JP2019020296A - Optical measuring device - Google Patents
Optical measuring device Download PDFInfo
- Publication number
- JP2019020296A JP2019020296A JP2017140131A JP2017140131A JP2019020296A JP 2019020296 A JP2019020296 A JP 2019020296A JP 2017140131 A JP2017140131 A JP 2017140131A JP 2017140131 A JP2017140131 A JP 2017140131A JP 2019020296 A JP2019020296 A JP 2019020296A
- Authority
- JP
- Japan
- Prior art keywords
- light
- scanning
- receiving element
- scanning light
- measurement target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 29
- 238000005259 measurement Methods 0.000 claims abstract description 90
- 230000010287 polarization Effects 0.000 claims abstract description 16
- 230000001678 irradiating effect Effects 0.000 claims abstract 2
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 230000002123 temporal effect Effects 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 description 13
- AHVPOAOWHRMOBY-UHFFFAOYSA-N 2-(diethylamino)-1-[6,7-dimethoxy-1-[1-(6-methoxynaphthalen-2-yl)ethyl]-3,4-dihydro-1h-isoquinolin-2-yl]ethanone Chemical compound C1=C(OC)C=CC2=CC(C(C)C3C4=CC(OC)=C(OC)C=C4CCN3C(=O)CN(CC)CC)=CC=C21 AHVPOAOWHRMOBY-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本件は、光学式測定装置に関する。 The present case relates to an optical measurement apparatus.
光学式測定装置が開示されている(例えば、特許文献1参照)。この光学式測定装置では、回転ミラーにより回転走査されたレーザビームをコリメートレンズによりコリメート光とし、コリメートレンズと集光レンズとの間に被測定対象を配置することで、被測定対象の外径を測定することができる。また、被測定対象として透明管を用いた場合に、被測定対象の外径に加えて、内径も測定する技術が開示されている(例えば、特許文献2参照)。 An optical measuring device is disclosed (for example, see Patent Document 1). In this optical measuring device, the laser beam rotated and scanned by a rotating mirror is converted into collimated light by a collimating lens, and the measured object is disposed between the collimating lens and the condenser lens, thereby reducing the outer diameter of the measured object. Can be measured. In addition, when a transparent tube is used as an object to be measured, a technique for measuring an inner diameter in addition to an outer diameter of the object to be measured is disclosed (for example, see Patent Document 2).
しかしながら、透明管の外径と内径との差が小さい場合(薄肉の場合)、高精度に内径を測定することは困難である。 However, when the difference between the outer diameter and the inner diameter of the transparent tube is small (in the case of a thin wall), it is difficult to measure the inner diameter with high accuracy.
1つの側面では、本発明は、高精度に内径を測定することができる光学式測定装置を提供することを目的とする。 In one aspect, an object of the present invention is to provide an optical measuring device capable of measuring an inner diameter with high accuracy.
1つの態様では、本発明に係る光学式測定装置は、光透過性の円筒形状の被測定対象に対し、前記円筒形状の軸に対する垂直断面内において光軸が平行に移動する走査光を照射し、前記被測定対象に対する第1の走査の際には第1の走査光を照射し、前記被測定対象に対する第2の走査の際には前記第1の走査光とは偏光方向が異なる第2の走査光を照射する照射装置と、前記被測定対象を透過した前記走査光に対して光電変換を行う受光素子と、前記第1の走査の際に前記受光素子が出力する電気信号の時間変化と、前記第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分から得られるピークに基づいて、前記被測定対象の内径を計算する演算部と、を備えることを特徴とする。 In one aspect, the optical measurement apparatus according to the present invention irradiates a light-transmitting cylindrical object to be measured with scanning light whose optical axis moves in parallel in a cross section perpendicular to the cylindrical axis. The first scanning light is irradiated during the first scanning of the measurement target, and the second scanning direction is different from that of the first scanning light during the second scanning of the measurement target. An irradiation device that irradiates the scanning light; a light receiving element that performs photoelectric conversion on the scanning light that has passed through the measurement target; and a time change of an electrical signal that is output by the light receiving element during the first scanning And an arithmetic unit that calculates an inner diameter of the measurement target based on a peak obtained from a voltage difference from a time change of an electric signal output from the light receiving element during the second scanning. Features.
上記光学式測定装置において、前記演算部は、前記電圧差分のピーク同士の距離に対応する、前記被測定対象における距離と、前記被測定対象の外径とから、前記内径を計算してもよい。 In the optical measurement device, the calculation unit may calculate the inner diameter from a distance in the measurement target corresponding to a distance between peaks of the voltage difference and an outer diameter of the measurement target. .
上記光学式測定装置において、前記第1の走査光と前記第2の走査光とは、偏光方向が90度異なっていてもよい。 In the optical measurement apparatus, the first scanning light and the second scanning light may be different in polarization direction by 90 degrees.
上記光学式測定装置において、前記照射装置は、光源からの光に対し、λ/2波長板を透過させる場合と、前記λ/2波長板を透過させない場合とを切り替えることで、前記第1の走査光および前記第2の走査光を照射してもよい。 In the optical measurement apparatus, the irradiation device switches the first light transmission between a case where the light from the light source is transmitted through the λ / 2 wavelength plate and a case where the light is not transmitted through the λ / 2 wavelength plate. The scanning light and the second scanning light may be irradiated.
高精度に内径を測定することができる光学式測定装置を提供することができる。 It is possible to provide an optical measuring device capable of measuring the inner diameter with high accuracy.
以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、実施形態に係る光学式測定装置100の斜視図である。図2は、光学式測定装置100の構成を例示する概略図である。光学式測定装置100は、レーザ光を一次元走査して被測定対象の寸法を測定するレーザ・スキャン・マイクロメータ(LSM)であり、例えば、電子部品や機械部品の寸法測定、金属丸棒や光ファイバーの寸法測定などに利用される。以下の説明において、被測定対象Wに対するレーザ光の出射方向をZ方向とし、被測定対象Wの軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。Y方向は、レーザ光の走査方向と一致する。図1および図2で例示するように、光学式測定装置100は、発光部10、走査部20、直線偏光板30、受光部40、演算部50などを備える。 FIG. 1 is a perspective view of an optical measurement apparatus 100 according to the embodiment. FIG. 2 is a schematic view illustrating the configuration of the optical measurement apparatus 100. The optical measurement apparatus 100 is a laser scan micrometer (LSM) that measures a dimension of an object to be measured by one-dimensionally scanning a laser beam. For example, a dimension measurement of an electronic component or a mechanical component, a metal round bar, Used for measuring the dimensions of optical fibers. In the following description, the laser beam emission direction with respect to the measurement target W is defined as the Z direction, the axial direction of the measurement target W is defined as the X direction, and the Z direction and the direction orthogonal to the X direction are defined as the Y direction. The Y direction coincides with the scanning direction of the laser beam. As illustrated in FIGS. 1 and 2, the optical measurement apparatus 100 includes a light emitting unit 10, a scanning unit 20, a linearly polarizing plate 30, a light receiving unit 40, a calculation unit 50, and the like.
発光部10は、レーザ光源11、レーザ制御回路12、偏光装置13等を備えている。レーザ光源11は、半導体レーザ素子等により構成され、波長が例えば650nmで、断面形状がほぼ円形若しくは楕円形の光束(レーザ光)を射出する。レーザ光源11は、レーザ制御回路12によって制御され、高速(例えば数MHz〜数十MHz)でオンオフされる。偏光装置13は、レーザ光源11が射出したレーザ光を90°偏光させる装置である。例えば、偏光装置13は、レーザ制御回路12の指示に従って、レーザ光にλ/2波長板を通過させない場合と、レーザ光にλ/2波長板を通過させる場合と、を切り替える。 The light emitting unit 10 includes a laser light source 11, a laser control circuit 12, a polarizing device 13, and the like. The laser light source 11 is composed of a semiconductor laser element or the like, and emits a light beam (laser light) having a wavelength of, for example, 650 nm and a substantially circular or elliptical cross-sectional shape. The laser light source 11 is controlled by a laser control circuit 12, and is turned on and off at a high speed (for example, several MHz to several tens of MHz). The polarizing device 13 is a device that polarizes the laser light emitted from the laser light source 11 by 90 °. For example, the polarization device 13 switches between the case where the laser light does not pass through the λ / 2 wavelength plate and the case where the laser light passes through the λ / 2 wavelength plate in accordance with an instruction from the laser control circuit 12.
走査部20は、反射ミラー21、回転ミラー22、モータ23、モータ駆動回路24、F−θレンズ25、同期用受光素子26等を備えている。反射ミラー21は、レーザ光源11から射出されたレーザ光を反射して回転ミラー22に入射する。回転ミラー22は、回転ミラー22と同軸に配置されたモータ23により回転し、反射ミラー21を介して入射されたレーザ光を回転走査光に変換してF−θレンズ25に入射する。具体的には、回転ミラー22は、多角柱(図2では8角柱)の各側面がそれぞれ反射面を構成する回転多面鏡であり、モータ23によって例えば5000〜20000回転/分の速度で回転駆動される。回転ミラー22は、自身の回転によって反射面に入射するレーザ光の反射角度を変化させ、これによりレーザ光を主走査方向(スキャン方向)に偏向走査させる。 The scanning unit 20 includes a reflecting mirror 21, a rotating mirror 22, a motor 23, a motor driving circuit 24, an F-θ lens 25, a synchronization light receiving element 26, and the like. The reflection mirror 21 reflects the laser light emitted from the laser light source 11 and enters the rotating mirror 22. The rotating mirror 22 is rotated by a motor 23 arranged coaxially with the rotating mirror 22, converts the laser light incident through the reflecting mirror 21 into rotating scanning light, and enters the F-θ lens 25. Specifically, the rotating mirror 22 is a rotating polygonal mirror in which each side surface of a polygonal column (octagonal column in FIG. 2) constitutes a reflecting surface, and is rotated by the motor 23 at a speed of 5000 to 20000 rpm, for example. Is done. The rotating mirror 22 changes the reflection angle of the laser light incident on the reflecting surface by its rotation, and thereby deflects and scans the laser light in the main scanning direction (scanning direction).
モータ駆動回路24は、後述するモータ同期回路54の出力に基づきモータ23に対して電力を供給する。F−θレンズ25は、回転ミラー22で変換された回転走査光を等速度の平行走査光に変換する。具体的には、F−θレンズ25は、2枚のレンズ面の曲率を変えることにより、レンズ周辺部と中心部で走査速度が一定になるように設計されている。したがって、F−θレンズ25を用いて、被測定対象Wを透過する平行走査光の透過強度の時間変化を測定することで、被測定対象Wの寸法を求めることができる。F−θレンズ25により平行走査光に変換されたレーザ光は、回転ミラー22の回転に伴い被測定対象Wを含む測定領域を走査するように照射されることになる。 The motor drive circuit 24 supplies power to the motor 23 based on the output of a motor synchronization circuit 54 described later. The F-θ lens 25 converts the rotational scanning light converted by the rotating mirror 22 into uniform parallel scanning light. Specifically, the F-θ lens 25 is designed so that the scanning speed is constant between the lens periphery and the center by changing the curvature of the two lens surfaces. Therefore, the dimension of the measurement target W can be obtained by measuring the temporal change in the transmission intensity of the parallel scanning light transmitted through the measurement target W using the F-θ lens 25. The laser beam converted into parallel scanning light by the F-θ lens 25 is irradiated so as to scan the measurement region including the measurement target W as the rotating mirror 22 rotates.
同期用受光素子26は、F−θレンズ25の外側であって、レーザ光がF−θレンズ25を通過する範囲の1回の走査が開始される前、または終了した後に、レーザ光を受光する位置に配置されている。同期用受光素子26は、レーザ光による1走査の開始または終了を検出してパルス状のタイミング基準信号(以下、基準信号と称する)を出力する。したがって、レーザ光の1回の走査が開始される毎に、または終了する毎に基準信号が1回出力されることとなる。 The light-receiving element for synchronization 26 receives the laser light outside the F-θ lens 25 and before or after one scan of the range in which the laser light passes through the F-θ lens 25 is started. It is arranged at the position to do. The light-receiving element for synchronization 26 detects the start or end of one scan by laser light and outputs a pulsed timing reference signal (hereinafter referred to as a reference signal). Accordingly, the reference signal is output once every time scanning of the laser beam is started or finished.
直線偏光板(偏光板)30は、偏光子の向きが、レーザ光の出射方向(Z方向)および被測定対象Wの軸方向(X方向)に直交する方向、即ち、被測定対象Wの反射面(XZ平面)に対して垂直方向(Y方向)となるように形成されている。即ち、F−θレンズ25により平行走査光に変換されたレーザ光は、直線偏光板1を通過する際、被測定対象Wの反射面に対して水平方向(X方向)の振動成分が遮断され、反射面に対して垂直方向(Y方向)の成分のみが通過することとなる。被測定対象Wは円筒形状を有しているため、回転ミラー22の回転に伴い、直線偏光板30を通過する平行走査光は、被測定対象Wの円筒形状の軸に対する垂直断面内において光軸が平行に移動する。 The linearly polarizing plate (polarizing plate) 30 has a direction in which the polarizer is perpendicular to the laser beam emission direction (Z direction) and the axial direction (X direction) of the measurement target W, that is, the reflection of the measurement target W. It is formed to be perpendicular to the surface (XZ plane) (Y direction). That is, when the laser light converted into parallel scanning light by the F-θ lens 25 passes through the linear polarizing plate 1, the vibration component in the horizontal direction (X direction) is blocked with respect to the reflection surface of the measurement target W. Only the component in the vertical direction (Y direction) passes through the reflecting surface. Since the object to be measured W has a cylindrical shape, the parallel scanning light that passes through the linearly polarizing plate 30 with the rotation of the rotating mirror 22 has an optical axis in a vertical cross section with respect to the axis of the cylindrical shape of the object to be measured W. Move in parallel.
受光部40は、集光レンズ41、受光素子42、アンプ43、等を備えている。集光レンズ41は、被測定対象Wを通過した平行走査光を集光して受光素子42に入射する。受光素子42は、集光レンズ41により集光された平行走査光に対して光電変換を行う。具体的には、受光素子42は、受光強度に応じた電圧を有する電気信号を出力する。受光素子42は、受光強度が大きいほど電圧が大きい電気信号を出力し、受光強度が小さいほど電圧が小さい電気信号を出力する。電気信号の電圧の強弱を測定することで、被測定対象Wの走査面内における走査方向の寸法を測定することができる。なお、こうした寸法算出処理は、演算部50にて行われる。アンプ43は、受光素子42より出力された電気信号を増幅し、演算部50に出力する。 The light receiving unit 40 includes a condenser lens 41, a light receiving element 42, an amplifier 43, and the like. The condensing lens 41 condenses the parallel scanning light that has passed through the measurement target W and enters the light receiving element 42. The light receiving element 42 performs photoelectric conversion on the parallel scanning light collected by the condenser lens 41. Specifically, the light receiving element 42 outputs an electrical signal having a voltage corresponding to the received light intensity. The light receiving element 42 outputs an electric signal having a higher voltage as the light receiving intensity is higher, and outputs an electric signal having a lower voltage as the light receiving intensity is lower. By measuring the strength of the voltage of the electrical signal, it is possible to measure the dimension in the scanning direction of the measurement target W within the scanning plane. Note that such a dimension calculation process is performed by the calculation unit 50. The amplifier 43 amplifies the electrical signal output from the light receiving element 42 and outputs the amplified signal to the calculation unit 50.
演算部50は、電圧検出回路51、差分検出回路52、クロック回路53、モータ同期回路54、入出力回路55、キーボード56、CPU(中央演算装置)57、RAM(ランダムアクセスメモリ)58、記憶部59、等を備えている。電圧検出回路51は、アンプ43から出力された電気信号の電圧値の時間変化を検出する。それにより、受光素子42で受光される走査光の受光強度の時間変化を検出することができる。差分検出回路52は、電圧検出回路51が検出する電圧値の時間変化の、走査ごとの差分を検出する。 The calculation unit 50 includes a voltage detection circuit 51, a difference detection circuit 52, a clock circuit 53, a motor synchronization circuit 54, an input / output circuit 55, a keyboard 56, a CPU (central processing unit) 57, a RAM (random access memory) 58, and a storage unit. 59, etc. The voltage detection circuit 51 detects a time change of the voltage value of the electric signal output from the amplifier 43. As a result, it is possible to detect a temporal change in the received light intensity of the scanning light received by the light receiving element 42. The difference detection circuit 52 detects the difference for each scan of the time change of the voltage value detected by the voltage detection circuit 51.
モータ同期回路54は、クロック回路53から入力されたクロック信号に同期した駆動信号をモータ駆動回路24に対して出力する。なお、モータ駆動回路24は、モータ同期回路54の出力に基づいてモータ23に電力を供給する。したがって、回転ミラー22は、クロック信号に対して所定の関係を持った速度で回転することとなる。 The motor synchronization circuit 54 outputs a drive signal synchronized with the clock signal input from the clock circuit 53 to the motor drive circuit 24. The motor drive circuit 24 supplies power to the motor 23 based on the output of the motor synchronization circuit 54. Therefore, the rotating mirror 22 rotates at a speed having a predetermined relationship with the clock signal.
入出力回路55は、算出された値(被測定対象Wの寸法)等を表示装置や印刷装置などの外部出力装置(図示省略)に出力する。キーボード56は、各種の操作キー群を備えて構成されている。ユーザによりキーボード56の所定のキーの押下操作が行われると、この押下操作に応じた操作信号がCPU57に出力される。CPU57は、例えば、記憶部59に記憶されている各種処理プログラムに従って、各種の制御処理を行う。 The input / output circuit 55 outputs the calculated value (the dimension of the measurement target W) and the like to an external output device (not shown) such as a display device or a printing device. The keyboard 56 includes various operation key groups. When the user presses a predetermined key on the keyboard 56, an operation signal corresponding to the press operation is output to the CPU 57. The CPU 57 performs various control processes according to various processing programs stored in the storage unit 59, for example.
RAM58は、CPU57により演算処理されたデータを格納するワークメモリエリアを形成している。記憶部59は、例えば、CPU57によって実行可能なシステムプログラムや、そのシステムプログラムで実行可能な各種処理プログラム、これら各種処理プログラムを実行する際に使用されるデータ、CPU57によって演算処理された各種処理結果のデータなどを記憶する。なお、プログラムは、コンピュータが読み取り可能なプログラムコードの形で記憶部59に記憶されている。 The RAM 58 forms a work memory area for storing data calculated by the CPU 57. The storage unit 59 is, for example, a system program that can be executed by the CPU 57, various processing programs that can be executed by the system program, data that is used when these various processing programs are executed, and various processing results that are arithmetically processed by the CPU 57. The data etc. are stored. Note that the program is stored in the storage unit 59 in the form of a computer-readable program code.
CPU57は、電圧検出回路51が検出した電圧の時間変化および差分検出回路52が検出した電圧差分を用いて、被測定対象Wの内径を計算する。以下、被測定対象Wの内径の測定の詳細について説明する。 The CPU 57 calculates the inner diameter of the measurement target W by using the voltage change detected by the voltage detection circuit 51 and the voltage difference detected by the difference detection circuit 52. Hereinafter, details of the measurement of the inner diameter of the measurement target W will be described.
図3は、透明管(例えば、屈折率が1.5のガラス)の被測定対象Wを透過する平行走査光の軌道変化を例示する図である。図3で例示するように、Y方向における被測定対象Wの端点4よりも外側および端点5よりも外側においては、平行走査光が被測定対象Wにより遮られないため、受光素子42における受光強度が第1閾値以上となる。 FIG. 3 is a diagram exemplifying a change in trajectory of parallel scanning light transmitted through the measurement target W of a transparent tube (for example, glass having a refractive index of 1.5). As illustrated in FIG. 3, since the parallel scanning light is not blocked by the measurement target W outside the end point 4 and outside the end point 5 of the measurement target W in the Y direction, the light reception intensity in the light receiving element 42. Is greater than or equal to the first threshold.
次に、被測定対象Wを透過する平行走査光の軌道は、被測定対象Wとの反射・屈折により様々な軌道に変化する。被測定対象Wの透過によって軌道が変化すると、受光素子42における受光強度が低下するため、受光素子42から出力される電気信号の電圧が小さくなる。一方、被測定対象Wを透過した場合に軌道が変化しなければ、受光素子42における受光強度が大きくなる。それにより、受光素子42から出力される電気信号の電圧が大きくなる。被測定対象Wを透過した場合に軌道が変化せずに十分な受光強度が得られる(電気信号の電圧値が第1閾値未満で第2閾値(<第1閾値)以上となる)入射位置は3箇所存在する。当該3箇所に入射した平行走査光は、被測定対象Wを透過した後に十分な光強度を有しつつZ方向に進む。 Next, the trajectory of the parallel scanning light that passes through the measurement target W changes to various trajectories due to reflection and refraction with the measurement target W. When the trajectory changes due to the transmission of the measurement target W, the light reception intensity at the light receiving element 42 decreases, and the voltage of the electrical signal output from the light receiving element 42 decreases. On the other hand, if the trajectory does not change when passing through the measurement target W, the light receiving intensity at the light receiving element 42 increases. As a result, the voltage of the electrical signal output from the light receiving element 42 increases. When the light passes through the measurement target W, a sufficient received light intensity can be obtained without changing the trajectory (the voltage value of the electric signal is less than the first threshold and equal to or greater than the second threshold (<first threshold)). There are three places. The parallel scanning light incident on the three places travels in the Z direction while having a sufficient light intensity after passing through the measurement target W.
1箇所目の入射位置は、被測定対象Wの軸を通過する入射位置1である。入射位置1は、被測定対象Wの外周に対する法線方向に平行走査光が入射される位置である。入射位置1を含む極小範囲に平行走査光が入射する期間においては、受光素子42から出力される電気信号の電圧が大きくなる。当該極小範囲外では、受光素子42から出力される電気信号の電圧が小さくなる。したがって、当該極小範囲において、受光素子42が出力する電気信号の電圧に、第1閾値未満で第2閾値以上のピークが現れる。 The first incident position is the incident position 1 that passes through the axis of the measurement target W. The incident position 1 is a position where parallel scanning light is incident in a normal direction with respect to the outer periphery of the measurement target W. During the period in which the parallel scanning light enters the minimal range including the incident position 1, the voltage of the electric signal output from the light receiving element 42 increases. Outside the minimum range, the voltage of the electrical signal output from the light receiving element 42 is small. Therefore, in the minimum range, a peak that is less than the first threshold and greater than or equal to the second threshold appears in the voltage of the electrical signal output from the light receiving element 42.
2箇所目および3箇所目の入射位置は、端点4付近の入射位置2、および端点5付近の入射位置3である。入射位置2および入射位置3においては、平行走査光は、被測定対象Wの外周と大気との境界で反射して被測定対象Wの内方に進み、被測定対象Wの軸を通るY方向と被測定対象Wの内周との交点において被測定対象Wの内周と大気との境界で反射して被測定対象Wの外方に進み、被測定対象Wの外周と大気との境界で反射してZ方向に進む。したがって、見かけ上、入射位置2,3に入射した平行走査光の軌道は変化しない。入射位置2,3を含む極小範囲に平行走査光が入射する期間においては、受光素子42から出力される電気信号の電圧が大きくなる。当該極小範囲外では、受光素子42から出力される電気信号の電圧が小さくなる。したがって、当該極小範囲において、受光素子42が出力する電気信号の電圧に、第1閾値未満で第2閾値以上のピークが現れる。 The second and third incident positions are an incident position 2 near the end point 4 and an incident position 3 near the end point 5. At the incident position 2 and the incident position 3, the parallel scanning light is reflected at the boundary between the outer periphery of the measurement target W and the atmosphere, travels inward of the measurement target W, and passes through the axis of the measurement target W in the Y direction. Is reflected at the boundary between the inner circumference of the measurement target W and the atmosphere at the intersection between the measurement target W and the inner circumference of the measurement target W, and proceeds to the outside of the measurement target W. At the boundary between the outer circumference of the measurement target W and the atmosphere Reflect and proceed in the Z direction. Therefore, apparently, the trajectory of the parallel scanning light incident on the incident positions 2 and 3 does not change. During the period in which the parallel scanning light enters the minimum range including the incident positions 2 and 3, the voltage of the electric signal output from the light receiving element 42 increases. Outside the minimum range, the voltage of the electrical signal output from the light receiving element 42 is small. Therefore, in the minimum range, a peak that is less than the first threshold and greater than or equal to the second threshold appears in the voltage of the electrical signal output from the light receiving element 42.
以上のことから、入射1〜3のそれぞれに対応する3つのピークが現れる。入射位置2,3に対応する2つのピークは、入射位置1に対応する1つのピークを挟む。 From the above, three peaks corresponding to the incidents 1 to 3 appear. Two peaks corresponding to the incident positions 2 and 3 sandwich one peak corresponding to the incident position 1.
特許文献2によれば、Y方向上側の入射位置2とY方向下側の入射位置3との距離Dを測定することができれば、被測定対象Wの外径と屈折率とから、被測定対象Wの内径を幾何学的に算出することができる。しかしながら、被測定対象Wの肉厚によっては、距離Dの測定精度が低下する。 According to Patent Document 2, if the distance D between the incident position 2 on the upper side in the Y direction and the incident position 3 on the lower side in the Y direction can be measured, the object to be measured is calculated from the outer diameter and the refractive index of the object to be measured W. The inner diameter of W can be calculated geometrically. However, depending on the thickness of the measurement target W, the measurement accuracy of the distance D decreases.
図4(a)および図4(b)は、同じ外径に対して内径が異なる場合の、受光素子42から出力される電気信号のイメージ図である。図4(a)は、外径に対して内径の比率が小さい(厚肉)の被測定対象Wを測定した場合である。図4(b)は、外径に対して内径の比率が大きい(薄肉)の被測定対象Wを測定した場合である。 FIG. 4A and FIG. 4B are image diagrams of electric signals output from the light receiving element 42 when the inner diameter differs with respect to the same outer diameter. FIG. 4A shows a case where a measurement target W having a small ratio of the inner diameter to the outer diameter (thick wall) is measured. FIG. 4B shows a case where a measurement target W having a large ratio of inner diameter to outer diameter (thin wall) is measured.
図4(a)のように、被測定対象Wが肉厚の場合、Y方向における入射位置2と被測定対象Wの端点4との距離dが大きくなる。この場合、入射位置2に対応する電気信号のピークと、端点4よりも外側で被測定対象Wに遮られずに直進する平行走査光に対する電気信号とが十分に離れる。この場合においては、入射位置2の検出精度が高くなる。それにより、距離Dの測定精度が高くなる。 As shown in FIG. 4A, when the measurement target W is thick, the distance d between the incident position 2 in the Y direction and the end point 4 of the measurement target W is large. In this case, the peak of the electrical signal corresponding to the incident position 2 is sufficiently separated from the electrical signal for the parallel scanning light that travels straight outside the end point 4 without being blocked by the measurement target W. In this case, the detection accuracy of the incident position 2 is increased. Thereby, the measurement accuracy of the distance D increases.
一方、図4(b)のように、被測定対象Wが薄肉の場合、Y方向における入射位置2と被測定対象Wの端点4との距離dが小さくなる。この場合、入射位置2に対応する電気信号のピークが、端点4よりも外側で被測定対象Wに遮られずに直進する平行走査光に対する電気信号に埋もれてしまう。この場合においては、入射位置2の検出精度が低くなる。それにより、距離Dの測定精度が低くなる。 On the other hand, as shown in FIG. 4B, when the measurement target W is thin, the distance d between the incident position 2 in the Y direction and the end point 4 of the measurement target W is small. In this case, the peak of the electrical signal corresponding to the incident position 2 is buried in the electrical signal for the parallel scanning light that travels straight outside the end point 4 without being blocked by the measurement target W. In this case, the detection accuracy of the incident position 2 is lowered. Thereby, the measurement accuracy of the distance D is lowered.
そこで、本実施形態においては、図5で例示するように、レーザ光の偏光方向による反射率の違いに着目する。まず、第1の走査において、ある偏光方向(例えばP偏光)を有するレーザ光を用いて、被測定対象Wを透過する平行走査光に対して受光素子42が出力した電気信号の時間変化を得る。次に、第2の走査において、レーザの偏光方向を90°変えてS偏光とし、同様に電気信号の時間変化を得る。偏光方向を変えるときは、偏光装置13を用いる。このとき、偏光方向に対する反射率の違いから、入射位置2,3に対応する電気信号の電圧に差異が発生する。 Therefore, in the present embodiment, as illustrated in FIG. 5, attention is paid to the difference in reflectance depending on the polarization direction of the laser light. First, in the first scanning, a laser beam having a certain polarization direction (for example, P-polarized light) is used to obtain a time change of an electric signal output from the light receiving element 42 with respect to the parallel scanning light transmitted through the measurement target W. . Next, in the second scanning, the polarization direction of the laser is changed by 90 ° to be S-polarized light, and similarly the time change of the electric signal is obtained. When changing the polarization direction, the polarization device 13 is used. At this time, a difference occurs in the voltage of the electric signal corresponding to the incident positions 2 and 3 due to the difference in reflectance with respect to the polarization direction.
なお、平行走査光が被測定対象Wにおいて反射しない場合には、偏光方向が90°変化しても、反射率の影響を受けない。したがって、入射位置1や、端点4,5よりも外側では、受光素子42が出力する電気信号の電圧に差異が生じない。 When the parallel scanning light is not reflected from the measurement target W, the reflectance is not affected even if the polarization direction changes by 90 °. Therefore, there is no difference in the voltage of the electric signal output from the light receiving element 42 outside the incident position 1 and the end points 4 and 5.
本実施形態においては、差分検出回路52は、第1の走査の際に受光素子42が出力する電気信号の時間変化と、第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分を検出する。CPU57は、検出された電圧差分に基づいて、被測定対象Wの内径を計算する。 In the present embodiment, the difference detection circuit 52 changes the time of the electric signal output from the light receiving element 42 during the first scan and the time change of the electric signal output from the light receiving element during the second scan. The voltage difference is detected. The CPU 57 calculates the inner diameter of the measurement target W based on the detected voltage difference.
まず、図6で例示するように、CPU57は、差分検出回路52が検出した電圧差分のピーク位置から入射位置2および入射位置3を検出することで、入射位置2と入射位置3との距離Dを計算する。なお、図6では、被測定対象Wの軸よりも端点5側の半分について図示してある。次に、CPU57は、入射位置2,3における被測定対象Wの外周面の法線をLとし、検出した距離Dと、被測定対象Wの外径ODとから、入射位置2,3における法線Lに対する平行走査光の入射角度i=sin−1(D/OD)を計算する。なお、外径ODは、図3で説明した第1閾値を用いて、受光素子42が出力する電気信号の電圧値が第1閾値未満から第1閾値以上となる立ち上がりエッジと、第1閾値以上から第1閾値未満となる立ち下がりエッジとから計算することができる。次に、CPU57は、入射角度iと、被測定対象Wの屈折率nとから、入射位置2,3に入射した光の法線Lに対する屈折角度r=sin−1(sini/n)を計算する。次に、CPU57は、被測定対象Wの軸線に垂直で端点4と端点5とを結ぶ線と、入射位置2,3に入射した光の屈折光の進む方向とが成す角度βを計算する。CPU57は、これらの屈折角度rおよび角度βから、正弦定理に基づき内径ID=OD(sinr/sinβ)を計算する。 First, as illustrated in FIG. 6, the CPU 57 detects the incident position 2 and the incident position 3 from the peak position of the voltage difference detected by the difference detection circuit 52, so that the distance D between the incident position 2 and the incident position 3. Calculate In FIG. 6, half of the end point 5 side of the axis of the measurement target W is illustrated. Next, the CPU 57 sets the normal line of the outer peripheral surface of the measurement target W at the incident positions 2 and 3 to L, and calculates the method at the incident positions 2 and 3 from the detected distance D and the outer diameter OD of the measurement target W. The incident angle i = sin −1 (D / OD) of the parallel scanning light with respect to the line L is calculated. Note that the outer diameter OD uses the first threshold described in FIG. 3, and the rising edge at which the voltage value of the electrical signal output from the light receiving element 42 is less than the first threshold to the first threshold or more, and the first threshold or more. To the falling edge that is less than the first threshold. Next, the CPU 57 calculates a refraction angle r = sin −1 (sini / n) with respect to the normal L of the light incident on the incident positions 2 and 3 from the incident angle i and the refractive index n of the measurement target W. To do. Next, the CPU 57 calculates an angle β formed by a line perpendicular to the axis of the measurement target W and connecting the end point 4 and the end point 5 and the direction in which the refracted light of the light incident on the incident positions 2 and 3 travels. The CPU 57 calculates the inner diameter ID = OD (sinr / sin β) from these refraction angles r and β based on the sine theorem.
本実施形態によれば、光透過性の円筒形状の被測定対象Wに対し、円筒形状の軸に対する垂直断面内において光軸が平行に移動する平行走査光が照射され、被測定対象Wに対する第1の走査の際には第1の走査光が照射され、被測定対象Wに対する第2の走査の際には第1の走査光とは偏光方向が90°異なる第2の走査光が照射される。第1の走査の際に受光素子42が出力する電気信号の時間変化と、第2の走査の際に受光素子42が出力する電気信号の時間変化との電圧差分を検出することで、入射位置2,3に対応する電気信号以外の電気信号は相殺される。それにより、高精度に入射位置2,3に対応する電気信号の電圧差分を検出することができる。この電圧差分のピークから被測定対象Wの内径を計算することで、高精度に被測定対象Wの内径を測定することができる。この手法では、外径に対して内径の比率が大きい(薄肉の)場合でも、高精度に被測定対象Wの内径を測定することができる。 According to the present embodiment, the light-transmitting cylindrical object to be measured W is irradiated with the parallel scanning light whose optical axis moves in parallel in the cross section perpendicular to the cylindrical axis, and The first scanning light is irradiated during the first scanning, and the second scanning light whose polarization direction is 90 ° different from that of the first scanning light is irradiated during the second scanning of the measurement target W. The By detecting the voltage difference between the time change of the electrical signal output by the light receiving element 42 during the first scan and the time change of the electrical signal output by the light receiving element 42 during the second scan, the incident position Electric signals other than those corresponding to 2 and 3 are canceled out. Thereby, the voltage difference of the electrical signal corresponding to the incident positions 2 and 3 can be detected with high accuracy. By calculating the inner diameter of the measurement target W from the peak of the voltage difference, the inner diameter of the measurement target W can be measured with high accuracy. In this method, even when the ratio of the inner diameter to the outer diameter is large (thin), the inner diameter of the measurement target W can be measured with high accuracy.
なお、上記実施形態では、第1の走査光と第2の走査光とは、偏光方向が90°異なっているが、それに限られない。第1走査光と第2の走査光との偏光方向が異なっていれば、反射率に差が生じるため、入射位置2,3に対応する電気信号の電圧に差異を生じさせることができる。ただし、偏光方向が90°異なっていれば、電圧差分が最大になるため、電圧差分のピークの検出精度が向上する。 In the above-described embodiment, the first scanning light and the second scanning light are different in polarization direction by 90 °, but are not limited thereto. If the polarization directions of the first scanning light and the second scanning light are different, a difference occurs in the reflectance, so that a difference can be caused in the voltage of the electric signal corresponding to the incident positions 2 and 3. However, if the polarization directions are different by 90 °, the voltage difference is maximized, so that the accuracy of detecting the peak of the voltage difference is improved.
なお、受光素子42が出力する電気信号の時間変化の電圧差分にノイズなどが重畳する場合には、閾値以上の電圧差分を検出するようにすれば、高精度に入射位置2,3に対応する電気信号の電圧差分を検出することができる。 In addition, when noise or the like is superimposed on the voltage difference of the electrical signal output from the light receiving element 42 over time, the voltage difference equal to or greater than the threshold value can be detected, and the incident positions 2 and 3 can be handled with high accuracy. The voltage difference of the electric signal can be detected.
上記実施形態において、発光部10および走査部20が、光透過性の円筒形状の被測定対象に対し、前記円筒形状の軸に対する垂直断面内において光軸が平行に移動する走査光を照射し、前記被測定対象に対する第1の走査の際には第1の走査光を照射し、前記被測定対象に対する第2の走査の際には前記第1の走査光とは偏光方向が異なる第2の走査光を照射する照射装置の一例である。受光素子42が、前記被測定対象を透過した前記走査光に対して光電変換を行う受光素子の一例である。演算部50が、前記第1の走査の際に前記受光素子が出力する電気信号の時間変化と、前記第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分から得られるピークに基づいて、前記被測定対象の内径を計算する演算部の一例である。 In the above-described embodiment, the light emitting unit 10 and the scanning unit 20 irradiate a light-transmitting cylindrical object to be measured with scanning light whose optical axis moves in parallel in a cross section perpendicular to the cylindrical axis. The first scanning light is irradiated during the first scanning of the measurement target, and the second scanning direction is different from the first scanning light during the second scanning of the measurement target. It is an example of the irradiation apparatus which irradiates scanning light. The light receiving element 42 is an example of a light receiving element that performs photoelectric conversion on the scanning light transmitted through the measurement target. The calculation unit 50 calculates the voltage difference between the time change of the electrical signal output from the light receiving element during the first scan and the time change of the electrical signal output from the light receiving element during the second scan. It is an example of the calculating part which calculates the internal diameter of the said to-be-measured object based on the peak obtained.
以上、本発明の実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the present invention described in the claims. It can be changed.
10 発光部
11 レーザ光源
13 偏光装置
22 回転ミラー
51 電圧検出回路
52 差分検出回路
20 走査部
40 受光部
50 演算部
100 光学式測定装置
DESCRIPTION OF SYMBOLS 10 Light emission part 11 Laser light source 13 Polarizing device 22 Rotating mirror 51 Voltage detection circuit 52 Difference detection circuit 20 Scanning part 40 Light receiving part 50 Calculation part 100 Optical measurement apparatus
Claims (4)
前記被測定対象を透過した前記走査光に対して光電変換を行う受光素子と、
前記第1の走査の際に前記受光素子が出力する電気信号の時間変化と、前記第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分から得られるピークに基づいて、前記被測定対象の内径を計算する演算部と、を備えることを特徴とする光学式測定装置。 A light-transmitting cylindrical object to be measured is irradiated with scanning light whose optical axis moves in parallel in a cross section perpendicular to the cylindrical axis, and a first scan is performed on the object to be measured. An irradiating device that irradiates a first scanning light beam and irradiates a second scanning light beam having a polarization direction different from that of the first scanning light beam during the second scanning of the measurement object;
A light receiving element that performs photoelectric conversion on the scanning light transmitted through the measurement target;
Based on the peak obtained from the voltage difference between the time change of the electrical signal output by the light receiving element during the first scan and the time change of the electrical signal output by the light receiving element during the second scan. And an arithmetic unit for calculating the inner diameter of the object to be measured.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017140131A JP6891066B2 (en) | 2017-07-19 | 2017-07-19 | Optical measuring device |
JP2021088485A JP7104217B2 (en) | 2017-07-19 | 2021-05-26 | Optical measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017140131A JP6891066B2 (en) | 2017-07-19 | 2017-07-19 | Optical measuring device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021088485A Division JP7104217B2 (en) | 2017-07-19 | 2021-05-26 | Optical measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019020296A true JP2019020296A (en) | 2019-02-07 |
JP6891066B2 JP6891066B2 (en) | 2021-06-18 |
Family
ID=65353062
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017140131A Active JP6891066B2 (en) | 2017-07-19 | 2017-07-19 | Optical measuring device |
JP2021088485A Active JP7104217B2 (en) | 2017-07-19 | 2021-05-26 | Optical measuring device |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021088485A Active JP7104217B2 (en) | 2017-07-19 | 2021-05-26 | Optical measuring device |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6891066B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111795642A (en) * | 2019-04-05 | 2020-10-20 | 株式会社三丰 | Optical measuring device and optical measuring method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157834A (en) * | 2006-12-26 | 2008-07-10 | Kanazawa Univ | Thickness measuring method and measuring device of transparent layer |
US20080198389A1 (en) * | 2005-01-13 | 2008-08-21 | Ls Cable Ltd. | Outer and Inner Diameter Measuring Apparatus and Method for Transparent Tube |
JP2017110971A (en) * | 2015-12-15 | 2017-06-22 | 株式会社ミツトヨ | Method for measuring inner diameter of transparent tube |
JP2017116769A (en) * | 2015-12-25 | 2017-06-29 | キヤノン株式会社 | Detection device, exposure device and article production method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4859861A (en) * | 1988-05-16 | 1989-08-22 | Becton, Dickinson And Company | Measuring curvature of transparent or translucent material |
-
2017
- 2017-07-19 JP JP2017140131A patent/JP6891066B2/en active Active
-
2021
- 2021-05-26 JP JP2021088485A patent/JP7104217B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080198389A1 (en) * | 2005-01-13 | 2008-08-21 | Ls Cable Ltd. | Outer and Inner Diameter Measuring Apparatus and Method for Transparent Tube |
JP2008157834A (en) * | 2006-12-26 | 2008-07-10 | Kanazawa Univ | Thickness measuring method and measuring device of transparent layer |
JP2017110971A (en) * | 2015-12-15 | 2017-06-22 | 株式会社ミツトヨ | Method for measuring inner diameter of transparent tube |
JP2017116769A (en) * | 2015-12-25 | 2017-06-29 | キヤノン株式会社 | Detection device, exposure device and article production method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111795642A (en) * | 2019-04-05 | 2020-10-20 | 株式会社三丰 | Optical measuring device and optical measuring method |
Also Published As
Publication number | Publication date |
---|---|
JP2021121817A (en) | 2021-08-26 |
JP6891066B2 (en) | 2021-06-18 |
JP7104217B2 (en) | 2022-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6178617B2 (en) | Optical measuring device | |
JP6656905B2 (en) | Measuring method of inner diameter of transparent tube | |
US9885673B2 (en) | Method and apparatus for detecting defect in transparent body | |
JP2009236774A (en) | Three dimensional ranging device | |
JP7104217B2 (en) | Optical measuring device | |
JP2010249604A (en) | Optical measuring apparatus, optical measuring method, and optical measurement processing program | |
JP5914850B2 (en) | Three-dimensional measuring device and illumination device used therefor | |
JP5930984B2 (en) | Shape measuring device | |
JP2009025006A (en) | Optical device, light source device, and optical measuring device | |
US11530911B2 (en) | Optical measuring device and optical measuring method | |
JP2010139432A (en) | Surface inspection device | |
JP2011169796A (en) | Curvature measuring device | |
JP3200927B2 (en) | Method and apparatus for measuring coating state | |
KR20120133604A (en) | Using multi-array lens surface shape measuring device | |
JP2011191077A (en) | Device for measuring axial deflection | |
JP2014048216A (en) | Thickness measurement instrument and thickness measurement method of light-transmissive object | |
JP2016169993A (en) | Gas detector | |
JP6519860B2 (en) | Non-contact shape measuring apparatus and scanning lens aberration correction method | |
JP2014163801A (en) | Eccentricity detector, and eccentricity detection method | |
JP2015172538A (en) | Surface profile measuring apparatus, and light-transmissive object thickness measuring apparatus | |
JP6733195B2 (en) | Optical scanning device | |
JP2022052541A (en) | Optical measuring apparatus and optical measuring method | |
JPH0267905A (en) | Method and apparatus for measuring thin film pattern edge angle | |
CN116379974A (en) | Device and method for detecting surface characteristics of optical element by using multi-wavelength light source | |
JP2008256463A (en) | Measurement apparatus and miller attitude rotation and monitoring apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190419 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210427 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6891066 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |