JP6891066B2 - Optical measuring device - Google Patents

Optical measuring device Download PDF

Info

Publication number
JP6891066B2
JP6891066B2 JP2017140131A JP2017140131A JP6891066B2 JP 6891066 B2 JP6891066 B2 JP 6891066B2 JP 2017140131 A JP2017140131 A JP 2017140131A JP 2017140131 A JP2017140131 A JP 2017140131A JP 6891066 B2 JP6891066 B2 JP 6891066B2
Authority
JP
Japan
Prior art keywords
measured
light
scanning
scanning light
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017140131A
Other languages
Japanese (ja)
Other versions
JP2019020296A (en
Inventor
良一 今泉
良一 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2017140131A priority Critical patent/JP6891066B2/en
Publication of JP2019020296A publication Critical patent/JP2019020296A/en
Priority to JP2021088485A priority patent/JP7104217B2/en
Application granted granted Critical
Publication of JP6891066B2 publication Critical patent/JP6891066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本件は、光学式測定装置に関する。 This case relates to an optical measuring device.

光学式測定装置が開示されている(例えば、特許文献1参照)。この光学式測定装置では、回転ミラーにより回転走査されたレーザビームをコリメートレンズによりコリメート光とし、コリメートレンズと集光レンズとの間に被測定対象を配置することで、被測定対象の外径を測定することができる。また、被測定対象として透明管を用いた場合に、被測定対象の外径に加えて、内径も測定する技術が開示されている(例えば、特許文献2参照)。 An optical measuring device is disclosed (see, for example, Patent Document 1). In this optical measuring device, a laser beam rotationally scanned by a rotating mirror is converted into collimated light by a collimating lens, and an object to be measured is placed between the collimating lens and the condenser lens to reduce the outer diameter of the object to be measured. Can be measured. Further, when a transparent tube is used as the object to be measured, a technique for measuring the inner diameter in addition to the outer diameter of the object to be measured is disclosed (see, for example, Patent Document 2).

特開2014−228299号公報Japanese Unexamined Patent Publication No. 2014-228299 特開平03−162606号公報Japanese Unexamined Patent Publication No. 03-162606

しかしながら、透明管の外径と内径との差が小さい場合(薄肉の場合)、高精度に内径を測定することは困難である。 However, when the difference between the outer diameter and the inner diameter of the transparent tube is small (in the case of thin wall), it is difficult to measure the inner diameter with high accuracy.

1つの側面では、本発明は、高精度に内径を測定することができる光学式測定装置を提供することを目的とする。 In one aspect, it is an object of the present invention to provide an optical measuring device capable of measuring an inner diameter with high accuracy.

1つの態様では、本発明に係る光学式測定装置は、光透過性の円筒形状の被測定対象に対し、前記円筒形状の軸に対する垂直断面内において光軸が平行に移動する走査光を照射し、前記被測定対象に対する第1の走査の際には第1の走査光を照射し、前記被測定対象に対する第2の走査の際には前記第1の走査光とは偏光方向が異なる第2の走査光を照射する照射装置と、前記被測定対象を透過した前記走査光に対して光電変換を行う受光素子と、前記第1の走査の際に前記受光素子が出力する電気信号の時間変化と、前記第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分から得られるピークに基づいて、前記被測定対象の内径を計算する演算部と、を備えることを特徴とする。 In one embodiment, the optical measuring device according to the present invention irradiates a light-transmitting cylindrical object to be measured with scanning light in which the optical axis moves in parallel in a cross section perpendicular to the cylindrical axis. The first scanning light is irradiated during the first scanning of the object to be measured, and the polarization direction is different from that of the first scanning light during the second scanning of the object to be measured. The irradiation device that irradiates the scanning light, the light receiving element that performs photoelectric conversion to the scanning light transmitted through the object to be measured, and the time change of the electric signal output by the light receiving element during the first scanning. And a calculation unit that calculates the inner diameter of the object to be measured based on the peak obtained from the voltage difference from the time change of the electric signal output by the light receiving element during the second scanning. It is a feature.

上記光学式測定装置において、前記演算部は、前記電圧差分のピーク同士の距離に対応する、前記被測定対象における距離と、前記被測定対象の外径とから、前記内径を計算してもよい。 In the optical measuring device, the calculation unit may calculate the inner diameter from the distance in the object to be measured and the outer diameter of the object to be measured, which correspond to the distance between the peaks of the voltage difference. ..

上記光学式測定装置において、前記第1の走査光と前記第2の走査光とは、偏光方向が90度異なっていてもよい。 In the optical measuring device, the first scanning light and the second scanning light may have different polarization directions by 90 degrees.

上記光学式測定装置において、前記照射装置は、光源からの光に対し、λ/2波長板を透過させる場合と、前記λ/2波長板を透過させない場合とを切り替えることで、前記第1の走査光および前記第2の走査光を照射してもよい。 In the optical measuring device, the irradiation device switches between a case where the light from the light source is transmitted through the λ / 2 wave plate and a case where the light is not transmitted through the λ / 2 wave plate. The scanning light and the second scanning light may be irradiated.

高精度に内径を測定することができる光学式測定装置を提供することができる。 It is possible to provide an optical measuring device capable of measuring the inner diameter with high accuracy.

実施形態に係る光学式測定装置の斜視図である。It is a perspective view of the optical measuring apparatus which concerns on embodiment. 光学式測定装置の構成を例示する概略図である。It is the schematic which illustrates the structure of the optical measuring apparatus. 透明管の被測定対象を透過する平行走査光の軌道変化を例示する図である。It is a figure which illustrates the trajectory change of the parallel scanning light which passes through the object to be measured of a transparent tube. (a)および(b)は同じ外径に対して内径が異なる場合に受光素子から出力される電気信号のイメージ図である。(A) and (b) are image diagrams of electric signals output from a light receiving element when the inner diameter is different for the same outer diameter. 実施形態に係る内径測定を例示する図である。It is a figure which illustrates the inner diameter measurement which concerns on embodiment. 実施形態に係る内径測定を例示する図である。It is a figure which illustrates the inner diameter measurement which concerns on embodiment.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施形態に係る光学式測定装置100の斜視図である。図2は、光学式測定装置100の構成を例示する概略図である。光学式測定装置100は、レーザ光を一次元走査して被測定対象の寸法を測定するレーザ・スキャン・マイクロメータ(LSM)であり、例えば、電子部品や機械部品の寸法測定、金属丸棒や光ファイバーの寸法測定などに利用される。以下の説明において、被測定対象Wに対するレーザ光の出射方向をZ方向とし、被測定対象Wの軸方向をX方向とし、Z方向及びX方向に直交する方向をY方向とする。Y方向は、レーザ光の走査方向と一致する。図1および図2で例示するように、光学式測定装置100は、発光部10、走査部20、直線偏光板30、受光部40、演算部50などを備える。 FIG. 1 is a perspective view of the optical measuring device 100 according to the embodiment. FIG. 2 is a schematic view illustrating the configuration of the optical measuring device 100. The optical measuring device 100 is a laser scan micrometer (LSM) that one-dimensionally scans a laser beam to measure the dimensions of an object to be measured, for example, measuring the dimensions of electronic parts and mechanical parts, metal round bars, and the like. It is used for measuring the dimensions of optical fibers. In the following description, the emission direction of the laser beam with respect to the object W to be measured is the Z direction, the axial direction of the object W to be measured is the X direction, and the Z direction and the direction orthogonal to the X direction are the Y directions. The Y direction coincides with the scanning direction of the laser beam. As illustrated in FIGS. 1 and 2, the optical measuring device 100 includes a light emitting unit 10, a scanning unit 20, a linear polarizing plate 30, a light receiving unit 40, a calculation unit 50, and the like.

発光部10は、レーザ光源11、レーザ制御回路12、偏光装置13等を備えている。レーザ光源11は、半導体レーザ素子等により構成され、波長が例えば650nmで、断面形状がほぼ円形若しくは楕円形の光束(レーザ光)を射出する。レーザ光源11は、レーザ制御回路12によって制御され、高速(例えば数MHz〜数十MHz)でオンオフされる。偏光装置13は、レーザ光源11が射出したレーザ光を90°偏光させる装置である。例えば、偏光装置13は、レーザ制御回路12の指示に従って、レーザ光にλ/2波長板を通過させない場合と、レーザ光にλ/2波長板を通過させる場合と、を切り替える。 The light emitting unit 10 includes a laser light source 11, a laser control circuit 12, a polarizing device 13, and the like. The laser light source 11 is composed of a semiconductor laser element or the like, and emits a luminous flux (laser light) having a wavelength of, for example, 650 nm and a cross-sectional shape of a substantially circular or elliptical shape. The laser light source 11 is controlled by the laser control circuit 12 and is turned on and off at a high speed (for example, several MHz to several tens of MHz). The polarizing device 13 is a device that polarizes the laser light emitted by the laser light source 11 by 90 °. For example, the polarizing device 13 switches between a case where the laser light does not pass through the λ / 2 wave plate and a case where the laser light passes through the λ / 2 wave plate according to the instruction of the laser control circuit 12.

走査部20は、反射ミラー21、回転ミラー22、モータ23、モータ駆動回路24、F−θレンズ25、同期用受光素子26等を備えている。反射ミラー21は、レーザ光源11から射出されたレーザ光を反射して回転ミラー22に入射する。回転ミラー22は、回転ミラー22と同軸に配置されたモータ23により回転し、反射ミラー21を介して入射されたレーザ光を回転走査光に変換してF−θレンズ25に入射する。具体的には、回転ミラー22は、多角柱(図2では8角柱)の各側面がそれぞれ反射面を構成する回転多面鏡であり、モータ23によって例えば5000〜20000回転/分の速度で回転駆動される。回転ミラー22は、自身の回転によって反射面に入射するレーザ光の反射角度を変化させ、これによりレーザ光を主走査方向(スキャン方向)に偏向走査させる。 The scanning unit 20 includes a reflection mirror 21, a rotary mirror 22, a motor 23, a motor drive circuit 24, an F-θ lens 25, a light receiving element 26 for synchronization, and the like. The reflection mirror 21 reflects the laser light emitted from the laser light source 11 and enters the rotating mirror 22. The rotary mirror 22 is rotated by a motor 23 arranged coaxially with the rotary mirror 22, converts laser light incident through the reflection mirror 21 into rotary scanning light, and is incident on the F−θ lens 25. Specifically, the rotary mirror 22 is a rotary multifaceted mirror in which each side surface of a polygonal column (octagonal prism in FIG. 2) constitutes a reflective surface, and is driven to rotate at a speed of, for example, 5000 to 20000 rpm by a motor 23. Will be done. The rotating mirror 22 changes the reflection angle of the laser beam incident on the reflecting surface by its own rotation, whereby the laser beam is deflected and scanned in the main scanning direction (scanning direction).

モータ駆動回路24は、後述するモータ同期回路54の出力に基づきモータ23に対して電力を供給する。F−θレンズ25は、回転ミラー22で変換された回転走査光を等速度の平行走査光に変換する。具体的には、F−θレンズ25は、2枚のレンズ面の曲率を変えることにより、レンズ周辺部と中心部で走査速度が一定になるように設計されている。したがって、F−θレンズ25を用いて、被測定対象Wを透過する平行走査光の透過強度の時間変化を測定することで、被測定対象Wの寸法を求めることができる。F−θレンズ25により平行走査光に変換されたレーザ光は、回転ミラー22の回転に伴い被測定対象Wを含む測定領域を走査するように照射されることになる。 The motor drive circuit 24 supplies electric power to the motor 23 based on the output of the motor synchronization circuit 54, which will be described later. The F−θ lens 25 converts the rotary scanning light converted by the rotary mirror 22 into parallel scanning light having a constant velocity. Specifically, the F−θ lens 25 is designed so that the scanning speed becomes constant at the peripheral portion and the central portion of the lens by changing the curvatures of the two lens surfaces. Therefore, the dimension of the object W to be measured can be obtained by measuring the time change of the transmission intensity of the parallel scanning light transmitted through the object W to be measured using the F−θ lens 25. The laser beam converted into parallel scanning light by the F-θ lens 25 is irradiated so as to scan the measurement region including the measurement target W as the rotating mirror 22 rotates.

同期用受光素子26は、F−θレンズ25の外側であって、レーザ光がF−θレンズ25を通過する範囲の1回の走査が開始される前、または終了した後に、レーザ光を受光する位置に配置されている。同期用受光素子26は、レーザ光による1走査の開始または終了を検出してパルス状のタイミング基準信号(以下、基準信号と称する)を出力する。したがって、レーザ光の1回の走査が開始される毎に、または終了する毎に基準信号が1回出力されることとなる。 The synchronous light receiving element 26 receives the laser light on the outside of the F-θ lens 25 before or after the start or end of one scan of the range in which the laser light passes through the F-θ lens 25. It is placed in the position to do. The synchronization light receiving element 26 detects the start or end of one scan by the laser beam and outputs a pulse-shaped timing reference signal (hereinafter, referred to as a reference signal). Therefore, the reference signal is output once each time the scanning of the laser beam is started or finished.

直線偏光板(偏光板)30は、偏光子の向きが、レーザ光の出射方向(Z方向)および被測定対象Wの軸方向(X方向)に直交する方向、即ち、被測定対象Wの反射面(XZ平面)に対して垂直方向(Y方向)となるように形成されている。即ち、F−θレンズ25により平行走査光に変換されたレーザ光は、直線偏光板1を通過する際、被測定対象Wの反射面に対して水平方向(X方向)の振動成分が遮断され、反射面に対して垂直方向(Y方向)の成分のみが通過することとなる。被測定対象Wは円筒形状を有しているため、回転ミラー22の回転に伴い、直線偏光板30を通過する平行走査光は、被測定対象Wの円筒形状の軸に対する垂直断面内において光軸が平行に移動する。 In the linear polarizing plate (platelet) 30, the direction of the polarizer is orthogonal to the emission direction (Z direction) of the laser beam and the axial direction (X direction) of the object W to be measured, that is, the reflection of the object W to be measured. It is formed so as to be perpendicular to the plane (XZ plane) (Y direction). That is, when the laser light converted into parallel scanning light by the F−θ lens 25 passes through the linear polarizing plate 1, the vibration component in the horizontal direction (X direction) with respect to the reflection surface of the object W to be measured is blocked. , Only the components in the direction perpendicular to the reflecting surface (Y direction) pass through. Since the object W to be measured has a cylindrical shape, the parallel scanning light passing through the linear polarizing plate 30 with the rotation of the rotating mirror 22 has an optical axis in a cross section perpendicular to the cylindrical axis of the object W to be measured. Moves in parallel.

受光部40は、集光レンズ41、受光素子42、アンプ43、等を備えている。集光レンズ41は、被測定対象Wを通過した平行走査光を集光して受光素子42に入射する。受光素子42は、集光レンズ41により集光された平行走査光に対して光電変換を行う。具体的には、受光素子42は、受光強度に応じた電圧を有する電気信号を出力する。受光素子42は、受光強度が大きいほど電圧が大きい電気信号を出力し、受光強度が小さいほど電圧が小さい電気信号を出力する。電気信号の電圧の強弱を測定することで、被測定対象Wの走査面内における走査方向の寸法を測定することができる。なお、こうした寸法算出処理は、演算部50にて行われる。アンプ43は、受光素子42より出力された電気信号を増幅し、演算部50に出力する。 The light receiving unit 40 includes a condenser lens 41, a light receiving element 42, an amplifier 43, and the like. The condenser lens 41 collects the parallel scanning light that has passed through the object W to be measured and incidents on the light receiving element 42. The light receiving element 42 performs photoelectric conversion on the parallel scanning light condensed by the condenser lens 41. Specifically, the light receiving element 42 outputs an electric signal having a voltage corresponding to the light receiving intensity. The light receiving element 42 outputs an electric signal having a large voltage as the light receiving intensity is large, and outputs an electric signal having a small voltage as the light receiving intensity is small. By measuring the strength of the voltage of the electric signal, the dimension of the object W to be measured in the scanning surface in the scanning direction can be measured. It should be noted that such a dimension calculation process is performed by the calculation unit 50. The amplifier 43 amplifies the electric signal output from the light receiving element 42 and outputs it to the calculation unit 50.

演算部50は、電圧検出回路51、差分検出回路52、クロック回路53、モータ同期回路54、入出力回路55、キーボード56、CPU(中央演算装置)57、RAM(ランダムアクセスメモリ)58、記憶部59、等を備えている。電圧検出回路51は、アンプ43から出力された電気信号の電圧値の時間変化を検出する。それにより、受光素子42で受光される走査光の受光強度の時間変化を検出することができる。差分検出回路52は、電圧検出回路51が検出する電圧値の時間変化の、走査ごとの差分を検出する。 The calculation unit 50 includes a voltage detection circuit 51, a difference detection circuit 52, a clock circuit 53, a motor synchronization circuit 54, an input / output circuit 55, a keyboard 56, a CPU (central processing unit) 57, a RAM (random access memory) 58, and a storage unit. It has 59, etc. The voltage detection circuit 51 detects a time change in the voltage value of the electric signal output from the amplifier 43. Thereby, the time change of the light receiving intensity of the scanning light received by the light receiving element 42 can be detected. The difference detection circuit 52 detects the difference between scans of the time change of the voltage value detected by the voltage detection circuit 51.

モータ同期回路54は、クロック回路53から入力されたクロック信号に同期した駆動信号をモータ駆動回路24に対して出力する。なお、モータ駆動回路24は、モータ同期回路54の出力に基づいてモータ23に電力を供給する。したがって、回転ミラー22は、クロック信号に対して所定の関係を持った速度で回転することとなる。 The motor synchronization circuit 54 outputs a drive signal synchronized with the clock signal input from the clock circuit 53 to the motor drive circuit 24. The motor drive circuit 24 supplies electric power to the motor 23 based on the output of the motor synchronization circuit 54. Therefore, the rotation mirror 22 rotates at a speed having a predetermined relationship with the clock signal.

入出力回路55は、算出された値(被測定対象Wの寸法)等を表示装置や印刷装置などの外部出力装置(図示省略)に出力する。キーボード56は、各種の操作キー群を備えて構成されている。ユーザによりキーボード56の所定のキーの押下操作が行われると、この押下操作に応じた操作信号がCPU57に出力される。CPU57は、例えば、記憶部59に記憶されている各種処理プログラムに従って、各種の制御処理を行う。 The input / output circuit 55 outputs the calculated value (dimension of the object to be measured W) and the like to an external output device (not shown) such as a display device or a printing device. The keyboard 56 is configured to include various operation key groups. When a user presses a predetermined key on the keyboard 56, an operation signal corresponding to the pressing operation is output to the CPU 57. The CPU 57 performs various control processes according to, for example, various processing programs stored in the storage unit 59.

RAM58は、CPU57により演算処理されたデータを格納するワークメモリエリアを形成している。記憶部59は、例えば、CPU57によって実行可能なシステムプログラムや、そのシステムプログラムで実行可能な各種処理プログラム、これら各種処理プログラムを実行する際に使用されるデータ、CPU57によって演算処理された各種処理結果のデータなどを記憶する。なお、プログラムは、コンピュータが読み取り可能なプログラムコードの形で記憶部59に記憶されている。 The RAM 58 forms a work memory area for storing data processed by the CPU 57. The storage unit 59 contains, for example, a system program that can be executed by the CPU 57, various processing programs that can be executed by the system program, data used when executing these various processing programs, and various processing results that are arithmetically processed by the CPU 57. Data etc. are stored. The program is stored in the storage unit 59 in the form of a computer-readable program code.

CPU57は、電圧検出回路51が検出した電圧の時間変化および差分検出回路52が検出した電圧差分を用いて、被測定対象Wの内径を計算する。以下、被測定対象Wの内径の測定の詳細について説明する。 The CPU 57 calculates the inner diameter of the object to be measured W by using the time change of the voltage detected by the voltage detection circuit 51 and the voltage difference detected by the difference detection circuit 52. Hereinafter, the details of measuring the inner diameter of the object W to be measured will be described.

図3は、透明管(例えば、屈折率が1.5のガラス)の被測定対象Wを透過する平行走査光の軌道変化を例示する図である。図3で例示するように、Y方向における被測定対象Wの端点4よりも外側および端点5よりも外側においては、平行走査光が被測定対象Wにより遮られないため、受光素子42における受光強度が第1閾値以上となる。 FIG. 3 is a diagram illustrating a change in the trajectory of parallel scanning light transmitted through a target W to be measured in a transparent tube (for example, glass having a refractive index of 1.5). As illustrated in FIG. 3, the parallel scanning light is not blocked by the object W to be measured outside the end point 4 and outside the end point 5 of the object W to be measured in the Y direction, so that the light receiving intensity of the light receiving element 42 Is equal to or greater than the first threshold value.

次に、被測定対象Wを透過する平行走査光の軌道は、被測定対象Wとの反射・屈折により様々な軌道に変化する。被測定対象Wの透過によって軌道が変化すると、受光素子42における受光強度が低下するため、受光素子42から出力される電気信号の電圧が小さくなる。一方、被測定対象Wを透過した場合に軌道が変化しなければ、受光素子42における受光強度が大きくなる。それにより、受光素子42から出力される電気信号の電圧が大きくなる。被測定対象Wを透過した場合に軌道が変化せずに十分な受光強度が得られる(電気信号の電圧値が第1閾値未満で第2閾値(<第1閾値)以上となる)入射位置は3箇所存在する。当該3箇所に入射した平行走査光は、被測定対象Wを透過した後に十分な光強度を有しつつZ方向に進む。 Next, the orbit of the parallel scanning light transmitted through the object W to be measured changes to various orbits due to reflection and refraction with the object W to be measured. When the trajectory changes due to the transmission of the object W to be measured, the light receiving intensity in the light receiving element 42 decreases, so that the voltage of the electric signal output from the light receiving element 42 becomes small. On the other hand, if the trajectory does not change when the object W to be measured is transmitted, the light receiving intensity in the light receiving element 42 increases. As a result, the voltage of the electric signal output from the light receiving element 42 becomes large. Sufficient light-receiving intensity can be obtained without changing the trajectory when passing through the object W to be measured (the voltage value of the electrical signal is less than the first threshold value and is greater than or equal to the second threshold value (<first threshold value)). There are three places. The parallel scanning light incident on the three locations travels in the Z direction while having sufficient light intensity after passing through the object W to be measured.

1箇所目の入射位置は、被測定対象Wの軸を通過する入射位置1である。入射位置1は、被測定対象Wの外周に対する法線方向に平行走査光が入射される位置である。入射位置1を含む極小範囲に平行走査光が入射する期間においては、受光素子42から出力される電気信号の電圧が大きくなる。当該極小範囲外では、受光素子42から出力される電気信号の電圧が小さくなる。したがって、当該極小範囲において、受光素子42が出力する電気信号の電圧に、第1閾値未満で第2閾値以上のピークが現れる。 The incident position at the first location is the incident position 1 that passes through the axis of the object W to be measured. The incident position 1 is a position where parallel scanning light is incident in the normal direction with respect to the outer circumference of the object W to be measured. During the period in which the parallel scanning light is incident on the minimum range including the incident position 1, the voltage of the electric signal output from the light receiving element 42 becomes large. Outside the minimum range, the voltage of the electric signal output from the light receiving element 42 becomes small. Therefore, in the minimum range, a peak below the first threshold value and above the second threshold value appears in the voltage of the electric signal output by the light receiving element 42.

2箇所目および3箇所目の入射位置は、端点4付近の入射位置2、および端点5付近の入射位置3である。入射位置2および入射位置3においては、平行走査光は、被測定対象Wの外周と大気との境界で反射して被測定対象Wの内方に進み、被測定対象Wの軸を通るY方向と被測定対象Wの内周との交点において被測定対象Wの内周と大気との境界で反射して被測定対象Wの外方に進み、被測定対象Wの外周と大気との境界で反射してZ方向に進む。したがって、見かけ上、入射位置2,3に入射した平行走査光の軌道は変化しない。入射位置2,3を含む極小範囲に平行走査光が入射する期間においては、受光素子42から出力される電気信号の電圧が大きくなる。当該極小範囲外では、受光素子42から出力される電気信号の電圧が小さくなる。したがって、当該極小範囲において、受光素子42が出力する電気信号の電圧に、第1閾値未満で第2閾値以上のピークが現れる。 The incident positions at the second and third locations are the incident position 2 near the end point 4 and the incident position 3 near the end point 5. At the incident position 2 and the incident position 3, the parallel scanning light is reflected at the boundary between the outer circumference of the measurement target W and the atmosphere, travels inward of the measurement target W, and passes through the axis of the measurement target W in the Y direction. At the intersection of the object to be measured and the inner circumference of the object to be measured W, it is reflected at the boundary between the inner circumference of the object to be measured W and the atmosphere and proceeds to the outside of the object to be measured W. It reflects and proceeds in the Z direction. Therefore, apparently, the trajectories of the parallel scanning light incident on the incident positions 2 and 3 do not change. During the period in which the parallel scanning light is incident in the minimum range including the incident positions 2 and 3, the voltage of the electric signal output from the light receiving element 42 becomes large. Outside the minimum range, the voltage of the electric signal output from the light receiving element 42 becomes small. Therefore, in the minimum range, a peak below the first threshold value and above the second threshold value appears in the voltage of the electric signal output by the light receiving element 42.

以上のことから、入射1〜3のそれぞれに対応する3つのピークが現れる。入射位置2,3に対応する2つのピークは、入射位置1に対応する1つのピークを挟む。 From the above, three peaks corresponding to each of the incidents 1 to 3 appear. The two peaks corresponding to the incident positions 2 and 3 sandwich one peak corresponding to the incident position 1.

特許文献2によれば、Y方向上側の入射位置2とY方向下側の入射位置3との距離Dを測定することができれば、被測定対象Wの外径と屈折率とから、被測定対象Wの内径を幾何学的に算出することができる。しかしながら、被測定対象Wの肉厚によっては、距離Dの測定精度が低下する。 According to Patent Document 2, if the distance D between the incident position 2 on the upper side in the Y direction and the incident position 3 on the lower side in the Y direction can be measured, the object to be measured is determined from the outer diameter and the refractive index of the object to be measured W. The inner diameter of W can be calculated geometrically. However, the measurement accuracy of the distance D decreases depending on the wall thickness of the object W to be measured.

図4(a)および図4(b)は、同じ外径に対して内径が異なる場合の、受光素子42から出力される電気信号のイメージ図である。図4(a)は、外径に対して内径の比率が小さい(厚肉)の被測定対象Wを測定した場合である。図4(b)は、外径に対して内径の比率が大きい(薄肉)の被測定対象Wを測定した場合である。 4 (a) and 4 (b) are image diagrams of electric signals output from the light receiving element 42 when the inner diameters are different for the same outer diameter. FIG. 4A shows a case where the measurement target W having a small ratio of the inner diameter to the outer diameter (thick wall) is measured. FIG. 4B shows a case where the measurement target W having a large ratio of the inner diameter to the outer diameter (thin wall) is measured.

図4(a)のように、被測定対象Wが肉厚の場合、Y方向における入射位置2と被測定対象Wの端点4との距離dが大きくなる。この場合、入射位置2に対応する電気信号のピークと、端点4よりも外側で被測定対象Wに遮られずに直進する平行走査光に対する電気信号とが十分に離れる。この場合においては、入射位置2の検出精度が高くなる。それにより、距離Dの測定精度が高くなる。 As shown in FIG. 4A, when the object to be measured W is thick, the distance d between the incident position 2 in the Y direction and the end point 4 of the object W to be measured becomes large. In this case, the peak of the electric signal corresponding to the incident position 2 and the electric signal for the parallel scanning light traveling straight without being blocked by the object W to be measured outside the end point 4 are sufficiently separated from each other. In this case, the detection accuracy of the incident position 2 becomes high. As a result, the measurement accuracy of the distance D becomes high.

一方、図4(b)のように、被測定対象Wが薄肉の場合、Y方向における入射位置2と被測定対象Wの端点4との距離dが小さくなる。この場合、入射位置2に対応する電気信号のピークが、端点4よりも外側で被測定対象Wに遮られずに直進する平行走査光に対する電気信号に埋もれてしまう。この場合においては、入射位置2の検出精度が低くなる。それにより、距離Dの測定精度が低くなる。 On the other hand, as shown in FIG. 4B, when the object to be measured W is thin, the distance d between the incident position 2 in the Y direction and the end point 4 of the object W to be measured becomes small. In this case, the peak of the electric signal corresponding to the incident position 2 is buried in the electric signal for the parallel scanning light traveling straight ahead without being blocked by the object W to be measured outside the end point 4. In this case, the detection accuracy of the incident position 2 becomes low. As a result, the measurement accuracy of the distance D becomes low.

そこで、本実施形態においては、図5で例示するように、レーザ光の偏光方向による反射率の違いに着目する。まず、第1の走査において、ある偏光方向(例えばP偏光)を有するレーザ光を用いて、被測定対象Wを透過する平行走査光に対して受光素子42が出力した電気信号の時間変化を得る。次に、第2の走査において、レーザの偏光方向を90°変えてS偏光とし、同様に電気信号の時間変化を得る。偏光方向を変えるときは、偏光装置13を用いる。このとき、偏光方向に対する反射率の違いから、入射位置2,3に対応する電気信号の電圧に差異が発生する。 Therefore, in the present embodiment, as illustrated in FIG. 5, attention is paid to the difference in reflectance depending on the polarization direction of the laser beam. First, in the first scanning, a laser beam having a certain polarization direction (for example, P-polarized light) is used to obtain a time change of an electric signal output by the light receiving element 42 with respect to the parallel scanning light transmitted through the object W to be measured. .. Next, in the second scan, the polarization direction of the laser is changed by 90 ° to obtain S polarization, and the time change of the electric signal is obtained in the same manner. When changing the polarization direction, the polarization device 13 is used. At this time, due to the difference in reflectance with respect to the polarization direction, a difference occurs in the voltage of the electric signal corresponding to the incident positions 2 and 3.

なお、平行走査光が被測定対象Wにおいて反射しない場合には、偏光方向が90°変化しても、反射率の影響を受けない。したがって、入射位置1や、端点4,5よりも外側では、受光素子42が出力する電気信号の電圧に差異が生じない。 When the parallel scanning light is not reflected by the object W to be measured, it is not affected by the reflectance even if the polarization direction changes by 90 °. Therefore, there is no difference in the voltage of the electric signal output by the light receiving element 42 outside the incident position 1 and the end points 4 and 5.

本実施形態においては、差分検出回路52は、第1の走査の際に受光素子42が出力する電気信号の時間変化と、第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分を検出する。CPU57は、検出された電圧差分に基づいて、被測定対象Wの内径を計算する。 In the present embodiment, the difference detection circuit 52 has a time change of the electric signal output by the light receiving element 42 during the first scan and a time change of the electric signal output by the light receiving element during the second scan. Detects the voltage difference with. The CPU 57 calculates the inner diameter of the object to be measured W based on the detected voltage difference.

まず、図6で例示するように、CPU57は、差分検出回路52が検出した電圧差分のピーク位置から入射位置2および入射位置3を検出することで、入射位置2と入射位置3との距離Dを計算する。なお、図6では、被測定対象Wの軸よりも端点5側の半分について図示してある。次に、CPU57は、入射位置2,3における被測定対象Wの外周面の法線をLとし、検出した距離Dと、被測定対象Wの外径ODとから、入射位置2,3における法線Lに対する平行走査光の入射角度i=sin−1(D/OD)を計算する。なお、外径ODは、図3で説明した第1閾値を用いて、受光素子42が出力する電気信号の電圧値が第1閾値未満から第1閾値以上となる立ち上がりエッジと、第1閾値以上から第1閾値未満となる立ち下がりエッジとから計算することができる。次に、CPU57は、入射角度iと、被測定対象Wの屈折率nとから、入射位置2,3に入射した光の法線Lに対する屈折角度r=sin−1(sini/n)を計算する。次に、CPU57は、被測定対象Wの軸線に垂直で端点4と端点5とを結ぶ線と、入射位置2,3に入射した光の屈折光の進む方向とが成す角度βを計算する。CPU57は、これらの屈折角度rおよび角度βから、正弦定理に基づき内径ID=OD(sinr/sinβ)を計算する。 First, as illustrated in FIG. 6, the CPU 57 detects the incident position 2 and the incident position 3 from the peak position of the voltage difference detected by the difference detection circuit 52, thereby detecting the distance D between the incident position 2 and the incident position 3. To calculate. In FIG. 6, the half of the end point 5 side with respect to the axis of the object W to be measured is illustrated. Next, the CPU 57 sets the normal of the outer peripheral surface of the object to be measured W at the incident positions 2 and 3 as L, and from the detected distance D and the outer diameter OD of the object W to be measured, the method at the incident positions 2 and 3 The incident angle i = sin -1 (D / OD) of the parallel scanning light with respect to the line L is calculated. The outer diameter OD is the rising edge at which the voltage value of the electric signal output by the light receiving element 42 is from less than the first threshold value to the first threshold value or more, and the first threshold value or more, using the first threshold value described with reference to FIG. It can be calculated from the falling edge that is less than the first threshold value. Next, the CPU 57 calculates the refraction angle r = sin -1 (sini / n) with respect to the normal L of the light incident on the incident positions 2 and 3 from the incident angle i and the refractive index n of the object W to be measured. To do. Next, the CPU 57 calculates an angle β formed by a line connecting the end points 4 and the end points 5 perpendicular to the axis of the object W to be measured and the direction in which the refracted light of the light incident on the incident positions 2 and 3 travels. The CPU 57 calculates the inner diameter ID = OD (sinr / sinβ) from these refraction angles r and the angle β based on the law of sines.

本実施形態によれば、光透過性の円筒形状の被測定対象Wに対し、円筒形状の軸に対する垂直断面内において光軸が平行に移動する平行走査光が照射され、被測定対象Wに対する第1の走査の際には第1の走査光が照射され、被測定対象Wに対する第2の走査の際には第1の走査光とは偏光方向が90°異なる第2の走査光が照射される。第1の走査の際に受光素子42が出力する電気信号の時間変化と、第2の走査の際に受光素子42が出力する電気信号の時間変化との電圧差分を検出することで、入射位置2,3に対応する電気信号以外の電気信号は相殺される。それにより、高精度に入射位置2,3に対応する電気信号の電圧差分を検出することができる。この電圧差分のピークから被測定対象Wの内径を計算することで、高精度に被測定対象Wの内径を測定することができる。この手法では、外径に対して内径の比率が大きい(薄肉の)場合でも、高精度に被測定対象Wの内径を測定することができる。 According to the present embodiment, the light-transmitting cylindrical object W to be measured is irradiated with parallel scanning light in which the optical axis moves in parallel within the vertical cross section with respect to the cylindrical axis, and the light-transmitting object W is irradiated with parallel scanning light. At the time of the first scan, the first scanning light is irradiated, and at the time of the second scanning with respect to the object W to be measured, the second scanning light whose polarization direction is different from that of the first scanning light by 90 ° is irradiated. To. By detecting the voltage difference between the time change of the electric signal output by the light receiving element 42 during the first scan and the time change of the electric signal output by the light receiving element 42 during the second scan, the incident position Electrical signals other than the electrical signals corresponding to a few are offset. Thereby, the voltage difference of the electric signal corresponding to the incident positions 2 and 3 can be detected with high accuracy. By calculating the inner diameter of the object W to be measured from the peak of this voltage difference, the inner diameter of the object W to be measured can be measured with high accuracy. With this method, the inner diameter of the object to be measured W can be measured with high accuracy even when the ratio of the inner diameter to the outer diameter is large (thin wall).

なお、上記実施形態では、第1の走査光と第2の走査光とは、偏光方向が90°異なっているが、それに限られない。第1走査光と第2の走査光との偏光方向が異なっていれば、反射率に差が生じるため、入射位置2,3に対応する電気信号の電圧に差異を生じさせることができる。ただし、偏光方向が90°異なっていれば、電圧差分が最大になるため、電圧差分のピークの検出精度が向上する。 In the above embodiment, the first scanning light and the second scanning light have different polarization directions by 90 °, but the light is not limited to this. If the polarization directions of the first scanning light and the second scanning light are different, the reflectance is different, so that the voltage of the electric signal corresponding to the incident positions 2 and 3 can be different. However, if the polarization directions differ by 90 °, the voltage difference becomes maximum, so that the detection accuracy of the peak of the voltage difference is improved.

なお、受光素子42が出力する電気信号の時間変化の電圧差分にノイズなどが重畳する場合には、閾値以上の電圧差分を検出するようにすれば、高精度に入射位置2,3に対応する電気信号の電圧差分を検出することができる。 When noise or the like is superimposed on the voltage difference of the time change of the electric signal output by the light receiving element 42, if the voltage difference equal to or higher than the threshold value is detected, the incident positions 2 and 3 can be corresponded to with high accuracy. The voltage difference of the electric signal can be detected.

上記実施形態において、発光部10および走査部20が、光透過性の円筒形状の被測定対象に対し、前記円筒形状の軸に対する垂直断面内において光軸が平行に移動する走査光を照射し、前記被測定対象に対する第1の走査の際には第1の走査光を照射し、前記被測定対象に対する第2の走査の際には前記第1の走査光とは偏光方向が異なる第2の走査光を照射する照射装置の一例である。受光素子42が、前記被測定対象を透過した前記走査光に対して光電変換を行う受光素子の一例である。演算部50が、前記第1の走査の際に前記受光素子が出力する電気信号の時間変化と、前記第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分から得られるピークに基づいて、前記被測定対象の内径を計算する演算部の一例である。 In the above embodiment, the light emitting unit 10 and the scanning unit 20 irradiate the light-transmitting cylindrical object to be measured with scanning light in which the optical axis moves in parallel in a cross section perpendicular to the cylindrical axis. At the time of the first scanning of the object to be measured, the first scanning light is irradiated, and at the time of the second scanning of the object to be measured, the second scanning light has a different polarization direction from that of the first scanning light. This is an example of an irradiation device that irradiates scanning light. The light receiving element 42 is an example of a light receiving element that performs photoelectric conversion on the scanning light transmitted through the object to be measured. From the voltage difference between the time change of the electric signal output by the light receiving element during the first scan and the time change of the electric signal output by the light receiving element during the second scan, the calculation unit 50 This is an example of a calculation unit that calculates the inner diameter of the object to be measured based on the obtained peak.

以上、本発明の実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the specific embodiments, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.

10 発光部
11 レーザ光源
13 偏光装置
22 回転ミラー
51 電圧検出回路
52 差分検出回路
20 走査部
40 受光部
50 演算部
100 光学式測定装置
10 Light emitting unit 11 Laser light source 13 Polarizing device 22 Rotating mirror 51 Voltage detection circuit 52 Difference detection circuit 20 Scanning unit 40 Light receiving unit 50 Calculation unit 100 Optical measuring device

Claims (4)

光透過性の円筒形状の被測定対象に対し、前記円筒形状の軸に対する垂直断面内において光軸が平行に移動する走査光を照射し、前記被測定対象に対する第1の走査の際には第1の走査光を照射し、前記被測定対象に対する第2の走査の際には前記第1の走査光とは偏光方向が異なる第2の走査光を照射する照射装置と、
前記被測定対象を透過した前記走査光に対して光電変換を行う受光素子と、
前記第1の走査の際に前記受光素子が出力する電気信号の時間変化と、前記第2の走査の際に前記受光素子が出力する電気信号の時間変化との電圧差分から得られるピークに基づいて、前記被測定対象の内径を計算する演算部と、を備えることを特徴とする光学式測定装置。
The light-transmitting cylindrical object to be measured is irradiated with scanning light in which the optical axis moves in parallel within the cross section perpendicular to the cylindrical axis, and the first scanning of the object to be measured is performed. An irradiation device that irradiates the scanning light of 1 and irradiates a second scanning light having a polarization direction different from that of the first scanning light at the time of the second scanning of the object to be measured.
A light receiving element that performs photoelectric conversion on the scanning light transmitted through the object to be measured, and
Based on the peak obtained from the voltage difference between the time change of the electric signal output by the light receiving element during the first scan and the time change of the electric signal output by the light receiving element during the second scan. An optical measuring device including a calculation unit for calculating the inner diameter of the object to be measured.
前記演算部は、前記電圧差分のピーク同士の距離に対応する、前記被測定対象における距離と、前記被測定対象の外径とから、前記内径を計算することを特徴とする請求項1記載の光学式測定装置。 The first aspect of claim 1, wherein the calculation unit calculates the inner diameter from the distance in the object to be measured and the outer diameter of the object to be measured, which correspond to the distance between the peaks of the voltage difference. Optical measuring device. 前記第1の走査光と前記第2の走査光とは、偏光方向が90度異なることを特徴とする請求項1または2に記載の光学式測定装置。 The optical measuring device according to claim 1 or 2, wherein the first scanning light and the second scanning light have different polarization directions by 90 degrees. 前記照射装置は、光源からの光に対し、λ/2波長板を透過させる場合と、前記λ/2波長板を透過させない場合とを切り替えることで、前記第1の走査光および前記第2の走査光を照射することを特徴とする請求項1〜3のいずれか一項に記載の光学式測定装置。 The irradiation device switches between a case where the light from the light source is transmitted through the λ / 2 wavelength plate and a case where the light is not transmitted through the λ / 2 wavelength plate, whereby the first scanning light and the second scanning light and the second The optical measuring apparatus according to any one of claims 1 to 3, wherein the optical measuring device is irradiated with scanning light.
JP2017140131A 2017-07-19 2017-07-19 Optical measuring device Active JP6891066B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017140131A JP6891066B2 (en) 2017-07-19 2017-07-19 Optical measuring device
JP2021088485A JP7104217B2 (en) 2017-07-19 2021-05-26 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140131A JP6891066B2 (en) 2017-07-19 2017-07-19 Optical measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021088485A Division JP7104217B2 (en) 2017-07-19 2021-05-26 Optical measuring device

Publications (2)

Publication Number Publication Date
JP2019020296A JP2019020296A (en) 2019-02-07
JP6891066B2 true JP6891066B2 (en) 2021-06-18

Family

ID=65353062

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017140131A Active JP6891066B2 (en) 2017-07-19 2017-07-19 Optical measuring device
JP2021088485A Active JP7104217B2 (en) 2017-07-19 2021-05-26 Optical measuring device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021088485A Active JP7104217B2 (en) 2017-07-19 2021-05-26 Optical measuring device

Country Status (1)

Country Link
JP (2) JP6891066B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859861A (en) * 1988-05-16 1989-08-22 Becton, Dickinson And Company Measuring curvature of transparent or translucent material
KR100624256B1 (en) * 2005-01-13 2006-09-19 엘에스전선 주식회사 Outer and Inner Diameter Measuring Apparatus and Method for Transparent Tube
JP4918679B2 (en) * 2006-12-26 2012-04-18 国立大学法人金沢大学 Method and apparatus for measuring thickness of transparent layer
JP6656905B2 (en) * 2015-12-15 2020-03-04 株式会社ミツトヨ Measuring method of inner diameter of transparent tube
JP6682263B2 (en) * 2015-12-25 2020-04-15 キヤノン株式会社 Detecting apparatus, exposure apparatus, and article manufacturing method

Also Published As

Publication number Publication date
JP7104217B2 (en) 2022-07-20
JP2021121817A (en) 2021-08-26
JP2019020296A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
JP3731021B2 (en) Position detection surveying instrument
JP6178617B2 (en) Optical measuring device
JP2009069003A (en) Laser radar apparatus
JP2009236774A (en) Three dimensional ranging device
US20170167854A1 (en) Internal diameter measuring method for transparent tube
JP2017110970A (en) Optical external dimension measurement method and measuring device
JP2010066101A (en) Laser radar and method of watching boundary by the same
JP2007170917A (en) Light scanning device and device for detecting object to be measured
JP2015129678A (en) Scanning optical system, optical scanning device, and ranging device
JP2015141372A (en) Irradiation device, irradiation method, measurement device, and measurement method
JP3768822B2 (en) 3D measuring device
JP7104217B2 (en) Optical measuring device
JP2009025006A (en) Optical device, light source device, and optical measuring device
US6285451B1 (en) Noncontacting optical method for determining thickness and related apparatus
WO2017130942A1 (en) Optical scanner
JP4579321B2 (en) Position detection device
US11530911B2 (en) Optical measuring device and optical measuring method
JP2006276133A (en) Optical scanner and method of optical scanning
JP5783288B1 (en) Surface profile measuring device and translucent object thickness measuring device
JP2011191077A (en) Device for measuring axial deflection
JP6733195B2 (en) Optical scanning device
JP2022052541A (en) Optical measuring apparatus and optical measuring method
JP5776653B2 (en) Apparatus and method for measuring thickness of translucent object
JP5621822B2 (en) Laser radar equipment
JP2012198162A (en) Thickness measurement apparatus for light-transmissive tubular object

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210526

R150 Certificate of patent or registration of utility model

Ref document number: 6891066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150