JP2019035699A - 付着物測定装置 - Google Patents

付着物測定装置 Download PDF

Info

Publication number
JP2019035699A
JP2019035699A JP2017158156A JP2017158156A JP2019035699A JP 2019035699 A JP2019035699 A JP 2019035699A JP 2017158156 A JP2017158156 A JP 2017158156A JP 2017158156 A JP2017158156 A JP 2017158156A JP 2019035699 A JP2019035699 A JP 2019035699A
Authority
JP
Japan
Prior art keywords
electrode
sub
deposit
guard
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017158156A
Other languages
English (en)
Other versions
JP6924652B2 (ja
Inventor
暁巳 ▲高▼野
暁巳 ▲高▼野
Akemi Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017158156A priority Critical patent/JP6924652B2/ja
Publication of JP2019035699A publication Critical patent/JP2019035699A/ja
Application granted granted Critical
Publication of JP6924652B2 publication Critical patent/JP6924652B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】測定対象の構造に対する影響が少なく、不定の誘電率を有する付着物を検出可能な付着物測定装置及び付着物測定方法を提供する。【解決手段】付着物測定装置は、中心電極と、中心電極と隣接する少なくとも1つのサブ電極と、前記少なくとも1つのサブ電極と隣接するガード電極と、中心電極及びガード電極に交流電圧を印加可能な電源と、を備える。中心電極及びガード電極に対する少なくとも1つのサブ電極の複数の前記接続状態において中心電極で検出される電流の比に基づいて前記付着物の厚さを算出する。【選択図】図6

Description

本開示は壁面上に付着した付着物の厚さを測定するための付着物測定装置に関する。
微粒子状の物質が浮遊する雰囲気に接する壁面や、表面を物質(固体や液体)が流動する壁面では、時間の経過に伴って、その表面に物質が付着することがある。このような付着物は、壁面を有する設備の本来の特性を劣化させる要因となるため、その付着状態を監視することが求められる。付着物の監視は目視によって行われてもよいが、付着程度を定量化したり、目視による監視が困難な環境では、センサを用いて行われることが好ましい。
例えば特許文献1では、壁面上の付着物を対象にしたものではないが、キャパシタを利用した物質検出の一例が開示されている。この文献では、一対の電極から構成されるキャパシタの静電容量が電極間に存在する誘電率に依存する特性を利用しており、キャパシタの静電容量を検出することで、静電容量に対応する液面レベルを検出する液面レベルセンサが開示されている。
実開昭62−167122号公報
上記特許文献1のように対向配置された一対の電極からなるキャパシタを用いる手法では、検出対象となる物質が電極間に存在する必要がある。そのため、壁面上に付着する付着物を検出するためには、キャパシタを構成する一対の電極の少なくとも一方を空間側に突出するように配置しなければならい。これは、測定対象に構造上の制約をもたらすこととなってしまう。
また特許文献1では、検出対象の誘電率が既知であり、且つ、一定である場合には、キャパシタの静電容量に基づいたレベルの特定が可能であるが、誘電率が一定ではなかったり、未知の誘電率を有する物質を検出対象とする場合、測定ができない。
本発明の少なくとも一実施形態は上述の事情に鑑みなされたものであり、測定対象の構造に対する影響が少なく、不定の誘電率を有する付着物を検出可能な付着物測定装置を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る付着物測定装置は上記課題を解決するために、壁面上に付着した付着物の厚さを測定するための付着物測定装置であって、前記壁面上の空間に面する中心電極と、前記空間に面し、且つ、前記中心電極と電気的に絶縁されて隣接する少なくとも1つのサブ電極と、前記空間に面し、且つ、前記少なくとも1つのサブ電極と電気的に絶縁されて隣接するガード電極と、前記中心電極及び前記ガード電極に交流電圧を印加可能な電源と、前記中心電極及び前記ガード電極に対する前記少なくとも1つのサブ電極の接続状態を選択的に切替可能な切替部と、前記中心電極を流れる電流を検出する電流検出部と、を備え、前記中心電極及び前記ガード電極に対する前記少なくとも1つのサブ電極の複数の前記接続状態において前記電流検出部でそれぞれ検出された電流の比に基づいて前記付着物の厚さを算出する。
上記(1)の構成によれば、互いに電気的に絶縁されて隣接する中心電極、サブ電極及びガード電極間の接続状態を切り替えることで、これら電極が接地点である壁面との間に生じる電気力線の伝播距離を電気的に可変に構成できる。これにより、装置の物理的構造を変更することなく電気的な切替操作によって、電流検出部では壁面上に存在する付着物の厚さに応じた電流が得られる。本構成では、このような複数の接続状態における電流の比が付着物の誘電率に依存しない性質を有するという知見を見出すことにより、不定の誘電率を有する付着物についても厚さ測定が可能となった。また、このような構成を有する付着物測定装置は既存の電流計や電源を利用することで導入が可能であるため、コスト的にも有利である。
(2)幾つかの実施形態では上記(1)の構成において、前記少なくとも1つのサブ電極は単一の前記サブ電極であり、前記サブ電極が前記中心電極に接続された第1接続状態において前記電流検出部で検出される第1電流と、前記サブ電極が前記ガード電極に接続された第2接続状態において前記電流検出部で検出される第2電流との比に基づいて前記付着物の厚さを算出する。
上記(2)の構成によれば、第1接続状態において中心電極及びサブ電極と壁面との間に生じる電気力線に基づく第1電流と、第2接続状態において中心電極と壁面との間に生じる電気力線に基づく第2電流との比を求めることにより、不定の誘電率を有する付着物について精度よく厚さ測定が可能となる。
(3)幾つかの実施形態では上記(1)の構成において、前記少なくとも1つのサブ電極は、前記中心電極に電気的に絶縁されて隣接する第1サブ電極と、前記第1サブ電極に電気的に絶縁されて隣接する第2サブ電極とを含み、前記第1サブ電極及び前記第2サブ電極が前記中心電極に接続された第1接続状態において前記電流検出部で検出される第1電流と、前記第1サブ電極が前記中心電極に接続され、且つ、前記第2サブ電極が前記ガード電極に接続された第2接続状態において前記電流検出部で検出される第2電流と、前記第1サブ電極及び前記第2サブ電極が前記ガード電極に接続された第3接続状態において前記電流検出部で検出される第3電流と、のいずれかの比に基づいて前記付着物の厚さを算出する。
上記(3)の構成によれば、2つのサブ電極を備えることにより、前述の(2)の構成より多い、3種類の接続状態が切替可能である。そして、これら接続状態における電流の各比は、付着物の厚さに対してそれぞれ所定の感度を有することから、所望の要求感度に応じた組み合わせで比を選択することで、好適な測定が可能となる。
(4)幾つかの実施形態では上記(1)から(3)のいずれか一構成において、前記中心電極は前記ガード電極によって少なくとも部分的に囲まれる。
上記(4)の構成によれば、ガード電極が中心電極を少なくとも部分的に囲むように形成されているため、中心電極からの電気力線はガード電極を避けるように壁面上の空間を迂回する伝播経路を形成する。
(5)幾つかの実施形態では上記(4)の構成において、前記ガード電極及び前記サブ電極は、前記第1電極を中心として同心円状に配置される。このとき、中心が一致すること、および、断面が円状であることは必須ではない。
上記(5)の構成によれば、ガード電極及びサブ電極が中心電極を中心とする同心円状に配置されることで、装置構造に起因する寄生容量の影響を抑え、精度のよい測定が可能となる。
(6)幾つかの実施形態では上記(1)から(5)のいずれか一構成において、前記中心電極、前記サブ電極及び前記ガード電極は前記壁面と面一に形成される。
上記(6)の構成によれば、中心電極、サブ電極及びガード電極は壁面と面一に形成されるため、測定対象の構造への影響が少なく済む。例えば高温高圧の環境下では、空間を規定する壁面から構造物が突出することが好ましくない場合があるが、本構成では、このような要求に対して好適に対応できる。このとき、厳密に面一に形成される必要はなく、センサの特性を調整する方法として段差を与えることも有効である。また、表面形状および表面性状を調整するために、電極表面に誘電体を設けることも可能である。
(7)本発明の少なくとも一実施形態に係る付着物測定装置は上記課題を解決するために、壁面上に付着した付着物の厚さを測定するための付着物測定装置であって、前記壁面上の空間に面する中心電極と、前記空間に面し、且つ、前記中心電極と電気的に絶縁されて前記中心電極を囲むガード電極と、前記空間に面し、且つ、前記ガード電極の外側に前記ガード電極と電気的に絶縁されて隣接するサブ電極と、前記中心電極及び前記ガード電極に交流電圧を印加可能な電源と、前記ガード電極に対する前記サブ電極の接続状態を選択的に切替可能な切替部と、前記中心電極を流れる電流を検出する電流検出部と、を備え、前記ガード電極は、前記中心電極と前記サブ電極との間に位置する第1領域が、前記第1領域を除く第2領域と異なる幅を有し、前記ガード電極に対する前記サブ電極の複数の前記接続状態において前記電流検出部でそれぞれ検出された電流の比に基づいて前記付着物の厚さを算出する。
上記(7)の構成によれば、互いに電気的に絶縁されて隣接する中心電極、サブ電極及びガード電極間の接続状態を切り替えることで、これら電極が接地点である壁面との間に生じる電気力線の伝播距離を電気的に可変に構成できる。特にガード電極は、中心電極とサブ電極との間に位置する第1領域が、第1領域を除く第2領域と異なる幅を有するため、接続状態を切り替えた際に電気力線の伝播距離を電気的に変化させることができる。これにより、装置の物理的構造を変更することなく電気的な切替操作によって、電流検出部では壁面上に存在する付着物の厚さに応じた電流が得られる。このような複数の接続状態における電流の比が付着物の誘電率に依存しない性質を有するという知見を見出すことにより、不定の誘電率を有する付着物についても厚さ測定が可能となった。また、このような構成を有する付着物測定装置は既存の電流計や電源を利用することで導入が可能であるため、コスト的にも有利である。
(8)本発明の少なくとも一実施形態に係る付着物測定装置は上記課題を解決するために、壁面上に付着した付着物の厚さを測定するための付着物測定装置であって、前記壁面上の空間に面する第1中心電極と、前記空間に面し、且つ、前記第1中心電極と電気的に絶縁されて前記第2中心電極を囲む第1ガード電極と、前記第1中心電極及び前記第1ガード電極に交流電圧を印加可能な第1電源と、前記第1中心電極及び前記第1ガード電極に対する前記電源の接続状態を選択的に切替可能な第1切替部と、前記第1中心電極を流れる電流を検出する第1電流検出部と、前記空間に面し、且つ、前記第1ガード電極の外側に前記ガード電極と電気的に絶縁されて隣接する第2ガード電極と、前記空間に面し、且つ、前記第2ガード電極によって囲まれる第2中心電極と、前記第2中心電極及び前記第2ガード電極に交流電圧を印加可能な第2電源と、前記第2中心電極及び前記第2ガード電極に対する前記第2電源の接続状態を選択的に切替可能な第2切替部と、前記第2中心電極を流れる電流を検出する第2電流検出部と、を備え、前記第1中心電極、前記第1ガード電極、前記第2中心電極及び前記第2ガード電極の異なる接続状態において前記第1電流検出部及び前記第2電流検出部でそれぞれ検出された電流の比に基づいて前記付着物の厚さを算出する。
上記(8)の構成によれば、互いに電気的に絶縁されて隣接する第1中心電極、第1ガード電極、第2中心電極及び第2ガード電極間の接続状態を切り替えることで、これら電極が接地点である壁面との間に生じる電気力線の伝播距離を電気的に可変に構成できる。本構成では上述の構成に比べて、より多くの接続状態への切替が可能である。これら接続状態における電流の各比は、付着物の厚さに対してそれぞれ所定の感度を有することから、所望の要求感度に応じた組み合わせの比を選択することで好適な測定が可能となる。
(9)幾つかの実施形態では上記(8)の構成において、前記第1中心電極と前記第2中心電極は所定方向に沿って配列されている。
上記(9)の構成によれば、所定方向に沿った異なる地点における付着物の厚さが測定できる。そのため、異なる地点における測定結果を用いることで、例えば付着物が壁面上を移動する流動体である場合には、移動速度や脈動などの動的特性の測定も可能となる。
本発明の少なくとも一実施形態によれば、測定対象の構造に対する影響が少なく、不定の誘電率を有する付着物を検出可能な付着物測定装置及び付着物測定方法を提供できる。
前提技術に係る付着物測定装置の内部構成を示す断面図である。 図1の付着物測定装置の動作時に生じる電気力線を示す模式図である。 付着物の厚さがt1である場合の電気力線の様子を示す模式図である。 付着物の厚さがt2である場合の電気力線の様子を示す模式図である。 付着物の厚さとキャパシタの静電容量との関係を示す測定結果である。 第1実施形態に係る付着物測定装置の内部構成を示す断面図である。 図6の付着物測定装置の接続状態S1における電位分布を簡略的に示す模式図である。 図6の付着物測定装置の接続状態S2における電位分布を簡略的に示す模式図である。 図6の付着物測定装置における付着物の厚さと静電容量との関係を示す測定結果である。 第2実施形態に係る付着物測定装置の内部構成を示す断面図である。 図10の付着物測定装置における付着物の厚さと静電容量との関係を示す測定結果である。 第3実施形態に係る付着物測定装置の内部構成を示す断面図である。 第4実施形態に係る付着物測定装置の内部構成を示す断面図である。 図13の付着物測定装置の各接続状態を示す模式図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
<前提技術>
はじめに本発明の少なくとも1実施形態に係る付着物測定装置1’の前提技術について説明する。この前提技術は、以下に説明するように、本願発明者の鋭意研究によって得られた知見に基づくものである。
図1は前提技術に係る付着物測定装置1’の内部構成を示す断面図である。付着物測定装置1’は、壁面2上に付着した付着物を測定するためのセンサである。壁面2は、例えば、微粒子状の物質が浮遊する雰囲気に接する壁面や、表面を物質(固体や液体)が流動する壁面であり、その表面には時間の経過に伴って付着物が生じる。また壁面2は接地されている。
付着物測定装置1’は、壁面2に開口された穴部3に嵌め込まれることにより、壁面2上に存在する空間4に向けて測定面6が露出するように配置されている。図1の例では、測定面6は壁面2の表面と面一に形成されることにより空間4側に突出しない形状を有しており、空間4側への構造上の影響をもたらさないようになっているが、空間4側への影響が許容される限りにおいて、測定面6は少なからず突出するように構成されていてもよい。また、表面形状および表面性状を調整するために、電極表面に誘電体を設けることも可能である。
尚、図1では、壁面2(測定面6)上には測定対象となる厚さtの付着物22が存在している場合が例示されている。
付着物測定装置1’は、当該装置の外殻を規定するケーシング8を有しており、その側方が壁面2に開口された穴部3に嵌め込まれることにより固定されている。ケーシング8の内側には、測定面6に露出するように配置された複数の電極(中心電極10及びガード電極12)が絶縁層によって隔離されて収容されている。
尚、絶縁層の厚さは任意でよいが、装置サイズを小さく抑えるために努めて薄くするとよい。
付着物測定装置1’は、基準軸Cを中心とする同心円状の構造を有しており、その中心に中心電極10が配置されている。中心電極10は略円柱形状を有しており、測定面6を除く周囲を絶縁層14によって囲まれている。中心電極10の一部は絶縁層14を貫通することで外部に露出しており、外部から電気的に接続可能に構成されている。
尚、ガード電極12の外側には絶縁層16を介してケーシング8が配置されている。
中心電極10の外側には絶縁層14を介してガード電極12が配置されている。ガード電極12は基準軸Cを中心とする略円筒形状を有しており、中心電極10と同心状に配置されている。このように中心電極10はガード電極12によって少なくとも部分的に囲まれるため、中心電極10からの電気力線はガード電極12を避けるように壁面2上の空間を迂回する伝播経路を形成する。特にガード電極12は、中心電極10を中心として同心円状に配置されることで、装置構造に起因する寄生容量の影響を抑え、精度のよい測定が可能となる。
尚、ガード電極12は、測定面6と反対側においてケーシング8の開口部8aから外部に露出することにより、外部から電気的に接続可能に構成されている。
中心電極10及びガード電極12はそれぞれリード線L1、L2を介して、電源18に対して並列に接続されている。これにより、中心電極10とガード電極12とは互いに同電位に保持される。またリード線L1には電流計である電流検出部20が直列に配置されており、中心電極10に流れる電流値が検出可能になっている。
尚、リード線L1,L2は寄生容量の影響を抑えるため、同軸ケーブルを用いるとよく、またリード線L1,L2間の静電容量が努めて小さくなるように設計されるとよい。
図2は図1の付着物測定装置1’の動作時に生じる電気力線を示す模式図である。中心電極10及びガード電極12は上述のように電源18によって同電位に保持されるため、接地された壁面2との間に電気力線Eが生じる。ここで互いに隣接する壁面2とガード電極12との間の電気力線E1は壁面2に対して最短距離をとるように生じるが、壁面2と中心電極10との間に生じる電気力線E2は、ガード電極12を避けて測定面6から空間4側に染み出すように迂回するように生じる。その結果、中心電極10と壁面2との間には、所定の静電容量CS−Eを有するキャパシタが形成される。このような静電容量CS−Eは、電源18の印加電圧と、電流検出部20で検出される電流値に基づいて測定可能である。
ここで測定面6上の付着物22とキャパシタの静電容量CS−Eとの関係について説明する。図3は付着物22の厚さがt1である場合の電気力線E2の様子を示す模式図であり、図4は付着物22の厚さがt2(>t1)である場合の電気力線E2の様子を示す模式図である。図3では付着物22の厚さtが比較的小さいt1であるため、電気力線E2が付着物22を通過する範囲が狭くなり、静電容量CS−Eもまた小さくなる。一方、図4では付着物22の厚さt2が比較的大きいため、電気力線E2が付着物22を通過する範囲が広くなり、静電容量CS−Eもまた大きくなる。このように静電容量CS−Eは付着物22の厚さtに依存する。
図5は付着物22の厚さtとキャパシタの静電容量CS−Eとの関係を示す測定結果である。図5に示されるように、静電容量CS−Eは、付着物22の厚さtが増加するに従って単調に増加し、所定値に漸近する傾向がある。
また静電容量CS−Eは、付着物22を通過する電気力線E2の伝播距離(この場合は中心電極10と壁面2との距離)である特性距離dS−Eにも依存する。図5では、異なる特性距離dS−Eを有する付着物測定装置1’における測定結果がそれぞれ示されており、特性距離dS−Eが大きくなると静電容量CS−Eの収束値が大きくなり、一方で特性距離dS−Eが小さくなると、より小さな厚さtで静電容量CS−Eが収束する傾向が示されている。つまり、特性距離dS−Eが大きくなると、付着物22の厚さtに対して静電容量CS−Eが変化する範囲が広くなる。
また静電容量CS−Eが一定値に収束する領域では、付着物22の誘電率と電極形状のみに依存した静電容量が得られる。そのため、特性距離dS−Eが小さい場合には、広い範囲にわたって付着物22の厚さtに依存しない静電容量CS−Eが得られる。
<第1実施形態>
続いて上述の前提技術を参考に、第1実施形態に係る付着物測定装置1について説明する。図6は第1実施形態に係る付着物測定装置1の内部構成を示す断面図である。尚、上述の前提技術に対応する箇所には共通の符号を付すこととし、重複する説明は適宜省略する。
付着物測定装置1は、中心電極10とガード電極12との間に、少なくとも1つのサブ電極24を有する。第1実施形態では1つのサブ電極24を有しており、サブ電極24は中心電極10に対して絶縁層26を介して隣接するとともに、ガード電極12に対して絶縁層28を介して隣接するように配置されている。またサブ電極24は、中心電極10及びガード電極12と同様に、一端側が測定面6に対して露出している。
サブ電極24は、中心電極10と同様に、ガード電極12によって少なくとも部分的に囲まれる。特に本実施形態では、サブ電極24はガード電極12と同様に、中心電極10を中心として同心円状に配置されることで、装置構造に起因する寄生容量の影響を抑え、精度のよい測定が可能となる。
またサブ電極24にはリード線L3が接続されている。リード線L3は、中心電極10に接続されたリード線L1及びガード電極12に接続されたリード線L2に対して接続/切断を選択的に切り替え可能な切替部30を介して接続されている。
切替部30の切り替えによって、リード線L3がリード線L1に接続された接続状態S1と、リード線L3がリード線L2に接続された接続状態S2とのいずれかが選択される。図7は図6の付着物測定装置1の接続状態S1における電位分布を簡略的に示す模式図であり、図8は図6の付着物測定装置1の接続状態S2における電位分布を簡略的に示す模式図である。
尚、図7及び図8では、簡略化のためケーシング8より下方の構成は図示を省略している。
接続状態S1では、図7に示されるように、サブ電極24はガード電極12に電気的に接続されるため、サブ電極24は中心電極10とは異なる電位となる。そのため、電気力線E2は中心電極10から壁面2に向けて生じ、中心電極10と壁面2との間に静電容量CS−E、特性距離dS−Eを有するキャパシタが形成される。
一方、接続状態S2では、図8に示されるように、サブ電極24は中心電極10に電気的に接続されるため、中心電極10とサブ電極とは等電位となる。そのため、電気力線E2は中心電極10及びサブ電極24から壁面2に向けて生じ、中心電極10及びサブ電極24と壁面2との間に静電容量CG1−E、特性距離dG1−Eを有するキャパシタが形成される。
このように接続状態S1及びS2は、異なる特性距離dを有する。すなわち、本実施形態では、切替部30による切替操作によって、付着物測定装置1の物理的構造を変化させることなく、キャパシタの特性距離dを2段階にわたって電気的に可変に構成されている。
図9は、図6の付着物測定装置1における付着物22の厚さtと静電容量との関係を示す測定結果である。図9では、接続状態S1に対応する静電容量CS−E、接続状態S2に対応する静電容量CG1−Eがグラフ中の最大値で規格化されて示されており、それに加えて、両者の比S1/S2が併せて示されている。
上述したように、接続状態S2の特性距離dG1−Eは接続状態S1の特性距離dS−Eより小さいため、静電容量CG1−Eは静電容量CS−Eより大きな収束値を有し、またより小さいな厚さtで収束する振る舞いを示している。また比S1/S2は、付着物22の厚さtが小さな領域でピークを示し、その後、付着物22の厚さtに対して単調に増加し、一定値に収束する振る舞いを示している。
このように比S1/S2は十分に厚さtが大きい範囲では、付着物22の誘電率に依存しない一定値を有する。そのため、付着物測定装置1の電極(中心電極10、サブ電極24及びガード電極12)の形状に応じて厚さと比S1/S2との関係を校正しておけば、温度等により付着物22の誘電率が変化した場合であっても、精度よく付着物22の厚さtを計測することができる。例えば、比S1/S2と付着物22の厚さtとの関係を予め実験的、理論的又はシミュレーション的な手法で取得しておき、測定結果と比較することで、実測値である比S1/S2に対応する付着物22の厚さtが得られる。
以上説明したように第1実施形態によれば、互いに電気的に絶縁されて隣接する中心電極10、サブ電極24及びガード電極12間の接続状態を切り替えることで、これら電極が接地点である壁面2との間に生じる電気力線の伝播距離を電気的に可変に構成できる。これにより、装置の物理的構造を変更することなく電気的な切替操作によって、電流検出部20では壁面2上に存在する付着物22の厚さtに応じた電流が得られる。本構成では、このような複数の接続状態における電流の比が付着物22の誘電率に依存しない性質を有するという知見を見出すことにより、不定の誘電率を有する付着物22についても厚さ測定が可能となった。また、このような構成を有する付着物測定装置1は既存の電流計や電源を利用することで導入が可能であるため、コスト的にも有利である。
<第2実施形態>
続いて第2実施形態に係る付着物測定装置1について説明する。図10は第2実施形態に係る付着物測定装置1の内部構成を示す断面図である。尚、上述の前提技術及び第1実施形態に対応する箇所には共通の符号を付すこととし、重複する説明は適宜省略する。
付着物測定装置1は、中心電極10とガード電極12との間に、少なくとも1つのサブ電極24を有する。第2実施形態では複数のサブ電極24を有しており、図10では特に、第1サブ電極24a及び第2サブ電極24bを有している。第1サブ電極24aは中心電極10に対して絶縁層26を介して隣接し、第2サブ電極24bは絶縁層27を介して第1サブ電極24aに隣接するとともに、ガード電極12に対して絶縁層29を介して隣接するように配置されている。また第1サブ電極24aと第2サブ電極24bは、中心電極10及びガード電極12と同様に、一端側が測定面6に対して露出している。
第1サブ電極24a及び第2サブ電極24bもまた、中心電極10と同様に、ガード電極12によって少なくとも部分的に囲まれる。特に本実施形態では、第1サブ電極24a及び第2サブ電極24bはガード電極12と同様に、中心電極10を中心として同心円状に配置されることで、装置構造に起因する寄生容量の影響を抑え、精度のよい測定が可能となる。
また第1サブ電極24aにはリード線L4が接続されており、第2サブ電極24bにはリード線L5が接続されている。リード線L4、L5は、中心電極10に接続されたリード線L1及びガード電極12に接続されたリード線L2に対して接続/切断を選択的に切り替え可能な切替部30を介して接続されている。
接続状態S1では、第1サブ電極24a及び第2サブ電極24bはガード電極12に電気的に接続されるため、電気力線E2は中心電極10から壁面2に向けて生じ、中心電極10と壁面2との間に静電容量CS−E、特性距離dS−Eを有するキャパシタが形成される。この場合、中心電極10から出た電気力線は、第1サブ電極24a、第2サブ電極24b及びガード電極12を避けるように空間4側を迂回し、壁面2に到達する。
接続状態S2では、第1サブ電極24aは中心電極10に電気的に接続され、第2サブ電極24bはガード電極12に電気的に接続されるため、電気力線E2は中心電極10及び第1サブ電極24から壁面2に向けて生じ、中心電極10及び第1サブ電極24aと壁面2との間に静電容量CG1−E、特性距離dG1−Eを有するキャパシタが形成される。この場合、中心電極10及び第1サブ電極24aから出た電気力線は、第2サブ電極24b及びガード電極12を避けるように空間4側を迂回し、壁面2に到達する。このときキャパシタの特性距離dG1−Eは、上述のdS−Eにくらべて小さくなる。
接続状態S3では、第1サブ電極24a及び第2サブ電極24bは中心電極10に電気的に接続されるため、電気力線E2は中心電極10、第1サブ電極24a及び第2サブ電極24bから壁面2に向けて生じ、中心電極10、第1サブ電極24a及び第2サブ電極24bと壁面2との間に静電容量CG2−E、特性距離dG2−Eを有するキャパシタが形成される。この場合、中心電極10、第1サブ電極24a及び第2サブ電極24bから出た電気力線は、ガード電極12を避けるように空間4側を迂回し、壁面2に到達する。このときキャパシタの特性距離dG2−Eは、上述の特性距離dG1−Eにくらべて更に小さくなる。
このように接続状態S1、S2及びS3は、異なる特性距離dを有する。すなわち、本実施形態では、切替部30による切替操作によって、付着物測定装置1の物理的構造を変化させることなく、キャパシタの特性距離dを3段階にわたって電気的に可変に構成されている。
図11は、図10の付着物測定装置1における付着物22の厚さtと静電容量との関係を示す測定結果である。図11では、接続状態S1に対応する静電容量CS−E、接続状態S2に対応する静電容量CG1−E、及び、接続状態S3に対応する静電容量CG2−Eに加えて、両者の比S1/S2が併せて示されている。
ここで本実施形態では第1実施形態と同様に、付着物22の厚さtを比S1/S2に基づいて求めることができるが、比S2/S3又はS3/S1に基づいて求めてもよい。ここで比S1/S2、S2/S3及びS3/S1は、上述したようにそれぞれ異なる接続状態S1、S2、S3に対応するため、厚さに対して異なる感度を有する。そのため、測定条件として要求される感度に応じて、比S1/S2、S2/S3及びS3/S1のいずれかを用いて付着物22の厚さtを求めるとよい。例えば、S3、S2、S1の順に付着物22の厚さtに対して早く収束する特性があるため、S2/S3とすることで中間的な厚さに対して、付着物22の誘電率に依存しない特性となり、S1/S3とすることでより厚い付着物22に対して適した特性となる。また、厚さ方向に付着物の誘電率が変化する場合に適用することでより適切な厚さを取得することができる。
また比S1/S2、S2/S3及びS3/S1を複数用いて、例えばそれらの平均を算出することで付着物22の厚さtを求めてもよい。
以上説明したように第2実施形態によれば、2つのサブ電極を備えることにより、前述の第1実施形態より多い、3種類の接続状態が切替可能である。そして、これら接続状態における電流の各比は、付着物の厚さに対してそれぞれ所定の感度を有することから、所望の要求感度に応じた組み合わせで比を選択することで、好適な測定が可能となる。
<第3実施形態>
続いて第3実施形態に係る付着物測定装置1について説明する。図12は第3実施形態に係る付着物測定装置1の内部構成を示す断面図である。尚、上述の前提技術及び各実施形態に対応する箇所には共通の符号を付すこととし、重複する説明は適宜省略する。
付着物測定装置1は、基準軸Cに中心電極10が配置されている。中心電極10は略矩形状を有しており、測定面6を除く周囲を絶縁層14によって囲まれている。中心電極10の一部は絶縁層14を貫通することで外部に露出しており、外部から電気的に接続可能に構成されている。
中心電極10の外側には絶縁層14を介してガード電極12が配置されている。ガード電極12は測定面6を除いて中心電極10を囲むように構成されており、測定面6と反対側においてケーシング8の開口部8aから外部に露出することにより、外部から電気的に接続可能に構成されている。
ガード電極12の外側には絶縁層16を介してサブ電極40が配置されている。サブ電極40は一部が空間4に面するとともに、その反対側が絶縁層16を貫通することで外部に露出し、外部から電気的に接続可能に構成されている。
中心電極10及びガード電極12はそれぞれリード線L1、L2を介して、電源18に対して並列に接続されている。これにより、中心電極10とガード電極12とは互いに同電位に保持される。またリード線L1には電流計である電流検出部20が直列に配置されており、中心電極10に流れる電流値が検出可能になっている。
またサブ電極40は、切替部42を有するリード線L6を介してガード電極12に接続されている。切替部42はリード線L6のガード電極12に対する接続状態を切り替えるためのスイッチ回路である。
切替部42によってガード電極12とサブ電極が電気的に接続された接続状態S1では、中心電極10と、サブ電極40の反対側の壁面2との間に生じる電気力線によって静電容量C2−E、特性距離d2−Eを有するキャパシタが形成される。一方、切替部42によってガード電極12とサブ電極が電気的に切断された接続状態S2では、中心電極10とサブ電極40との間に生じる電気力線によって静電容量C0−G、特性距離d0−Gを有するキャパシタが形成される。
ここで図12に示されるように、中心電極10を囲むガード電極12は、中心電極10とサブ電極40との間に位置する第1領域R1が、第1領域R1を除く第2領域R2と異なる幅を有する。そのため、接続状態S1における特性距離d2−Eと接続状態S2における特性距離d0−Gが異なる。その結果、接続状態S1におけるキャパシタの静電容量C2−Eと接続状態S2におけるキャパシタの静電容量C0−Gも異なる。
このようにして本実施形態においても、切替部30による切替操作によって、付着物測定装置1の物理的構造を変化させることなく、キャパシタの特性距離dを2段階にわたって電気的に可変に構成されている。そのため、第1実施形態において図9を参照して上述したように、接続状態S1に対応する静電容量C2−E、接続状態S2に対応する静電容量C0−Gの比S1/S2に基づいて、付着物22の厚さtを測定することができる。
以上説明したように第3実施形態によれば、互いに電気的に絶縁されて隣接する中心電極10、サブ電極40及びガード電極12間の接続状態を切り替えることで、これら電極が接地点である壁面との間に生じる電気力線の伝播距離を電気的に可変に構成できる。特にガード電極12は、中心電極10とサブ電極40との間に位置する第1領域R1が、第1領域R1を除く第2領域R2と異なる幅を有するため、接続状態を切り替えた際に電気力線の伝播距離を電気的に変化させることができる。これにより、装置の物理的構造を変更することなく電気的な切替操作によって、電流検出部20では壁面上に存在する付着物の厚さに応じた電流が得られる。このような複数の接続状態における電流の比が付着物22の誘電率に依存しない性質を有するという知見を見出すことにより、不定の誘電率を有する付着物22についても厚さ測定が可能となった。また、このような構成を有する付着物測定装置1は既存の電流計や電源を利用することで導入が可能であるため、コスト的にも有利である。
<第4実施形態>
続いて第4実施形態に係る付着物測定装置1について説明する。図13は第4実施形態に係る付着物測定装置1の内部構成を示す断面図である。尚、上述の前提技術及び各実施形態に対応する箇所には共通の符号を付すこととし、重複する説明は適宜省略する。
付着物測定装置1は、基準軸C1を中心とする第1中心電極10が配置されている。第1中心電極10は略矩形状を有しており、測定面6を除く周囲を絶縁層14によって囲まれている。第1中心電極10の一部は絶縁層14を貫通することで外部に露出しており、外部から電気的に接続可能に構成されている。
第1中心電極10の外側には絶縁層14を介して第1ガード電極12が配置されている。第1ガード電極12は測定面6を除いて第1中心電極10を囲むように構成されており、測定面6と反対側においてケーシング8の開口部8aから外部に露出することにより、外部から電気的に接続可能に構成されている。
第1ガード電極12の外側には絶縁層16を介して第2ガード電極50が配置されている。第2ガード電極50は一部が空間4に面するとともに、その反対側が絶縁層16を貫通することで外部に露出し、外部から電気的に接続可能に構成されている。そして第2ガード電極50の内側には、絶縁層51を介して、基準軸C2を中心とする第2中心電極52が配置されている。第2中心電極52もまた一部がケーシング8から外部に露出することにより、外部から電気的に接続可能に構成されている。
第1中心電極10及び第1ガード電極12はそれぞれリード線L1、L2を介して、第1電源18に対して並列に接続されている。これにより、第1中心電極10と第1ガード電極12とは互いに同電位に保持される。またリード線L1には電流計である第1電流検出部20が直列に配置されており、第1中心電極10に流れる電流値が検出可能になっている。
一方、第2中心電極52及び第2ガード電極50はそれぞれリード線L7、L8を介して、第2交流電源54に対して並列に接続されている。これにより、第2中心電極52と第2ガード電極50とは互いに同電位に保持される。またリード線L7には電流計である第2電流検出部56が直列に配置されており、第2中心電極52に流れる電流値が検出可能になっている。
また図13では図示が省略されているが本実施形態でも上述の他の実施形態と同様に、電極間に形成されるキャパシタの特性距離及び静電容量を電気的に切り替えることが可能に構成されている。図14は図13の付着物測定装置1の各接続状態を示す模式図である。
尚、図14では、第1中心電極10、第1ガード電極12、第2中心電極52及び第2ガード電極50のうち、第1電源18又は第2電源54によって交流電圧が印加された電極を濃いハッチングで区別して示している。
図14(a)は接続状態S1を示している。接続状態S1では、第1中心電極10及び第1ガード電極12が第1電源18によって所定電位に保持され、第2中心電極52及び第2ガード電極50は第2電源56から切断されている。この場合、測定面6上に形成されるキャパシタは特性距離d1、静電容量C1を有する。
図14(b)は接続状態S2を示している。接続状態S2では、第1中心電極10及び第1ガード電極12が第1電源18から切断されており、第2中心電極52及び第2ガード電極50は第2電源56によって所定電位に保持されている。この場合、測定面6上に形成されるキャパシタは特性距離d2、静電容量C2を有する。
図14(c)は接続状態S3を示している。接続状態S3では、第1中心電極10及び第1ガード電極12は第1電源18によって所定電位に保持されており、第2中心電極52及び第2ガード電極50は第2電源56によって所定電位に保持されている。この場合、測定面6上に形成されるキャパシタは、第1電流検出部20で検出された電流に基づくと、特性距離d3、静電容量C3を有する。
図14(d)は接続状態S4を示している。接続状態S4では、接続状態S3と同様に、第1中心電極10及び第1ガード電極12は第1電源18によって所定電位に保持されており、第2中心電極52及び第2ガード電極50は第2電源56によって所定電位に保持されている。この場合、測定面6上に形成されるキャパシタは、第2電流検出部56で検出された電流に基づくと、特特性距離d4、静電容量C4を有する。
このようにして本実施形態においても、切替部30による切替操作によって、付着物測定装置1の物理的構造を変化させることなく、キャパシタの特性距離dを複数段階にわたって電気的に可変に構成されている。そのため、第1実施形態において図9を参照して上述したように、本実施形態においても接続状態S1〜S4を切り替えることで、各測定結果の比に基づいて、付着物22の厚さtを測定することができる。
特に本実施形態では、上述の他の実施形態に比べて各電極や絶縁層の寸法を調整することで、各接続状態における特性距離を異ならせることが容易である。そのため、特性距離を好適に調整することで、測定感度の設計を幅広く行うことができる。図13の例では、第1中心電極10と第2中心電極52のサイズを互いに異ならせることで、各接続状態における特性距離が有効に変化するように設計されている。
このように本実施形態では、第1中心電極10、第1ガード電極12を含む左半分の構成と、第2中心電極52、第2ガード電極50を含む右半分の構成とを有しており、実質的に第3実施形態に係る付着物測定装置を所定方向に沿って2つ並べた構成となっている。すなわち、第1中心電極10と第2中心電極52とが所定方向に並んでいるため、略同等の装置が並んで配置された構成を有しているとみなせる。そのため、壁面2上における異なる位置における付着物22の厚さが測定できる。その結果、異なる地点における測定結果を用いることで、例えば付着物22が壁面2上を移動する流動体である場合には、移動速度や脈動などの動的特性の測定も可能となる。
以上説明したように第4実施形態によれば、互いに電気的に絶縁されて隣接する第1中心電極10、第1ガード電極12、第2中心電極52及び第2ガード電極50間の接続状態を切り替えることで、これら電極が接地点である壁面との間に生じる電気力線の伝播距離を電気的に可変に構成できる。本構成では上述の構成に比べて、より多くの接続状態への切替が可能である。これら接続状態における電流の各比は、付着物22の厚さに対してそれぞれ所定の感度を有することから、所望の要求感度に応じた組み合わせの比を選択することで好適な測定が可能となる。
本発明は壁面上に付着した付着物の厚さを測定するための付着物測定装置に利用可能である。
1 付着物測定装置
2 壁面
3 穴部
4 空間
6 測定面
8 ケーシング
8a 開口部
10 中心電極(第1中心電極)
12 ガード電極(第1ガード電極)
14,16,26,27,28,29,51 絶縁層
18 電源(第1電源)
20 電流検出部(第1電流検出部)
22 付着物
24,40 サブ電極
24a 第1サブ電極
24b 第2サブ電極
30,42 切替部
50 第2ガード電極
52 第2中心電極
54 第2交流電源
56 第2電流検出部
56 第2電源

Claims (9)

  1. 壁面上に付着した付着物の厚さを測定するための付着物測定装置であって、
    前記壁面上の空間に面する中心電極と、
    前記空間に面し、且つ、前記中心電極と電気的に絶縁されて隣接する少なくとも1つのサブ電極と、
    前記空間に面し、且つ、前記少なくとも1つのサブ電極と電気的に絶縁されて隣接するガード電極と、
    前記中心電極及び前記ガード電極に交流電圧を印加可能な電源と、
    前記中心電極及び前記ガード電極に対する前記少なくとも1つのサブ電極の接続状態を選択的に切替可能な切替部と、
    前記中心電極を流れる電流を検出する電流検出部と、
    を備え、
    前記中心電極及び前記ガード電極に対する前記少なくとも1つのサブ電極の複数の前記接続状態において前記電流検出部でそれぞれ検出された電流の比に基づいて前記付着物の厚さを算出する、付着物測定装置。
  2. 前記少なくとも1つのサブ電極は単一の前記サブ電極であり、
    前記サブ電極が前記中心電極に接続された第1接続状態において前記電流検出部で検出される第1電流と、前記サブ電極が前記ガード電極に接続された第2接続状態において前記電流検出部で検出される第2電流との比に基づいて前記付着物の厚さを算出する、請求項1に記載の付着物測定装置。
  3. 前記少なくとも1つのサブ電極は、
    前記中心電極に電気的に絶縁されて隣接する第1サブ電極と、
    前記第1サブ電極に電気的に絶縁されて隣接する第2サブ電極と
    を含み、
    前記第1サブ電極及び前記第2サブ電極が前記中心電極に接続された第1接続状態において前記電流検出部で検出される第1電流と、前記第1サブ電極が前記中心電極に接続され、且つ、前記第2サブ電極が前記ガード電極に接続された第2接続状態において前記電流検出部で検出される第2電流と、前記第1サブ電極及び前記第2サブ電極が前記ガード電極に接続された第3接続状態において前記電流検出部で検出される第3電流と、のいずれかの比に基づいて前記付着物の厚さを算出する、請求項1に記載の付着物測定装置。
  4. 前記中心電極は前記ガード電極によって少なくとも部分的に囲まれる、請求項1から3のいずれか一項に記載の付着物測定装置。
  5. 前記ガード電極及び前記サブ電極は、前記第1電極を中心として同心円状に配置される、請求項4に記載の付着物測定装置。
  6. 前記中心電極、前記サブ電極及び前記ガード電極は前記壁面と面一に形成される、請求項1から5のいずれか一項に記載の付着物測定装置。
  7. 壁面上に付着した付着物の厚さを測定するための付着物測定装置であって、
    前記壁面上の空間に面する中心電極と、
    前記空間に面し、且つ、前記中心電極と電気的に絶縁されて前記中心電極を囲むガード電極と、
    前記空間に面し、且つ、前記ガード電極の外側に前記ガード電極と電気的に絶縁されて隣接するサブ電極と、
    前記中心電極及び前記ガード電極に交流電圧を印加可能な電源と、
    前記ガード電極に対する前記サブ電極の接続状態を選択的に切替可能な切替部と、
    前記中心電極を流れる電流を検出する電流検出部と、
    を備え、
    前記ガード電極は、前記中心電極と前記サブ電極との間に位置する第1領域が、前記第1領域を除く第2領域と異なる幅を有し、
    前記ガード電極に対する前記サブ電極の複数の前記接続状態において前記電流検出部でそれぞれ検出された電流の比に基づいて前記付着物の厚さを算出する、付着物測定装置。
  8. 壁面上に付着した付着物の厚さを測定するための付着物測定装置であって、
    前記壁面上の空間に面する第1中心電極と、
    前記空間に面し、且つ、前記第1中心電極と電気的に絶縁されて前記第2中心電極を囲む第1ガード電極と、
    前記第1中心電極及び前記第1ガード電極に交流電圧を印加可能な第1電源と、
    前記第1中心電極及び前記第1ガード電極に対する前記電源の接続状態を選択的に切替可能な第1切替部と、
    前記第1中心電極を流れる電流を検出する第1電流検出部と、
    前記空間に面し、且つ、前記第1ガード電極の外側に前記ガード電極と電気的に絶縁されて隣接する第2ガード電極と、
    前記空間に面し、且つ、前記第2ガード電極によって囲まれる第2中心電極と、
    前記第2中心電極及び前記第2ガード電極に交流電圧を印加可能な第2電源と、
    前記第2中心電極及び前記第2ガード電極に対する前記第2電源の接続状態を選択的に切替可能な第2切替部と、
    前記第2中心電極を流れる電流を検出する第2電流検出部と、
    を備え、
    前記第1中心電極、前記第1ガード電極、前記第2中心電極及び前記第2ガード電極の異なる接続状態において前記第1電流検出部及び前記第2電流検出部でそれぞれ検出された電流の比に基づいて前記付着物の厚さを算出する、付着物測定装置。
  9. 前記第1中心電極と前記第2中心電極は所定方向に沿って配列されている、請求項8に記載の付着物測定装置。
JP2017158156A 2017-08-18 2017-08-18 付着物測定装置 Active JP6924652B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017158156A JP6924652B2 (ja) 2017-08-18 2017-08-18 付着物測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017158156A JP6924652B2 (ja) 2017-08-18 2017-08-18 付着物測定装置

Publications (2)

Publication Number Publication Date
JP2019035699A true JP2019035699A (ja) 2019-03-07
JP6924652B2 JP6924652B2 (ja) 2021-08-25

Family

ID=65637481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017158156A Active JP6924652B2 (ja) 2017-08-18 2017-08-18 付着物測定装置

Country Status (1)

Country Link
JP (1) JP6924652B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729051A (zh) * 2020-12-08 2021-04-30 广东化一环境科技有限公司 介质厚度检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829111A (ja) * 1994-07-19 1996-02-02 Kyoto Jushi Seiko Kk 静電容量計を用いた厚みまたは変位測定装置、および静電容量計を用いた厚みまたは変位測定方法
JP2006106008A (ja) * 2005-12-20 2006-04-20 Jsk Kk 静電容量型検出装置
JP2010249531A (ja) * 2009-04-10 2010-11-04 Fujikura Ltd 雨滴検知装置およびワイパー動作制御装置
US20170176165A1 (en) * 2014-07-11 2017-06-22 Kwang-youn Kim Apparatus for measuing thickness of powder deposited on inner surface of pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829111A (ja) * 1994-07-19 1996-02-02 Kyoto Jushi Seiko Kk 静電容量計を用いた厚みまたは変位測定装置、および静電容量計を用いた厚みまたは変位測定方法
JP2006106008A (ja) * 2005-12-20 2006-04-20 Jsk Kk 静電容量型検出装置
JP2010249531A (ja) * 2009-04-10 2010-11-04 Fujikura Ltd 雨滴検知装置およびワイパー動作制御装置
US20170176165A1 (en) * 2014-07-11 2017-06-22 Kwang-youn Kim Apparatus for measuing thickness of powder deposited on inner surface of pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112729051A (zh) * 2020-12-08 2021-04-30 广东化一环境科技有限公司 介质厚度检测设备

Also Published As

Publication number Publication date
JP6924652B2 (ja) 2021-08-25

Similar Documents

Publication Publication Date Title
WO2015083618A1 (ja) 非接触電圧測定装置および非接触電圧測定方法
US20150035549A1 (en) Capacitance sensor
Shenil et al. Feasibility study of a non-contact AC voltage measurement system
JP2017501406A5 (ja) 空間を包囲する物体およびそれらの結合部のための漏れ監視システム
CN106164691A (zh) 低偏移和高灵敏度垂直霍尔效应传感器
CN103543422B (zh) 用于确定传导性的电导率传感器的至少一个故障的方法及电导率传感器
JP2018031743A (ja) 絶縁体の電荷分布の測定方法
JP2019035699A (ja) 付着物測定装置
KR102339496B1 (ko) 전기 특성 측정 장치
Tiep et al. Tilt sensor based on three electrodes dielectric liquid capacitive sensor
Sato et al. On the nature of surface discharges in silicone-gel: Prebreakdown discharges in cavities
US11543229B2 (en) Sensor misalignment measuring device
KR101879271B1 (ko) 액막 두께 측정 기판, 액막 두께 측정 장치 및 액막 두께 측정 방법
JP2008232737A (ja) 漏電検出方法およびこの方法に用いるデジタルテスタ
JP6884555B2 (ja) 気体放電の状態検出方法、気体放電の状態検出プログラム、および気体放電の状態検出システム
JP2015169440A (ja) 電圧測定装置および電圧測定方法
CN105224153A (zh) 触控电极的电学性能检测装置和检测方法
JP2010256125A (ja) 電圧検出装置および線間電圧検出装置
JP6959633B2 (ja) 電荷測定器、流体製造装置、流体の電荷量の測定方法及び流体の製造方法
WO2021038454A3 (en) Textile sensor for the detection of liquids and temperature, and method of making same
JP4743036B2 (ja) 漏液センサ装置
KR102344636B1 (ko) 정전용량형 누액 감지 장치
JP5374890B2 (ja) 膜厚・接触状態計測方法及び装置
JP2010210606A (ja) 電荷校正装置
KR102397328B1 (ko) 필름형 비접촉 정전용량형 누액 감지 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R150 Certificate of patent or registration of utility model

Ref document number: 6924652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150