JP2019014270A - 鞍乗り型車両 - Google Patents

鞍乗り型車両 Download PDF

Info

Publication number
JP2019014270A
JP2019014270A JP2015228477A JP2015228477A JP2019014270A JP 2019014270 A JP2019014270 A JP 2019014270A JP 2015228477 A JP2015228477 A JP 2015228477A JP 2015228477 A JP2015228477 A JP 2015228477A JP 2019014270 A JP2019014270 A JP 2019014270A
Authority
JP
Japan
Prior art keywords
slip ratio
wheel
target slip
unit
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015228477A
Other languages
English (en)
Inventor
将行 三木
Masayuki Miki
将行 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2015228477A priority Critical patent/JP2019014270A/ja
Priority to PCT/JP2016/084769 priority patent/WO2017090669A1/ja
Publication of JP2019014270A publication Critical patent/JP2019014270A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/05Tricycles characterised by a single rear wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/08Cycles with handlebars, equipped with three or more main road wheels with steering devices acting on two or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Regulating Braking Force (AREA)
  • Automatic Cycles, And Cycles In General (AREA)

Abstract

【課題】車体の傾斜量を調整する機能を有する鞍乗り型車両を実現する。【解決手段】本発明の鞍乗り型車両は、左操舵輪、右操舵輪、並びに、左操舵輪及び右操舵輪に対して車体の前後方向に位置する非操舵輪とを有する。この鞍乗り型車両は、左操舵輪の回転を制動する左制動部と、右操舵輪の回転を制動する右制動部と、車体の傾斜状態を検出する傾斜検出部と、左制動部に連絡されブレーキ液が充填された左配管と、右制動部に連絡されブレーキ液が充填された右配管と、左配管内のブレーキ液圧、及び右配管内のブレーキ液圧を独立して調整可能な液圧制御部と、を備える。少なくとも一部の時間帯において、車体の傾斜状態に応じて、液圧制御部に対して、左配管内のブレーキ液圧又は右配管内のブレーキ液圧の一方を低下させる指示を行うABS発動部とを備える。【選択図】 図12

Description

本発明は、鞍乗り型車両に関し、特に左右2つの操舵輪を有する鞍乗り型車両に関する。
従来、車体フレームの左右方向に並べて設けられた2つの前輪と、車体フレームが直立状態の車両を前方から見て、その2つの前輪の中央に配置される中央後輪を備えた鞍乗り型車両が知られている(下記特許文献1、非特許文献1参照)。
また、下記特許文献2には、4輪の鞍乗り型車両において、車体の傾斜量を調整する技術が開示されている。
国際公開2012/007819号公報 特許第5237783号公報
Spare Parts Catalogue, MP3 500 Sport ABS 2015 (USA), Piaggio社
非特許文献1には、3輪タイプの鞍乗り型車両において、ABS(Anti-lock Brake System)が搭載されている旨が開示されている。しかし、非特許文献1に開示された鞍乗り型車両は、左右2つの前輪が同一のμ値を示す路面を走行時には、同一のタイミングでABSが作動する。なお、本明細書において「μ値」とは路面の摩擦係数を示す。
本発明は、左右の操舵輪に対して発動するABSの作動状況を異ならせた、鞍乗り型車両を実現することを目的とする。
本発明者は、左操舵輪、右操舵輪、並びに、前記左操舵輪及び前記右操舵輪に対して車体の前後方向に位置する非操舵輪とを有する鞍乗り型車両について、左右両方の操舵輪が同一のμ値を示す路面上を走行時にABSを作動させたときの挙動解析を行った。従来の車両では、左右両方の操舵輪が同一のμ値を示す路面上を走行時においては、左右の操舵輪が路面に伝える制動力は同一であり、左右の操舵輪に対して設定されている目標スリップ率も同一である。このため、左右両方の操舵輪に対してABSが同一のタイミングで作動する。このような従来の車両と比較して、左右両方の操舵輪に対して異なるタイミングでABSを作動させた場合、車体のロール方向に加わる力が変化することを突き止めた。
本発明者は、この現象が生じる理由を更に分析した。ABS作動のタイミングを左右の操舵輪で異ならせることで、先にABSが作動した側の操舵輪に対する制動トルクが、未だABSが作動していない側の操舵輪に対する制動トルクよりも低下する。すなわち、左右の操舵輪に対する制動トルクに差が生じている場合に、車体のロール方向に加わる力が変化するものと推察した。
本発明者は、更にこの理由を分析するため、まず、一つの操舵輪と、この操舵輪に対して車体の前後方向に位置する一つの非操舵輪を有する、一般的な二輪型の鞍乗り型車両について、傾斜走行中における挙動解析を行った。なお、以下では、鞍乗り型車両を単に「車両」と略記することがある。
鞍乗り型車両は、車体を路面に対してほぼ鉛直方向に位置させた状態で走行している場合、すなわち、車体を傾斜させずに走行している場合、車体の後方から見たときに、操舵輪の中央の位置が路面に接触している。
ここで、走行中の車体を路面に対して傾斜させた場合を想定する。このような状況は、車体自体の走路を進行方向に対して左右に振る場合に対応する。具体的には、走行している車線を変更する場合、路面自体にカーブがある場合、又は前方に存在する障害物を避けながら走行する場合等に対応する。
車体を傾斜しながら走行すると、車体に対して遠心力が働く。このとき、操舵輪に対して外側に向かって横滑りが発生するが、操舵輪自体がたわむことで逆の方向に戻そうとする力が働く。この力は、操舵輪の接地点に作用している摩擦力の分力であり、車両の進行方向に対して直角の方向に作用する。この力は、一般的に「コーナリングフォース」と呼ばれ、車両重心点に対する横滑り角から生じる。
また、車体が傾斜していることで、操舵輪がこの傾斜方向に進もうとする結果、路面の鉛直線に対する傾き角(キャンバ角)にほぼ比例した大きさの力が、車両の進行方向に対して直角の方向に作用する。この力は、一般的に「キャンバースラスト」と呼ばれ、キャンバ角から生じる。これらの、コーナリングフォース及びキャンバースラストの合力が「横力」として、遠心力とは反対の向きに作用する。
ここで、車体を路面に対して傾斜させた状態で走行しながら、操舵輪の回転を制動させた場合、すなわち、ライダーがブレーキを掛けた場合について検討する。上述したように、進行方向に操舵輪を見たときに、操舵輪は中央よりも傾斜の内側において内径が小さい形状を有している。このため、傾斜走行時には、操舵輪の接地点は、車体の前方から見たときに中央の位置ではなく、中央から内側にずれた位置となっている。この位置において、操舵輪は路面から制動力を受けるため、操舵輪に対して内向きにヨー方向の回転力(ヨーモーメント)が発生する。このヨー方向の回転力に対する反力として、外向きの遠心力が増し、この結果、車体を起き上がらせる力、すなわち、ロール方向の回転力(ロールモーメント)が発生する。
つまり、二輪車においては、傾斜走行時において操舵輪の回転を制動させる制御を行うことで、車体の姿勢を制御することが可能であると考えられる。本発明者は、この知見を踏まえ、左右二つの操舵輪を有する鞍乗り型車両において、傾斜走行時に操舵輪に対して制動トルクを与えたときの挙動の解析を行った。
傾斜走行時において、内側に位置する操舵輪(内輪)に対してのみ制動力を発生させ、外側に位置する操舵輪(外輪)に対しては制動力を発生させない場合について検討する。まず、二輪の場合と同様の理由により、内輪に対して内向きのヨーモーメントが発生する。更に、内輪に対しては進行方向とは反対の向きに制動力が発生する一方、外輪に対してはこの力が発生しないため、この内外輪間の制動力の差に起因して、内輪に対して内向きのヨーモーメントが追加的に発生する。つまり、内輪に対応する操舵輪にのみ制動力を発生させた場合、二輪の場合と比較して内向きのヨーモーメントを増大させる効果が得られる。このことは、ロール方向の回転力を上昇させることになるため、車体を起き上がらせる機能が高められることを意味する。
次に、傾斜走行時において、外側に位置する操舵輪(外輪)に対してのみ制動力を発生させ、内側に位置する操舵輪(内輪)に対しては制動力を発生させない場合について検討する。まず、二輪の場合と同様の理由により、内輪に対して内向きのヨーモーメントが発生する。一方で、外輪に対しては進行方向とは反対の向きに制動力が発生する一方、内輪に対してはこの力が発生しないため、この内外輪間の制動力の差に起因して、外輪に対して外向きのヨーモーメントが発生する。つまり、外輪に対応する操舵輪にのみ制動力を発生させた場合、二輪の場合と比較して内向きのヨーモーメントを減少させる効果が得られる。このことは、ロール方向の回転力を低下させることになるため、車体を起き上がらせる機能が低下することを意味する。特に、内外輪間での制動力の差によっては、むしろ車体を更に内側に倒す機能が現れることを意味する。
上記の検証により、左右2つの操舵輪に対するABSの作動タイミングを異ならせることで、左右2つの操舵輪にに対して発生する制動力に差が設けられる結果、傾斜走行時において車体に対してロール方向の回転力を発生させることができると結論づけた。そして、本発明者は、この検証結果を踏まえ、左右2つの操舵輪に対するABSの作動タイミングの異ならせ方を制御することで、車体の姿勢を制御することができると考えた。
本発明に係る鞍乗り型車両は、左操舵輪、右操舵輪、並びに、前記左操舵輪及び前記右操舵輪に対して車体の前後方向に位置する非操舵輪とを有する鞍乗り型車両であって、
前記左操舵輪の回転を制動する左制動部と、
前記右操舵輪の回転を制動する右制動部と、
前記車体の傾斜状態を検出する傾斜検出部と、
前記左制動部に連絡され、ブレーキ液が充填された左配管と、
前記右制動部に連絡され、ブレーキ液が充填された右配管と、
前記左配管内のブレーキ液圧、及び前記右配管内のブレーキ液圧を独立して調整可能な液圧制御部と、を備え、
前記左制動部は、前記左配管内に充填されたブレーキ液の液圧の大きさに応じて前記左操舵輪の回転を制動し、
前記右制動部は、前記右配管内に充填されたブレーキ液の液圧の大きさに応じて前記右操舵輪の回転を制動し、
少なくとも一部の時間帯において、前記車体の傾斜状態に応じて、前記液圧制御部に対して、前記左配管内のブレーキ液圧又は前記右配管内のブレーキ液圧の一方を低下させる指示を行うABS発動部とを備えたことを特徴とする。
上記の構成によれば、車体の傾斜状態に応じて、左操舵輪と右操舵輪のいずれかに対してABSが作動し、当該作動した操舵輪に加わる制動トルクが低下する。この結果、2つの操舵輪が路面に伝える制動トルクの大きさが調整されるため、運転状態に応じた車体の姿勢制御が可能となる。
前記鞍乗り型車両は、上記の構成に加えて、
前記左操舵輪のスリップ率を算出する左スリップ率算出部と、
前記右操舵輪のスリップ率を算出する右スリップ率算出部と、
前記車体の傾斜状態に応じて、左目標スリップ率と右目標スリップ率の比率を決定する目標スリップ率決定部とを備え、
前記ABS発動部は、
前記左操舵輪のスリップ率が前記左目標スリップ率に達すると、前記液圧制御部に対して前記左配管内のブレーキ液圧を低下させる指示を行い、
前記右操舵輪のスリップ率が前記右目標スリップ率に達すると、前記液圧制御部に対して前記右配管内のブレーキ液圧を低下させる指示を行うものとしても構わない。
この構成によれば、車体の傾斜状態に応じて、左右2つの操舵輪それぞれの目標スリップ率の大きさが制御される。よって、例えば、左目標スリップ率を右目標スリップ率よりも高く設定した場合には、右操舵輪に対して先にABSを作動させることができ、左操舵輪に対する制動トルクを右操舵輪に対する制動トルクよりも大きくすることができる。また、逆に、右目標スリップ率を左目標スリップ率よりも高く設定した場合には、左操舵輪に対して先にABSを作動させることができ、右操舵輪に対する制動トルクを左操舵輪に対する制動トルクよりも大きくすることができる。
なお、上記の構成において、
前記目標スリップ率決定部は、前記左操舵輪のスリップ率又は前記右操舵輪のスリップ率の少なくとも一方が、所定の基準スリップ率との差が閾値以下になった場合に、前記車体の傾斜状態に応じて、左目標スリップ率と右目標スリップ率との比率を決定するものとしても構わない。
また、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備え、
前記目標スリップ率決定部は、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
この構成によれば、傾斜状態での走行時において車体を起き上がらせる効果を得ることができる。よって、例えば、ライダーは路面に対して鉛直方向に近い姿勢を維持しながら走行することができる。
また、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備え、
前記目標スリップ率決定部は、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
この構成によれば、傾斜状態での走行時において車体を倒させる効果を得ることができる。よって、例えば、ライダーが走行時に車体を傾斜させようとした場合、この意図を車体に反映させやすくなる。
また、前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、
運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備え、
前記目標スリップ率決定部は、
前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
上記構成によれば、車両に要求される性能に応じた姿勢制御が可能となる。
前記傾斜検出部が、前記車体のロール角を検出するロール角センサを含み、
前記目標スリップ率決定部は、前記車体のロール角に応じて決定される基準に基づいて、前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
上記構成によれば、車体のロール角に応じた姿勢制御が可能となる。
前記傾斜検出部が、前記車体のロール角速度を検出するロール角速度センサを含み、
前記目標スリップ率決定部は、前記車体のロール角速度に応じて決定される基準に基づいて、前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
上記構成によれば、車体のロール角速度に応じた姿勢制御が可能となる。
このとき、
前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、
運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備え、
前記目標スリップ率決定部は、
前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が倒れこむ方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
傾斜検出部に備えられたロール角速度センサによって、ライダーが車体を倒れ込む方向に移動させようとしているのか、ライダーが車体を起き上がる方向に移動させようとしているのかを、検出することができる。上記の構成によれば、ライダーが車体をどちらの方向に移動させようとしている場合においても、車体の姿勢を維持させることが可能となる。
また、
前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、
運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備え、
前記目標スリップ率決定部は、
前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が倒れこむ方向に移動していることを検知すると、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
傾斜検出部に備えられたロール角速度センサによって、ライダーが車体を倒れ込む方向に移動させようとしているのか、ライダーが車体を起き上がる方向に移動させようとしているのかを、検出することができる。上記の構成によれば、ライダーが車体をどちらの方向に移動させようとしている場合においても、車体の姿勢をライダーの意図通りに動作させやすくできる。
前記傾斜検出部が、前記車体のロール角を検出するロール角センサ、及び前記車体のロール角速度を検出するロール角速度センサを含み、
前記目標スリップ率決定部は、
前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合に、前記車体のロール角に応じて決定される基準に基づいて前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合に、前記車体のロール角速度に応じて決定される基準に基づいて前記左目標スリップ率と前記右目標スリップ率との比率を決定するものとしても構わない。
ライダーが車体を傾ける動作を行った直後においては、ロール角速度が大きく変化し、その後車体が傾いた状態が維持されると、ロール角速度の大きさは0に近づく一方、ロール角は車体の傾きに応じた値となる。上記構成によれば、ライダーが車体を傾けようとする動作を行った直後は、走行しながら車体がライダーの意思を反映した動きを行い、車体が傾いた後はその車体の姿勢を保ったまま走行することが可能となる。
また、前記鞍乗り型車両は、
ライダーによって操作可能に構成された制動操作子と、
前記制動操作子の操作量に応じて、前記左制動部の制動トルクである左制動トルクと、前記右制動部の制動トルクである右制動トルクとの合計値を算出する合計制動トルク算出部と、
前記傾斜検出部が検出した前記車体の傾斜状態に応じて決定される基準に基づいて前記合計値を配分することで、前記左制動トルク及び前記右制動トルクをそれぞれ算出する各制動トルク算出部と、
前記左操舵輪のスリップ率を算出する左スリップ率算出部と、
前記右操舵輪のスリップ率を算出する右スリップ率算出部と、を備え、
前記液圧制御部は、前記左配管内のブレーキ液圧を調整することで、前記各制動トルク算出部によって算出された前記左制動トルクを前記左制動部に対して発生させると共に、前記左配管内のブレーキ液圧を調整することで、前記各制動トルク算出部によって算出された前記右制動トルクを前記右制動部に対して発生させ、
前記ABS発動部は、
前記左操舵輪のスリップ率が所定の目標スリップ率に達すると、前記液圧制御部に対して前記左配管内のブレーキ液圧を低下させる指示を行い、
前記右操舵輪のスリップ率が前記目標スリップ率に達すると、前記液圧制御部に対して前記右配管内のブレーキ液圧を低下させる指示を行うものとしても構わない。
上記の構成によれば、ABSの動作前の状態において、車体の傾斜状態に応じて、ライダーの操作量に応じた制動トルクが左右の操舵輪に対して配分され、左操舵輪と右操舵輪のそれぞれが路面に伝える制動トルクの大きさが調整される。この結果、左右の操舵輪それぞれに設定されている目標スリップ率が同一の値であっても、左右の操舵輪に対してABSが作動するタイミングを異ならせることができる。無論、この構成の下で、左右の操舵輪それぞれに設定されている目標スリップ率を異ならせていても構わない。
本発明の鞍乗り型車両によれば、走行時における車体の傾斜量を調整することが可能となる。
車体フレームの左右方向の左方から鞍乗り型車両を見たときの模式的な側面図である。 車体フレームが直立状態にある状態下で、鞍乗り型車両の前部を正面から見たときの模式的な正面図である。 図2の一部分を拡大した図面である。 図2の車両を上方から見たときの模式的な平面図である。 車両を転舵させた状態の車両前部の模式的な平面図である。 車両を傾斜させた状態の車両前部の模式的な正面図である。 車両を転舵させ、且つ傾斜させた状態の、車両前部の模式的な正面図である。 傾斜検出部の構成を模式的に示す機能ブロック図である。 車両の重心に発生する加速度を概略的に図示したものである。 車両に発生する角速度を概略的に図示したものである。 図1の車両の右側方から見た左緩衝器の模式的な側面図である。 車両が備えるブレーキシステムの構成を模式的に示すブロック図である。 トルク制御部の構成を模式的に示すブロック図である。 外輪よりも内輪に対して大きな制動トルクを発生させた場合における車両の挙動を説明するための模式的な図面である。 内輪よりも外輪に対して大きな制動トルクを発生させた場合における車両の挙動を説明するための模式的な図面である。 第三実施形態のトルク制御部の構成を模式的に示すブロック図である。 別実施形態のトルク制御部の構成を模式的に示すブロック図である。 別実施形態のトルク制御部の構成を模式的に示すブロック図である。
以下、本発明の実施形態につき、図面を参照して説明する。
本明細書において、「ヨー角」とは、車体(車両)の上下方向の軸周りの回転角を表し、「ヨー角速度」とは、上記「ヨー角」の変化率を表す。本明細書において、「ロール角」とは、車体の前後方向の軸周りの回転角を表し、「ロール角速度」とは、上記「ロール角」の変化率を表す。本明細書において、「ピッチ角」とは、車体の左右方向の軸周りの回転角を表し、「ピッチ角速度」とは、上記「ピッチ角」の変化率を表す。ここで、「車体の上下方向」とは、車体を運転するライダーから見た上下方向を表す。同様に、「車体の左右方向」とは、車体を運転するライダーから見た左右方向を表し、「車体の前後方向」とは、車体を運転するライダーから見た前後方向を表す。
本実施形態が対象としている鞍乗り型車両は、車体フレームの上下方向を路面の鉛直方向に一致させながら走行するとき、車体が直立状態で走行する。このとき、車両の方向と車体フレームの方向は一致している。
本実施形態が対象としている鞍乗り型車両は、路面の鉛直方向に対して車体フレームを車両の左右方向に傾斜させながら走行するとき、車体が旋回しながら走行する。このとき、車両の左右方向と車体フレームの左右方向は一致せず、車両の上下方向と車体フレームの上下方向も一致しない。しかし、車両の前後方向と車体フレームの前後方向は一致する。
〈車体構造〉
図1は、本実施形態の鞍乗り型車両を、車体フレームの左右方向の左方から見たときの模式的な側面図である。図1に示される車両1は、前輪が操舵輪であり、後輪が非操舵輪である場合を想定したものである。
図1に示されるように、車両1は、左右一対の前輪3(3a,3b)、後輪5、操舵機構7、リンク機構9、パワーユニット11、シート13、車体フレーム15等を備えている。なお、図1には、図示の都合上、左前輪3aのみが表示されており、右前輪3bは表示されていない。また、図1では、車体フレーム15のうち、車体に隠れている箇所については破線で図示している。
車体フレーム15は、ヘッドパイプ21、ダウンフレーム22、アンダーフレーム23、及びリアフレーム24を有する。車体フレーム15は、パワーユニット11やシート13等を支持している。
パワーユニット11は、エンジン又は電動モーター等の駆動源と、トランスミッション装置等を有する。パワーユニット11には後輪5が支持されている。駆動源の駆動力は、トランスミッション装置を介して後輪5に伝達される。パワーユニット11は、車体フレーム15に揺動可能に支持されており、後輪5が車体フレーム15の上下方向に変位可能な構成である。
ヘッドパイプ21は、車両1の前部に配置されており、操舵機構7のステアリングシャフト31(後述する図2参照)を回転可能に支持している。ヘッドパイプ21は、車体フレーム15を車両1の左右方向から見たときに、当該ヘッドパイプ21の上部が当該ヘッドパイプ21の下部よりも後方に位置するように配置されている。ヘッドパイプ21の回転軸は、車体フレーム15の上下方向に対して傾斜しており、車体フレーム15の上方且つ後方に延びている。
ヘッドパイプ21の周囲には、操舵機構7及びリンク機構9が配置されている。ヘッドパイプ21は、リンク機構9を支持しており、より詳細には、リンク機構9の少なくとも一部を回転可能に支持している。
ダウンフレーム22は、ヘッドパイプ21に接続されている。ダウンフレーム22は、ヘッドパイプ21よりも後方に配置されており、車両1の上下方向に沿って延びている。このダウンフレーム22の下部には、アンダーフレーム23が接続されている。
アンダーフレーム23は、ダウンフレーム22の下部から後方へ向けて延びている。このアンダーフレーム23の後方には、リアフレーム24が後方且つ上方へ向けて延びている。このリアフレーム24は、シート13、パワーユニット11、及びテールランプ等を支持している。
車体フレーム15は、車体カバー17によって覆われている。車体カバー17は、フロントカバー26、左右一対のフロントフェンダー27(27a,27b)、レッグシールド28、センターカバー29、及びリアフェンダー30を有する。車体カバー17は、左右一対の前輪3、車体フレーム15、及びリンク機構9等、車両に搭載される車体部品の少なくとも一部を覆う。
フロントカバー26は、シート13よりも前方に位置し、操舵機構7及びリンク機構9の少なくとも一部を覆っている。レッグシールド28は、ライダーの足の少なくとも一部を前方から覆うように構成されており、左右一対の前輪3よりは後方で、且つシート13よりは前方に配置されている。センターカバー29は、リアフレーム24の周囲の少なくとも一部を覆うように配置されている。
フロントフェンダー27の少なくとも一部は、フロントカバー26の下方、且つ、前輪3の上方に配置されている。リアフェンダー30の少なくとも一部は、後輪5の上方に配置されている。
車両1を直立させた状態において、前輪3(3a,3b)の少なくとも一部は、ヘッドパイプ21の下方、且つフロントカバー26の下方に配置されている。また、後輪5の少なくとも一部は、センターカバー29又はシート13の下方、且つリアフェンダー30の下方に配置されている。
前輪3には前輪車速センサ41が設けられ、後輪5には後輪車速センサ42が設けられている。これらのセンサ(41,42)で得られた検出結果に基づいて車両1の車速が演算によって推定される。車両1は、任意の位置に、車両1の傾斜状態を検出する傾斜検出部50を備えており、この車速、及びその他の値に基づいて車両1の傾斜状態を検出する。傾斜検出部50は、所定のセンサ群及び演算装置で構成されている。詳細は後述される。
更に、車両1は、操舵輪に対応した前輪3(3a,3b)が路面に伝える制動トルクを制御するトルク制御部100を、車両1の内部に備える。このトルク制御部100は、電子制御ユニット等で構成され、例えばシート13の下部に設けられている。
〈操舵機構〉
図2は、車体フレーム15が直立状態の下で、車両1の前部を正面から見たときの模式的な正面図である。図3は、図2の一部分を拡大した図面である。また、図4は、図2の車両1を上方から見たときの模式的な平面図である。図面の都合上、図2及び図4では、車体カバー17の図示を省略している。
図2及び図4に示されるように、操舵機構7は、操舵力伝達機構71、及び緩衝器73(73a,73b)を有する。
左前輪3aは、ダウンフレーム22の左方に配置されており、左緩衝器73aに支持されている。左前輪3aの上方には、左フロントフェンダー27aが配置されている。同様に、右前輪3bは、ダウンフレーム22の右方に配置されており、右緩衝器73bに支持されている。右前輪3bの上方には、右フロントフェンダー27bが配置されている。
緩衝器73(73a,73b)は、いわゆるテレスコピック式の緩衝器である。左緩衝器73aは、支持する左前輪3aが路面から受ける荷重による振動を減衰させる目的で設けられている。同様に、右緩衝器73bは、支持する右前輪3bが路面から受ける荷重による振動を減衰させる目的で設けられている。
車体フレーム15が直立状態にある下で、車両1を前方から見たときに、操舵力伝達機構71は、前輪3(3a,3b)よりも上方に配置されている。操舵力伝達機構71は、ライダーの操舵力を入力するための操舵部材を備えている。操舵部材は、ステアリングシャフト31と、ステアリングシャフト31の上部に連結されたハンドルバー32とを有する。ステアリングシャフト31は、その一部がヘッドパイプ21に回転可能に支持されており、ライダーによるハンドルバー32の操作に連動して回転する。ステアリングシャフト31の回転軸線は、車体フレーム15の後方且つ上方に延びている。
操舵力伝達機構71は、ステアリングシャフト31及びハンドルバー32を含む操舵部材と、タイロッド33と、ブラケット34(34a,34b)とを有する。操舵力伝達機構71は、ライダーがハンドルバー32を操作する操舵力を、ブラケット34(34a,34b)に伝達する。
〈リンク機構〉
本実施形態の車両1は、平行四節リンク(「パラレログラムリンク」とも呼ぶ。)方式のリンク機構9を有している。
リンク機構9は、車体フレーム15が直立状態の下での車両1を前方から見て、ハンドルバー32よりも下方に配置されており、ヘッドパイプ21に支持されている。リンク機構9は、クロス部材35(35a,35b,35c,35d)を備えている。
上クロス部材35aは、ヘッドパイプ21の前方に配置されて車幅方向に延びている。上クロス部材35aの中間部は、支持部36aによってヘッドパイプ21に支持されている。支持部36aは、ヘッドパイプ21に設けられたボス部である。上クロス部材35aは、ヘッドパイプ21に対して、車体フレーム15の前後方向に延びる中間上軸線回りに回転可能である。
上クロス部材35aの左端は、支持部36bによって左クロス部材35bに支持されている。支持部36bは、左クロス部材35bに設けられたボス部である。また、上クロス部材35aの右端は、支持部36cによって右クロス部材35cに支持されている。支持部36cは、右クロス部材35cに設けられたボス部である。
上クロス部材35aは、左クロス部材35bに対して、車体フレーム15の前後方向に延びる左上軸線回りに回転可能である。また、上クロス部材35aは、右クロス部材35cに対して、車体フレーム15の前後方向に延びる右上軸線回りに回転可能である。中間上軸線、左上軸線、及び右上軸線は、互いにほぼ平行である。中間上軸線、左上軸線、及び右上軸線は、車体フレーム15の前後方向の前方かつ車体フレーム15の上下方向の上方に延びている。
下クロス部材35dの中間部は、支持部36dによってヘッドパイプ21に支持されている。支持部36dは、ヘッドパイプ21に形成されたボス部である。下クロス部材35dは、ヘッドパイプ21に対して、車体フレーム15の前後方向に延びる中間下軸線回りに回転可能である。車体フレーム15が直立状態の車両を前方から見て、車体フレーム15の上下方向において、下クロス部材35dは、上クロス部材35aよりも下方に配置されている。下クロス部材35dは、上クロス部材35aとほぼ同じ車幅方向の長さを有し、上クロス部材35aとほぼ平行に配置されている。
下クロス部材35dの左端は、支持部36eによって左クロス部材35bに支持されている。支持部36eは、左クロス部材35bに設けられたボス部である。また、下クロス部材35dの右端は、支持部36fによって右クロス部材35cに支持されている。支持部36fは、右クロス部材35cに設けられたボス部である。下クロス部材35dは、左クロス部材35bに対して、車体フレーム15の前後方向に延びる左下軸線回りに回転可能である。同様に、下クロス部材35dは、右クロス部材35cに対して、車体フレーム15の前後方向に延びる右下軸線回りに回転可能である。中間下軸線、左下軸線、及び右下軸線は、互いにほぼ平行である。中間下軸線、左下軸線、及び右下軸線は、車体フレーム15の前方且つ上方に延びている。
リンク機構9の少なくとも一部は、車両1の前後方向に延びる中間軸線回りに回転可能である。また、リンク機構9の少なくとも一部は、車体フレーム15の前方且つ上方に延びる中間軸線(回転軸線)回りに回転可能である。中間軸線(回転軸線)は、水平に対して傾斜し、水平に対して前方且つ上方に延びている。
左クロス部材35bは、ヘッドパイプ21の左方に配置されている。左クロス部材35bは、左前輪3a及び左緩衝器73aよりも上方に設けられている。左緩衝器73aは、左クロス部材35bに対して左中心軸Y1を中心に回転可能に配置されている。左中心軸Y1は、ヘッドパイプ21の回転軸線とほぼ平行に設けられている。
右クロス部材35cは、ヘッドパイプ21の右方に配置されている。右クロス部材353cは、右前輪3b及び右緩衝器73bよりも上方に設けられている。右緩衝器73bは、右クロス部材35cに対して右中心軸Y2を中心に回転可能に配置されている。右中心軸Y2は、ヘッドパイプ21の回転軸線とほぼ平行に設けられている。
このように、クロス部材35(35a,35b,35c,35d)は、上クロス部材35aと下クロス部材35dとが相互にほぼ平行な姿勢を保ち、左クロス部材35bと右クロス部材35cとが相互にほぼ平行な姿勢を保つように支持されている。
〈操舵動作〉
図5は、車両1の操舵動作を説明するための図であり、車両1を転舵させた状態の車両前部の模式的な平面図である。図5は、車体フレーム15が直立状態で左右一対の前輪3を転舵させた時の車両1を、車体フレーム15の上方から見た図に対応する。
図4に示すように、ハンドルバー32が回されると、操舵機構7が動作し、操舵動作が行われる。
例えば、ステアリングシャフト31が図5の矢印T1の方向に回転すると、タイロッド33が左後方に移動する。タイロッド33の左後方への移動に伴って、ブラケット34(34a,34b)が矢印T1の方向に回転する。これに伴って、左前輪3aが左中心軸Y1(図2、図3参照)を中心として回転し、右前輪3bが右中心軸Y2(図2、図3参照)を中心として回転する。
〈傾斜動作〉
図6は、車両1の傾斜動作を説明するための図であり、車両1を傾斜させた状態の車両1の前部の模式的な正面図である。図6は、車体フレーム15が車両1の左方向に傾斜した状態の車両1を、車両1の前方から見た図に対応する。
リンク機構9は、車体フレーム15が直立状態にある車両1を前方から見ると、ほぼ長方形状を示し、車体フレーム15が車両1の左方向に傾斜した状態にある車両1を前方から見ると、ほぼ平行四辺形状を示す。リンク機構9の変形と車体フレーム15の左右方向への傾斜は連動する。リンク機構15の作動とは、リンク機構15における傾斜動作を行うためのクロス部材35(35a,35b,35c,35d)がそれぞれの支持点を軸として相対回転し、リンク機構9の形状が変化することを意味している。
例えば、車両1が直立状態にある場合において、正面視でほぼ長方形状に配置されたクロス部材35(35a,35b,35c,35d)が、車両1が傾斜した状態においてほぼ平行四辺形状に変形している。車体フレーム15の傾斜に連動して、左前輪3a及び右前輪3bも車両1の左右方向に傾斜する。
例えば、ライダーが車両1を左方に傾斜させると、ヘッドパイプ21が垂直方向に対して左方に傾斜する。ヘッドパイプ21が傾斜すると、上クロス部材35aは支持部36aを中心としてヘッドパイプ21に対して回転し、下クロス部材35dは支持部36dを中心としてヘッドパイプ21に対して回転する。すると、上クロス部材35aが下クロス部材35dよりも左方に移動し、左クロス部材35b及び右クロス部材35cは、ヘッドパイプ21とほぼ平行な状態を保ったまま、垂直方向に対して傾斜する。このとき、左クロス部材35b及び右クロス部材35cは、上クロス部材35a及び下クロス部材35dに対して回転する。つまり、車両1を傾斜させると、左クロス部材35b及び右クロス部材35cの傾斜に伴って、左クロス部材35bに支持された左車輪3a、及び右クロス部材35cに支持された右車輪3bは、それぞれ垂直方向に対してヘッドパイプ21とほぼ平行な状態を保ったまま傾斜する。
また、タイロッド33は、車両1が傾斜しても上クロス部材35a及び下クロス部材35dに対してほぼ平行な姿勢を保つ。
このように、傾斜動作を行うことで左車輪3a及び右車輪3bをそれぞれ傾けるリンク機構9は、左車輪3a及び右車輪3bの上方に配置されている。つまり、リンク機構9を構成する各クロス部材35(35a,35b,35c,35d)の回転軸は、左車輪3a及び右車輪3bよりも上方に配置されている。
〈操舵動作+傾斜動作〉
図7は、車両1を転舵させ、且つ傾斜させた状態の車両1の前部の模式的な正面図である。図7では、左側方に操舵し、左方に傾斜した状態を示している。図7は、車体フレーム15が車両1の左方に傾斜した状態で左右一対の前輪3(3a,3b)を転舵させた時の車両1を、車両1の前方から見た図である。図7に示す動作時には、操舵動作により前輪3(3a,3b)の向きが変更され、傾斜動作により前輪3(3a,3b)が車体フレーム15とともに傾斜している。この状態では、リンク機構9の各クロス部材35(35a,35b,35c,35d)が平行四辺形状に変形し、タイロッド33が操舵方向(図7では左方)且つ後方に移動する。
〈傾斜検出〉
図8は、傾斜検出部50の構成を模式的に示す機能ブロック図である。本実施形態において、傾斜検出部50は、車速検出部51、ジャイロセンサ53、及びロール角検出部54を備える。車速検出部51、ロール角検出部54は、例えば演算処理装置によって実現される。なお、傾斜検出部50は、車両1の傾斜状態を検出することができる構成であれば、図8に示す態様には限られない。
カーブを曲がる際に、ライダーが車両1のハンドルバー32を操舵すると(例えば図5に示される状態)、車両1のヨーレートが変化する。また、ライダーが車両1をカーブの中心方向に傾けると(例えば図6に示される状態)、車両1のロールレートが変化する。ジャイロセンサ53は、車両1のヨー及びロールの2軸方向の角速度を検出する。すなわち、ジャイロセンサ53は、車両1のヨーレート及びロールレートを検出する。
前輪車速センサ41は、前輪3の回転速度を検出する。また、後輪車速センサ42は後輪5の回転速度を検出する。なお、本実施形態の車両1は、一対の前輪3(3a,3b)を備えている。
車速検出部51は、前輪車速センサ41及び後輪車速センサ42から入力される検出値を基に、車両1の車速を検出する。ロール角検出部54は、ジャイロセンサ53から車両1のロールレートが入力される。ロール角検出部54は、入力値を基に車両1のロール角(傾斜状態)を検出する。車両1のロール角の検出方法の一例を図9A及び図9Bを参照して説明する。
図9Aは、車両1の重心10に発生する加速度を概略的に図示したものである。図9Bは、車両1に発生する角速度を概略的に図示したもので、便宜的に車体固定軸(Y1軸)が重心10を通る形で示す。このような車両1のロール角の検出方法は、リーンウィズの状態で、車両1のピッチング及びタイヤの厚みを無視して速度Vで旋回中である理想状態での検出方法である。なお、リーンウィズの状態とは、車体固定軸(Y1軸)とライダーの上半身とが一直線上にある状態のことである。
図9Aを参照して、車両1の旋回中におけるロール角θと、車体速度Vとオイラーのヨー角Ψの微分と重力加速度gとの関係は以下の式により表わされる。(dΨ/dt)はヨー角の時間微分であるヨーレート(ヨー角速度)である。
θ=arctan(V・(dΨ/dt)/g) …(1)
図9Bを参照して、車両1の旋回中におけるロール角θと、車両1に固定されたジャイロセンサ53で検出されたヨーレートωと、オイラーのヨー角Ψの微分との関係は以下の式により表される。また、図9Bにおいて、ωは車体に固定された上下方向の軸周りに発生する角速度で矢印の長さはその大きさを表す。(dΨ/dt)は鉛直方向軸周りに発生する角速度である。
θ=arccos(ω/(dΨ/dt)) …(2)
(1)式及び(2)式より、下式の関係式が導出される。
θ=arcsin(V・ω/g) …(3)
〈制動動作〉
図10は、図1の車両1の右側方から見た左緩衝器73aの模式的な側面図である。なお、右緩衝器についても同様であるため、説明は割愛する。
図10に示すように、左緩衝器73aは、左後テレスコピック要素80a、左前テレスコピック要素81a、左クロス部材支持部82a、及び左ブラケット34aを含む。左後テレスコピック要素81aは、例えば、内部にスプリング等の弾性部材(図示略)及びオイル等の緩衝部材(図示略)が設けられることで、左中心軸Y1方向に伸縮する伸縮構造を有する。また、左後テレスコピック要素80aは、左前輪3aが路面から受ける荷重による振動や衝撃を吸収するダンパー機能を有する。
左前テレスコピック要素81aは、左前輪3aに対して左車輪軸83aの回転軸線方向で左後テレスコピック要素80aと同じ側に配置される。左後テレスコピック要素80aと左前テレスコピック要素81aとは、左前輪3aの右方で車両1の直立状態で車両の前後方向に並んで配置される。左前テレスコピック要素81aは、左後テレスコピック要素80aの前方に配置されている。左前テレスコピック要素81aは、左後テレスコピック要素80aと同様に、左中心軸Y1方向に伸縮する伸縮構造を有する。なお、左後テレスコピック要素80aの伸縮方向と左前テレスコピック要素81aの伸縮方向とは、左前輪3aの回転軸線方向から見て平行である。
左後テレスコピック要素80aの上部及び左前テレスコピック要素81aの上部は、左ブラケット34aによって連結されている。左前テレスコピック要素81aの下端部は、左後テレスコピック要素81aの下端部近傍に連結固定されている。左前輪3aは、車両1の前後方向に並列に配置された左後テレスコピック要素81a及び左前テレスコピック要素81aの2本のテレスコピック要素によって左ブラケット34aに支持されている。そのため、左緩衝器73aの下側部に位置するアウター要素84aは、左緩衝器73aの上側部に位置するインナー要素85aに対して、テレスコピック要素の伸縮方向に平行な軸線回りに相対回転しない。
左ブラケット34aは、車体フレーム15が直立状態にある車両1を上方から見て、フロントカバー26の下方に位置する。
左前輪3aは、左前輪3aの制動力を発生させる左前ブレーキ91aを備えている。左前ブレーキ91aは、左ブレーキディスク92a及び左キャリパ93aを有する。左ブレーキディスク92aは、左車輪軸83aを中心とした環状に形成されている。左ブレーキディスク92aは、左前輪3aに固定されている。左キャリパ93aは、左緩衝器73aの左後テレスコピック要素80aの下部に固定されている。また、左キャリパ93は、左前ブレーキ管94aの一端部が接続されており、左前ブレーキ管94aを介して液圧を受ける。左キャリパ93aは、受けた液圧によりブレーキパッドを移動させる。ブレーキパッドは、左ブレーキディスク92aの右側面及び左側面に接触する。左キャリパ93aは、左ブレーキディスク92aをブレーキパッドで挟持して、左ブレーキディスク92aの回転を制動する。
図11は、車両1が備えるブレーキシステム120の構成を模式的に示すブロック図である。ブレーキシステム120は、図10を参照して上述したように、左前輪3aに設けられ、左前輪3aの制動力を発生させる左前ブレーキ91aと、右前輪3bに設けられ、右前輪3bの制動力を発生させる右前ブレーキ91bとを含む。左前ブレーキ91aが「左制動部」に対応し、右前ブレーキ91bが「右制動部」に対応する。ブレーキシステム120は、ブレーキ作動装置123を含む。
ブレーキシステム120は、車両1を運転するライダーによって操作可能に構成された入力部材121を含む。入力部材121は、一例としてレバー形状である。入力部材121が「制動操作子」に対応する。
トルク制御部100は、電子制御ユニット101と、電子制御ユニット101によって作動される液圧制御ユニット102とを含む。液圧制御ユニット102が「制動制御部」に対応する。
ブレーキ作動装置123は、前マスターシリンダー125を含む。入力部材121がライダーによって操作されると、前マスターシリンダー125が作動して液圧を発生する。発生した液圧は、前ブレーキ管127を介してトルク制御部100に伝えられる。トルク制御部100に備えられた電子制御ユニット101は、伝えられた液圧、各車輪の回転速度、及び車両1の傾斜状態等に応じた液圧を発生するために液圧制御ユニット102を制御する。
液圧制御ユニット102で発生した液圧は、左ブレーキ管94aを介して左キャリパ93aに伝えられる。これにより、左前ブレーキ91aは作動する。同様に、液圧制御ユニット102で発生した液圧は、右ブレーキ管94bを介して右キャリパ93bに伝えられる。これにより、右前ブレーキ91bは作動する。左ブレーキ管94aが「左配管」に対応し、右ブレーキ管94bが「右配管」に対応する。
車両1は、電子制御ユニット101による制御によって、左ブレーキ管94aに充填されたブレーキ液の液圧と、右ブレーキ管94bに充填されたブレーキ液の液圧とが、独立して調整可能に構成されている。
本実施形態の車両1において、ブレーキシステム120は、後輪5の制動力を発生させる後ブレーキ91cを備える。ブレーキシステム120は、入力部材121とは別の入力部材131を備える。ブレーキシステム120は、ブレーキ作動装置133を含む。
ブレーキ作動装置133は、後マスターシリンダー135を含む。入力部材131がライダーによって操作されると、後マスターシリンダー135が作動して液圧を発生する。発生した液圧は、後ブレーキ管137を介してトルク制御部100に伝えられる。入力部材121が操作された場合と同様に、電子制御ユニット101は、伝えられた液圧、各車輪の回転速度、及び車両1の傾斜状態等に応じた液圧を発生するために液圧制御ユニット102を制御する。なお、本実施形態の車両1において、ブレーキ作動装置133は、入力部材131の操作により、右前ブレーキ91a、左前ブレーキ91b、及び後ブレーキ91cを作動させる。すなわち、液圧制御ユニット102で発生した液圧は、左ブレーキ管94aを介して左キャリパ93aに伝えられる。これにより、左前ブレーキ91aは作動する。同様に、液圧制御ユニット102で発生した液圧は、右前ブレーキ管94bを介して右キャリパ93bに伝えられる。これにより、右前ブレーキ91bは作動する。同様に、液圧制御ユニット102で発生した液圧は、後ブレーキ管94bを介して後キャリパ93cに伝えられる。これにより、後ブレーキ91cは作動する。
なお、入力部材131が操作された場合には、後ブレーキ91cのみを作動させるものとしても構わない。他方、入力部材121が操作された場合に、右前ブレーキ91a及び左前ブレーキ91bに加えて、後ブレーキ91cをも作動させるものとしても構わない。
〈トルク制御部〉
図12は、トルク制御部100の構成を模式的に示すブロック図である。上述したように、トルク制御部100は、電子制御ユニット101と液圧制御ユニット102とを備えている。
電子制御ユニット101は、傾斜検出部50から車両1の傾斜状態に関する情報が与えられる。また、電子制御ユニット101は、ライダーが入力部材121を操作した操作量に関する情報が与えられる。この情報は、前マスターシリンダー125や後マスターシリンダー135を通じて生じた液圧に基づくものとして構わない。
図12に示す例では、電子制御ユニット101は、スリップ率算出部111(111a,111b)と、目標スリップ率決定部113と、ABS発動部114と、内外輪特定部151とを備える。
電子制御ユニット101は、前輪車速センサ41から一対の前輪3(3a,3b)の車輪速に関する情報が入力される。また、電子制御ユニット101は、車速検出部51から車両1の車速(車体速)に関する情報が入力される。なお、図8を参照して説明したように、傾斜検出部50は、一対の前輪3(3a,3b)の車輪速に関する情報が入力され、この情報に基づいて車両1の車速を算出する。このため、図12に示すように、一対の前輪3(3a,3b)の車輪速に関する情報、及び車両1の車速(車体速)に関する情報が、傾斜検出部50を通じて電子制御ユニット101に入力されるものとしても構わない。
左スリップ算出部111aは、左前輪3aの車輪速Vaと、車両1の車速Vとに基づいて、左前輪3aのスリップ率を算出する。一例として、左前輪3aのスリップ率Rsaは、Rsa=(V−Va)/Vで算出される。
同様に、右スリップ算出部111bは、右前輪3bの車輪速Vbと、車両1の車速Vとに基づいて、右前輪3bのスリップ率を算出する。一例として、右前輪3bのスリップ率Rsbは、Rsb=(V−Vb)/Vで算出される。
目標スリップ率決定部113は、傾斜検出部50から与えられた車両1の傾斜状態に関する情報に基づいて、左前輪3a及び右前輪3bのそれぞれの目標スリップ率を決定する。以下では、適宜、左前輪3aの目標スリップ率を「左目標スリップ率」と記載し、右前輪3bの目標スリップ率を「右目標スリップ率」と記載する。
ABS発動部114は、左スリップ率算出部111aから随時与えられる現時点の左前輪3aのスリップ率と、左目標スリップ率とを比較する。そして、左前輪3aのスリップ率が左目標スリップ率の値に達すると、ABS発動部114は、液圧制御ユニット102に対して左前ブレーキ管94aに充填されるブレーキ液圧を低下させる指示を行う。なお、ABS発動部114からの制御に基づいてブレーキ液圧をどのように低下させるかは、種々の態様を採用することができる。
同様に、ABS発動部114は、右スリップ率算出部111bから随時与えられる現時点の右前輪3bのスリップ率と、右目標スリップ率とを比較する。そして、右前輪3bのスリップ率が右目標スリップ率の値に達すると、ABS発動部114は、液圧制御ユニット102に対して右前ブレーキ管94bに充填されるブレーキ液圧を低下させる指示を行う。
液圧制御ユニット102は、ABS発動部114からの指示に基づき、左前ブレーキ管94a又は右前ブレーキ94bに充填されるブレーキ液圧を低下させる。例えば、左前輪3aのスリップ率が左目標スリップ率の値に達すると、液圧制御ユニット102は、ABS発動部114からの指示に基づき、左前ブレーキ管94aに充填されるブレーキ液圧を低下させる。これにより、左前輪3aの制動トルクが低下すると共に、左前輪3aのスリップ率が低下する。
目標スリップ率決定部113は、種々の基準に基づいて、左目標スリップ率及び右目標スリップ率の値を決定することが可能である。以下、実施形態毎に説明する。
(第一実施形態)
第一実施形態の態様では、目標スリップ率決定部113は、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。より具体的には、目標スリップ率決定部113が、左目標スリップ率及び右目標スリップ率の比率を決定するものとしても構わない。
内外輪特定部151は、傾斜検出部50から与えられた車両1の傾斜状態に関する情報に基づき、左前輪3aと右前輪3bのうち、どちらが内輪でどちらが外輪であるかを特定する。水平面に直交する軸からの車両1の傾斜角(ロール角)を車両1の傾斜状態とすると、例えば、このロール角の正負によって、左前輪3aと右前輪3bのどちらが内輪でどちらが外輪であるかを特定することができる。
図13Aは、外輪よりも内輪に対して大きな制動トルクを発生させた場合における車両1の挙動を説明するための模式的な図面である。図13Aでは、車両1が軌跡60aに沿って右カーブを描きながら走行中において、右前輪3bに対して制動トルクFxを発生させた場合を想定した図面である。この状態では、右前輪3bが内輪に対応し、左前輪3aが外輪に対応する。すなわち、図13Aは、外輪よりも内輪に対して大きな制動トルクを発生させた場合を模擬したものである。
内輪の目標スリップ率が、外輪の目標スリップ率よりも大きくなるように設定されるということは、内輪の方が外輪よりもABSが発動しにくくなることを意味する。すなわち、内輪と外輪の双方に、ほぼ同じ制動力が発生していた場合においては、外輪に対して先にABSが発動し、外輪の制動力が低下する。つまり、このタイミングにおいて、外輪よりも内輪に対して大きな制動トルクが発生することになる。言い換えれば、図13Aは、内輪よりも外輪に対して先にABSが発動した場合を模擬したものであるとも言える。
車両1が右カーブを描きながら進行中、ライダーは車両1の車体を右側に傾斜させる。この状態で、外輪である左前輪3aに対して、内輪である右前輪3bよりも先にABSを発動させることで、左前輪3aよりも右前輪3bに対して大きな制動トルクを発生させる。このとき、右前輪3bに対しては進行方向とは反対の向きに制動力が発生する一方、左前輪3aに対してはこの力が発生しない。この結果、内外輪間の制動力の差に起因して、右前輪3bに対して内向きのヨーモーメントが発生する。従って、ロール方向の回転力61が上昇し、車両1を起き上がらせる力が働く。この結果、車両1は、右前輪3bに対して制動トルクFxを発生させた後は、軌跡60bに沿って走行する。これにより、車両1の進行方向を変化させる場合においても、ライダーは路面に対して鉛直方向に近い姿勢を維持しながら車両1を走行させることができる。
(第二実施形態)
第二実施形態の態様では、目標スリップ率決定部113は、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。より具体的には、目標スリップ率決定部113が、左目標スリップ率及び右目標スリップ率の比率を決定するものとしても構わない。
図13Bは、内輪よりも外輪に対して大きな制動トルクを発生させた場合における車両1の挙動を説明するための模式的な図面である。図13Bでは、車両1が軌跡60aに沿って右カーブを描きながら走行中において、左前輪3aに対して制動トルクFxを発生させた場合を想定した図面である。この状態では、右前輪3bが内輪に対応し、左前輪3aが外輪に対応する。すなわち、図13Aは、内輪よりも外輪に対して大きな制動トルクを発生させた場合を模擬したものである。
外輪の目標スリップ率が、内輪の目標スリップ率よりも大きくなるように設定されるということは、外輪の方が内輪よりもABSが発動しにくくなることを意味する。すなわち、内輪と外輪の双方に、ほぼ同じ制動力が発生していた場合においては、内輪に対して先にABSが発動し、内輪の制動力が低下する。つまり、このタイミングにおいて、内輪よりも外輪に対して大きな制動トルクが発生することになる。言い換えれば、図13Bは、外輪よりも内輪に対して先にABSが発動した場合を模擬したものであるとも言える。
車両1が右カーブを描きながら進行中、ライダーは車両1の車体を右側に傾斜させる。この状態で、内輪である右前輪3bに対して、外輪である左前輪3aよりも先にABSを発動させることで、右前輪3bよりも左前輪3aに対して大きな制動トルクを発生させる。このとき、左前輪3aに対しては進行方向とは反対の向きに制動力が発生する一方、右前輪3bに対してはこの力が発生しない。この結果、内外輪間の制動力の差に起因して、左前輪3aに対して外向きのヨーモーメントが発生し、内向きのヨーモーメントを減少させる効果が得られる。つまり、図13Aに示す回転力61とは逆向きのロール方向の回転力62が発生する。これは、車両1を起き上がらせる力を低下させ、車両1を内側に倒す機能が付加されることを意味する。この結果、車両1は、左前輪3aに対して制動トルクFxを発生させた後は、軌跡60bに沿って走行する。これにより、車両1の進行方向を変化させるべくライダーが車両1の車体を傾斜させた場合に、ライダーの意図を姿勢に反映させやすくなる。
(第三実施形態)
図14は、第三実施形態のトルク制御部100の構成を模式的に示すブロック図である。トルク制御部100は、上記の実施形態の構成に加えて、更に記憶部157を備えている。記憶部157は、ライダーがどのような運転を希望するかに関する情報が記憶されている。より具体的には、運転時における車体の姿勢維持性と、運転時における車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が記憶されている。なお、この情報は、適宜書き換え可能に構成されていても構わない。すなわち、例えばライダーが運転時に所定の操作子を操作することで、優先性能情報の書き換えが可能な構成であっても構わない。
この実施形態では、各制動トルク算出部155は、優先性能情報の内容によって、内輪と外輪のどちらの目標スリップ率を大きくするかを調整する。
具体的には、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、目標スリップ率決定部113は、第一実施形態と同様の処理を行う。すなわち、目標スリップ率決定部113は、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。
また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、目標スリップ率決定部113は、第二実施形態と同様の処理を行う。すなわち、目標スリップ率決定部113は、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。
この構成によれば、ライダーが望む運転状況に応じた運転時の姿勢制御が可能となる。
(第四実施形態)
図14に示す構成において、ライダーが車両1の車体を倒そうとしているか、起こそうとしているかによって、目標スリップ率決定部113が、内輪と外輪のどちらの目標スリップ率を大きくするかを調整するものとしても構わない。目標スリップ率決定部113は、例えば傾斜検出部50から車両1のロール角速度に関する情報が与えられることで、車両1が倒れ込む方向に移動しているか、起き上がる方向に移動しているかを検出することができる。
具体的には、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、目標スリップ率決定部113は、車両1のロール角速度の値から車両1が倒れ込む方向に移動していることを検知すると、第一実施形態と同様の処理を行う。すなわち、目標スリップ率決定部113は、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。
また、優先性能情報が車体の姿勢維持性を優先する旨の内容である場合、目標スリップ率決定部113は、車両1のロール角速度の値から車両1が起き上がる方向に移動していることを検知すると、第二実施形態と同様の処理を行う。すなわち、目標スリップ率決定部113は、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。
この構成によれば、ライダーが車両1を起き上がらせようとしている場合には、車両1が倒れ込む方向に力が働き、ライダーが車両1を倒そうしている場合には、車両1が起き上がる方向に力が働く。これにより、ライダーが車体をどちらの方向に移動させようとしている場合においても、車体の姿勢を維持させることが可能となる。
また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、目標スリップ率決定部113は、車両1のロール角速度の値から車両1が倒れ込む方向に移動していることを検知すると、第二実施形態と同様の処理を行う。すなわち、目標スリップ率決定部113は、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。
また、優先性能情報が車体の姿勢変動性を優先する旨の内容である場合、目標スリップ率決定部113は、車両1のロール角速度の値から車両1が起き上がる方向に移動していることを検知すると、第一実施形態と同様の処理を行う。すなわち、目標スリップ率決定部113は、内外輪特定部151によって内輪と特定された側の前輪の目標スリップ率が、内外輪特定部151によって外輪と特定された側の前輪の目標スリップ率よりも大きくなるように、左目標スリップ率及び右目標スリップ率を決定する。
この構成によれば、ライダーが車両1を起き上がらせようとしている場合には、車両1がより起き上がる方向に力が働き、ライダーが車両1を倒そうしている場合には、車両1がより倒れ込む方向に力が働く。これにより、ライダーが車体をどちらの方向に移動させようとしている場合においても、車体の姿勢をライダーの意図通りに動作させやすくなる。
(第五実施形態)
目標スリップ率決定部113は、傾斜検出部50から与えられる車両1のロール角の情報に応じて決定される基準に基づいて、内輪と外輪の目標スリップ率の比率を調整するものとしても構わない。また、目標スリップ率決定部113は、傾斜検出部50から与えられる車両1のロール角速度の情報に応じて決定される基準に基づいて、内輪と外輪の目標スリップ率の比率を調整するものとしても構わない。また、目標スリップ率決定部113は、傾斜検出部50から与えられる車両1のロール角の情報とロール角速度の情報の双方に応じて決定される基準に基づいて、内輪と外輪の目標スリップ率の比率を調整するものとしても構わない。
[別実施形態]
以下、別実施形態について説明する。
〈1〉 上記実施形態において、目標スリップ率決定部113は、現時点の左右の前輪3(3a,3b)のスリップ率が、所定の基準スリップ率の値に近い場合にのみ、目標スリップ率を決定する処理を行うものとしても構わない。具体的には、目標スリップ率決定部113は、スリップ率算出部111(111a,111b)から、各前輪3(3a,3b)のスリップ率に関する情報が入力される。また、目標スリップ率決定部113は、基準スリップ率に関する情報が予め記憶されている。この値は、現時点で設定されている目標スリップ率に基づく値であっても構わない。現時点における各前輪3(3a,3b)のスリップ率が目標スリップ率に対して十分に低い値である場合には、ABSが発動することはない。よって、この構成によれば、目標スリップ率決定部113の演算処理数を削減することができる。
〈2〉 上述した実施形態では、トルク制御部100が、左前輪3a及び右前輪3bの目標スリップ率を調整することで、左右の前輪3に対してABSが作動するタイミングを異ならせる態様であるものとして説明した。しかし、左右の前輪3に対してABSが作動するタイミングを異ならせる方法としては、上記の実施形態の構成に限られない。
図15は、別の実施形態におけるトルク制御部100の構成を模式的に示すブロック図である。この実施形態においても、トルク制御部100は、電子制御ユニット101と液圧制御ユニット102とを備えている。ただし、電子制御ユニット101は、上述したスリップ率算出部111(111a,111b)、及び内外輪特定部151、ABS発動部114に加えて、合計制動トルク算出部153と、各制動トルク算出部155とを備えている。なお、図15に示す構成の下では、電子制御ユニット101は、目標スリップ率決定部113を備えておらず、両前輪3に設定されている目標スリップ率の値は同一であるとする。
合計制動トルク算出部153は、ライダーによる入力部材121の操作量に基づいて、左前輪3aに対して発生させるべき制動トルク(左制動トルク)と、右前輪3bに対して発生させるべき制動トルク(右制動トルク)との合計値(以下、「合計制動トルク」と呼ぶ。)を算出する。操作量と合計制動トルクとは、少なくともある範囲内においては正に相関しているものとして構わない。
各制動トルク算出部155は、合計制動トルク算出部153で算出された合計制動トルクと、車両1の傾斜状態、及び内外輪特定部151で特定された結果に基づいて、左前輪3aに対して発生させるべき制動トルク(左制動トルク)と、右前輪3bに対して発生させるべき制動トルク(右制動トルク)とを算出する。例えば、合計制動トルクの値、及び車両1の傾斜状態(ロール角)に応じて、左右の制動トルクの配分比率が予め定められているものとしても構わない。
そして、油圧制御ユニット102は、各制動トルク算出部155が算出した左制動トルクが左前輪3aに生じるように、左前ブレーキ管94aに充填されるブレーキ液圧を調整し、各制動トルク算出部155が算出した右制動トルクが右前輪3bに生じるように、右前ブレーキ管94bに充填されるブレーキ液圧を調整する。
各制動トルク算出部155は、種々の基準に基づいて演算をすることが可能である。
第一の態様としては、各制動トルク算出部155は、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。この場合、内輪と特定された側の前輪のスリップ率が、外輪と特定された側の前輪のスリップ率よりも高くなる速度が速い。よって、外輪よりも内輪の方が、先に目標スリップ率に達する結果、ABS発動部114は、先に内輪に対してABSを発動させる制御を行う。この態様は、上述した第二実施形態と同様の効果をもたらす。
第二の態様としては、各制動トルク算出部155は、内外輪特定部151によって外輪と特定された側の前輪が路面に伝える制動トルクが、内外輪特定部151によって内輪と特定された側の前輪が路面に伝える制動トルクよりも大きくなるように、各前輪3(3a,3b)に対して発生させるべき制動トルクを算出する。この場合、外輪と特定された側の前輪のスリップ率が、内輪と特定された側の前輪のスリップ率よりも高くなる速度が速い。よって、内輪よりも外輪の方が、先に目標スリップ率に達する結果、ABS発動部114は、先に外輪に対してABSを発動させる制御を行う。この態様は、上述した第一実施形態と同様の効果をもたらす。
なお、第三実施形態以下の構成と同様に、トルク制御部100が、上記の第一の態様と第二の態様の組み合わせからなる制御を行うものとしても構わない。
更に、図16に示すように、図15の構成に加えて、トルク制御部100が目標スリップ率決定部113を備えるものとしても構わない。この場合、各制動トルク算出部155によって、左前輪3a及び右前輪3bの制動トルクが個別に制御されると共に、目標スリップ率決定部113によって、左前輪3a及び右前輪3bの目標スリップ率が個別に決定される。
〈3〉 上記実施形態の車両1では、左前輪3a及び右前輪3bが操舵輪であるものとしたが、操舵輪が後輪である場合において、トルク制御部100が、これら2つの後輪に対して、ABSが発動するタイミングを異ならせる制御を行うものとしても構わない。
〈4〉 車両1において、後輪5の左右方向の中央は、左前輪3aと右左前輪3bの左右方向の中央と必ずしも一致していなくても構わない。車両1は、車体フレーム15を覆う車体カバーを備えていても構わない。また、車両1の動力源は、エンジンであっても電動モータであっても構わない。
〈5〉 上記実施形態では、入力部材(121,131)は、ライダーが手で操作可能なレバーであるものとしたが、運転者が足で操作するペダルであっても構わないし、ライダーが操作する押し込み式のボタンや、回転式のグリップであっても構わない。入力部材(121,131)は、ライダーが触れていない状態である初期状態とライダーの操作量が最大である最大操作状態との間で操作可能な構成である。
入力部材(121,131)の操作量は、入力部材(121,131)の初期状態からの位置であっても構わない。この場合、入力部材(121,131)の位置を検出するセンサを設けることで、その操作量を検出できる。入力部材(121,131)の操作量とは、入力部材の初期状態からの圧力の変化量であっても良い。この場合、マスターシリンダー(125,135)が発生する液圧を検出するセンサを設けることで、その操作量を検出できる。また、入力部材(121,131)に直接作用する圧力を検出するセンサを設けることで、その操作量を検出できる。入力部材の操作量は、運転者の操作に応じて変化する物理量である。なお、操作量は必ずしもセンサで検出する必要はなく、機械的に操作量に連動して作動する機構であっても良い。
〈6〉 上記実施形態において、車両1は、ブレーキ液圧を利用したディスクブレーキを採用している。しかしながら、本発明では、ブレーキの種類はこれに限らず、ドラムブレーキ、電磁ブレーキ、湿式多板ブレーキなど種々の種類を採用しても構わない。また、上記実施形態では、ブレーキ作動装置(123,133)は、ブレーキ液圧を電子制御する構成としたが、液圧を機械的な機構で制御しても構わない。
〈7〉 上記実施形態において、ABS発動部114が左右の操舵輪に対するABSを発動させる指示を行う場合において、必ずしも両操舵輪に対して常に異なるタイミングでABSを発動しなければならないというわけではない。少なくとも一部の時間帯において、車両1の傾斜状態に応じて、ABS発動部114がいずれか一方の操舵輪に対してABSを発動する構成であれば、本発明の範囲内である。
1 : 車両
3 : 前輪
3a : 左前輪
3b : 右前輪
5 : 後輪
7 : 操舵機構
9 : リンク機構
10 : 重心
11 : パワーユニット
13 : シート
15 : 車体フレーム
17 : 車体カバー
21 : ヘッドパイプ
22 : ダウンフレーム
23 : アンダーフレーム
24 : リアフレーム
26 : フロントカバー
27 : フロントフェンダー
27a : 左フロントフェンダー
27b : 右フロントフェンダー
28 : レッグシールド
29 : センターカバー
30 : リアフェンダー
31 : ステアリングシャフト
32 : ハンドルバー
33 : タイロッド
34 : ブラケット
34a : 左ブラケット
34b : 右ブラケット
35 : クロス部材
35a : 上クロス部材
35b : 左クロス部材
35c : 右クロス部材
35d : 下クロス部材
36a,36b,36c,36d,36e,36f : 支持部
41 : 前輪車速センサ
42 : 後輪車速センサ
50 : 傾斜検出部
51 : 車速検出部
53 : ジャイロセンサ
54 : ロール角検出部
71 : 操舵力伝達機構
73 : 緩衝器
73a : 左緩衝器
73b : 右緩衝器
80a : 左後テレスコピック要素
81a : 左前テレスコピック要素
82a : 左クロス部材支持部
83a : 左車輪軸
84a : 左緩衝器のアウター要素
85a : 左緩衝器のインナー要素
91a : 左前ブレーキ
91b : 右前ブレーキ
91c : 後ブレーキ
92a : 左ブレーキディスク
93a : 左前キャリパ
93b : 右前キャリパ
93c : 後キャリパ
94a : 左前ブレーキ管
94b : 右前ブレーキ管
94c : 後ブレーキ管
100 : トルク制御部
101 : 電子制御ユニット
102 : 液圧制御ユニット
111a : 左スリップ率算出部
111b : 右スリップ率算出部
113 : 目標スリップ率決定部
114 : ABS発動部
120 : ブレーキシステム
121 : 入力部材
123 : ブレーキ作動装置
125 : 前マスターシリンダー
127 : 前ブレーキ管
131 : 入力部材
133 : ブレーキ作動装置
135 : 後マスターシリンダー
137 : 後ブレーキ管
151 : 内外輪特定部
153 : 合計制動トルク算出部
155 : 各制動トルク算出部
157 : 記憶部

Claims (13)

  1. 左操舵輪、右操舵輪、並びに、前記左操舵輪及び前記右操舵輪に対して車体の前後方向に位置する非操舵輪とを有する鞍乗り型車両であって、
    前記左操舵輪の回転を制動する左制動部と、
    前記右操舵輪の回転を制動する右制動部と、
    前記車体の傾斜状態を検出する傾斜検出部と、
    前記左制動部に連絡され、ブレーキ液が充填された左配管と、
    前記右制動部に連絡され、ブレーキ液が充填された右配管と、
    前記左配管内のブレーキ液圧、及び前記右配管内のブレーキ液圧を独立して調整可能な液圧制御部と、を備え、
    前記左制動部は、前記左配管内に充填されたブレーキ液の液圧の大きさに応じて前記左操舵輪の回転を制動し、
    前記右制動部は、前記右配管内に充填されたブレーキ液の液圧の大きさに応じて前記右操舵輪の回転を制動し、
    少なくとも一部の時間帯において、前記車体の傾斜状態に応じて、前記液圧制御部に対して、前記左配管内のブレーキ液圧又は前記右配管内のブレーキ液圧の一方を低下させる指示を行うABS発動部とを備えたことを特徴とする鞍乗り型車両。
  2. 前記左操舵輪のスリップ率を算出する左スリップ率算出部と、
    前記右操舵輪のスリップ率を算出する右スリップ率算出部と、
    前記車体の傾斜状態に応じて、左目標スリップ率と右目標スリップ率の比率を決定する目標スリップ率決定部とを備え、
    前記ABS発動部は、
    前記左操舵輪のスリップ率が前記左目標スリップ率に達すると、前記液圧制御部に対して前記左配管内のブレーキ液圧を低下させる指示を行い、
    前記右操舵輪のスリップ率が前記右目標スリップ率に達すると、前記液圧制御部に対して前記右配管内のブレーキ液圧を低下させる指示を行うことを特徴とする請求項1に記載の鞍乗り型車両。
  3. 前記目標スリップ率決定部は、前記左操舵輪のスリップ率又は前記右操舵輪のスリップ率の少なくとも一方が、所定の基準スリップ率との差が閾値以下になった場合に、前記車体の傾斜状態に応じて、左目標スリップ率と右目標スリップ率との比率を決定することを特徴とする請求項2に記載の鞍乗り型車両。
  4. 前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備え、
    前記目標スリップ率決定部は、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項2又は3に記載の鞍乗り型車両。
  5. 前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部を備え、
    前記目標スリップ率決定部は、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項2又は3に記載の鞍乗り型車両。
  6. 前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、
    運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備え、
    前記目標スリップ率決定部は、
    前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
    前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合に、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項2又は3に記載の鞍乗り型車両。
  7. 前記傾斜検出部が、前記車体のロール角を検出するロール角センサを含み、
    前記目標スリップ率決定部は、前記車体のロール角に応じて決定される基準に基づいて、前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項2〜6のいずれか1項に記載の鞍乗り型車両。
  8. 前記傾斜検出部が、前記車体のロール角速度を検出するロール角速度センサを含み、
    前記目標スリップ率決定部は、前記車体のロール角速度に応じて決定される基準に基づいて、前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項2〜6のいずれか1項に記載の鞍乗り型車両。
  9. 前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、
    運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備え、
    前記目標スリップ率決定部は、
    前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が倒れこむ方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
    前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項8に記載の鞍乗り型車両。
  10. 前記傾斜検出部が検出した前記車体の傾斜状態に基づいて、前記左操舵輪と前記右操舵輪のうち、どちらが内輪でどちらが外輪であるかを特定する内外輪特定部と、
    運転時における前記車体の姿勢維持性と、運転時における前記車体の姿勢変動性とのいずれを優先するかに関する優先性能情報が格納された記憶部とを備え、
    前記目標スリップ率決定部は、
    前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が倒れこむ方向に移動していることを検知すると、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
    前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合において、前記ロール角速度センサより前記車体が起き上がる方向に移動していることを検知すると、前記内外輪特定部によって内輪と特定された側の操舵輪の目標スリップ率が、前記内外輪特定部によって外輪と特定された側の操舵輪の目標スリップ率よりも大きくなるように、前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項8又は9に記載の鞍乗り型車両。
  11. 前記傾斜検出部が、前記車体のロール角を検出するロール角センサ、及び前記車体のロール角速度を検出するロール角速度センサを含み、
    前記目標スリップ率決定部は、
    前記記憶部から前記車体の姿勢維持性を優先する旨の前記優先性能情報を読み出した場合に、前記車体のロール角に応じて決定される基準に基づいて前記左目標スリップ率と前記右目標スリップ率との比率を決定し、
    前記記憶部から前記車体の姿勢変動性を優先する旨の前記優先性能情報を読み出した場合に、前記車体のロール角速度に応じて決定される基準に基づいて前記左目標スリップ率と前記右目標スリップ率との比率を決定することを特徴とする請求項6又は10に記載の鞍乗り型車両。
  12. ライダーによって操作可能に構成された制動操作子と、
    前記制動操作子の操作量に応じて、前記左制動部の制動トルクである左制動トルクと、前記右制動部の制動トルクである右制動トルクとの合計値を算出する合計制動トルク算出部と、
    前記傾斜検出部が検出した前記車体の傾斜状態に応じて決定される基準に基づいて前記合計値を配分することで、前記左制動トルク及び前記右制動トルクをそれぞれ算出する各制動トルク算出部と、
    前記左操舵輪のスリップ率を算出する左スリップ率算出部と、
    前記右操舵輪のスリップ率を算出する右スリップ率算出部と、を備え、
    前記液圧制御部は、前記左配管内のブレーキ液圧を調整することで、前記各制動トルク算出部によって算出された前記左制動トルクを前記左制動部に対して発生させると共に、前記左配管内のブレーキ液圧を調整することで、前記各制動トルク算出部によって算出された前記右制動トルクを前記右制動部に対して発生させ、
    前記ABS発動部は、
    前記左操舵輪のスリップ率が所定の目標スリップ率に達すると、前記液圧制御部に対して前記左配管内のブレーキ液圧を低下させる指示を行い、
    前記右操舵輪のスリップ率が前記目標スリップ率に達すると、前記液圧制御部に対して前記右配管内のブレーキ液圧を低下させる指示を行うことを特徴とする請求項1に記載の鞍乗り型車両。
  13. ライダーによって操作可能に構成された制動操作子と、
    前記制動操作子の操作量に応じて、前記左制動部の制動トルクである左制動トルクと、前記右制動部の制動トルクである右制動トルクとの合計値を算出する合計制動トルク算出部と、
    前記傾斜検出部が検出した前記車体の傾斜状態に応じて決定される基準に基づいて前記合計値を配分することで、前記左制動トルク及び前記右制動トルクをそれぞれ算出する各制動トルク算出部とを備え、
    前記液圧制御部は、前記左配管内のブレーキ液圧を調整することで、前記各制動トルク算出部によって算出された前記左制動トルクを前記左制動部に対して発生させると共に、前記左配管内のブレーキ液圧を調整することで、前記各制動トルク算出部によって算出された前記右制動トルクを前記右制動部に対して発生させることを特徴とする請求項2〜11のいずれか1項に記載の鞍乗り型車両。
JP2015228477A 2015-11-24 2015-11-24 鞍乗り型車両 Pending JP2019014270A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015228477A JP2019014270A (ja) 2015-11-24 2015-11-24 鞍乗り型車両
PCT/JP2016/084769 WO2017090669A1 (ja) 2015-11-24 2016-11-24 リーン車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015228477A JP2019014270A (ja) 2015-11-24 2015-11-24 鞍乗り型車両

Publications (1)

Publication Number Publication Date
JP2019014270A true JP2019014270A (ja) 2019-01-31

Family

ID=58763282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015228477A Pending JP2019014270A (ja) 2015-11-24 2015-11-24 鞍乗り型車両

Country Status (2)

Country Link
JP (1) JP2019014270A (ja)
WO (1) WO2017090669A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119424A1 (ja) * 2021-12-21 2023-06-29 ヤマハ発動機株式会社 傾斜車両
WO2023119423A1 (ja) * 2021-12-21 2023-06-29 ヤマハ発動機株式会社 傾斜車両

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110254408A (zh) * 2019-05-21 2019-09-20 江苏大学 一种智能汽车防抱死制动系统自适应时变滑移率约束控制算法
CN110254407A (zh) * 2019-05-21 2019-09-20 江苏大学 基于二阶滑移率模型的车辆防抱死制动系统滑移率约束控制算法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395353B2 (ja) * 1994-05-25 2003-04-14 日産自動車株式会社 アンチスキッド制御装置
JP3114581B2 (ja) * 1994-11-14 2000-12-04 トヨタ自動車株式会社 制動力制御装置
JP2011219010A (ja) * 2010-04-12 2011-11-04 Honda Motor Co Ltd 制動力制御装置
JP5601194B2 (ja) * 2010-12-24 2014-10-08 トヨタ自動車株式会社 制動力制御装置
ES2621334T3 (es) * 2013-10-31 2017-07-03 Yamaha Hatsudoki Kabushiki Kaisha Sistema de freno y vehículo

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119424A1 (ja) * 2021-12-21 2023-06-29 ヤマハ発動機株式会社 傾斜車両
WO2023119423A1 (ja) * 2021-12-21 2023-06-29 ヤマハ発動機株式会社 傾斜車両
WO2023120580A1 (ja) * 2021-12-21 2023-06-29 ヤマハ発動機株式会社 傾斜車両

Also Published As

Publication number Publication date
WO2017090669A1 (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6666995B2 (ja) 左右傾斜輪付リーン車両用リーン姿勢制御装置および左右傾斜輪付リーン車両
JP6646683B2 (ja) リーン車両
EP2930073B1 (en) Braking system and vehicle
JP6646682B2 (ja) リーン車両
JP5816354B2 (ja) ブレーキシステムおよび車両
TW201809940A (zh) 穩定摩托車的系統與方法
WO2017090669A1 (ja) リーン車両
EP2933156B1 (en) Brake system and vehicle
JP6715341B2 (ja) ステアリングトルク推定装置
JP7014760B2 (ja) 鞍乗り型車両の操舵アシスト装置
EP2930072B1 (en) Braking system and vehicle
JP7261895B2 (ja) 鞍乗型車両及び制御装置
WO2018003894A1 (ja) リーン車両
JP2017094993A (ja) タイヤ力制御装置およびそのタイヤ力制御装置を搭載する鞍乗り型車両
WO2017130982A1 (ja) リーン車両
WO2024048532A1 (ja) リーン車両
WO2024048529A1 (ja) リーン車両
WO2023119423A1 (ja) 傾斜車両
WO2024048533A1 (ja) リーン車両
JP2004012218A (ja) 二輪車の走行シミュレーションプログラム