることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [5] In any one of [1] to [4], the inorganic nitrogen concentration of the raw water is 150 to 3,000 mg / L.

[6] [1]ないし[5]のいずれかにおいて、前記原水が嫌気性消化液の脱水濾液であることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。 [6] The denitrification method for ammonia nitrogen-containing wastewater according to any one of [1] to [5], wherein the raw water is a dehydrated filtrate of anaerobic digestive juice.

[7] [1]、[2]、[5]又は[6]に記載のアンモニア性窒素含有排水の脱窒処理方法を行うための脱窒処理装置であって、アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した反応槽と、該反応槽へアンモニア性窒素含有排水を原水として導入する原水導入手段と、該反応槽から脱窒処理水を排出する処理水排出手段と、該反応槽内の反応液を曝気する曝気手段と、該原水導入手段の作動と、該曝気手段の作動を制御する制御手段とを有する回分式の一槽型ANAMMOX反応装置であり、該制御手段は、該原水導入手段による原水導入時に、該曝気手段により、該反応槽内を曝気する制御を行う手段であることを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [7] A denitrification apparatus for carrying out the denitrification method for ammonia nitrogen-containing wastewater according to [1], [2], [5] or [6], comprising ammonia oxidizing bacteria and ANAMMOX bacteria A reaction tank containing mixed sludge, a raw water introduction means for introducing ammonia nitrogen-containing wastewater as raw water into the reaction tank, a treated water discharge means for discharging denitrified treated water from the reaction tank, A batch-type single tank type ANAMMOX reactor having aeration means for aeration of a reaction liquid, operation of the raw water introduction means, and control means for controlling the operation of the aeration means, the control means comprising the raw water introduction An apparatus for denitrifying ammonia nitrogen-containing wastewater, wherein the aeration means controls the aeration of the inside of the reaction tank when the raw water is introduced by the means.

[8] [3]又は[4]に記載のアンモニア性窒素含有排水の脱窒処理方法を行うための脱窒処理装置であって、アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した反応槽と、該反応槽へアンモニア性窒素含有排水を原水として導入する原水導入手段と、該反応槽から脱窒処理水を排出する処理水排出手段と、該反応槽内の反応液を曝気する曝気手段と、該反応槽内液のpHを測定するpH測定手段と、該原水導入手段の作動と、該曝気手段の作動を制御する制御手段とを有する回分式の一槽型ANAMMOX反応装置であり、該制御手段は、該原水導入手段による原水導入時に、該曝気手段により、該反応槽内を曝気する制御と、該pH測定手段の測定値が8.3を超える場合には、該原水導入手段による原水の導入を停止する制御とを行うことを特徴とするアンモニア性窒素含有排水の脱窒処理装置。 [8] A denitrification apparatus for carrying out the denitrification method for ammonia nitrogen-containing wastewater according to [3] or [4], comprising a reaction tank containing mixed sludge of ammonia-oxidizing bacteria and ANAMOX bacteria Raw water introduction means for introducing ammonia nitrogen-containing wastewater into the reaction tank as raw water, treated water discharge means for discharging denitrification treated water from the reaction tank, and aeration means for aeration of the reaction liquid in the reaction tank; A batch-type single tank type ANAMOX reactor having pH measuring means for measuring the pH of the liquid in the reaction tank, operation of the raw water introduction means, and control means for controlling the operation of the aeration means, When the raw water is introduced by the raw water introduction means, the control means controls the aeration means to aerate the inside of the reaction tank. If the measured value of the pH measurement means exceeds 8.3, the control means uses the raw water introduction means. Stop introducing raw water That control the denitrification device ammonium nitrogen-containing waste water and performing.

本発明によれば、高pH又は高IC濃度のアンモニア性窒素含有排水をSBR式一槽型ANAMMOXプロセスで処理する場合において、pH調整剤を使用することなく、或いはその使用量を低減した上で、原水導入時の反応槽内液のpHをANAMMOX反応の活性が低下しない範囲に維持することができ、ANAMMOX反応による脱窒処理を安定かつ効率的に行うことが可能となる。   According to the present invention, when ammonia-containing nitrogen-containing wastewater having a high pH or high IC concentration is treated by the SBR type one-tank type ANAMMOX process, a pH adjuster is not used or the amount used is reduced. In addition, the pH of the solution in the reaction tank when the raw water is introduced can be maintained in a range where the activity of the ANAMOX reaction does not decrease, and the denitrification treatment by the ANAMOX reaction can be performed stably and efficiently.

本発明による原水導入と曝気の制御方法の一例を説明するSBR式一槽型ANAMMOX反応槽の系統図である。It is a systematic diagram of the SBR type 1 tank type ANAMMOX reaction tank explaining an example of the raw water introduction and aeration control method by the present invention. 本発明による原水導入と曝気の制御方法の他の例を説明するSBR式一槽型ANAMMOX反応槽の系統図である。It is a systematic diagram of the SBR type one tank type ANAMMOX reaction tank explaining the other example of the raw water introduction by this invention, and the control method of aeration. 一般的なSBR式一槽型ANAMMOX反応槽を示す系統図である。It is a systematic diagram showing a general SBR type one tank type ANAMMOX reaction tank.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明では、SBR式一槽型ANAMMOX反応槽への原水導入時に曝気を併行して行い、反応槽への原水導入時にアンモニア性窒素の亜硝酸化と亜硝酸性窒素とアンモニア性窒素とのANAMMOX反応による脱窒を進行させる。   In the present invention, aeration is carried out at the same time when raw water is introduced into the SBR type one-tank type ANAMMOX reaction tank, and nitritation of ammonia nitrogen and ANAMOX of nitrite nitrogen and ammonia nitrogen are introduced at the time of raw water introduction into the reaction tank. Progress denitrification by reaction.

反応槽への原水導入時に曝気を行う本発明の作用機構は以下のとおりである。
アンモニア性窒素の亜硝酸化とANAMMOX反応の反応式は、下記式1、式2に示す通りである。式1と式2をまとめた、一槽型ANAMMOX反応は、下記式3の通りであり、一槽型ANAMMOX反応では、アンモニア性窒素の除去に伴ってpHが低下する。本発明に従って、原水の導入開始と共に曝気を開始し、原水を緩やかに(低流量で時間をかけて)導入することで、原水導入によるpH上昇をアンモニア性窒素の除去によるpH低下で相殺し、結果として槽内液のpHをANAMMOX細菌を阻害しないpH域(pH6.7〜8.3)に維持して運転することが可能となる。
<アンモニア性窒素の亜硝酸化>
1.0NH +1.5O→1.0NO+HO+2.0H 式1
<ANAMMOX反応>
1.0NH +1.32NO +0.066HCO
1.02N+0.26NO +0.066CH0.50.15
+2.03HO+0.13OH 式2
<一槽型ANAMMOX反応による脱窒反応>
1.0NH +0.65O
0.44N+0.11NO +1.14H+1.43HO 式3
The working mechanism of the present invention for performing aeration when introducing raw water into the reaction tank is as follows.
The reaction formulas of the nitritation of ammonia nitrogen and the ANAMOX reaction are as shown in the following formulas 1 and 2. The one-tank type ANMAMOX reaction that summarizes the formulas 1 and 2 is as shown in the following formula 3. In the one-tank type AAMAMOX reaction, the pH decreases with the removal of ammoniacal nitrogen. In accordance with the present invention, aeration is started at the same time as the introduction of raw water, and the raw water is gradually introduced (over time at a low flow rate), so that the pH increase due to the introduction of raw water is offset by the pH decrease due to the removal of ammonia nitrogen, As a result, it becomes possible to operate by maintaining the pH of the liquid in the tank in a pH range (pH 6.7 to 8.3) that does not inhibit the ANAMMOX bacteria.
<Nitrite of ammoniacal nitrogen>
1.0NH 4 + + 1.5O 2 → 1.0NO 2 + H 2 O + 2.0H + Formula 1
<ANAMMOX reaction>
1.0 NH 4 + +1.32 NO 2 +0.066 HCO 3
1.02N 2 + 0.26NO 3 + 0.066CH 2 O 0.5 N 0.15
+ 2.03H 2 O + 0.13OH - Formula 2
<Denitrification by one tank type ANAMMOX reaction>
1.0NH 4 + + 0.65O 2
0.44N 2 + 0.11NO 3 + 1.14H + + 1.43H 2 O Formula 3

従来、SBR式の一槽型ANAMMOXプロセスにおいて、反応槽の曝気を行いつつ原水を低流量で時間をかけて反応槽へ導入することは行われていない。即ち、反応終了後、曝気を停止して静置し、汚泥を沈降させて上澄水を処理水として排出した後は、曝気を行うことなく反応槽になるべく短時間で原水を導入し、反応槽内の水位が所定の位置となったら原水の導入を停止し、その後、曝気を開始して反応を行うというのが通常である。このように、従来、曝気を停止したまま短時間で原水を導入するのは、反応槽内のアンモニア性窒素濃度を高く維持することでアンモニア酸化細菌およびANAMMOX細菌の反応速度を高く維持しようとするのが一般的だからであり、従来のSBR式の一槽型ANAMMOXプロセスにおいて、原水導入時に曝気を併行して行うという発想はなかった。   Conventionally, in the SBR type single tank type ANAMOX process, raw water is not introduced into the reaction tank at a low flow rate over time while aeration of the reaction tank is performed. That is, after the reaction is completed, aeration is stopped and left standing, and after sludge is settled and the supernatant water is discharged as treated water, the raw water is introduced into the reaction tank as quickly as possible without aeration. Normally, when the water level in the inside reaches a predetermined position, the introduction of raw water is stopped, and then aeration is started to perform the reaction. Thus, conventionally, the introduction of raw water in a short time while aeration is stopped tends to maintain a high reaction rate of ammonia oxidizing bacteria and ANAMMOX bacteria by maintaining a high ammonia nitrogen concentration in the reaction tank. This is because there is no idea that aeration is performed in parallel with the introduction of raw water in the conventional SBR single-tank type ANAMOX process.

本発明は、原水の導入で槽内液のpH上昇を引き起こしやすい、高pH又は高IC濃度のアンモニア性窒素含有排水を原水として、SBR式一槽型ANAMMOXプロセスで処理する場合に好適に適用される。   The present invention is suitably applied to the treatment of SBR type one-tank type ANAMMOX process using ammonia nitrogen-containing wastewater having a high pH or high IC concentration, which tends to cause an increase in the pH of the liquid in the tank due to the introduction of raw water, as raw water. The

本発明において、処理対象となるアンモニア性窒素含有排水は、アンモニア酸化細菌とANAMMOX細菌を含む汚泥と接触させて脱窒処理可能なアンモニア性窒素または有機性窒素を含む液であればよいが、特に高濃度のアンモニア性窒素を含むpH8.3を超える排水や高IC濃度の排水において高い効果が得られる。   In the present invention, the ammonia nitrogen-containing wastewater to be treated may be any liquid containing ammonia nitrogen or organic nitrogen that can be denitrified by contacting with sludge containing ammonia oxidizing bacteria and ANAMMOX bacteria, A high effect is obtained in wastewater containing a high concentration of ammoniacal nitrogen and having a pH exceeding 8.3 or wastewater having a high IC concentration.

本発明で処理対象となるアンモニア性窒素含有排水のpHは、8.3を超え10以下であることが好ましい。pHが8.3以下の原水であれば、本発明を適用しなくても安定処理が可能な場合が多く、pH10を超えるような高pHの原水では、本発明を適用しても十分なpH低下効果を得ることができない場合がある。同様な理由から、本発明で対象となるアンモニア性窒素含有排水のIC濃度は150〜3,000mg/Lであることが好ましい。
また、本発明で処理対象となるアンモニア性窒素含有排水のアンモニア性窒素濃度は200〜7000mg/Lであることが好ましい。
このような排水の具体的な例としては、嫌気性消化液(メタン発酵消化液)の脱水濾液や各種化学工場排水等が挙げられる。嫌気性消化液の脱水濾液の水質は、通常、アンモニア性窒素濃度が500〜7,000mg/L、pHが7.7〜9.2、IC濃度が1,000〜3,000mg/Lである。
The pH of the ammoniacal nitrogen-containing wastewater to be treated in the present invention is preferably more than 8.3 and 10 or less. If the raw water has a pH of 8.3 or less, stable treatment is often possible without applying the present invention. In the case of raw water having a high pH exceeding 10 pH, the present invention can be applied with a sufficient pH. In some cases, the reduction effect cannot be obtained. For the same reason, the IC concentration of the ammoniacal nitrogen-containing waste water targeted in the present invention is preferably 150 to 3,000 mg / L.
Moreover, it is preferable that the ammoniacal nitrogen density | concentration of the ammoniacal nitrogen containing waste water used as a process target by this invention is 200-7000 mg / L.
Specific examples of such wastewater include dehydrated filtrate of anaerobic digestive juice (methane fermentation digestive juice) and various chemical factory wastewater. The water quality of the dehydrated filtrate of the anaerobic digestion liquid is usually an ammoniacal nitrogen concentration of 500 to 7,000 mg / L, a pH of 7.7 to 9.2, and an IC concentration of 1,000 to 3,000 mg / L. .

本発明においてアンモニア性窒素の亜硝酸化に用いられるアンモニア酸化細菌は、従来よりアンモニア性窒素の亜硝酸化に用いられている細菌であって、好気性下にアンモニア性窒素を酸化して亜硝酸性窒素に転換する細菌である。このような亜硝酸化細菌は、アンモニア性窒素を含む被処理液を好気性下に維持することにより発生させることができるが、有機性廃水処理の亜硝酸化工程より採取した汚泥をそのまま、または生物反応部材に付着させて使用することができる。   The ammonia-oxidizing bacterium used for nitritation of ammonia nitrogen in the present invention is a bacterium conventionally used for nitritation of ammonia nitrogen, and oxidizes ammonia nitrogen under aerobic condition to nitrite. It is a bacterium that converts to natural nitrogen. Such nitrite bacteria can be generated by maintaining the treatment liquid containing ammoniacal nitrogen under aerobic condition, but the sludge collected from the nitritation step of organic wastewater treatment is used as it is or It can be used by attaching to a biological reaction member.

本発明において脱窒に用いられるANAMMOX細菌は、Planctomycetesに属す細菌であって、嫌気性雰囲気でアンモニア性窒素と亜硝酸性窒素を反応させて直接窒素ガスに変換させる脱窒細菌である。このようなANAMMOX細菌は従来の脱窒に用いられた従属栄養性の脱窒細菌とは異なり、独立栄養性の細菌であるため、脱窒に際して従来の脱窒細菌には必要であったメタノール等の栄養源の添加を必要としない。またANAMMOX細菌は、アンモニア性窒素と亜硝酸性窒素を反応させて直接窒素ガスに変換させるため、アンモニア性窒素と亜硝酸性窒素を同時に除去でき、しかも有害な副生物を生成しない。このようなANAMMOX細菌はアンモニア性窒素と亜硝酸性窒素を含む被処理液を嫌気性下に反応させて脱窒することにより発生させることができるが、窒素含有液の脱窒工程より採取した汚泥をそのまま、または生物反応部材に付着させて使用することができる。   The ANAMMOX bacterium used for denitrification in the present invention is a bacterium belonging to Plantomycins, which is a denitrification bacterium that reacts ammonia nitrogen and nitrite nitrogen in an anaerobic atmosphere to directly convert to nitrogen gas. Unlike the heterotrophic denitrification bacteria used in conventional denitrification, such ANAMOX bacteria are autotrophic bacteria, and therefore, methanol and the like that are necessary for conventional denitrification bacteria during denitrification No additional nutritional sources are required. In addition, ANAMMOX bacteria react with ammonia nitrogen and nitrite nitrogen to convert them directly into nitrogen gas, so that ammonia nitrogen and nitrite nitrogen can be removed simultaneously, and no harmful by-products are produced. Such ANAMMOX bacteria can be generated by anaerobic reaction of a liquid containing ammoniacal nitrogen and nitrite nitrogen to denitrify, but the sludge collected from the denitrification process of the nitrogen-containing liquid Can be used as is or attached to a biological reaction member.

本発明で用いるアンモニア酸化細菌とANAMMOX細菌の混合汚泥は、このようなアンモニア酸化細菌およびANAMMOX細菌を含む混合汚泥である。これらの細菌は混合汚泥中にランダムな混合状態で汚泥中に含まれていてもよいが、ANAMMOX細菌の表面をアンモニア酸化細菌が覆うように構成された生物汚泥が好ましく、特に担体の内部に担持したANAMMOX細菌の表面をアンモニア酸化細菌が覆うように形成された生物汚泥が好ましい。このような汚泥は反応液中に担体を存在させて処理を継続することにより形成される。このような担体に生物汚泥が付着すると、表面側は好気性となるためアンモニア酸化細菌が優勢となり、内部は嫌気性になるためANAMMOX細菌が優勢となり、上記構成の生物汚泥が形成されやすい。担体の替わりにANAMMOX細菌を自己造粒させたANAMMOXグラニュールの表面をアンモニア酸化細菌が覆うように形成した生物汚泥でもよい。   The mixed sludge of ammonia oxidizing bacteria and ANAMMOX bacteria used in the present invention is a mixed sludge containing such ammonia oxidizing bacteria and ANAMMOX bacteria. These bacteria may be contained in the sludge in a mixed state in the mixed sludge, but biological sludge constructed so that ammonia oxidizing bacteria cover the surface of the ANAMMOX bacteria is preferable, and is particularly supported inside the carrier. The biological sludge formed so that ammonia oxidizing bacteria may cover the surface of the anammox bacteria prepared is preferable. Such sludge is formed by continuing the treatment in the presence of the carrier in the reaction solution. When biological sludge adheres to such a carrier, the surface side becomes aerobic, so ammonia oxidizing bacteria predominate, and the inside becomes anaerobic, so ANAMMOX bacteria predominate, and biological sludge having the above-described structure is likely to be formed. Instead of the carrier, biological sludge formed so that ammonia oxidizing bacteria may cover the surface of the ANAMOX granules obtained by self-granulating ANAMOX bacteria.

本発明で曝気に使用する酸素含有ガスとしては酸素を含有するガスが制限なく使用できる。酸素含有ガスとしては空気が好ましいが、他のガスを使用することもできる。   As the oxygen-containing gas used for aeration in the present invention, a gas containing oxygen can be used without limitation. Air is preferred as the oxygen-containing gas, but other gases can be used.

例えば、図3に示すSBR式反応槽で本発明を実施する場合、以下のような手順で行うことができる。
(1)ポンプP1の作動によりアンモニア性窒素を含む原水の反応槽1への導入を開始すると共に、散気装置4を作動させて空気導入路L4より空気(酸素含有ガス)の反応槽1への導入を開始して槽内を曝気することで、原水導入と脱窒反応を同時に進行させる。原水導入時間は、好ましくは曝気時間の40〜100%とする。または、時間制御ではなく、槽内のpHを測定しながら、槽内pHが8.3を下回った場合にpH8.3になるまで原水を導入し、pHが8.3を超えたら原水の導入を停止して曝気のみ行い、槽内液の曝気でpH8.3以下となったら原水の導入を再開する操作を繰り返すこともできる。
(2)反応終了後、曝気を止めて静置し、アンモニア酸化細菌とANAMMOX細菌を含む汚泥を沈殿させる。
(3)ポンプP3により処理水取出路L3から、上澄水を処理水として排出する。
(4)新しい原水を再び反応槽1に導入しながら曝気を行い、上記(1)〜(3)を繰り返し運転する。
For example, when the present invention is carried out in the SBR reactor shown in FIG. 3, it can be carried out in the following procedure.
(1) The introduction of raw water containing ammonia nitrogen into the reaction tank 1 is started by the operation of the pump P1, and the air diffuser 4 is operated to enter the reaction tank 1 of air (oxygen-containing gas) from the air introduction path L4. The introduction of water and aeration inside the tank allows the raw water introduction and denitrification reaction to proceed simultaneously. The raw water introduction time is preferably 40 to 100% of the aeration time. Or, instead of time control, measure the pH in the tank, and if the pH in the tank falls below 8.3, introduce raw water until it reaches pH 8.3, and if the pH exceeds 8.3, introduce raw water. The aeration can be stopped and only aeration is performed, and the operation of restarting the introduction of raw water can be repeated when the pH of the solution in the tank becomes 8.3 or lower.
(2) After completion of the reaction, aeration is stopped and the mixture is allowed to stand to precipitate sludge containing ammonia-oxidizing bacteria and ANAMMOX bacteria.
(3) The supernatant water is discharged as treated water from the treated water outlet L3 by the pump P3.
(4) Aeration is performed while introducing fresh raw water into the reaction tank 1 again, and the above operations (1) to (3) are repeated.

以下に図1,2を参照して、本発明による原水導入と曝気の制御方法について説明する。図1,2において、図3におけると同一機能を奏する部材には同一符号を付してある。また、図1,2において、図3における溶存酸素濃度測定装置DO及びその制御装置6は図示を省略している。   The raw water introduction and aeration control method according to the present invention will be described below with reference to FIGS. In FIGS. 1 and 2, members having the same functions as those in FIG. 1 and 2, the dissolved oxygen concentration measuring device DO and its control device 6 in FIG. 3 are not shown.

図1は、時間制御により原水導入工程と曝気工程とを行うSBR式一槽型ANAMMOX反応槽1を示し、制御装置10によりポンプP1を作動させて原水を反応槽1に導入すると共にブロアBを作動させて空気による曝気を行うことで、原水導入工程と曝気工程とを同時に行う。   FIG. 1 shows an SBR type one-tank type ANAMOX reaction tank 1 that performs a raw water introduction process and an aeration process by time control. A pump P1 is operated by a controller 10 to introduce raw water into the reaction tank 1, and a blower B is installed. By operating and performing aeration with air, the raw water introduction step and the aeration step are performed simultaneously.

この方法において、原水導入工程の時間(原水導入時間)と曝気工程の時間(曝気時間)との比(原水導入時間/曝気時間の百分率)は40〜100%、特に50〜100%となるように原水導入時間と曝気時間を制御することが好ましい。即ち、原水導入と曝気とを同時に開始し、反応槽内の水位が所定の位置に達したら、原水導入と曝気を同時に終了して反応を終了してもよいし(原水導入時間/曝気時間比100%)、原水導入と曝気を同時に開始して、原水導入と曝気を所定時間行った後、反応槽の水位が所定の位置に達したら、原水の導入を停止し、その後更に曝気のみ行った後反応を終了してもよい。   In this method, the ratio of raw water introduction process time (raw water introduction time) to aeration process time (aeration time) (raw water introduction time / percentage of aeration time) is 40 to 100%, especially 50 to 100%. It is preferable to control the raw water introduction time and the aeration time. That is, raw water introduction and aeration are started simultaneously, and when the water level in the reaction tank reaches a predetermined position, the raw water introduction and aeration may be terminated simultaneously to terminate the reaction (ratio of raw water introduction time / aeration time ratio). 100%), starting the introduction of raw water and aeration at the same time, and after introducing the raw water and aeration for a predetermined time, when the water level in the reaction tank reached a predetermined position, the introduction of the raw water was stopped, and then only aeration was further carried out The post reaction may be terminated.

この時間制御による方法において、原水の導入は、図示しない水位センサ、流量計、タイマー等を用いて、反応槽1内の水位が所定の位置まで上ったところで停止し、その後必要に応じて更に曝気を継続した後曝気を停止して汚泥の沈殿工程と処理水の排出工程を行う。   In this time control method, the introduction of raw water is stopped when the water level in the reaction tank 1 rises to a predetermined position using a water level sensor, a flow meter, a timer, etc. (not shown), and then further if necessary. After continuing the aeration, the aeration is stopped and the sludge settling process and the treated water discharging process are performed.

この制御方法においても、以下の制御方法においても、高い窒素除去率を達成するためには、曝気時間(反応時間)を十分に確保することが好ましく、原水性状や反応槽の仕様、槽内液量にもよるが、曝気時間は2時間以上、例えば4〜16時間とすることが好ましい。   In this control method as well as in the following control methods, it is preferable to ensure a sufficient aeration time (reaction time) in order to achieve a high nitrogen removal rate. Although depending on the amount, the aeration time is preferably 2 hours or longer, for example, 4 to 16 hours.

なお、この場合において、pH測定装置pHにより測定される槽内液のpHが好適pH範囲(6.7〜8.3)を超える場合にはポンプP2を作動させて薬剤導入路L2よりpH調整剤(酸又はアルカリ)を添加するようにしてもよい。   In this case, when the pH of the liquid in the tank measured by the pH measuring device pH exceeds the preferred pH range (6.7 to 8.3), the pH is adjusted from the drug introduction path L2 by operating the pump P2. An agent (acid or alkali) may be added.

図2は、pH測定装置pHにより反応槽1内の液のpHを測定し、このpH測定値に基づいて、原水導入工程と曝気工程とを制御するものであり、図1におけると同様に原水導入工程と曝気工程を同時に開始すると共に、反応槽1内の液のpHを測定し、原水の導入及び曝気でpH測定値が8.3以下となった後、反応槽1内に設けた水位センサLSが、所定の水位になったことを検知したら原水の導入を停止する。その際、pH測定値が入力される制御装置10により、pHの測定値が8.3を超える場合には一旦原水の導入を停止し、曝気のみを行い、曝気によりpHが8.3以下となったら原水の導入を再開する間欠導入を所定の水位となるまで行う。その後必要に応じて更に曝気を継続した後曝気を停止して反応を終了し、汚泥の沈殿工程と処理水の排出工程を行う。   FIG. 2 measures the pH of the liquid in the reaction tank 1 using the pH measurement device pH, and controls the raw water introduction process and the aeration process based on this pH measurement value. The introduction process and the aeration process are started at the same time, the pH of the liquid in the reaction tank 1 is measured, and the water level provided in the reaction tank 1 after the pH measurement value becomes 8.3 or less by the introduction and aeration of the raw water. When the sensor LS detects that the water level has reached a predetermined level, the introduction of raw water is stopped. At that time, when the measured pH value exceeds 8.3 by the control device 10 to which the measured pH value is input, the introduction of the raw water is temporarily stopped and only aeration is performed, and the pH is lowered to 8.3 or less by aeration. When it becomes, intermittent introduction to resume the introduction of raw water is performed until the water level reaches a predetermined level. After that, if necessary, the aeration is further continued, and then the aeration is stopped to complete the reaction, and a sludge precipitation step and a treated water discharge step are performed.

このように、反応槽への原水の導入時に曝気を併行して行うことで、pH調整のための薬剤を添加することなく、或いは、その添加量を従来法に比べて大幅に低減した上で、原水導入時の反応槽内液のpH上昇を抑えてANAMMOX反応に好適なpH範囲に制御し、安定かつ効率的な脱窒処理を行える。   In this way, by performing aeration concurrently with the introduction of raw water into the reaction tank, without adding chemicals for pH adjustment, or after significantly reducing the amount added compared to the conventional method In addition, it is possible to suppress the increase in pH of the liquid in the reaction tank when introducing raw water and control the pH range to be suitable for the ANAMOX reaction, thereby performing stable and efficient denitrification treatment.

以下に実施例を挙げて、本発明をより具体的に説明する。   The present invention will be described more specifically with reference to the following examples.

[実施例1]
アンモニア性窒素:900mg/L、IC:350mg/L、pH:9.0の合成排水を調製した。一槽型ANAMMOX反応槽としては、反応槽容積4Lのラボ試験装置を用いた。種汚泥は、合成排水で培養した一槽型ANAMMOX汚泥を、沈降体積で槽容積の30%になるように投入した。水温は32℃で行った。1バッチあたりの交換水量を0.8Lとし、バッチサイクルを曝気工程6hr、汚泥沈殿工程3min、処理水排出工程10minとした。原水導入工程は、曝気工程開始と同時にスタートし、導入時間を2.4hr(曝気工程の40%)とした。結果を表1に示す。
[Example 1]
A synthetic wastewater having ammonia nitrogen: 900 mg / L, IC: 350 mg / L, pH: 9.0 was prepared. As the single tank type ANAMMOX reaction tank, a laboratory test apparatus having a reaction tank volume of 4 L was used. As the seed sludge, one-tank type AAMAMOX sludge cultured in synthetic waste water was added so that the sedimentation volume was 30% of the tank volume. The water temperature was 32 ° C. The amount of exchanged water per batch was 0.8 L, and the batch cycle was an aeration process 6 hr, a sludge precipitation process 3 min, and a treated water discharge process 10 min. The raw water introduction process was started simultaneously with the start of the aeration process, and the introduction time was 2.4 hr (40% of the aeration process). The results are shown in Table 1.

本実施例では、原水導入開始から槽内液のpHが上昇したものの、最大pH8.2に留まり、原水導入工程終了後は、一槽型ANAMMOX反応によるアンモニア性窒素の除去で、槽内液のpHは緩やかに低下し、反応終了時にはpH7.1となった。このときの窒素除去率は87%であり、処理水はアンモニア性窒素濃度1mg/L以下、亜硝酸性窒素濃度5.2mg/L、硝酸性窒素濃度113mg/Lとなったことから、一槽型ANAMMOX反応によりアンモニア性窒素が除去されたと考えられた。   In this example, although the pH of the liquid in the tank increased from the start of the raw water introduction, it remained at the maximum pH 8.2, and after the raw water introduction process was completed, ammonia nitrogen was removed by the one-tank type ANAMMOX reaction, The pH dropped slowly and reached pH 7.1 at the end of the reaction. The nitrogen removal rate at this time was 87%, and the treated water had an ammonia nitrogen concentration of 1 mg / L or less, a nitrite nitrogen concentration of 5.2 mg / L, and a nitrate nitrogen concentration of 113 mg / L. It was thought that ammoniacal nitrogen was removed by the type ANAMOX reaction.

[比較例1]
原水導入時に曝気を行わなかったこと以外は実施例1と同様に実施した。結果を表1に示す。
[Comparative Example 1]
It implemented like Example 1 except not having aerated at the time of raw | natural water introduction. The results are shown in Table 1.

本比較例では、原水導入工程で反応槽内液のpHが9.0まで上昇した。曝気工程でpHはなだらかに減少したものの曝気工程終了時のpHはANAMMOX細菌の活性低下が起こる8.4であった。処理水は、アンモニア性窒素濃度88mg−N/L、亜硝酸性窒素濃度279mg/L、硝酸性窒素濃度47mg/Lであり、窒素除去率は54%であった。また、反応槽内にはANAMMOX細菌に強い阻害性を持つ亜硝酸性窒素が高濃度に蓄積していた。   In this comparative example, the pH of the liquid in the reaction tank rose to 9.0 in the raw water introduction process. Although the pH decreased gradually during the aeration process, the pH at the end of the aeration process was 8.4, which caused the activity of the ANAMMOX bacteria to decrease. The treated water had an ammonia nitrogen concentration of 88 mg-N / L, a nitrite nitrogen concentration of 279 mg / L, and a nitrate nitrogen concentration of 47 mg / L, and the nitrogen removal rate was 54%. In addition, nitrite nitrogen having a strong inhibitory effect on ANAMOX bacteria was accumulated in the reaction tank at a high concentration.

Figure 2019037912
Figure 2019037912

<結果>
原水pHが高いとき、原水導入時に曝気することで、曝気工程中のpHが8.3を超過することによるANAMMOX細菌の失活や阻害による処理不良を防ぎ、安定して80%以上の窒素除去率を得ることができる。
<Result>
When raw water pH is high, aeration at the time of raw water introduction prevents treatment failure due to inactivation or inhibition of ANAMMOX bacteria due to pH exceeding 8.3 during the aeration process, stably removing more than 80% of nitrogen Rate can be obtained.

[実施例2−1〜3、比較例2−1〜3]
実施例1において、合成排水の条件をアンモニア性窒素:1,800mg/L、IC:1,200mg/L、pH:9.0に変更し、表2のように原水導入時間を変えて原水導入時間/曝気時間比を10〜100%の範囲で変化させた。
このときの曝気工程(反応工程)中の槽内液pHと窒素除去率は表2に示す通りであった。
[Examples 2-1 to 3 and Comparative Examples 2-1 to 3]
In Example 1, the conditions of the synthetic wastewater were changed to ammonia nitrogen: 1,800 mg / L, IC: 1,200 mg / L, pH: 9.0, and raw water introduction time was changed as shown in Table 2 The time / aeration time ratio was varied in the range of 10 to 100%.
The solution pH in the tank and the nitrogen removal rate during the aeration process (reaction process) at this time were as shown in Table 2.

表2に示されるように、原水導入時間/曝気時間比が10〜30%では、窒素除去率が低下し34〜67%となった。
原水中のICが高い場合、反応によるpH低下が原水導入によるpH上昇に追い付かず、槽内液のpHが8.3を超えたため、ANAMMOX細菌の活性が低下し、さらに槽内に亜硝酸性窒素が50mg−N/L以上蓄積し、ANAMMOX細菌が亜硝酸性窒素によって阻害を受けたものと推定される。
一方、原水導入時間/曝気時間比を40%以上とし、原水を低流量で導入した場合には、槽内液のpHは安定して8.3以下となり、80〜89%の高い窒素除去率が得られた。
As shown in Table 2, when the raw water introduction time / aeration time ratio was 10 to 30%, the nitrogen removal rate decreased to 34 to 67%.
When the IC in the raw water is high, the pH drop due to the reaction does not catch up with the pH increase due to the introduction of the raw water, and the pH of the liquid in the tank exceeds 8.3. It is estimated that 50 mg-N / L or more of nitrogen accumulated, and that the ANAMOX bacteria were inhibited by nitrite nitrogen.
On the other hand, when the raw water introduction time / aeration time ratio is 40% or more and raw water is introduced at a low flow rate, the pH of the liquid in the tank is stably 8.3 or less, and a high nitrogen removal rate of 80 to 89%. was gotten.

Figure 2019037912
Figure 2019037912

<結果>
原水ICが高いとき、原水導入時間/曝気時間比が40%以上になるように原水を時間をかけて低流量で導入することにより、曝気工程中のpHが8.3を超過することなく、ANAMMOX細菌の失活や阻害を防いで、安定して80%以上の窒素除去率を得ることができる。
<Result>
When the raw water IC is high, the raw water is introduced at a low flow rate over time so that the raw water introduction time / aeration time ratio is 40% or more, so that the pH during the aeration process does not exceed 8.3, The inactivation and inhibition of the ANAMOX bacteria can be prevented, and a nitrogen removal rate of 80% or more can be stably obtained.

[実施例3−1〜3、比較例3−1〜3]
実施例1において合成排水の条件をアンモニア性窒素:1,800mg/L、IC:150mg/L、pH:10に変更し、表3のように原水導入時間を変えて原水導入時間/曝気時間比を10〜100%の範囲で変化させた。
このときの曝気工程(反応工程)中の槽内液pHと窒素除去率は表3に示す通りであった。
[Examples 3-1 to 3 and Comparative examples 3-1 to 3]
In Example 1, the conditions of the synthetic wastewater were changed to ammonia nitrogen: 1,800 mg / L, IC: 150 mg / L, pH: 10, and the raw water introduction time / aeration time ratio was changed as shown in Table 3 In the range of 10 to 100%.
The solution pH in the tank and the nitrogen removal rate during the aeration process (reaction process) at this time were as shown in Table 3.

表3に示されるように、原水中のpHがさらに高pHの場合、原水導入時間/曝気時間比が10〜30%では、窒素除去率は28%以下となった。特に10〜20%のときは曝気工程中の槽内液pHが9を超えたため、ANAMMOX細菌に加え硝化菌の活性も低下したものと推定される。なお、高pHのためアンモニアのストリッピングが発生してしまい、生物処理による窒素除去率の測定が困難であった。
一方、原水導入時間/曝気時間比を40%以上とし、原水を低流量で導入した場合には、槽内液のpHは安定して8.3以下となり、80〜89%の高い窒素除去率が得られた。
As shown in Table 3, when the pH of the raw water was higher, the nitrogen removal rate was 28% or less when the raw water introduction time / aeration time ratio was 10 to 30%. In particular, when the content is 10 to 20%, the pH of the liquid in the tank during the aeration process exceeded 9, and it is estimated that the activity of nitrifying bacteria in addition to the ANAMOX bacteria was reduced. Note that ammonia stripping occurred due to the high pH, and it was difficult to measure the nitrogen removal rate by biological treatment.
On the other hand, when the raw water introduction time / aeration time ratio is 40% or more and raw water is introduced at a low flow rate, the pH of the liquid in the tank is stably 8.3 or less, and a high nitrogen removal rate of 80 to 89%. was gotten.

Figure 2019037912
Figure 2019037912

<結果>
原水pHがより高いとき、原水導入時間/曝気時間比が40%以上になるように原水を時間をかけて低流量で導入することにより、曝気工程初期のpHが8.3を超過することなく、アンモニアストリッピングによる揮散やANAMMOX細菌の失活を防いで、安定して80%以上の窒素除去率を得ることができる。
<Result>
When the raw water pH is higher, the raw water is introduced at a low flow rate over time so that the raw water introduction time / aeration time ratio is 40% or more, so that the pH at the initial stage of the aeration process does not exceed 8.3. Further, volatilization due to ammonia stripping and inactivation of ANAMXOX bacteria can be prevented, and a nitrogen removal rate of 80% or more can be stably obtained.

1 反応槽
2 混合汚泥
3 反応液
4 散気装置
L1 原水導入路
L2 薬剤導入路
L3 処理水取出路
L4 空気導入路
10 制御装置
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Mixed sludge 3 Reaction liquid 4 Air diffuser L1 Raw water introduction path L2 Chemical | medical agent introduction path L3 Treated water extraction path L4 Air introduction path 10 Control apparatus

Claims (8)

アンモニア性窒素含有排水を原水として、アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した反応槽を用いて回分式で脱窒処理する方法であって、該反応槽への原水導入工程において曝気工程を同時に行うことを特徴とするアンモニア性窒素含有排水の脱窒処理方法。   A method of batch-type denitrification using ammonia nitrogen-containing wastewater as raw water and a reaction vessel containing mixed sludge of ammonia-oxidizing bacteria and ANAMMOX bacteria, wherein the aeration step is performed in the raw water introduction step to the reaction vessel A method for denitrifying wastewater containing ammonia nitrogen, which is performed simultaneously. 請求項1において、前記原水導入工程の時間(以下「原水導入時間」という。)と曝気工程の時間(以下「曝気時間」という。)との比(原水導入時間/曝気時間の百分率)を40〜100%とすることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。   2. The ratio (raw water introduction time / percentage of aeration time) of the time of the raw water introduction process (hereinafter referred to as “raw water introduction time”) and the time of the aeration process (hereinafter referred to as “aeration time”) is 40. A denitrification method for ammonia nitrogen-containing wastewater, characterized in that the content is -100%. 請求項1において、前記反応槽内のpHを測定し、該pH測定値が8.3を超える場合には前記原水の導入を停止することを特徴とするアンモニア性窒素含有排水の脱窒処理方法。   The method for denitrifying ammonia nitrogen-containing wastewater according to claim 1, wherein the pH in the reaction vessel is measured, and when the measured pH value exceeds 8.3, the introduction of the raw water is stopped. . 請求項1ないし3のいずれか1項において、前記原水のpHが8.3を超え10以下であることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。   The denitrification method for ammonia nitrogen-containing wastewater according to any one of claims 1 to 3, wherein the pH of the raw water exceeds 8.3 and is 10 or less. 請求項1ないし4のいずれか1項において、前記原水の無機炭酸濃度が150〜3,000mg/Lであることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。   5. The denitrification method for ammonia nitrogen-containing wastewater according to claim 1, wherein the raw water has an inorganic carbonic acid concentration of 150 to 3,000 mg / L. 請求項1ないし5のいずれか1項において、前記原水が嫌気性消化液の脱水濾液であることを特徴とするアンモニア性窒素含有排水の脱窒処理方法。   6. The denitrification method for ammonia nitrogen-containing wastewater according to any one of claims 1 to 5, wherein the raw water is a dehydrated filtrate of anaerobic digestive juice. 請求項1、2、5又は6に記載のアンモニア性窒素含有排水の脱窒処理方法を行うための脱窒処理装置であって、
アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した反応槽と、
該反応槽へアンモニア性窒素含有排水を原水として導入する原水導入手段と、
該反応槽から脱窒処理水を排出する処理水排出手段と、
該反応槽内の反応液を曝気する曝気手段と、
該原水導入手段の作動と、該曝気手段の作動を制御する制御手段とを有する回分式の一槽型ANAMMOX反応装置であり、
該制御手段は、該原水導入手段による原水導入時に、該曝気手段により、該反応槽内を曝気する制御を行う手段であることを特徴とするアンモニア性窒素含有排水の脱窒処理装置。
A denitrification apparatus for performing the denitrification method of ammonia nitrogen-containing wastewater according to claim 1, 2, 5, or 6,
A reaction vessel containing mixed sludge of ammonia-oxidizing bacteria and ANAMOX bacteria;
Raw water introduction means for introducing ammoniacal nitrogen-containing wastewater into the reaction tank as raw water;
Treated water discharge means for discharging denitrified treated water from the reaction tank;
Aeration means for aeration of the reaction solution in the reaction tank;
A batch one-tank type ANAMMOX reactor having an operation of the raw water introduction means and a control means for controlling the operation of the aeration means,
The denitrification apparatus for ammonia nitrogen-containing wastewater, wherein the control means is a means for performing control to aerate the inside of the reaction tank by the aeration means when the raw water is introduced by the raw water introduction means.
請求項3又は4に記載のアンモニア性窒素含有排水の脱窒処理方法を行うための脱窒処理装置であって、
アンモニア酸化細菌とANAMMOX細菌の混合汚泥を収容した反応槽と、
該反応槽へアンモニア性窒素含有排水を原水として導入する原水導入手段と、
該反応槽から脱窒処理水を排出する処理水排出手段と、
該反応槽内の反応液を曝気する曝気手段と、
該反応槽内液のpHを測定するpH測定手段と、
該原水導入手段の作動と、該曝気手段の作動を制御する制御手段とを有する回分式の一槽型ANAMMOX反応装置であり、
該制御手段は、該原水導入手段による原水導入時に、該曝気手段により、該反応槽内を曝気する制御と、該pH測定手段の測定値が8.3を超える場合には、該原水導入手段による原水の導入を停止する制御とを行うことを特徴とするアンモニア性窒素含有排水の脱窒処理装置。
A denitrification apparatus for performing the denitrification method for ammonia nitrogen-containing wastewater according to claim 3 or 4,
A reaction vessel containing mixed sludge of ammonia-oxidizing bacteria and ANAMOX bacteria;
Raw water introduction means for introducing ammoniacal nitrogen-containing wastewater into the reaction tank as raw water;
Treated water discharge means for discharging denitrified treated water from the reaction tank;
Aeration means for aeration of the reaction solution in the reaction tank;
PH measuring means for measuring the pH of the liquid in the reaction vessel;
A batch one-tank type ANAMMOX reactor having an operation of the raw water introduction means and a control means for controlling the operation of the aeration means,
When the raw water is introduced by the raw water introducing means, the control means is configured to aerate the inside of the reaction tank by the aeration means, and when the measured value of the pH measuring means exceeds 8.3, the raw water introducing means A denitrification treatment apparatus for ammonia-containing nitrogen-containing wastewater, characterized by performing control to stop the introduction of raw water.
JP2017159535A 2017-08-22 2017-08-22 Ammonia nitrogen-containing wastewater denitrification treatment method and denitrification treatment equipment Active JP6919413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017159535A JP6919413B2 (en) 2017-08-22 2017-08-22 Ammonia nitrogen-containing wastewater denitrification treatment method and denitrification treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159535A JP6919413B2 (en) 2017-08-22 2017-08-22 Ammonia nitrogen-containing wastewater denitrification treatment method and denitrification treatment equipment

Publications (2)

Publication Number Publication Date
JP2019037912A true JP2019037912A (en) 2019-03-14
JP6919413B2 JP6919413B2 (en) 2021-08-18

Family

ID=65726807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159535A Active JP6919413B2 (en) 2017-08-22 2017-08-22 Ammonia nitrogen-containing wastewater denitrification treatment method and denitrification treatment equipment

Country Status (1)

Country Link
JP (1) JP6919413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995083A (en) * 2020-08-25 2020-11-27 浙江京禾水务科技有限公司 Intelligent real-time aeration control method for anaerobic ammonia oxidation reaction process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024983A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Nitrification treatment method
WO2006035885A1 (en) * 2004-09-30 2006-04-06 Kurita Water Industries Ltd. Method of treating nitrogen-containing liquid and apparatus therefor
JP2006289327A (en) * 2005-04-08 2006-10-26 N Ii T Kk Batch biological treatment apparatus
US20160176743A1 (en) * 2014-12-22 2016-06-23 Korea Institute Of Science And Technology Method and apparatus for culture of anaerobic ammonium oxidizer
JP2017018876A (en) * 2015-07-09 2017-01-26 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003024983A (en) * 2001-07-17 2003-01-28 Kurita Water Ind Ltd Nitrification treatment method
WO2006035885A1 (en) * 2004-09-30 2006-04-06 Kurita Water Industries Ltd. Method of treating nitrogen-containing liquid and apparatus therefor
JP2006289327A (en) * 2005-04-08 2006-10-26 N Ii T Kk Batch biological treatment apparatus
US20160176743A1 (en) * 2014-12-22 2016-06-23 Korea Institute Of Science And Technology Method and apparatus for culture of anaerobic ammonium oxidizer
JP2017018876A (en) * 2015-07-09 2017-01-26 鹿島建設株式会社 Organic waste treatment system and organic waste treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995083A (en) * 2020-08-25 2020-11-27 浙江京禾水务科技有限公司 Intelligent real-time aeration control method for anaerobic ammonia oxidation reaction process
CN111995083B (en) * 2020-08-25 2022-05-06 浙江京禾水务科技有限公司 Intelligent real-time aeration control method for anaerobic ammonia oxidation reaction process

Also Published As

Publication number Publication date
JP6919413B2 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
JP5347221B2 (en) Nitrogen-containing liquid processing method and apparatus
JP4644107B2 (en) Method for treating wastewater containing ammonia
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JP2006088092A (en) Method and apparatus for treating nitrogen-containing liquid
JP4106203B2 (en) How to remove nitrogen from water
JP2010000480A (en) Effective denitrification method for organic raw water
JP4734996B2 (en) Biological treatment method and apparatus for nitrogen-containing water
JP2003024983A (en) Nitrification treatment method
WO2011134011A1 (en) Production of nitrite
JP4837706B2 (en) Ammonia nitrogen removal equipment
JP4957229B2 (en) Waste water treatment method and waste water treatment apparatus
JP4327770B2 (en) Biological nitrification treatment method and nitrification treatment apparatus for wastewater containing ammonia nitrogen
JP5055670B2 (en) Denitrification method and denitrification apparatus
JP2004230338A (en) Method for removing ammonia nitrogen compound from waste water
JP5722087B2 (en) Biological nitrogen treatment method of ammonia containing wastewater
JP6919413B2 (en) Ammonia nitrogen-containing wastewater denitrification treatment method and denitrification treatment equipment
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP2011143365A (en) Method and apparatus for treating wastewater
JP6880894B2 (en) Wastewater treatment method with ANAMMOX process
JP4867099B2 (en) Biological denitrification method
JP6919304B2 (en) Ammonia nitrogen-containing wastewater denitrification treatment equipment and denitrification treatment method
JP2006088057A (en) Method for treating ammonia-containing water
JP2003053382A (en) Nitrification-denitrification treatment method
JP6503204B2 (en) Treatment apparatus for treated water and treatment method for treated water
JP4617572B2 (en) Nitrogen-containing wastewater treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6919413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150