JP2019006264A - Space environment testing device, and operational method for space environment testing device - Google Patents

Space environment testing device, and operational method for space environment testing device Download PDF

Info

Publication number
JP2019006264A
JP2019006264A JP2017124120A JP2017124120A JP2019006264A JP 2019006264 A JP2019006264 A JP 2019006264A JP 2017124120 A JP2017124120 A JP 2017124120A JP 2017124120 A JP2017124120 A JP 2017124120A JP 2019006264 A JP2019006264 A JP 2019006264A
Authority
JP
Japan
Prior art keywords
liquefied gas
low
temperature liquefied
state
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017124120A
Other languages
Japanese (ja)
Other versions
JP6600334B2 (en
Inventor
卓也 熊木
Takuya Kumaki
卓也 熊木
藤田 淳
Atsushi Fujita
藤田  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2017124120A priority Critical patent/JP6600334B2/en
Publication of JP2019006264A publication Critical patent/JP2019006264A/en
Application granted granted Critical
Publication of JP6600334B2 publication Critical patent/JP6600334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a space environment testing device capable of efficiently supplying a low temperature liquefied gas in a gaseous state or in a liquid state, into shrouds disposed inside a chamber.SOLUTION: A space environment testing device 1 comprises: a chamber 2; shrouds 3 disposed inside the chamber 2; a head tank 4 disposed at a position above the shrouds 3 in a vertical direction; a circulation path L1 in which a low temperature liquefied gas is circulated between the head tank 4 and the shrouds 3; and a control device 6 which holds supply pressure of the low temperature liquefied gas at a first target pressure value higher than atmospheric pressure, when supplying the low temperature liquefied gas in a liquid state to the shrouds 3, and which holds supply pressure of the low temperature liquefied gas at a second target pressure value higher than the first target pressure value, when supplying the low temperature liquefied gas in a gaseous state to the shrouds 3.SELECTED DRAWING: Figure 1

Description

本発明は、宇宙環境試験装置、及び宇宙環境試験装置の運転方法に関する。   The present invention relates to a space environment test apparatus and a method for operating a space environment test apparatus.

宇宙空間の冷暗黒状態を模擬するための装置として、宇宙環境試験装置が知られている。一般的に、宇宙環境試験装置は、宇宙空間の冷暗黒状態を疑似的に再現するために、高真空状態に排気可能なチェンバーと、チェンバー内を極低温状態に保つためのシュラウドとを備えている。また、シュラウド内は、黒色の高輻射率塗料で塗装されており、低温液化ガスが循環される。   As a device for simulating the cold and dark state of outer space, a space environment test device is known. Generally, a space environment test apparatus includes a chamber that can be evacuated to a high vacuum state and a shroud for keeping the inside of the chamber at a very low temperature in order to simulate a cold and dark state of outer space. Yes. Further, the inside of the shroud is painted with a black high emissivity paint, and a low-temperature liquefied gas is circulated.

特許文献1には、チェンバー内のシュラウドに液体状態の低温液化ガスを循環させる技術として、フリーボイリング式(サーモサイフォン式)による循環方法が開示されている。具体的には、チェンバー内のシュラウドよりも高い位置にヘッドタンクを設けて、循環流体を循環させる配管の一端をヘッドタンクの液相部に接続し、シュラウドに供給した後に配管の他端をヘッドタンクの気相部と接続する。これにより、液体状態の低温液化ガスは、シュラウドで気化することによって生じる液密度の差を利用して、ヘッドタンクとシュラウドとの間を循環する。   Patent Document 1 discloses a circulation method using a free boiling type (thermosyphon type) as a technique for circulating a low-temperature liquefied gas in a liquid state through a shroud in a chamber. Specifically, a head tank is provided at a position higher than the shroud in the chamber, one end of a pipe for circulating the circulating fluid is connected to the liquid phase part of the head tank, and the other end of the pipe is connected to the head after being supplied to the shroud. Connect to the gas phase of the tank. Thereby, the low-temperature liquefied gas in the liquid state circulates between the head tank and the shroud by utilizing the difference in liquid density caused by vaporizing with the shroud.

また、宇宙環境試験装置では、チェンバー内の被試験物を加熱する場合に、チェンバー内のシュラウドに気体状態の低温液化ガスを循環させて、これを熱源として用いる場合もある。すなわち、チェンバー内のシュラウドには、気体状態又は液体状態の両方の低温液化ガスを循環供給する場合がある。   Further, in the space environment test apparatus, when a test object in a chamber is heated, a low-temperature liquefied gas in a gaseous state is circulated through a shroud in the chamber, and this may be used as a heat source. That is, the low temperature liquefied gas in both the gaseous state and the liquid state may be circulated and supplied to the shroud in the chamber.

特許第3946984号公報Japanese Patent No. 3946984

ところで、宇宙環境試験装置では、上述した熱制御を行うために、シュラウドによる長い流路がチェンバーの内壁に形成されている。そして、シュラウド内に気体状態、又は液体状態の大量の低温液化ガスを供給する必要があった。しかしながら、従来の宇宙環境試験装置では、チェンバー内を所定の温度環境とするには数時間かかるのが実状であり、特に液体状態の低温液化ガスを供給する際のフラッシュロスが大きいため、エネルギー効率の改善が望まれていた。   By the way, in the space environment test apparatus, in order to perform the above-described thermal control, a long flow path by a shroud is formed on the inner wall of the chamber. And it was necessary to supply a large amount of low-temperature liquefied gas in a gaseous state or a liquid state into the shroud. However, in the conventional space environment test apparatus, it takes a few hours to bring the chamber into a predetermined temperature environment, and especially because the flash loss when supplying the low-temperature liquefied gas in the liquid state is large, the energy efficiency Improvement was desired.

本発明は、上記事情に鑑みてなされたものであって、チェンバー内に設けられたシュラウド内に、気体状態又は液体状態の低温液化ガスを効率よく供給することが可能な宇宙環境試験装置、及び宇宙環境試験装置の運転方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and is a space environment test apparatus capable of efficiently supplying a gaseous or liquid low-temperature liquefied gas into a shroud provided in a chamber, and It is an object of the present invention to provide a method for operating a space environment test apparatus.

かかる課題を解決するため、本発明は以下の構成を有する。
[1] 内側の空間を高真空状態に保持するチェンバーと、
前記チェンバーの内側に設けられたシュラウドと、
鉛直方向において前記シュラウドよりも高い位置に設けられたヘッドタンクと、
前記ヘッドタンクと前記シュラウドとの間に低温液化ガスを循環させる循環経路と、
前記低温液化ガスの供給圧力が、大気圧よりも高い第1目標圧力値に保持された状態で、前記シュラウドに液体状態の前記低温液化ガスを供給するとともに、前記低温液化ガスの供給圧力が、前記第1目標圧力値よりも高い第2目標圧力値に保持された状態で、前記シュラウドに気体状態の低温液化ガスを供給する、制御装置と、を備える、宇宙環境試験装置。
[2] 前記低温液化ガスを貯留する低温液化ガス貯槽と、
前記低温液化ガス貯槽と前記ヘッドタンクとの間に設けられ、前記ヘッドタンクに液体状態の前記低温液化ガスを供給する液供給経路と、
前記低温液化ガス貯槽と前記循環経路との間に設けられ、前記シュラウドの一次側の前記循環経路に、気体状態の低温液化ガスを供給するガス供給経路と、を備える、[1]に記載の宇宙環境試験装置。
[3] 前記制御装置と前記低温液化ガス貯槽との間を電気的に接続する信号線をさらに備え、
前記低温液化ガス貯槽が、当該低温液化ガス貯槽内の圧力を調整する圧力調整機構を有するとともに、
前記制御装置は、前記シュラウドに液体状態の前記低温液化ガスを供給する際に、前記低温液化ガス貯槽内の圧力を前記第1目標圧力値に保持するとともに、前記ガス供給経路に気体状態の低温液化ガスを供給する際に、前記低温液化ガス貯槽内の圧力を前記第2目標圧力値に保持する、[2]に記載の宇宙環境試験装置。
[4] 前記ヘッドタンク内の液面の位置を測定する液面計と、
前記制御装置と前記液面計との間を電気的に接続する信号線をさらに備える、[1]乃至[3]のいずれか一項に記載の宇宙環境試験装置。
[5] 前記低温液化ガスをそれぞれ貯留する第1及び第2低温液化ガス貯槽と、
前記第1低温液化ガス貯槽と前記ヘッドタンクとの間に設けられ、前記ヘッドタンクに液体状態の前記低温液化ガスを供給する液供給経路と、
前記第2低温液化ガス貯槽と前記循環経路との間に設けられ、前記シュラウドの一次側の前記循環経路に、気体状態の低温液化ガスを供給するガス供給経路と、を備える、[1]に記載の宇宙環境試験装置。
[6] 前記第1及び第2低温液化ガス貯槽が、当該第1及び第2低温液化ガス貯槽内の圧力を調整する圧力調整機構をそれぞれ有し、
前記第1低温液化ガス貯槽内の圧力が、前記第1目標圧力値に保持されるとともに、
前記第2低温液化ガス貯槽内の圧力が、前記第2目標圧力値に保持される、[5]に記載の宇宙環境試験装置。
[7] チェンバーの内側に設けられたシュラウドに気体状態又は液体状態の低温液化ガスを供給し、前記チェンバー内の温度を制御する宇宙環境試験装置の運転方法であって、
前記チェンバー内を冷却する際、大気圧よりも高い第1目標圧力値に供給圧力を保持しながら、前記シュラウドに液体状態の低温液化ガスを供給し、
前記チェンバー内を加熱する際、前記第1目標圧力値よりも高い第2目標圧力値に供給圧力を保持しながら、前記シュラウドに気体状態の低温液化ガスを供給する、宇宙環境試験装置の運転方法。
In order to solve this problem, the present invention has the following configuration.
[1] A chamber that holds the inner space in a high vacuum state;
A shroud provided inside the chamber;
A head tank provided at a position higher than the shroud in the vertical direction;
A circulation path for circulating a low-temperature liquefied gas between the head tank and the shroud;
In a state where the supply pressure of the low-temperature liquefied gas is maintained at the first target pressure value higher than atmospheric pressure, the low-temperature liquefied gas in the liquid state is supplied to the shroud, and the supply pressure of the low-temperature liquefied gas is A space environment test apparatus, comprising: a controller that supplies a low-temperature liquefied gas in a gaseous state to the shroud while being maintained at a second target pressure value higher than the first target pressure value.
[2] A low-temperature liquefied gas storage tank for storing the low-temperature liquefied gas;
A liquid supply path provided between the low-temperature liquefied gas storage tank and the head tank, and supplying the low-temperature liquefied gas in a liquid state to the head tank;
The gas supply path that is provided between the low-temperature liquefied gas storage tank and the circulation path and that supplies the low-temperature liquefied gas in a gas state to the circulation path on the primary side of the shroud, Space environment test equipment.
[3] It further comprises a signal line for electrically connecting the control device and the low-temperature liquefied gas storage tank,
The low-temperature liquefied gas storage tank has a pressure adjustment mechanism for adjusting the pressure in the low-temperature liquefied gas storage tank,
The control device maintains the pressure in the low-temperature liquefied gas storage tank at the first target pressure value when supplying the low-temperature liquefied gas in the liquid state to the shroud, and supplies the gas supply path with a low-temperature gas in the gas state. The space environment test apparatus according to [2], wherein when the liquefied gas is supplied, the pressure in the low-temperature liquefied gas storage tank is maintained at the second target pressure value.
[4] A liquid level gauge for measuring the position of the liquid level in the head tank;
The space environment test apparatus according to any one of [1] to [3], further including a signal line that electrically connects the control apparatus and the liquid level gauge.
[5] First and second low-temperature liquefied gas storage tanks that respectively store the low-temperature liquefied gas;
A liquid supply path provided between the first low-temperature liquefied gas storage tank and the head tank, and supplying the low-temperature liquefied gas in a liquid state to the head tank;
[1], comprising: a gas supply path that is provided between the second low-temperature liquefied gas storage tank and the circulation path, and that supplies a gaseous low-temperature liquefied gas to the circulation path on the primary side of the shroud. The described space environment test equipment.
[6] The first and second low-temperature liquefied gas storage tanks each have a pressure adjustment mechanism that adjusts the pressure in the first and second low-temperature liquefied gas storage tanks,
While the pressure in the first low-temperature liquefied gas storage tank is maintained at the first target pressure value,
The space environment test apparatus according to [5], wherein the pressure in the second low-temperature liquefied gas storage tank is maintained at the second target pressure value.
[7] A method of operating a space environment test apparatus for supplying a low-temperature liquefied gas in a gas state or a liquid state to a shroud provided inside the chamber and controlling the temperature in the chamber,
When cooling the inside of the chamber, supplying a low-temperature liquefied gas in a liquid state to the shroud while maintaining a supply pressure at a first target pressure value higher than atmospheric pressure,
When heating the inside of the chamber, a method for operating a space environment test apparatus for supplying a low-temperature liquefied gas in a gaseous state to the shroud while maintaining a supply pressure at a second target pressure value higher than the first target pressure value .

本発明の宇宙環境試験装置、及び宇宙環境試験装置の運転方法によれば、チェンバー内に設けられたシュラウド内に、気体状態又は液体状態の低温液化ガスを効率よく供給することができるため、チェンバー内を所定の温度環境とする際のエネルギー効率の改善が可能である。   According to the space environment test apparatus and the operation method of the space environment test apparatus of the present invention, the low-temperature liquefied gas in the gas state or the liquid state can be efficiently supplied into the shroud provided in the chamber. It is possible to improve the energy efficiency when the inside is set to a predetermined temperature environment.

本発明の一実施形態である宇宙環境試験装置の構成を示す系統図である。1 is a system diagram showing a configuration of a space environment test apparatus according to an embodiment of the present invention. 本発明の一実施形態である宇宙環境試験装置の運転方法の説明するための模式図である。It is a schematic diagram for demonstrating the operating method of the space environment test apparatus which is one Embodiment of this invention. 本発明の他の実施形態である宇宙環境試験装置の構成を示す系統図である。It is a systematic diagram which shows the structure of the space environment test apparatus which is other embodiment of this invention.

以下、本発明を適用した一実施形態である宇宙環境試験装置の構成について、宇宙環境試験装置の運転方法と併せて、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   Hereinafter, the configuration of a space environment test apparatus according to an embodiment to which the present invention is applied will be described in detail together with a method for operating the space environment test apparatus with reference to the drawings. In addition, in the drawings used in the following description, in order to make the features easy to understand, there are cases where the portions that become the features are enlarged for the sake of convenience, and the dimensional ratios of the respective components are not always the same as the actual ones. Absent.

<宇宙環境試験装置>
先ず、本発明を適用した一実施形態である宇宙環境試験装置の構成の一例について説明する。図1は、本発明の一実施形態である宇宙環境試験装置の構成を示す系統図である。図1に示すように、本実施形態の宇宙環境試験装置(以下、単に「試験装置」とも記す)1は、チェンバー2、シュラウド3、ヘッドタンク4、循環経路L1、液供給経路L2、ガス供給経路L3、低温液化ガス貯槽5、及び制御装置6を備えて、概略構成されている。
<Space environment test equipment>
First, an example of the configuration of a space environment test apparatus that is an embodiment to which the present invention is applied will be described. FIG. 1 is a system diagram showing a configuration of a space environment test apparatus according to an embodiment of the present invention. As shown in FIG. 1, a space environment test apparatus (hereinafter also simply referred to as “test apparatus”) 1 of the present embodiment includes a chamber 2, a shroud 3, a head tank 4, a circulation path L1, a liquid supply path L2, and a gas supply. A path L3, a low-temperature liquefied gas storage tank 5, and a control device 6 are provided and schematically configured.

本実施形態の試験装置1は、宇宙空間の冷暗黒状態を模擬するための装置である。具体的には、試験装置1は、高真空状態のチェンバー2内に設けられたシュラウド3に気体状態又は液体状態の低温液化ガスを供給して、チェンバー2内を目的の温度に制御するものである。
なお、本実施形態の試験装置1では、低温液化ガスとして液化窒素を用いた場合を一例として説明するが、これに限定されるものではなく、他の低温液化ガス(液体酸素、液体ヘリウム等)を用いてもよい。
The test apparatus 1 of this embodiment is an apparatus for simulating a cold and dark state in outer space. Specifically, the test apparatus 1 supplies a low-temperature liquefied gas in a gaseous state or a liquid state to a shroud 3 provided in the chamber 2 in a high vacuum state, and controls the inside of the chamber 2 to a target temperature. is there.
In the test apparatus 1 of the present embodiment, the case where liquefied nitrogen is used as the low temperature liquefied gas will be described as an example. However, the present invention is not limited to this, and other low temperature liquefied gases (liquid oxygen, liquid helium, etc.) May be used.

チェンバー2は、内側に空間(以下、「内部空間」という場合もある)を有しており、その空間に被試験物を載置することができる。チェンバー2の内部空間は、図示略の真空排気装置と連通されており、当該内部空間を高真空状態に保持することができる。チェンバー2の大きさや形状は、特に限定されず、内部空間に載置する被試験物に応じて適宜選択することができる。   The chamber 2 has a space inside (hereinafter sometimes referred to as “internal space”), and a device under test can be placed in the space. The internal space of the chamber 2 is communicated with a vacuum exhaust device (not shown), and the internal space can be maintained in a high vacuum state. The size and shape of the chamber 2 are not particularly limited, and can be appropriately selected according to the object to be tested placed in the internal space.

シュラウド3は、チェンバー2の内部空間を加熱又は冷却するために、チェンバー2の内側に設けられている。シュラウド3は、チェンバー2の内壁の一部あるいは全部を覆うように設けられている。このシュラウド3に気体状態又は液体状態の低温液化ガスを供給することにより、チェンバー2の内部空間、及び当該内部空間に載置された被試験物を、加熱又は冷却することができる。また、シュラウド3は、チェンバー2の内側において、2系統以上に分岐されていてもよいし、1系統であってもよい。   The shroud 3 is provided inside the chamber 2 in order to heat or cool the internal space of the chamber 2. The shroud 3 is provided so as to cover part or all of the inner wall of the chamber 2. By supplying a low-temperature liquefied gas in a gas state or a liquid state to the shroud 3, the internal space of the chamber 2 and the test object placed in the internal space can be heated or cooled. Further, the shroud 3 may be branched into two or more lines inside the chamber 2 or may be one line.

ヘッドタンク4は、シュラウド3に供給する低温液化ガスを一時的に貯留するための容器である。ヘッドタンク4は、チェンバー2の外側であって、鉛直方向においてシュラウド3よりも高い位置に設けられている。ヘッドタンク4内において、低温液化ガスは、気相4Aと液相4Bとに分かれている。ヘッドタンク4の容量や形状は、特に限定されず、チェンバー2の大きさやシュラウド3の容量に応じて適宜選択することができる。   The head tank 4 is a container for temporarily storing the low-temperature liquefied gas supplied to the shroud 3. The head tank 4 is provided outside the chamber 2 and at a position higher than the shroud 3 in the vertical direction. In the head tank 4, the low-temperature liquefied gas is divided into a gas phase 4A and a liquid phase 4B. The capacity and shape of the head tank 4 are not particularly limited, and can be appropriately selected according to the size of the chamber 2 and the capacity of the shroud 3.

ヘッドタンク4には、当該ヘッドタンク4の内側の液相4Bの液面高さを測定するために、液面計7が設けられている。この液面計7は、信号線C1を介して制御装置6と電気的に接続されている。これにより、液面計7によって測定した液相4Bの液面値を電気信号として制御装置6に送信することができる。   The head tank 4 is provided with a liquid level gauge 7 for measuring the liquid level height of the liquid phase 4B inside the head tank 4. The liquid level gauge 7 is electrically connected to the control device 6 through a signal line C1. Thereby, the liquid level value of the liquid phase 4B measured by the liquid level gauge 7 can be transmitted to the control device 6 as an electric signal.

循環経路L1は、ヘッドタンク4とシュラウド3との間に低温液化ガスを循環させるために設けられた、ループ状の流路である。この循環経路L1により、ヘッドタンク4からシュラウド3に、気体状態又は液体状態の低温液化ガスを供給するとともに、シュラウド3からヘッドタンク4に低温液化ガスを返送することができる。
また、循環経路L1は、ヘッドタンク4からシュラウド3に低温液化ガスを供給する経路が、気体状低温液化ガス導出経路L1Aと、液状低温液化ガス導出経路L1Bとに分岐されている。
The circulation path L <b> 1 is a loop-shaped flow path provided for circulating the low-temperature liquefied gas between the head tank 4 and the shroud 3. Through this circulation path L1, the low-temperature liquefied gas in the gas state or the liquid state can be supplied from the head tank 4 to the shroud 3, and the low-temperature liquefied gas can be returned from the shroud 3 to the head tank 4.
In the circulation path L1, the path for supplying the low-temperature liquefied gas from the head tank 4 to the shroud 3 is branched into a gaseous low-temperature liquefied gas lead-out path L1A and a liquid low-temperature liquefied gas lead-out path L1B.

具体的には、ヘッドタンク4の頂部には、気体状低温液化ガス導出経路L1Aの一端が接続されている。これにより、気体状低温液化ガス導出経路L1Aとヘッドタンク4の気相4Aとが連通されて、気体状態の低温液化ガスをヘッドタンク4からシュラウド3に供給することができる。
また、ヘッドタンク4の底部には、液状低温液化ガス導出経路L1Bの一端が接続されている。これにより、液状低温液化ガス導出経路L1Bとヘッドタンク4の液相4Bとが連通されて、液体状態の低温液化ガスをヘッドタンク4からシュラウド3に供給することができる。
気体状低温液化ガス導出経路L1Aの他端と、液状低温液化ガス導出経路L1Bの他端とは、合流点Pにおいて合流して、循環経路L1を構成する。
循環経路L1は、分岐点Qにおいて再び分岐し、気体状態又は液体状態の低温液化ガスをシュラウド3,3にそれぞれ供給する。
また、循環経路L1は、シュラウド3,3の二次側からヘッドタンク4の頂部寄りの部分にそれぞれ接続される。これにより、シュラウド3に供給した後の低温液化ガスを、ヘッドタンク4の気相4A部分に返送することができる。
Specifically, one end of a gaseous low-temperature liquefied gas lead-out path L1A is connected to the top of the head tank 4. As a result, the gaseous low-temperature liquefied gas lead-out path L1A and the gas phase 4A of the head tank 4 communicate with each other, and the low-temperature liquefied gas in the gaseous state can be supplied from the head tank 4 to the shroud 3.
Further, one end of the liquid low-temperature liquefied gas lead-out path L1B is connected to the bottom of the head tank 4. As a result, the liquid low-temperature liquefied gas lead-out path L1B and the liquid phase 4B of the head tank 4 communicate with each other, and the liquid low-temperature liquefied gas can be supplied from the head tank 4 to the shroud 3.
The other end of the gaseous low-temperature liquefied gas lead-out path L1A and the other end of the liquid low-temperature liquefied gas lead-out path L1B merge at the junction P to form a circulation path L1.
The circulation path L1 branches again at the branch point Q, and supplies a low-temperature liquefied gas in a gas state or a liquid state to the shrouds 3 and 3, respectively.
The circulation path L <b> 1 is connected from the secondary side of the shrouds 3, 3 to a portion near the top of the head tank 4. As a result, the low-temperature liquefied gas after being supplied to the shroud 3 can be returned to the gas phase 4A portion of the head tank 4.

気体状低温液化ガス導出経路L1Aには、液状低温液化ガス導出経路L1Bと合流する合流点Pまでに、遮断弁8、圧力計25、温度計26、ブロワ9、温調ユニット10、及び遮断弁11が設けられている。   The gaseous low-temperature liquefied gas lead-out path L1A has a shut-off valve 8, a pressure gauge 25, a thermometer 26, a blower 9, a temperature control unit 10, and a shut-off valve up to the junction P where it joins with the liquid low-temperature liquefied gas lead-out path L1B. 11 is provided.

遮断弁8は、信号線C2を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて開状態又は閉状態が選択される。具体的には、遮断弁8は、ヘッドタンク4の気相4Aから気体状態の低温液化ガスをシュラウド3に供給する場合に開状態となる。   The shut-off valve 8 is electrically connected to the control device 6 via the signal line C2, and an open state or a closed state is selected according to a control signal from the control device 6. Specifically, the shut-off valve 8 is opened when a gaseous low-temperature liquefied gas is supplied from the gas phase 4 </ b> A of the head tank 4 to the shroud 3.

圧力計25及び温度計26は、それぞれ信号線C15,16を介して制御装置6と電気的に接続されている。これにより、気体状低温液化ガス導出経路L1A内の低温液化ガスの圧力値、及び温度を電気信号として制御装置6に送信することができる。   The pressure gauge 25 and the thermometer 26 are electrically connected to the control device 6 through signal lines C15 and 16, respectively. Accordingly, the pressure value and temperature of the low-temperature liquefied gas in the gaseous low-temperature liquefied gas lead-out path L1A can be transmitted to the control device 6 as electric signals.

ブロワ9及び温調ユニット10は、それぞれ信号線C3及びC4を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて運転状態又は停止状態が選択される。具体的には、気体状態の低温液化ガスを循環したい場合にはブロワ9が、気体状態の低温液化ガスの温度を調整(温調)したい場合には温調ユニット10が、それぞれ運転状態となる。   The blower 9 and the temperature control unit 10 are electrically connected to the control device 6 via signal lines C3 and C4, respectively, and an operation state or a stop state is selected according to a control signal from the control device 6. Specifically, when it is desired to circulate the low-temperature liquefied gas in the gaseous state, the blower 9 is in the operating state, and when it is desired to adjust (temperature control) the temperature of the low-temperature liquefied gas in the gaseous state, the temperature adjusting unit 10 is in the operating state. .

遮断弁11は、信号線C5を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて開状態又は閉状態が選択される。具体的には、遮断弁11は、気体状低温液化ガス導出経路L1Aに気体状態の低温液化ガスを循環させる場合に開状態となる。   The shutoff valve 11 is electrically connected to the control device 6 via the signal line C5, and an open state or a closed state is selected according to a control signal from the control device 6. Specifically, the shut-off valve 11 is opened when the gaseous low-temperature liquefied gas lead-out path L1A is circulated in the gaseous state.

また、気体状低温液化ガス導出経路L1Aは、分岐点Rにおいて排気経路L7と分岐されている。排気経路L7には、圧力調節弁24が設けられている。   Further, the gaseous low-temperature liquefied gas lead-out path L1A is branched at the branch point R from the exhaust path L7. A pressure control valve 24 is provided in the exhaust path L7.

圧力調整弁24は、信号線C14を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて、開度が全閉から全開まで制御される。本実施形態の試験装置1は、制御装置6によって圧力調整弁24の開度と、後述する圧力調整弁23の開度とを連動して制御し、ブロワ9の吸入温度に応じて吸入圧力を調節することができるため、ブロワ9の吸入側の気体状態の低温液化ガスの密度を一定に制御することができる。これにより、ブロワ9から一定の質量流量をシュラウド3に供給することができる。   The pressure regulating valve 24 is electrically connected to the control device 6 through a signal line C14, and the opening degree is controlled from fully closed to fully opened in accordance with a control signal from the control device 6. In the test apparatus 1 of the present embodiment, the control device 6 controls the opening degree of the pressure adjustment valve 24 and the opening degree of the pressure adjustment valve 23 described later in conjunction with each other, and the suction pressure is adjusted according to the suction temperature of the blower 9. Since it can be adjusted, the density of the low-temperature liquefied gas in the gaseous state on the suction side of the blower 9 can be controlled to be constant. Thereby, a constant mass flow rate can be supplied from the blower 9 to the shroud 3.

液状低温液化ガス導出経路L1Bには、気体状低温液化ガス導出経路L1Aと合流する合流点Pまでに、遮断弁12が設けられている。
遮断弁12は、信号線C6を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて開状態又は閉状態が選択される。具体的には、遮断弁12は、液状低温液化ガス導出経路L1Bに液体状態の低温液化ガスを循環させる場合に開状態となる。
The liquid low-temperature liquefied gas lead-out path L1B is provided with a shut-off valve 12 up to the junction P where it joins with the gaseous low-temperature liquefied gas lead-out path L1A.
The shut-off valve 12 is electrically connected to the control device 6 via the signal line C6, and an open state or a closed state is selected according to a control signal from the control device 6. Specifically, the shut-off valve 12 is in an open state when circulating a liquid low-temperature liquefied gas through the liquid low-temperature liquefied gas lead-out path L1B.

合流点Pにおいて合流した循環経路L1は、シュラウド3の下部にある分岐点Pよりもさらに下方に位置する分岐点Vにおいて、排気経路L8と分岐されている。
排気経路L8は、主として、シュラウド3、ヘッドタンク4、及び循環経路L1に貯留している液体状の低温液化ガスを抜くために設けられている。排気経路L8には、遮断弁27が設けられている。
The circulation path L1 joined at the junction P is branched from the exhaust path L8 at a branch point V located further below the branch point P below the shroud 3.
The exhaust path L8 is provided mainly for extracting the liquid low-temperature liquefied gas stored in the shroud 3, the head tank 4, and the circulation path L1. A shutoff valve 27 is provided in the exhaust path L8.

遮断弁27は、信号線C17を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて、開状態又は閉状態が選択される。具体的には、制御装置6により、遮断弁8,11,14が閉状態、液面調整弁21が閉状態、流量調整弁13が開状態に制御された上で、遮断弁27が開状態となることで、シュラウド3,ヘッドタンク4,循環経路L1、L1Bに貯留している液体状の低温液化ガスを系外に排出することができる。   The shutoff valve 27 is electrically connected to the control device 6 via a signal line C17, and an open state or a closed state is selected according to a control signal from the control device 6. Specifically, the control device 6 controls the shut-off valves 8, 11, and 14 to be closed, the liquid level adjustment valve 21 to be closed, and the flow rate adjustment valve 13 to be open, and then the shut-off valve 27 is open. Thus, the liquid low-temperature liquefied gas stored in the shroud 3, the head tank 4, and the circulation paths L1 and L1B can be discharged out of the system.

分岐点Qにおいて分岐された循環経路L1には、流量調整弁13,13がそれぞれ設けられている。
流量調整弁13は、信号線C7を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて、開度が全閉から全開まで制御される。これにより、シュラウド3への、気体状態又は液体状態の低温液化ガスの供給量を調節することができる。
The circulation path L1 branched at the branch point Q is provided with flow rate adjusting valves 13 and 13, respectively.
The flow rate adjusting valve 13 is electrically connected to the control device 6 via a signal line C7, and the opening degree is controlled from fully closed to fully open according to a control signal from the control device 6. Thereby, supply_amount | feed_rate of the low temperature liquefied gas of a gaseous state or a liquid state to the shroud 3 can be adjusted.

本実施形態の試験装置1は、シュラウド3とヘッドタンク4との間に低温液化ガスを循環させる循環経路L1を設けるとともに、ヘッドタンク4を鉛直方向においてシュラウド3よりも高い位置に設ける構成である。これにより、本実施形態の試験装置1では、シュラウド3とヘッドタンク4との間に低温液化ガスを循環させる際、フリーボイリング式(サーモサイフォン式)を採用することができる。   The test apparatus 1 of the present embodiment is configured to provide a circulation path L1 for circulating the low-temperature liquefied gas between the shroud 3 and the head tank 4, and to provide the head tank 4 at a position higher than the shroud 3 in the vertical direction. . Thereby, in the test apparatus 1 of this embodiment, when circulating low temperature liquefied gas between the shroud 3 and the head tank 4, a free boiling type (thermo siphon type) can be employ | adopted.

循環経路L1には、ヘッドタンク4の気相4Aと連通する排気経路L4が設けられている。具体的には、排気経路L4は、遮断弁8の一次側の分岐点Sにおいて、気体状低温液化ガス導出経路L1Aと分岐するように設けられている。   In the circulation path L1, an exhaust path L4 communicating with the gas phase 4A of the head tank 4 is provided. Specifically, the exhaust path L4 is provided to branch from the gaseous low-temperature liquefied gas lead-out path L1A at the branch point S on the primary side of the shut-off valve 8.

排気経路L4には、一次側から順に、遮断弁14、及び加温器15が設けられている。
遮断弁14は、信号線C8を介して制御装置6と電気的に接続されている。これにより、ヘッドタンク4の内圧(すなわち、気相4A部分の圧力)が規定値以上に上昇した場合に、制御装置6からの制御信号を受信した遮断弁14が開状態となり、ヘッドタンク4内の気体状態の低温液化ガスが排気経路L4を介して外部に放出される。また、排気経路L4を通過する際、加温器15によって低温液化ガスを温めることができる。
The exhaust path L4 is provided with a shut-off valve 14 and a heater 15 in order from the primary side.
The shut-off valve 14 is electrically connected to the control device 6 through a signal line C8. As a result, when the internal pressure of the head tank 4 (that is, the pressure in the gas phase 4A portion) rises above a specified value, the shutoff valve 14 that has received the control signal from the control device 6 is opened, and the inside of the head tank 4 The gaseous low-temperature liquefied gas is discharged to the outside through the exhaust path L4. Further, the low temperature liquefied gas can be warmed by the warmer 15 when passing through the exhaust path L4.

低温液化ガス貯槽5は、ヘッドタンク4を介してシュラウド3に供給する低温液化ガスを貯留するための容器である。低温液化ガス貯槽5内において、低温液化ガスは、気相5Aと液相5Bとに分かれている。低温液化ガス貯槽5の容量や形状は、特に限定されず、チェンバー2の大きさやシュラウド3の容量に応じて適宜選択することができる。   The low-temperature liquefied gas storage tank 5 is a container for storing low-temperature liquefied gas supplied to the shroud 3 via the head tank 4. In the low-temperature liquefied gas storage tank 5, the low-temperature liquefied gas is divided into a gas phase 5A and a liquid phase 5B. The capacity and shape of the low-temperature liquefied gas storage tank 5 are not particularly limited, and can be appropriately selected according to the size of the chamber 2 and the capacity of the shroud 3.

低温液化ガス貯槽5には、低温液化ガス貯槽5内の圧力を測定する圧力計16、低温液化ガス貯槽5内の圧力を調整する圧力調整機構17が設けられている。   The low temperature liquefied gas storage tank 5 is provided with a pressure gauge 16 for measuring the pressure in the low temperature liquefied gas storage tank 5 and a pressure adjusting mechanism 17 for adjusting the pressure in the low temperature liquefied gas storage tank 5.

圧力計16は、気相5Aと連通するように低温液化ガス貯槽5の上方寄りに接続されている。圧力計16は、信号線C9を介して制御装置6と電気的に接続されている。これにより、圧力計16によって測定した低温液化ガス貯槽5内の圧力値P(MPaG)を電気信号として制御装置6に送信することができる。   The pressure gauge 16 is connected to the upper side of the low-temperature liquefied gas storage tank 5 so as to communicate with the gas phase 5A. The pressure gauge 16 is electrically connected to the control device 6 through a signal line C9. Thereby, the pressure value P (MPaG) in the low-temperature liquefied gas storage tank 5 measured by the pressure gauge 16 can be transmitted to the control device 6 as an electric signal.

圧力調整機構17は、低温液化ガス貯槽5の気相5Aと液相5Bとを連通するように設けられた経路L5と、経路L5の液相5B側から順に設けられた気化器18、及び圧力調整弁19と、圧力調整弁19の二次側の分岐点Tにおいて経路L5と分岐するように設けられた排気経路L6と、排気経路L6に設けられた圧力調整弁20とによって構成されている。なお、圧力調整機構17の構成は一例であって、これに限定されるものではない。   The pressure adjustment mechanism 17 includes a path L5 provided to communicate the gas phase 5A and the liquid phase 5B of the low-temperature liquefied gas storage tank 5, a vaporizer 18 provided in order from the liquid phase 5B side of the path L5, and a pressure The control valve 19 includes an exhaust path L6 provided to branch from the path L5 at a branch point T on the secondary side of the pressure control valve 19, and a pressure adjustment valve 20 provided in the exhaust path L6. . The configuration of the pressure adjustment mechanism 17 is an example, and is not limited to this.

気化器18は、経路L5から供給される液体状態の低温液化ガスを加温して気化することによって、気体状態の低温液化ガスを二次側に供給するために設けられている。   The vaporizer 18 is provided to supply the low-temperature liquefied gas in the gaseous state to the secondary side by heating and vaporizing the low-temperature liquefied gas in the liquid state supplied from the path L5.

圧力調整弁19は、信号線C10を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて、開度が全閉から全開まで制御される。これにより、経路L5から低温液化ガス貯槽5の気相5Aへの、気体状態の低温液化ガスの供給量を調節することができる。なお、圧力調整弁19を全閉状態から開状態とすることにより、液相5B側から液体状態の低温液化ガスが経路L5内に導入され、気化器18によって気体状態とされた後に気相5A側に導出されることで、低温液化ガス貯槽5内の圧力が昇圧される。
すなわち、本実施形態の試験装置1では、圧力計16と、圧力調整機構17のうち、経路L5、気化器18、及び圧力調整弁19と、信号線C9,C10と、制御装置6とによって、加圧機構が構成されている。
The pressure regulating valve 19 is electrically connected to the control device 6 via a signal line C10, and the opening degree is controlled from fully closed to fully open according to a control signal from the control device 6. Thereby, supply_amount | feed_rate of the gaseous low temperature liquefied gas from the path | route L5 to the gaseous phase 5A of the low temperature liquefied gas storage tank 5 can be adjusted. In addition, by changing the pressure regulating valve 19 from the fully closed state to the open state, a low-temperature liquefied gas in a liquid state is introduced into the path L5 from the liquid phase 5B side, and is converted into a gaseous state by the vaporizer 18, then the gas phase 5A. By being led out to the side, the pressure in the low temperature liquefied gas storage tank 5 is increased.
That is, in the test apparatus 1 of the present embodiment, among the pressure gauge 16 and the pressure adjustment mechanism 17, the path L5, the vaporizer 18, the pressure adjustment valve 19, the signal lines C9 and C10, and the control device 6 A pressurizing mechanism is configured.

圧力調整弁20は、信号線C11を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて、開度が全閉から全開まで制御される。これにより、排気経路L6から外部への、気体状態の低温液化ガスの放出量を調節することができる。なお、圧力調整弁20を全閉状態から開状態とすることにより、低温液化ガス貯槽5内の気相5A部分の低温液化ガスが排気経路L6から外部に放出されることで、低温液化ガス貯槽5内の圧力が減圧される。
すなわち、本実施形態の試験装置1では、圧力計16と、圧力調整機構17のうち、経路L5、排気経路L6、及び圧力調整弁20と、信号線C9,C11と、制御装置6とによって、減圧機構が構成されている。
The pressure regulating valve 20 is electrically connected to the control device 6 via a signal line C11, and the opening degree is controlled from fully closed to fully open according to a control signal from the control device 6. Thereby, the discharge | release amount of the gaseous low temperature liquefied gas from the exhaust path L6 to the exterior can be adjusted. Note that the low-temperature liquefied gas storage tank is formed by releasing the low-temperature liquefied gas in the gas phase 5A portion in the low-temperature liquefied gas storage tank 5 from the exhaust path L6 by opening the pressure regulating valve 20 from the fully closed state to the open state. The pressure in 5 is reduced.
That is, in the test apparatus 1 of the present embodiment, the pressure gauge 16 and the pressure adjustment mechanism 17 include the path L5, the exhaust path L6, the pressure adjustment valve 20, the signal lines C9 and C11, and the control device 6. A decompression mechanism is configured.

液供給経路L2は、ヘッドタンク4に液体状態の低温液化ガスを供給するために、低温液化ガスの供給源である低温液化ガス貯槽5とヘッドタンク4との間にわたって設けられている。具体的には、液供給経路L2は、一端が液相5Bと連通するように低温液化ガス貯槽5の底部寄りに接続されており、他端が気相4Aと連通するようにヘッドタンク4の中央又は中央よりも上側の部分に接続されている。また、液供給経路L2には、液面調整弁21が設けられている。   The liquid supply path L <b> 2 is provided between the head tank 4 and the low-temperature liquefied gas storage tank 5 that is a supply source of the low-temperature liquefied gas in order to supply the liquid low-temperature liquefied gas to the head tank 4. Specifically, the liquid supply path L2 is connected to the bottom of the low-temperature liquefied gas storage tank 5 so that one end communicates with the liquid phase 5B, and the other end of the head tank 4 communicates with the gas phase 4A. It is connected to the center or a portion above the center. Further, a liquid level adjustment valve 21 is provided in the liquid supply path L2.

液面調整弁21は、信号線C12を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて、開度が全閉から全開まで制御される。これにより、低温液化ガス貯槽5からヘッドタンク4への、液体状態の低温液化ガスの供給量を調節することができる。   The liquid level adjustment valve 21 is electrically connected to the control device 6 via the signal line C12, and the opening degree is controlled from fully closed to fully open according to a control signal from the control device 6. Thereby, the supply amount of the low temperature liquefied gas in the liquid state from the low temperature liquefied gas storage tank 5 to the head tank 4 can be adjusted.

ガス供給経路L3は、シュラウド3に気体状態の低温液化ガスを供給するために、低温液化ガスの供給源である低温液化ガス貯槽5と循環経路L1との間に設けられている。具体的には、ガス供給経路L3は、一端が液相5Bと連通するように低温液化ガス貯槽5の底部寄りに接続されており、他端が循環経路L1を構成する気体状低温液化ガス導出経路L1Aの、遮断弁8とブロワ9との間の合流点Uに接続されている。また、ガス供給経路L3には、気化器22と、圧力調整弁23とが設けられている。   The gas supply path L3 is provided between the low-temperature liquefied gas storage tank 5 serving as a supply source of the low-temperature liquefied gas and the circulation path L1 in order to supply the low-temperature liquefied gas in the gaseous state to the shroud 3. Specifically, the gas supply path L3 is connected to the bottom of the low-temperature liquefied gas storage tank 5 so that one end communicates with the liquid phase 5B, and the other end leads to the gaseous low-temperature liquefied gas constituting the circulation path L1. It is connected to the junction U between the shutoff valve 8 and the blower 9 in the path L1A. The gas supply path L3 is provided with a vaporizer 22 and a pressure regulating valve 23.

気化器22は、低温液化ガス貯槽5の液相部分から供給される液体状態の低温液化ガスを加熱して気化することによって、気体状態の低温液化ガスを気体状低温液化ガス導出経路L1Aに供給するために設けられている。   The vaporizer 22 heats and vaporizes the liquid low-temperature liquefied gas supplied from the liquid phase portion of the low-temperature liquefied gas storage tank 5, thereby supplying the gaseous low-temperature liquefied gas to the gaseous low-temperature liquefied gas lead-out path L1A. Is provided to do.

圧力調整弁23は、信号線C13を介して制御装置6と電気的に接続されており、制御装置6からの制御信号に応じて、開度が全閉から全開まで制御される。これにより、低温液化ガス貯槽5からシュラウド3への、気体状態の低温液化ガスの供給量を調節することができる。   The pressure regulating valve 23 is electrically connected to the control device 6 via a signal line C13, and the opening degree is controlled from fully closed to fully opened in accordance with a control signal from the control device 6. Thereby, supply_amount | feed_rate of the gaseous low temperature liquefied gas from the low temperature liquefied gas storage tank 5 to the shroud 3 can be adjusted.

制御装置6は、上述したように、液面計7、ブロワ9、温調ユニット10、圧力計16,25、遮断弁8,11,12,14、及び流量調整弁13,圧力調整弁19,20,液面調整弁21,圧力調整弁23,24と、温度計26と、信号線C1〜C17を介して電気的に接続されている。   As described above, the control device 6 includes the liquid level gauge 7, the blower 9, the temperature control unit 10, the pressure gauges 16 and 25, the shut-off valves 8, 11, 12 and 14, the flow rate adjustment valve 13, the pressure adjustment valve 19, 20, a liquid level adjusting valve 21, pressure adjusting valves 23 and 24, a thermometer 26, and signal lines C1 to C17 are electrically connected.

制御装置6は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、制御プログラムを実行する。制御プログラムの実行によって、制御装置6は、図示略の弁制御部、取得部、設定値情報記憶部、決定部を備える装置として機能する。なお、制御装置6の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。また、制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。また、制御プログラムは、電気通信回線を介して送受信されてもよい。   The control device 6 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes a control program. By executing the control program, the control device 6 functions as a device including a valve control unit (not shown), an acquisition unit, a set value information storage unit, and a determination unit. All or some of the functions of the control device 6 may be realized by using hardware such as an application specific integrated circuit (ASIC), a programmable logic device (PLD), or a field programmable gate array (FPGA). The control program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. Further, the control program may be transmitted / received via a telecommunication line.

弁制御部は、決定部によって決定された制御プログラムに基づいて、各遮断弁8,11,12,14の開閉と、流量調整弁13、圧力調整弁19,20,23,24、及び液面調整弁21の開度とを、それぞれ制御する。
取得部は、液面計7によって検出されたヘッドタンク4の液面値、圧力計16によって検出された低温液化ガス貯槽5内の圧力値P,圧力計25及び温度計26によって検出された気体状低温液化ガス導出経路L1A内の低温液化ガスの圧力値、及び温度の情報のいずれか又は全てを含む検出データを取得する。
Based on the control program determined by the determination unit, the valve control unit opens and closes the shut-off valves 8, 11, 12, and 14, the flow rate adjustment valve 13, the pressure adjustment valves 19, 20, 23, and 24, and the liquid level The opening degree of the regulating valve 21 is controlled.
The acquisition unit includes the liquid level value of the head tank 4 detected by the liquid level gauge 7, the pressure value P in the low-temperature liquefied gas storage tank 5 detected by the pressure gauge 16, the gas detected by the pressure gauge 25 and the thermometer 26. Detection data including any or all of the pressure value and temperature information of the low-temperature liquefied gas in the gas-like low-temperature liquefied gas lead-out path L1A is acquired.

設定値情報記憶部は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。設定値情報記憶部は、液面高さの目標値(液面値L)、シュラウド3に液体状態の低温液化ガスを供給する際の低温液化ガス貯槽5の第1目標圧力値P、シュラウド3に気体状態の低温液化ガスを供給する際の低温液化ガス貯槽5の第2目標圧力値P、並びにこれらの上限値P、下限値P等の、各種目標値及び規定値を記憶している。
決定部は、各種目標値及び規定値を参照し、取得部によって取得された検出データに含まれる各測定値との比較演算した結果に基づいて、最適な制御プログラムを決定する。
The set value information storage unit is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device. The set value information storage unit includes a target value of the liquid level (liquid level value L), the first target pressure value P 1 of the low temperature liquefied gas storage tank 5 when the liquid low temperature liquefied gas is supplied to the shroud 3, and the shroud. The second target pressure value P 2 of the low temperature liquefied gas storage tank 5 when supplying the low temperature liquefied gas in a gaseous state to 3 and various target values and specified values such as the upper limit value P H and the lower limit value P L are stored. doing.
The determination unit refers to various target values and specified values, and determines an optimal control program based on the result of comparison calculation with each measurement value included in the detection data acquired by the acquisition unit.

具体的には、制御装置6は、圧力計16によって測定した低温液化ガス貯槽5内の圧力値Pが、設定した第1目標圧力値P、又は第2目標圧力値Pの許容される下限値未満となった場合に、圧力調整弁19に制御信号を送信して全閉状態から開状態(所定の開度)に制御する。これにより、液相5B側から液体状態の低温液化ガスが経路L5内に導入され、気化器18によって気体状態とされた後に気相5A側に導出されて、低温液化ガス貯槽5内の圧力が上昇する。そして、制御装置6は、圧力計16によって測定した圧力値Pが、第1目標圧力値P、あるいは第2目標圧力値Pの許容される下限値以上に回復した場合に、圧力調整弁19に制御信号を送信して開状態から全閉状態に制御する。 Specifically, the control device 6 allows the pressure value P in the low-temperature liquefied gas storage tank 5 measured by the pressure gauge 16 to be the set first target pressure value P 1 or the second target pressure value P 2. When it becomes less than the lower limit, a control signal is transmitted to the pressure regulating valve 19 to control from the fully closed state to the open state (predetermined opening). Thereby, the low-temperature liquefied gas in the liquid state is introduced into the path L5 from the liquid phase 5B side, and after being made into a gas state by the vaporizer 18, is led out to the gas phase 5A side, and the pressure in the low-temperature liquefied gas storage tank 5 is increased. To rise. Then, when the pressure value P measured by the pressure gauge 16 recovers to the first target pressure value P 1 or the allowable lower limit value of the second target pressure value P 2 , the control device 6 adjusts the pressure adjustment valve. A control signal is transmitted to 19 to control from the open state to the fully closed state.

一方、制御装置6は、圧力計16によって測定した低温液化ガス貯槽5内の圧力値Pが、第1目標圧力値P、あるいは第2目標圧力値Pの許容される上限値を超えた場合に、圧力調整弁20に制御信号を送信して全閉状態から開状態に制御する。これにより、低温液化ガス貯槽5内の気相5A部分の低温液化ガスが排気経路L6から外部に放出されて、低温液化ガス貯槽5内の圧力が減少する。そして、制御装置6は、圧力計16によって測定した圧力値Pが、第1目標圧力値P、あるいは第2目標圧力値Pの許容される上限値以下に回復した場合に、圧力調整弁20に制御信号を送信して開状態から全閉状態に制御する。 On the other hand, the control device 6 determines that the pressure value P in the low-temperature liquefied gas storage tank 5 measured by the pressure gauge 16 exceeds the allowable upper limit value of the first target pressure value P 1 or the second target pressure value P 2 . In this case, a control signal is transmitted to the pressure regulating valve 20 to control from the fully closed state to the open state. As a result, the low-temperature liquefied gas in the gas phase 5A in the low-temperature liquefied gas storage tank 5 is released to the outside from the exhaust path L6, and the pressure in the low-temperature liquefied gas storage tank 5 decreases. Then, when the pressure value P measured by the pressure gauge 16 recovers below the allowable upper limit value of the first target pressure value P 1 or the second target pressure value P 2 , the control device 6 A control signal is transmitted to 20 to control from the open state to the fully closed state.

なお、制御装置(設定値情報記憶部)6に設定する第1目標圧力値Pとしては、大気圧よりもやや高い値とすることが好ましい。具体的には、第1目標圧力値Pは、0.1〜0.3MPaGとすることができ、0.2〜0.3MPaGとすることが好ましい。第1目標圧力値Pに供給圧力が保持された低温液化ガス貯槽5から液供給経路L2を介して液体状態の低温液化ガスを循環経路L1に供給することにより、循環経路L1におけるフラッシュロスを低減することができる。したがって、シュラウド3とヘッドタンク4との間に液体状態の低温液化ガスを効率よく循環させることができる。 As the first target pressure P 1 to be set in the controller (setting value information storage unit) 6, it is preferable that the value slightly higher than the atmospheric pressure. More specifically, the first target pressure P 1 may be a 0.1~0.3MPaG, it is preferable to 0.2~0.3MPaG. By the low-temperature liquefied gas storage tank 5 which supply pressure is held by the first target pressure value P 1 through the liquid supply path L2 to supply a cryogenic liquefied gas in liquid state into the circulation path L1, the flash losses in the circulation path L1 Can be reduced. Therefore, the liquid low-temperature liquefied gas can be efficiently circulated between the shroud 3 and the head tank 4.

また、制御装置(設定値情報記憶部)6に設定する第2目標圧力値Pとしては、上述した第1目標圧力値Pよりも大きな値とすることが好ましい。具体的には、第2目標圧力値Pは、0.4〜0.65MPaGとすることができ、0.5〜0.65MPaGとすることが好ましい。第2目標圧力値Pに供給圧力が保持された低温液化ガス貯槽5からガス供給経路L3及び循環経路L1に供給することで、シュラウド3への気体状態の低温液化ガスの供給量を増加することができる。したがって、液体状態と比較して気体状態の低温液化ガスは比熱が小さいにも関わらず、チェンバー2内の温度制御を効率よく行うことができる。 As the second target pressure value P 2 to be set in the control device (setting value information storage unit) 6, it is preferable that the first value larger than the target pressure value P 1 described above. Specifically, the second target pressure P 2 may be a 0.4~0.65MPaG, it is preferable to 0.5~0.65MPaG. By supplying low-temperature liquefied gas storage tank 5 which supply pressure is held in the second target pressure value P 2 in the gas supply path L3 and the circulation path L1, to increase the supply amount of the low-temperature liquefied gas in a gaseous state into the shroud 3 be able to. Therefore, although the low-temperature liquefied gas in the gaseous state has a smaller specific heat than the liquid state, the temperature control in the chamber 2 can be performed efficiently.

<宇宙環境試験装置の運転方法>
次に、本発明を適用した一実施形態である宇宙環境試験装置(すなわち、上述した試験装置1)の運転方法の一例について説明する。図2は、本発明の一実施形態である宇宙環境試験装置の運転方法を説明するためのタイムチャートである。なお、図2中、X軸は試験装置1の運転開始からの時間Tを示しており、Y軸は低温液化ガス貯槽5内の圧力値Pを示している。
<Operation method of space environment test equipment>
Next, an example of an operation method of the space environment test apparatus (that is, the test apparatus 1 described above) which is an embodiment to which the present invention is applied will be described. FIG. 2 is a time chart for explaining a method of operating the space environment test apparatus according to the embodiment of the present invention. In FIG. 2, the X axis indicates the time T from the start of operation of the test apparatus 1, and the Y axis indicates the pressure value P in the low temperature liquefied gas storage tank 5.

本実施形態の宇宙環境試験装置1の運転方法(以下、単に「運転方法」とも記す)は、チェンバー2の内側に設けられたシュラウド3に、気体状態又は液体状態の低温液化ガスを供給して、チェンバー2内の温度を制御するにあたって、チェンバー2内を冷却する際、大気圧よりも高い第1目標圧力値Pに供給圧力を保持しながら、シュラウド3に液体状態の低温液化ガスを供給するとともに、チェンバー2内を温調する際、第1目標圧力値Pよりも高い第2目標圧力値Pに供給圧力を保持しながら、シュラウド3に気体状態の低温液化ガスを供給する方法である。 The operation method of the space environment test apparatus 1 according to the present embodiment (hereinafter also simply referred to as “operation method”) is to supply a low temperature liquefied gas in a gaseous state or a liquid state to a shroud 3 provided inside the chamber 2. In controlling the temperature in the chamber 2, when the inside of the chamber 2 is cooled, liquid low-temperature liquefied gas is supplied to the shroud 3 while maintaining the supply pressure at the first target pressure value P 1 higher than atmospheric pressure. At the same time, when the inside of the chamber 2 is temperature-controlled, a method of supplying a gaseous low-temperature liquefied gas to the shroud 3 while maintaining the supply pressure at the second target pressure value P 2 higher than the first target pressure value P 1. It is.

以下、本実施形態の運転方法として、(1)液体状態の低温液化ガスの供給モードがオフの状態(以下、「第1の状態」という)、及び(2)液体状態の低温液化ガスの供給モードがオンの状態(以下、「第2の状態」という)を、交互に行う場合を一例として、図2を参照しながら説明する。   Hereinafter, as an operation method of the present embodiment, (1) the supply state of the low-temperature liquefied gas in the liquid state is off (hereinafter referred to as “first state”), and (2) supply of the low-temperature liquefied gas in the liquid state A case where the mode is on (hereinafter referred to as “second state”) will be described as an example with reference to FIG.

(第1の状態)
先ず、本実施形態の運転方法では、時刻tまで、第1の状態の運転を行う。第1の状態の運転では、第2目標圧力値Pに供給圧力を保持しながら、シュラウド3に気体状態の低温液化ガスを供給して、チェンバー2内を温調する。すなわち、低温液化ガス貯槽5内の圧力を、第2目標圧力値Pに維持する。
(First state)
First, the operating method of this embodiment, until time t 1, performs the operation of the first state. In the operation of the first state, while maintaining the supply pressure to the second target pressure P 2, by supplying the low-temperature liquefied gas in a gaseous state to the shroud 3, regulating the temperature of the chamber 2. That is, the pressure of the low-temperature liquefied gas storage tank 5 is maintained at the second target pressure value P 2.

具体的には、第1の状態の運転では、先ず、制御装置6により、遮断弁12、14が閉状態、遮断弁8,11が開状態に制御される。これにより、循環経路L1において、液体状低温液化ガス供給経路L1Bが閉塞され、気体状低温液化ガス導出経路L1Aが開放される。
次に、制御装置6により、低温液化ガス貯槽5内の圧力が、PID制御(フィードバック制御)される。これにより、圧力調整機構17の加圧機構および減圧機構が運転状態(ON状態)となり、低温液化ガス貯槽5内の圧力が、目標値(設定値;SV値)である第2目標圧力値P(例えば、0.6MPaG)に維持される。
次に、制御装置6により、流量調整弁13、圧力調整弁23が閉状態から適切な開度に制御される。これにより、低温液化ガス貯槽5内の圧力が第2目標圧力値Pに保持された状態で、シュラウド3に気体状態の低温液化ガスが供給される。
Specifically, in the operation in the first state, first, the control device 6 controls the shutoff valves 12 and 14 to be closed and the shutoff valves 8 and 11 to be opened. As a result, in the circulation path L1, the liquid low-temperature liquefied gas supply path L1B is closed, and the gaseous low-temperature liquefied gas lead-out path L1A is opened.
Next, the controller 6 performs PID control (feedback control) on the pressure in the low-temperature liquefied gas storage tank 5. As a result, the pressurizing mechanism and the depressurizing mechanism of the pressure adjusting mechanism 17 are in the operating state (ON state), and the second target pressure value P in which the pressure in the low-temperature liquefied gas storage tank 5 is the target value (set value; SV value). 2 (for example, 0.6 MPaG).
Next, the flow rate adjusting valve 13 and the pressure adjusting valve 23 are controlled from the closed state to an appropriate opening degree by the control device 6. Thus, in a state where the pressure of the low-temperature liquefied gas storage tank 5 is held by the second target pressure P 2, the low-temperature liquefied gas in a gaseous state is supplied to the shroud 3.

(第2の状態)
次に、図2に示すように、運転開始から時刻tになった際、第1の状態から第2の状態への移行を開始し、時刻tにおいて移行が完了した後、時刻tまで、第2の状態の運転を行う。
(Second state)
Next, as shown in FIG. 2, when the time t 1 has elapsed from the start of operation, the transition from the first state to the second state is started, and after the transition is completed at the time t 6 , the time t 7 Until then, the operation in the second state is performed.

先ず、移行状態の運転では、第2目標圧力値Pから第1目標圧力値Pに供給圧力を低下させながら、シュラウド3に液体状態の低温液化ガスを供給して、チェンバー2内を冷却する。
なお、本実施形態の運転方法において、移行状態とは、シュラウド3に液体状態の低温液化ガスの供給を開始し、低温液化ガス貯槽5内の圧力が、第2目標圧力値Pから第1目標圧力値Pまで移行するまでの状態をいうものとする。
First, in the operation in the transition state, the chamber 2 is cooled by supplying liquid low-temperature liquefied gas to the shroud 3 while reducing the supply pressure from the second target pressure value P 2 to the first target pressure value P 1. To do.
Incidentally, in the operating method of this embodiment, the transition state, the supply of low-temperature liquefied gas in the liquid state to begin the shroud 3, the pressure of the low-temperature liquefied gas storage tank 5, from the second target pressure value P 2 first shall means a state before transition to a target pressure value P 1.

具体的には、第1の状態から第2の状態への移行は、先ず、制御装置6により、遮断弁8,11が閉状態、遮断弁12,14が開状態に制御される。これにより、循環経路L1において、遮断弁8から遮断弁11までの間の気体状低温液化ガス導出経路L1Aが遮断され、液体状低温液化ガス供給経路L1Bが開放される。また、シュラウド3内、ヘッドタンク4内、低温液化ガス供給経路L1内の圧力は、L4、遮断弁14、加温器15を経由して系外に放出され、大気圧まで減圧される。
次に、制御装置6により、流量調整弁13、液面調整弁21が閉状態から適切な開度に制御される。これにより、低温液化ガス貯槽5からヘッドタンク4を介してシュラウド3に液体状態の低温液化ガスが供給される。
なお、移行状態の運転では、低温液化ガス貯槽5内の圧力値Pに対して、制御装置6によるPID制御を停止した状態(OFF状態)とする。すなわち、圧力調整機構17の加圧機構および減圧機構は、停止状態(OFF状態)とする。
一方、移行状態の運転の初期では、チェンバー2内を冷却するために、低温液化ガス貯槽5からヘッドタンク4を介して多量の低温液化ガスをシュラウド3に供給する必要がある。低温液化ガス貯槽5内の圧力値Pは、ヘッドタンク4の液相4B及び低温液化ガス貯槽5の液相5Bを消費するにともない、自然に低下することとなる。
Specifically, in the transition from the first state to the second state, first, the control device 6 controls the shutoff valves 8 and 11 to be closed and the shutoff valves 12 and 14 to be opened. As a result, in the circulation path L1, the gaseous low-temperature liquefied gas lead-out path L1A between the shut-off valve 8 and the shut-off valve 11 is shut off, and the liquid low-temperature liquefied gas supply path L1B is opened. In addition, the pressure in the shroud 3, the head tank 4, and the low-temperature liquefied gas supply path L1 is released outside the system via L4, the shutoff valve 14, and the heater 15, and is reduced to atmospheric pressure.
Next, the flow rate adjusting valve 13 and the liquid level adjusting valve 21 are controlled from the closed state to an appropriate opening degree by the control device 6. Thereby, the low-temperature liquefied gas in a liquid state is supplied from the low-temperature liquefied gas storage tank 5 to the shroud 3 through the head tank 4.
In the operation in the transition state, the PID control by the control device 6 is stopped (OFF state) with respect to the pressure value P in the low-temperature liquefied gas storage tank 5. That is, the pressurizing mechanism and the depressurizing mechanism of the pressure adjusting mechanism 17 are in a stopped state (OFF state).
On the other hand, at the initial stage of the operation in the transition state, it is necessary to supply a large amount of low-temperature liquefied gas from the low-temperature liquefied gas storage tank 5 to the shroud 3 through the head tank 4 in order to cool the inside of the chamber 2. The pressure value P in the low-temperature liquefied gas storage tank 5 naturally decreases as the liquid phase 4B of the head tank 4 and the liquid phase 5B of the low-temperature liquefied gas storage tank 5 are consumed.

このように、本実施形態の運転方法では、移行状態の運転の際、PID制御を停止した状態で、シュラウド3への液体状態の低温液化ガスの供給を開始し、低温液化ガス貯槽5内の圧力値Pが自然に低下するように運転するため、排気経路L6から気体状態の低温液化ガスを排出して強制的に低温液化ガス貯槽5内の圧力値Pを制御する場合と比較して、低温液化ガスの消費量を低減することができる。   As described above, in the operation method of the present embodiment, in the transition state operation, the supply of the liquid low-temperature liquefied gas to the shroud 3 is started with the PID control stopped, and the low-temperature liquefied gas storage tank 5 Compared with the case where the pressure value P in the low-temperature liquefied gas storage tank 5 is controlled by forcibly discharging the low-temperature liquefied gas in the gaseous state from the exhaust path L6 in order to operate so that the pressure value P naturally decreases. The consumption of low-temperature liquefied gas can be reduced.

ところで、移行状態の運転では、基本的にPID制御を停止した状態で行うため、低温液化ガス貯槽5内の圧力値Pは、一定とはならず、試験装置1の運転状態に応じて変動することとなる。
そこで、移行状態の運転中において、低温液化ガス貯槽5内の圧力値Pに異常上昇、あるいは異常低下が発生した場合について、説明する。
By the way, since the operation in the transition state is basically performed in a state where the PID control is stopped, the pressure value P in the low temperature liquefied gas storage tank 5 is not constant and varies depending on the operation state of the test apparatus 1. It will be.
Therefore, a case will be described in which an abnormal increase or decrease in the pressure value P in the low-temperature liquefied gas storage tank 5 occurs during operation in the transition state.

先ず、移行状態の運転中、時刻tにおいて、低温液化ガス貯槽5内の圧力値Pに異常上昇が発生した場合について説明する。
圧力計16によって測定した低温液化ガス貯槽5内の圧力値Pが、第2目標圧力値Pよりも僅かな値(αMPa)だけ大きな圧力上限値Pを超えた場合、低温液化ガス貯槽5内の圧力値Pが速やかに降下するように、圧力制御を行う。
具体的には、制御装置6によって、第2目標圧力値Pを目標値(SV値)としたPID制御(フィードバック制御)を行う。すなわち、圧力調整機構17の減圧機構が運転状態(ON状態)となり、圧力調整弁20の開度が制御されることで、低温液化ガス貯槽5の気相5Aの一部が排気経路L6から外部へ排出される。
圧力制御の実施により、時刻tにおいて、低温液化ガス貯槽5内の圧力値Pが圧力上限値Pを下回った場合、上記PID制御を停止する。
First, during the transition state operation, at time t 2, the case will be described in which abnormal rise in the pressure value P of the low-temperature liquefied gas storage tank 5 has occurred.
When the pressure value P of the low-temperature liquefied gas storage tank 5 as measured by the pressure gauge 16 has exceeded only large upper pressure limit P H second target pressure value a slight value than P 2 (αMPa), low-temperature liquefied gas storage tank 5 Pressure control is performed so that the pressure value P of the inside drops quickly.
Specifically, carried out by the control device 6, the second target pressure P 2 the target value (SV value) and the PID control (feedback control). That is, the decompression mechanism of the pressure adjustment mechanism 17 is in an operating state (ON state), and the opening degree of the pressure adjustment valve 20 is controlled, so that a part of the gas phase 5A of the low temperature liquefied gas storage tank 5 is externally connected from the exhaust path L6. Is discharged.
The implementation of the pressure control, at time t 3, when the pressure value P of the low-temperature liquefied gas storage tank 5 falls below the upper pressure limit P H, stopping the PID control.

次に、移行状態の運転中、時刻tにおいて、低温液化ガス貯槽5内の圧力値Pに異常低下が発生した場合について説明する。
圧力計16によって測定した低温液化ガス貯槽5内の圧力値Pが、第1目標圧力値Pよりも僅かな値(βMPa)だけ小さな圧力下限値P超えた場合、低温液化ガス貯槽5内の圧力値Pが速やかに上昇するように、圧力制御を行う。
具体的には、制御装置6によって、第1目標圧力値Pを目標値(SV値)としたPID制御(フィードバック制御)を行う。すなわち、圧力調整機構17の加圧機構が運転状態(ON状態)となり、圧力調整弁19の開度が制御されることで、低温液化ガス貯槽5の液相5Bの一部が気化器18で気化されて、経路L5から気相5Aへ供給される。
圧力制御の実施により、時刻tにおいて、低温液化ガス貯槽5内の圧力値Pが圧力下限値Pを上回った場合、上記PID制御を停止する。
Then, during the transition state operation At time t 4, the explanation for the case where abnormal drop in pressure value P of the low-temperature liquefied gas storage tank 5 has occurred.
When the pressure value P in the low-temperature liquefied gas storage tank 5 measured by the pressure gauge 16 exceeds the lower pressure limit P L that is slightly smaller than the first target pressure value P 1 (β MPa), the low-temperature liquefied gas storage tank 5 The pressure control is performed so that the pressure value P of the pressure increases rapidly.
Specifically, carried out by the control device 6, the first target pressure value P 1 of the target value (SV value) and the PID control (feedback control). That is, the pressurization mechanism of the pressure adjustment mechanism 17 is in an operating state (ON state), and the opening degree of the pressure adjustment valve 19 is controlled, so that a part of the liquid phase 5B of the low-temperature liquefied gas storage tank 5 is the vaporizer 18. Vaporized and supplied from the path L5 to the gas phase 5A.
The implementation of the pressure control, at time t 5, when the pressure value P of the low-temperature liquefied gas storage tank 5 exceeds the pressure limit value P L, stopping the PID control.

ところで、移行状態の運転の終期では、チェンバー2内の冷却が進み、徐々にシュラウド3に液が溜まるため、シュラウド3への低温液化ガスの供給量が減少する。これに伴い、低温液化ガス貯槽5から供給される液体状態の低温液化ガスがヘッドタンク4内に溜まって液相4Bが形成される。
そして、時刻tにおいて、液面計7によって測定したヘッドタンク4内の液相4Bの液面高さの値が、予め制御装置6に設定した液面値L以上となったとき、移行状態の運転を完了し、第2の状態の低温定常運転を開始する。
By the way, at the end of the operation in the transition state, the cooling in the chamber 2 proceeds and the liquid gradually accumulates in the shroud 3, so that the supply amount of the low-temperature liquefied gas to the shroud 3 decreases. As a result, the liquid low-temperature liquefied gas supplied from the low-temperature liquefied gas storage tank 5 accumulates in the head tank 4 to form a liquid phase 4B.
Then, at time t 6, when the value of the liquid level of the liquid phase 4B in the head tank 4, as measured by the level gauge 7 has a pre-control unit 6 set the liquid level value L or more, transition state Is completed, and the low-temperature steady operation in the second state is started.

第2の状態の運転では、第1目標圧力値Pに供給圧力を保持しながら、シュラウド3に液体状態の低温液化ガスを供給して、チェンバー2内を冷却する。すなわち、低温液化ガス貯槽5内の圧力を、第1目標圧力値Pに維持する。 In the operation of the second state, while maintaining the supply pressure to the first target pressure value P 1, and supplies a low-temperature liquefied gas in the liquid state in the shroud 3, to cool the inside of the chamber 2. That is, the pressure of the low-temperature liquefied gas storage tank 5 is maintained at the first target pressure value P 1.

具体的には、第2の状態の運転では、制御装置6により、低温液化ガス貯槽5内の圧力が、PID制御(フィードバック制御)される。これにより、圧力調整機構17の加圧機構および減圧機構が運転状態(ON状態)となり、低温液化ガス貯槽5内の圧力が、第1目標圧力値P(例えば、0.3MPaG)に維持される。
また、制御装置6により、流量調整弁13,21の開度が適切に制御される。これにより、低温液化ガス貯槽5内の圧力値Pが第1目標圧力値Pに保持された状態で、シュラウド3に液体状態の低温液化ガスが供給される。
Specifically, in the operation in the second state, the control device 6 performs PID control (feedback control) on the pressure in the low-temperature liquefied gas storage tank 5. As a result, the pressurizing mechanism and the depressurizing mechanism of the pressure adjusting mechanism 17 are in the operating state (ON state), and the pressure in the low-temperature liquefied gas storage tank 5 is maintained at the first target pressure value P 1 (for example, 0.3 MPaG). The
Moreover, the opening degree of the flow regulating valves 13 and 21 is appropriately controlled by the control device 6. Thus, with the pressure value P of the low-temperature liquefied gas storage tank 5 is held by the first target pressure value P 1, low-temperature liquefied gas in the liquid state is supplied to the shroud 3.

(第1の状態)
次に、図2に示すように、時刻tになった際、第2の状態から再び第1の状態への移行を開始し、所定の時間まで第1の状態の運転を行う。この場合、先ず、シュラウド3,ヘッドタンク4,循環経路L1に貯留している液体状の低温液化ガスを抜く工程が行われる。
(First state)
Next, as shown in FIG. 2, when it becomes time t 7, and again starts to shift to the first state from the second state, the operation of the first state until a predetermined time. In this case, first, a step of removing the liquid low-temperature liquefied gas stored in the shroud 3, the head tank 4, and the circulation path L1 is performed.

具体的には、先ず、制御装置6により、遮断弁8,11,14を閉状態、液面調整弁21を閉状態、流量調整弁13を開状態に制御する。次に、シュラウド3の下方に位置する遮断弁27を開状態に制御することで、シュラウド3、ヘッドタンク4、及び循環経路L1,L1B内に貯留する液体状の低温液化ガスを系外に排出することができる。   Specifically, first, the control device 6 controls the shut-off valves 8, 11, 14 to be closed, the liquid level adjustment valve 21 to be closed, and the flow rate adjustment valve 13 to be open. Next, by controlling the shut-off valve 27 located below the shroud 3 to be in an open state, the liquid low-temperature liquefied gas stored in the shroud 3, the head tank 4, and the circulation paths L1 and L1B is discharged out of the system. can do.

なお、さらなるエネルギー効率の向上のため、図示略の経路や手段を用いて、シュラウド3、ヘッドタンク4、及び循環経路L1,L1Bに貯留する液体状の低温液化ガスを抜き出して、低温液化ガス貯槽5に回収してもよい。   In order to further improve energy efficiency, a low-temperature liquefied gas storage tank is obtained by extracting liquid low-temperature liquefied gas stored in the shroud 3, the head tank 4, and the circulation paths L1 and L1B using a path and means (not shown). 5 may be recovered.

次に、循環経路L1内に貯留する液体状の低温液化ガスを排出した後、第1の状態に移行する。具体的には、第1の状態の運転では、先ず、制御装置6により、遮断弁12、14が閉状態、遮断弁8,11が開状態に制御される。これにより、循環経路L1において、液体状低温液化ガス供給経路L1Bが閉塞され、気体状低温液化ガス導出経路L1Aが開放される。   Next, after discharging the liquid low-temperature liquefied gas stored in the circulation path L1, the state shifts to the first state. Specifically, in the operation in the first state, first, the control device 6 controls the shutoff valves 12 and 14 to be closed and the shutoff valves 8 and 11 to be opened. As a result, in the circulation path L1, the liquid low-temperature liquefied gas supply path L1B is closed, and the gaseous low-temperature liquefied gas lead-out path L1A is opened.

ここで、第2の状態から第1の状態への移行では、制御装置6により、低温液化ガス貯槽5内の圧力は直ちにPID制御される。これにより、圧力調整機構17の加圧機構および減圧機構が運転状態(ON状態)となり、低温液化ガス貯槽5内の圧力が第2目標圧力値Pに直ちに移行されて、維持される。なお、第2の状態から第1の状態への移行では、低温液化ガス貯槽5の気相5Aを外部に排出することがないため、直ちに圧力制御を行うことができる。 Here, in the transition from the second state to the first state, the pressure in the low-temperature liquefied gas storage tank 5 is immediately PID-controlled by the control device 6. Thus, the pressure mechanism and a pressure reducing mechanism the operating state (ON state) of the pressure regulating mechanism 17, the pressure of the low-temperature liquefied gas storage tank 5 immediately been migrated to the second target pressure value P 2, is maintained. In the transition from the second state to the first state, the gas phase 5A of the low-temperature liquefied gas storage tank 5 is not discharged to the outside, so that pressure control can be performed immediately.

次に、制御装置6により、流量調整弁13、圧力量調整弁23が閉状態から適切な開度に制御される。これにより、低温液化ガス貯槽5内の圧力が第2目標圧力値Pに保持された状態で、シュラウド3に気体状態の低温液化ガスが供給される。 Next, the flow rate adjusting valve 13 and the pressure amount adjusting valve 23 are controlled from the closed state to an appropriate opening degree by the control device 6. Thus, in a state where the pressure of the low-temperature liquefied gas storage tank 5 is held by the second target pressure P 2, the low-temperature liquefied gas in a gaseous state is supplied to the shroud 3.

以上説明したように、本実施形態の試験装置1によれば、気体状態又は液体状態に適した圧力に低温液化ガスの供給圧力を制御するため、気体状態あるいは液体状態の低温液化ガスを効率よくシュラウド3に供給することができる。したがって、チェンバー2内を所定の温度環境に制御する際のエネルギー効率を改善することができる。   As described above, according to the test apparatus 1 of the present embodiment, the supply pressure of the low-temperature liquefied gas is controlled to a pressure suitable for the gas state or the liquid state. The shroud 3 can be supplied. Therefore, the energy efficiency when controlling the inside of the chamber 2 to a predetermined temperature environment can be improved.

また、本実施形態の試験装置1によれば、低温液化ガス貯槽5が昇圧機構及び減圧機構を有する圧力調整機構17を備えており、制御装置6によって上記圧力調整機構17を制御するため、液体状態の低温液化ガスを供給する際の供給圧力と、気体状態の低温液化ガスを供給する際の供給圧力とを切り替えることができる。これにより、供給圧力に応じて複数の低温液化ガス貯槽を設ける必要がないため、装置全体を小型化することができる。   Further, according to the test apparatus 1 of the present embodiment, the low-temperature liquefied gas storage tank 5 includes the pressure adjusting mechanism 17 having the pressure increasing mechanism and the pressure reducing mechanism, and the control device 6 controls the pressure adjusting mechanism 17. The supply pressure when supplying the low-temperature liquefied gas in the state and the supply pressure when supplying the low-temperature liquefied gas in the gas state can be switched. Thereby, since it is not necessary to provide several low-temperature liquefied gas storage tanks according to supply pressure, the whole apparatus can be reduced in size.

本実施形態の宇宙環境試験装置1の運転方法によれば、チェンバー2内を冷却する際、大気圧よりも高い第1目標圧力値Pに供給圧力を保持しながら、シュラウド3に液体状態の低温液化ガスを供給するとともに、チェンバー2内を温調加熱する際、第1目標圧力値Pよりも高い第2目標圧力値Pに供給圧力を保持しながら、シュラウド3に気体状態の低温液化ガスを供給するため、チェンバー2内を所定の温度環境に制御する際のエネルギー効率を改善することができる。 According to the operation method of the space environment test apparatus 1 of the present embodiment, when the inside of the chamber 2 is cooled, the supply pressure is maintained at the first target pressure value P 1 higher than atmospheric pressure, while the shroud 3 is in a liquid state. supplies the cryogenic liquefied gas, when the temperature control heat the inside of chamber 2, while maintaining the supply pressure to the second target pressure P 2 higher than the first target pressure value P 1, the low-temperature gaseous shroud 3 Since the liquefied gas is supplied, the energy efficiency when controlling the inside of the chamber 2 to a predetermined temperature environment can be improved.

また、本実施形態の運転方法によれば、気体状態の低温液化ガスを供給する運転から、液体状態の低温液化ガスを供給する運転へと移行する際、低温液化ガス貯槽5の圧力制御を停止した状態で、シュラウド3への液体状態の低温液化ガスの供給を開始し、低温液化ガス貯槽5内の圧力値Pが自然に低下するように運転するため、排気経路L6から気体状態の低温液化ガスを排出して強制的に低温液化ガス貯槽5内の圧力値Pを制御する場合と比較して、低温液化ガスの消費量を低減することができる。   Further, according to the operation method of the present embodiment, the pressure control of the low-temperature liquefied gas storage tank 5 is stopped when the operation for supplying the low-temperature liquefied gas in the gas state is shifted to the operation for supplying the low-temperature liquefied gas in the liquid state. In this state, the supply of the low-temperature liquefied gas in the liquid state to the shroud 3 is started, and the operation is performed so that the pressure value P in the low-temperature liquefied gas storage tank 5 naturally decreases. Compared with the case where the pressure value P in the low temperature liquefied gas storage tank 5 is forcibly controlled by discharging the gas, the consumption of the low temperature liquefied gas can be reduced.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。上述した実施形態における試験装置1では、図1に示すように、液体状態の低温液化ガスを供給する場合と、気体状態の低温液化ガスを供給する場合とを、一つの低温液化ガス貯槽5の圧力値を制御装置6によって制御して運用する構成を一例として説明したが、これに限定されない。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. In the test apparatus 1 in the above-described embodiment, as shown in FIG. 1, the case where the low-temperature liquefied gas in the liquid state is supplied and the case where the low-temperature liquefied gas in the gas state is supplied are stored in one low-temperature liquefied gas storage tank 5. The configuration in which the pressure value is controlled and operated by the control device 6 has been described as an example, but is not limited thereto.

例えば、図3に示すように、異なる圧力にあらかじめ制御された2以上の低温液化ガス貯槽105,205を備える試験装置201であってもよい。
具体的には、試験装置201では、第1低温液化ガス貯槽105の圧力が、圧力調整機構117によって大気圧よりも高い第1目標圧力値Pに常時保持されており、第2低温液化ガス貯槽205の圧力が、圧力調整機構217によって第1目標圧力値Pよりも高い第2目標圧力値Pに常時保持されている。
For example, as shown in FIG. 3, it may be a test apparatus 201 including two or more low-temperature liquefied gas storage tanks 105 and 205 controlled in advance to different pressures.
Specifically, the test apparatus 201, the pressure of the first low-temperature liquefied gas storage tank 105, the pressure adjusting mechanism 117 are always held in a high first target pressure value P 1 than the atmospheric pressure, a second low-temperature liquefied gas The pressure in the storage tank 205 is constantly held at the second target pressure value P 2 higher than the first target pressure value P 1 by the pressure adjusting mechanism 217.

なお、試験装置201では、第1低温液化ガス貯槽105の圧力調整機構117、及び第2低温液化ガス貯槽205の圧力調整機構217は、制御装置206によって制御されるものではなく、制御装置206の制御から独立して運転されている。すなわち、試験装置201において、制御装置206は、低温液化ガスの供給圧力が第1目標圧力値Pに保持された状態で、シュラウド3に液体状態の低温液化ガスを供給するとともに、低温液化ガスの供給圧力が第2目標圧力値Pに保持された状態で、シュラウド3に気体状態の低温液化ガスを供給するものである。 In the test apparatus 201, the pressure adjustment mechanism 117 of the first low-temperature liquefied gas storage tank 105 and the pressure adjustment mechanism 217 of the second low-temperature liquefied gas storage tank 205 are not controlled by the control device 206. It is operated independently from the control. That is, in the test apparatus 201, the control unit 206, in a state in which the supply pressure of the low-temperature liquefied gas is stored in the first target pressure value P 1, and supplies a low-temperature liquefied gas in the liquid state in the shroud 3, low-temperature liquefied gas in a state where the supply pressure is held by the second target pressure value P 2, and supplies a low-temperature liquefied gas in a gaseous state to the shroud 3.

また、試験装置201では、第1低温液化ガス貯槽105とヘッドタンク4との間に、液体状態の低温液化ガスを供給する液供給経路L2が設けられるとともに、第2低温液化ガス貯槽205と循環経路(気体状低温液化ガス導出経路L1A)L1との間に、気体状態の低温液化ガスを供給するガス供給経路L3が設けられている。   Further, in the test apparatus 201, a liquid supply path L2 for supplying a low-temperature liquefied gas in a liquid state is provided between the first low-temperature liquefied gas storage tank 105 and the head tank 4, and the second low-temperature liquefied gas storage tank 205 and the circulation are provided. A gas supply path L3 for supplying a gaseous low-temperature liquefied gas is provided between the path (gaseous low-temperature liquefied gas lead-out path L1A) L1.

上述した構成の試験装置201によれば、液体状態の低温液化ガスを供給する場合と、気体状態の低温液化ガスを供給する場合とを、別々の低温液化ガス貯槽を用いて運用することができる。すなわち、シュラウド3に低温液化ガスを供給するに際し、第1目標圧力値Pに保持された低温液化ガス貯槽105と、第2目標圧力値Pに保持された低温液化ガス貯槽205とを適宜切り替えることで、低温液化ガスをロスすることなく、循環経路L1に循環させる低温液化ガスを直ちに変更することができる。 According to the test apparatus 201 having the above-described configuration, the case where the liquid-state low-temperature liquefied gas is supplied and the case where the gas-state low-temperature liquefied gas is supplied can be operated using separate low-temperature liquefied gas storage tanks. . That is, upon supplying a low-temperature liquefied gas in the shroud 3, a low-temperature liquefied gas storage tank 105 which is held by the first target pressure value P 1, and a low-temperature liquefied gas storage tank 205 which is held by the second target pressure P 2 appropriately By switching, the low-temperature liquefied gas to be circulated in the circulation path L1 can be immediately changed without losing the low-temperature liquefied gas.

また、上述した実施形態の試験装置1では、ヘッドタンク4の気相4Aと連通する気体状低温液化ガス導出経路L1Aと、ヘッドタンク4の液相4Bと連通する液状低温液化ガス導出経路L1Bとが合流して循環経路L1を構成する場合を一例として説明したが、これに限定されるものではない。気体状低温液化ガス導出経路L1Aと、液状低温液化ガス導出経路L1Bとが合流することなく、それぞれ独立した循環経路を形成する構成であってもよい。   In the test apparatus 1 of the above-described embodiment, the gaseous low-temperature liquefied gas lead-out path L1A that communicates with the gas phase 4A of the head tank 4 and the liquid low-temperature liquefied gas lead-out path L1B that communicates with the liquid phase 4B of the head tank 4 In the above description, the circulatory path L1 is formed by joining together as an example. However, the present invention is not limited to this. The gaseous low-temperature liquefied gas lead-out path L1A and the liquid low-temperature liquefied gas lead-out path L1B may be configured to form independent circulation paths without joining.

また、上述した実施形態の試験装置1では、ヘッドタンク4がチェンバー2の外側に設けられた構成を一例として説明したが、これに限定されるものではない。ヘッドタンク4は、鉛直方向においてシュラウド3よりも高い位置に設けられていればよく、チェンバー2の内側に設けられていてもよい。   In the test apparatus 1 according to the above-described embodiment, the configuration in which the head tank 4 is provided outside the chamber 2 has been described as an example. However, the configuration is not limited thereto. The head tank 4 may be provided at a position higher than the shroud 3 in the vertical direction, and may be provided inside the chamber 2.

本発明の宇宙環境試験装置及びその運転方法は、気体又は液体状態の低温液化ガスをチェンバー内のシュラウドに供給して、チェンバー内の温度を制御する宇宙環境試験装置と宇宙環境試験装置の運転方法に利用可能性を有する。   A space environment test apparatus and a method for operating the space environment test apparatus according to the present invention provide a space environment test apparatus and a space environment test apparatus for operating a space environment test apparatus by supplying a low-temperature liquefied gas in a gas or liquid state to a shroud in the chamber to control the temperature in the chamber. Have the possibility to use.

1,201…宇宙環境試験装置(試験装置)
2…チェンバー
3…シュラウド
4…ヘッドタンク
5…低温液化ガス貯槽
6,206…制御装置
7…液面計
8,11,12,14,27…遮断弁
9…ブロワ
10…温調ユニット
15…加温器
13…流量調整弁
19,20,23,24…圧力調整弁
21…液面調整弁
16,25…圧力計
17,117,217…圧力調整機構
18,22…気化器
26…温度計
105…低温液化ガス貯槽(第1低温液化ガス貯槽)
205…低温液化ガス貯槽(第2低温液化ガス貯槽)
L1…循環経路
L1A…気体状低温液化ガス導出経路
L1B…液状低温液化ガス導出経路
L2…液供給経路
L3…ガス供給経路
L4,L6〜L8…排気経路
L5…経路
C1〜C17…信号線
1,201 ... Space environment test equipment (test equipment)
2 ... Chamber 3 ... Shroud 4 ... Head tank 5 ... Low temperature liquefied gas storage tank 6, 206 ... Control device 7 ... Liquid level gauge 8, 11, 12, 14, 27 ... Shut-off valve 9 ... Blower 10 ... Temperature control unit 15 ... Addition Heater 13 ... Flow rate adjustment valve 19, 20, 23, 24 ... Pressure adjustment valve 21 ... Liquid level adjustment valve 16, 25 ... Pressure gauge 17, 117, 217 ... Pressure adjustment mechanism 18, 22 ... Vaporizer 26 ... Thermometer 105 ... low temperature liquefied gas storage tank (first low temperature liquefied gas storage tank)
205 ... low temperature liquefied gas storage tank (second low temperature liquefied gas storage tank)
L1 ... circulation path L1A ... gaseous low-temperature liquefied gas lead-out path L1B ... liquid low-temperature liquefied gas lead-out path L2 ... liquid supply path L3 ... gas supply path L4, L6-L8 ... exhaust path L5 ... path C1-C17 ... signal line

Claims (7)

内側の空間を高真空状態に保持するチェンバーと、
前記チェンバーの内側に設けられたシュラウドと、
鉛直方向において前記シュラウドよりも高い位置に設けられたヘッドタンクと、
前記ヘッドタンクと前記シュラウドとの間に低温液化ガスを循環させる循環経路と、
前記低温液化ガスの供給圧力が、大気圧よりも高い第1目標圧力値に保持された状態で、前記シュラウドに液体状態の前記低温液化ガスを供給するとともに、前記低温液化ガスの供給圧力が、前記第1目標圧力値よりも高い第2目標圧力値に保持された状態で、前記シュラウドに気体状態の低温液化ガスを供給する、制御装置と、を備える、宇宙環境試験装置。
A chamber for keeping the inner space in a high vacuum state;
A shroud provided inside the chamber;
A head tank provided at a position higher than the shroud in the vertical direction;
A circulation path for circulating a low-temperature liquefied gas between the head tank and the shroud;
In a state where the supply pressure of the low-temperature liquefied gas is maintained at the first target pressure value higher than atmospheric pressure, the low-temperature liquefied gas in the liquid state is supplied to the shroud, and the supply pressure of the low-temperature liquefied gas is A space environment test apparatus, comprising: a controller that supplies a low-temperature liquefied gas in a gaseous state to the shroud while being maintained at a second target pressure value higher than the first target pressure value.
前記低温液化ガスを貯留する低温液化ガス貯槽と、
前記低温液化ガス貯槽と前記ヘッドタンクとの間に設けられ、前記ヘッドタンクに液体状態の前記低温液化ガスを供給する液供給経路と、
前記低温液化ガス貯槽と前記循環経路との間に設けられ、前記シュラウドの一次側の前記循環経路に、気体状態の低温液化ガスを供給するガス供給経路と、を備える、請求項1に記載の宇宙環境試験装置。
A low-temperature liquefied gas storage tank for storing the low-temperature liquefied gas;
A liquid supply path provided between the low-temperature liquefied gas storage tank and the head tank, and supplying the low-temperature liquefied gas in a liquid state to the head tank;
The gas supply path which is provided between the low-temperature liquefied gas storage tank and the circulation path, and supplies the low-temperature liquefied gas in the gaseous state to the circulation path on the primary side of the shroud. Space environment test equipment.
前記制御装置と前記低温液化ガス貯槽との間を電気的に接続する信号線をさらに備え、
前記低温液化ガス貯槽が、当該低温液化ガス貯槽内の圧力を調整する圧力調整機構を有するとともに、
前記制御装置は、前記シュラウドに液体状態の前記低温液化ガスを供給する際に、前記低温液化ガス貯槽内の圧力を前記第1目標圧力値に保持するとともに、前記ガス供給経路に気体状態の低温液化ガスを供給する際に、前記低温液化ガス貯槽内の圧力を前記第2目標圧力値に保持する、請求項2に記載の宇宙環境試験装置。
A signal line for electrically connecting the control device and the low-temperature liquefied gas storage tank;
The low-temperature liquefied gas storage tank has a pressure adjustment mechanism for adjusting the pressure in the low-temperature liquefied gas storage tank,
The control device maintains the pressure in the low-temperature liquefied gas storage tank at the first target pressure value when supplying the low-temperature liquefied gas in the liquid state to the shroud, and supplies the gas supply path with a low-temperature gas in the gas state. The space environment test apparatus according to claim 2, wherein when the liquefied gas is supplied, the pressure in the low-temperature liquefied gas storage tank is maintained at the second target pressure value.
前記ヘッドタンク内の液面の位置を測定する液面計と、
前記制御装置と前記液面計との間を電気的に接続する信号線をさらに備える、請求項1乃至3のいずれか一項に記載の宇宙環境試験装置。
A liquid level gauge for measuring the position of the liquid level in the head tank;
The space environment test apparatus according to any one of claims 1 to 3, further comprising a signal line that electrically connects the control device and the liquid level gauge.
前記低温液化ガスをそれぞれ貯留する第1及び第2低温液化ガス貯槽と、
前記第1低温液化ガス貯槽と前記ヘッドタンクとの間に設けられ、前記ヘッドタンクに液体状態の前記低温液化ガスを供給する液供給経路と、
前記第2低温液化ガス貯槽と前記循環経路との間に設けられ、前記シュラウドの一次側の前記循環経路に、気体状態の低温液化ガスを供給するガス供給経路と、を備える、請求項1に記載の宇宙環境試験装置。
First and second low-temperature liquefied gas storage tanks for storing the low-temperature liquefied gas, respectively;
A liquid supply path provided between the first low-temperature liquefied gas storage tank and the head tank, and supplying the low-temperature liquefied gas in a liquid state to the head tank;
A gas supply path that is provided between the second low-temperature liquefied gas storage tank and the circulation path and supplies a low-temperature liquefied gas in a gaseous state to the circulation path on the primary side of the shroud. The described space environment test equipment.
前記第1及び第2低温液化ガス貯槽が、当該第1及び第2低温液化ガス貯槽内の圧力を調整する圧力調整機構をそれぞれ有し、
前記第1低温液化ガス貯槽内の圧力が、前記第1目標圧力値に保持されるとともに、
前記第2低温液化ガス貯槽内の圧力が、前記第2目標圧力値に保持される、請求項5に記載の宇宙環境試験装置。
The first and second low-temperature liquefied gas storage tanks each have a pressure adjusting mechanism for adjusting the pressure in the first and second low-temperature liquefied gas storage tanks;
While the pressure in the first low-temperature liquefied gas storage tank is maintained at the first target pressure value,
The space environment test apparatus according to claim 5, wherein the pressure in the second low-temperature liquefied gas storage tank is maintained at the second target pressure value.
チェンバーの内側に設けられたシュラウドに気体状態又は液体状態の低温液化ガスを供給し、前記チェンバー内の温度を制御する宇宙環境試験装置の運転方法であって、
前記チェンバー内を冷却する際、大気圧よりも高い第1目標圧力値に供給圧力を保持しながら、前記シュラウドに液体状態の低温液化ガスを供給し、
前記チェンバー内を加熱する際、前記第1目標圧力値よりも高い第2目標圧力値に供給圧力を保持しながら、前記シュラウドに気体状態の低温液化ガスを供給する、宇宙環境試験装置の運転方法。
A method for operating a space environment test apparatus that supplies a low-temperature liquefied gas in a gas state or a liquid state to a shroud provided inside the chamber, and controls the temperature in the chamber,
When cooling the inside of the chamber, supplying a low-temperature liquefied gas in a liquid state to the shroud while maintaining a supply pressure at a first target pressure value higher than atmospheric pressure,
When heating the inside of the chamber, a method for operating a space environment test apparatus for supplying a low-temperature liquefied gas in a gaseous state to the shroud while maintaining a supply pressure at a second target pressure value higher than the first target pressure value .
JP2017124120A 2017-06-26 2017-06-26 Space environment test apparatus and method for operating space environment test apparatus Active JP6600334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017124120A JP6600334B2 (en) 2017-06-26 2017-06-26 Space environment test apparatus and method for operating space environment test apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017124120A JP6600334B2 (en) 2017-06-26 2017-06-26 Space environment test apparatus and method for operating space environment test apparatus

Publications (2)

Publication Number Publication Date
JP2019006264A true JP2019006264A (en) 2019-01-17
JP6600334B2 JP6600334B2 (en) 2019-10-30

Family

ID=65027470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124120A Active JP6600334B2 (en) 2017-06-26 2017-06-26 Space environment test apparatus and method for operating space environment test apparatus

Country Status (1)

Country Link
JP (1) JP6600334B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038035A (en) * 2020-08-26 2022-03-10 大陽日酸株式会社 Liquid gas type spray freezing device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625521A (en) * 1985-05-13 1986-12-02 Pittsburgh-Des Moines Corporation Liquid nitrogen distribution system
JPS6346808U (en) * 1986-09-16 1988-03-30
JPS63144564U (en) * 1987-03-12 1988-09-22
JPH02130375A (en) * 1988-11-10 1990-05-18 Kubota Ltd Cryogenic preserving vessel
JPH06174348A (en) * 1992-06-10 1994-06-24 Boc Group Inc:The Method and device for circulating heat transfer fluid and cooling heat load
JPH07165200A (en) * 1993-12-14 1995-06-27 Ishikawajima Harima Heavy Ind Co Ltd Simulation test device for outer space
JP2003086418A (en) * 2001-09-11 2003-03-20 Mitsubishi Electric Corp Cryogenic device
JP2003137200A (en) * 2001-11-07 2003-05-14 Nippon Sanso Corp Space environment testing device
JP2009500587A (en) * 2005-06-30 2009-01-08 ゼネラル・エレクトリック・カンパニイ System and method for cooling superconducting devices
JP2009529239A (en) * 2006-03-06 2009-08-13 リンデ・インコーポレーテッド Multi-tank apparatus and method for cooling a superconductor
JP2011189894A (en) * 2010-03-16 2011-09-29 Hitachi Plant Technologies Ltd Vacuum environmental testing apparatus
JP2014126283A (en) * 2012-12-26 2014-07-07 Mayekawa Mfg Co Ltd Cooling system and cooling method of superconductive device
JP2014199745A (en) * 2013-03-29 2014-10-23 株式会社前川製作所 Cooling system for superconductive cable

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4625521A (en) * 1985-05-13 1986-12-02 Pittsburgh-Des Moines Corporation Liquid nitrogen distribution system
JPS6346808U (en) * 1986-09-16 1988-03-30
JPS63144564U (en) * 1987-03-12 1988-09-22
JPH02130375A (en) * 1988-11-10 1990-05-18 Kubota Ltd Cryogenic preserving vessel
JPH06174348A (en) * 1992-06-10 1994-06-24 Boc Group Inc:The Method and device for circulating heat transfer fluid and cooling heat load
JPH07165200A (en) * 1993-12-14 1995-06-27 Ishikawajima Harima Heavy Ind Co Ltd Simulation test device for outer space
JP2003086418A (en) * 2001-09-11 2003-03-20 Mitsubishi Electric Corp Cryogenic device
JP2003137200A (en) * 2001-11-07 2003-05-14 Nippon Sanso Corp Space environment testing device
JP3946984B2 (en) * 2001-11-07 2007-07-18 大陽日酸株式会社 Space environment test equipment
JP2009500587A (en) * 2005-06-30 2009-01-08 ゼネラル・エレクトリック・カンパニイ System and method for cooling superconducting devices
JP2009529239A (en) * 2006-03-06 2009-08-13 リンデ・インコーポレーテッド Multi-tank apparatus and method for cooling a superconductor
JP2011189894A (en) * 2010-03-16 2011-09-29 Hitachi Plant Technologies Ltd Vacuum environmental testing apparatus
JP2014126283A (en) * 2012-12-26 2014-07-07 Mayekawa Mfg Co Ltd Cooling system and cooling method of superconductive device
JP2014199745A (en) * 2013-03-29 2014-10-23 株式会社前川製作所 Cooling system for superconductive cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022038035A (en) * 2020-08-26 2022-03-10 大陽日酸株式会社 Liquid gas type spray freezing device

Also Published As

Publication number Publication date
JP6600334B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6793259B2 (en) Hydrogen refueling system
JP6109825B2 (en) Liquefaction apparatus with pressure controlled liquefaction chamber
JP5428755B2 (en) Gas filling device
JP6273472B2 (en) Cold-heat recovery device using LNG fuel and liquefied gas carrier having the same
JP6586338B2 (en) Precooler and precooling method for hydrogen gas filling equipment
KR20160030192A (en) Device for cooling a consumer with a super-cooled liquid in a cooling circuit
JP2007239956A (en) Method and device for filling hydrogen gas
JP2005517144A (en) Method for uninterrupted supply of fluid supercooled carbon dioxide at a constant pressure above 40 bar and system for application of the method
CN102041487A (en) Temperature control system and temperature control method for substrate mounting table
JP2018507995A (en) Filling tank with pressurized gas
JP6600334B2 (en) Space environment test apparatus and method for operating space environment test apparatus
CN108700258B (en) Method for cooling a first cryogenic pressure vessel and motor vehicle having a pressure vessel system
JP6889119B2 (en) Environmental test equipment, air conditioning equipment and air conditioning methods
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
WO2019146215A1 (en) Cryogenic cooling system
KR101052513B1 (en) Cooling cycle system for multistage compressor
JP5157529B2 (en) Cryogenic liquefied propellant filling apparatus and cryogenic liquefied propellant filling method
JP5840938B2 (en) Heat medium cooling device and operation method of heat medium cooling device
US20230138902A1 (en) Device that implements a cryogenic space environment that uses room temperature nitrogen gas and controls temperature
US11796257B2 (en) Ammonia filling system
KR102201246B1 (en) System for inerting and aerating storage tank, and method thereof
JP2008051287A (en) Cold reserving system of liquefied natural gas facility
JP2018141618A (en) Cooling method, cooling device, and temperature control module for the same
JP2000283395A (en) Liquefied gas storage and supply facility
KR102677754B1 (en) A device that implements a cryogenic space environment that uses room temperature nitrogen gas and controls temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191004

R150 Certificate of patent or registration of utility model

Ref document number: 6600334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250