JP4563269B2 - Refrigeration capacity control device for turbine-type refrigerator - Google Patents

Refrigeration capacity control device for turbine-type refrigerator Download PDF

Info

Publication number
JP4563269B2
JP4563269B2 JP2005195726A JP2005195726A JP4563269B2 JP 4563269 B2 JP4563269 B2 JP 4563269B2 JP 2005195726 A JP2005195726 A JP 2005195726A JP 2005195726 A JP2005195726 A JP 2005195726A JP 4563269 B2 JP4563269 B2 JP 4563269B2
Authority
JP
Japan
Prior art keywords
heat exchanger
turbine
valve
refrigeration capacity
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005195726A
Other languages
Japanese (ja)
Other versions
JP2007017010A (en
Inventor
和也 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2005195726A priority Critical patent/JP4563269B2/en
Publication of JP2007017010A publication Critical patent/JP2007017010A/en
Application granted granted Critical
Publication of JP4563269B2 publication Critical patent/JP4563269B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、タービン膨張により寒冷を発生させるタービン型冷凍機の冷凍能力制御装置に関するものである。 The present invention relates to refrigerating capacity system GoSo location of the turbine refrigerator for generating cold by turbine expansion.

従来、クライオスタット(低温容器:液体窒素貯蔵槽)内の液体窒素を、サブクール状態にするためには、ヘリウム冷凍機が用いられている。
ところで、熱負荷が変動する冷凍機内にある冷媒の温度を一定に保つためには、冷凍機の冷凍能力調整機構が必要とされる。そこで、冷凍負荷の変動にかかわらず、寒冷発生用の膨張機を常時安定して効率良く運転するために、膨張機の入口圧力を検出し、この検出圧力に基づいて膨張機の入口流量を制御すると同時に、JT弁(ジュールトムソン弁:流路に大きな絞りを与えることにより、流体を断熱膨張させ、流体の温度を低温まで下げる働きをする弁)出口側の冷媒を低圧ラインにおいて膨張機よりも高圧側の熱交換器の入口側に供給し、膨張機の入口温度を検出してこの入口温度を予め定めた目標温度に近づけるように膨張弁出口側の冷媒の供給量を制御するようにした液化冷凍装置の運転制御方法が提案されている(下記特許文献1)。
特開平6−265230号公報
Conventionally, a helium refrigerator has been used to bring liquid nitrogen in a cryostat (low temperature vessel: liquid nitrogen storage tank) into a subcooled state.
By the way, in order to keep the temperature of the refrigerant in the refrigerator in which the thermal load fluctuates constant, a refrigerating capacity adjustment mechanism of the refrigerator is required. Therefore, regardless of fluctuations in the refrigeration load, the inlet pressure of the expander is detected and the inlet flow rate of the expander is controlled based on this detected pressure in order to operate the expander for generating cold constantly and efficiently. At the same time, the JT valve (Joule Thomson valve: a valve that works to adiabatic expansion of the fluid by giving a large throttle to the flow path and lowering the temperature of the fluid to a low temperature) makes the refrigerant on the outlet side of the low-pressure line more than the expander. The refrigerant is supplied to the inlet side of the high pressure side heat exchanger, the inlet temperature of the expander is detected, and the refrigerant supply amount on the outlet side of the expansion valve is controlled so that the inlet temperature approaches a predetermined target temperature. An operation control method of a liquefaction refrigeration apparatus has been proposed (Patent Document 1 below).
JP-A-6-265230

クライオスタット内の液体窒素に浸漬冷却されている高温超電導コイルに交流電流を流すとAC(交流)ロスにより熱負荷が発生する。この熱負荷は電流量により変動するため、上記したように、クライオスタットの冷却温度を一定に保つためには、冷凍機の冷凍能力を調整する必要がある。
現在、タービン型の冷凍機はMWクラスの大容量タイプが主流であり、上記したように、このクラスのものでは膨張容量を可変として負荷変動に対応する技術が報告されている(上記特許文献1)。しかし、例えば、鉄道車両用主変圧器用の1〜5kWクラスの小型タービン型冷凍機では、タービンの羽が小さくなること、タービン回転数が多くなることから、膨張容量を可変とする方式を採用することは困難といわれている。また、タービン入口圧力を変化させる方式では、冷凍能力の変動が激しくなり、数Wの負荷変動に追随できるものではない。
When an alternating current is passed through a high-temperature superconducting coil that is immersed and cooled in liquid nitrogen in the cryostat, a thermal load is generated due to an AC (alternating current) loss. Since this thermal load varies depending on the amount of current, as described above, in order to keep the cooling temperature of the cryostat constant, it is necessary to adjust the refrigerating capacity of the refrigerator.
At present, turbine-type refrigerators are mainly MW class large-capacity types, and as described above, technologies of this class corresponding to load fluctuations with variable expansion capacity have been reported (Patent Document 1). ). However, for example, in a 1 to 5 kW class small-sized turbine refrigerator for a main transformer for a railway vehicle, since the turbine blades are reduced and the turbine rotational speed is increased, a method of making the expansion capacity variable is adopted. That is said to be difficult. Further, in the method of changing the turbine inlet pressure, the refrigeration capacity fluctuates severely and cannot follow a load fluctuation of several watts.

本発明は、上記状況に鑑みて、一般に定常状態で冷凍発生能力も一定で運転されるタービン膨張機の、入口圧力、容量を変化させることなく、的確に冷凍機の冷凍能力を調整することができる冷凍能力の高いタービン型冷凍機の冷凍能力制御装置を提供することを目的とする。 In view of the above situation, the present invention can accurately adjust the refrigeration capacity of a refrigerator without changing the inlet pressure and capacity of a turbine expander that is generally operated in a steady state with a constant refrigeration generation capacity. and to provide a refrigerating capacity system GoSo location of high refrigerating capacity turbine refrigerator possible.

本発明は、上記目的を達成するために、
〕タービン型冷凍機の冷凍能力制御装置において、熱負荷が1〜5kWの小型タービンであって、凝縮熱交換器を有する冷媒が封入されたクライオスタットと、前記凝縮熱交換器の一端に接続されるJT弁と、前記凝縮熱交換器のもう一方の端に接続されるとともに、前記JT弁に直列に接続される第1の熱交換器と、前記JT弁と直列に接続される第1の熱交換器が並列に接続されるタービン膨張機と、前記JT弁と直列に接続される第1の熱交換器と前記タービン膨張機に接続される第2の熱交換器と、該第2の熱交換器に並列に接続される圧縮機と、該圧縮機に並列に接続される自動バイパス弁と、前記クライオスタット内に設けられる温度センサーと、該温度センサーからの出力信号に基づいて前記JT弁の開度を調整するPID制御器とを具備することを特徴とする。
In order to achieve the above object, the present invention provides
[ 1 ] In a refrigeration capacity control apparatus for a turbine-type refrigerator, a cryostat having a heat load of 1 to 5 kW, in which a refrigerant having a condensation heat exchanger is enclosed, and one end of the condensation heat exchanger are connected A JT valve connected to the other end of the condensation heat exchanger, a first heat exchanger connected in series to the JT valve, and a first connected in series to the JT valve a turbine expander heat exchanger is connected in parallel, and a second heat exchanger connected to the first heat exchanger connected to the JT valve in series to the turbine expander, the second A compressor connected in parallel to the heat exchanger, an automatic bypass valve connected in parallel to the compressor, a temperature sensor provided in the cryostat, and the JT based on an output signal from the temperature sensor P for adjusting the degree of opening of the valve Characterized by comprising a D controller.

〕上記〔〕記載のタービン型冷凍機の冷凍能力制御装置において、前記冷媒として液体窒素を用いることを特徴とする。 [ 2 ] In the refrigeration capacity control device for a turbine-type refrigerator according to [ 1 ], liquid nitrogen is used as the refrigerant.

本発明によれば、次のような効果を奏することができる。
(1)一般に定常状態で冷凍発生能力も一定で運転されるタービン膨張機の、入口圧力、容量を変化させることなく、的確に冷凍機の冷凍能力を調整することができる。
(2)JT膨張(ジュールトムソン膨張:ある温度以下で気体を膨張させると、気体の温度が下がる現象)を逆手にとり、温度上昇させる目的で使用することにより、鉄道車両用主変圧器用の1〜5kWクラスの小型タービン型冷凍機に好適である。
According to the present invention, the following effects can be achieved.
(1) Generally, the refrigeration capacity of the refrigerator can be adjusted accurately without changing the inlet pressure and capacity of a turbine expander that is operated in a steady state with a constant refrigeration generation capacity.
(2) JT expansion (Joule Thompson expansion: a phenomenon in which when the gas is expanded below a certain temperature, the temperature of the gas decreases), by using it for the purpose of raising the temperature, It is suitable for a 5 kW class small turbine refrigerator.

熱負荷が変動するクライオスタット内にある冷媒の温度を一定に保つためには、冷凍機の冷凍能力調整機構が必要とされる。そこで、タービン膨張機の高圧入り口側に、並列してJT弁を具備し、断熱自由膨張されヘリウムガスを、タービン膨張によって冷却されたガスヘリウムと合流させ、この冷凍能力調整を行う。   In order to keep the temperature of the refrigerant in the cryostat where the thermal load fluctuates constant, a refrigeration capacity adjustment mechanism for the refrigerator is required. Therefore, a JT valve is provided in parallel on the high-pressure inlet side of the turbine expander, and the helium gas that is adiabatic and free-expanded is merged with gas helium cooled by the turbine expansion to adjust the refrigeration capacity.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示すタービン型冷凍機の冷凍能力制御システムの構成図である。
この図において、1はクライオスタット(低温容器:サブクール液体窒素貯蔵槽)、2はこのクライオスタット1に設けられる凝縮熱交換器、3はそのクライオスタット1に設けられる温度センサー、4は凝縮熱交換器2の第1の端部に接続されるJT弁(ニードル弁)、5は凝縮熱交換器2の第1の端部に接続され、JT弁(ニードル弁)4と並列に接続されるタービン膨張機、6は凝縮熱交換器2の第2の端部とJT弁(ニードル弁)4とに接続される第1の熱交換器、7は第1の熱交換器6とJT弁(ニードル弁)4を経由する第1の熱交換器6及びタービン膨張機5に接続される第2の熱交換器、8は第2の熱交換器7と並列に接続される圧縮機、9は圧縮機8に並列に接続される自動バイパス弁、10は温度センサー3に接続されるPID制御(Proportional integral and Differential:入力値の制御を出力値と目標値との偏差、その積分、及び微分の3つの要素によって行うフィードバック制御)器であり、このPID制御器10からの出力によってJT弁(ニードル弁)4が制御される。なお、Aはコールドボックス、Bは常温領域である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a configuration diagram of a refrigeration capacity control system for a turbine-type refrigerator showing an embodiment of the present invention.
In this figure, 1 is a cryostat (low temperature vessel: subcooled liquid nitrogen storage tank), 2 is a condensation heat exchanger provided in the cryostat 1, 3 is a temperature sensor provided in the cryostat 1, and 4 is a condensation heat exchanger 2. A JT valve (needle valve) 5 connected to the first end, a turbine expander connected to the first end of the condensation heat exchanger 2 and connected in parallel with the JT valve (needle valve) 4, Reference numeral 6 denotes a first heat exchanger connected to the second end of the condensation heat exchanger 2 and the JT valve (needle valve) 4. Reference numeral 7 denotes the first heat exchanger 6 and the JT valve (needle valve) 4. The second heat exchanger connected to the first heat exchanger 6 and the turbine expander 5 via 8, 8 is a compressor connected in parallel with the second heat exchanger 7, and 9 is the compressor 8. Automatic bypass valve 10 connected in parallel, 10 is connected to temperature sensor 3 This is a PID controller (Proportional integral and Differential: feedback control in which the input value is controlled by three elements of deviation between the output value and the target value, its integration, and differentiation), and the output from this PID controller 10 A valve (needle valve) 4 is controlled. A is a cold box and B is a room temperature region.

本発明は、一般に定常状態で冷凍発生能力も一定で運転されるタービン膨張機の、入口圧力、容量を変化させることなく、圧縮機の吐出流量を膨張ラインと並列に分岐させ、分岐ラインに設けたJT弁(ニードル弁)の開度を調整し、凝縮熱交換器に入る前にタービン膨張後の低温ガスと合流させることによって、冷凍能力の高い小型タービン型冷凍機の運転でサブクール液体窒素の温度制御を達成することができる。   The present invention is generally provided in a branch line by branching the discharge flow rate of a compressor in parallel with an expansion line without changing the inlet pressure and capacity of a turbine expander that is generally operated in a steady state with a constant refrigeration generation capacity. By adjusting the opening of the JT valve (needle valve) and combining it with the low-temperature gas after turbine expansion before entering the condensation heat exchanger, the subcooled liquid nitrogen is Temperature control can be achieved.

また、小型から大型まで冷凍能力調整が困難といわれているタービン冷凍機を、負荷変動に対して容易に温度制御できる。
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
Further, it is possible to easily control the temperature of a turbine refrigerator, which is said to be difficult to adjust the refrigerating capacity from a small size to a large size, with respect to load fluctuations.
In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明のタービン型冷凍機の冷凍能力制御方法及び装置は、鉄道車両用主変圧器用の1〜5kWクラスの小型タービン型冷凍機に好適である。   The method and apparatus for controlling the refrigeration capacity of a turbine refrigerator of the present invention is suitable for a 1 to 5 kW class small turbine refrigerator for a railway vehicle main transformer.

本発明の実施例を示すタービン型冷凍機の冷凍能力制御システムの構成図である。It is a block diagram of the refrigerating capacity control system of the turbine type refrigerator which shows the Example of this invention.

1 クライオスタット(低温容器:サブクール液体窒素貯蔵槽)
2 凝縮熱交換器
3 温度センサー
4 JT弁(ニードル弁)
5 タービン膨張機
6 第1の熱交換器
7 第2の熱交換器
8 圧縮機
9 自動バイパス弁
10 PID制御器
A コールドボックス
B 常温領域
1 Cryostat (Cryogenic container: Subcooled liquid nitrogen storage tank)
2 Condensation heat exchanger 3 Temperature sensor 4 JT valve (needle valve)
DESCRIPTION OF SYMBOLS 5 Turbine expander 6 1st heat exchanger 7 2nd heat exchanger 8 Compressor 9 Automatic bypass valve 10 PID controller A Cold box B Room temperature region

Claims (2)

熱負荷が1〜5kWの小型タービンであって、
(a)凝縮熱交換器を有する冷媒が封入されたクライオスタットと、
(b)前記凝縮熱交換器の一端に接続されるJT弁と、
(c)前記凝縮熱交換器のもう一方の端に接続されるとともに、前記JT弁に直列に接続される第1の熱交換器と、
前記JT弁と直列に接続される第1の熱交換器が並列に接続されるタービン膨張機と、
前記JT弁と直列に接続される第1の熱交換器と前記タービン膨張機に接続される第2の熱交換器と、
)該第2の熱交換器に並列に接続される圧縮機と、
該圧縮機に並列に接続される自動バイパス弁と、
)前記クライオスタット内に設けられる温度センサーと、
(i)該温度センサーからの出力信号に基づいて前記JT弁の開度を調整するPID制御器とを具備することを特徴とするタービン型冷凍機の冷凍能力制御装置。
A small turbine with a thermal load of 1-5 kW,
(A) a cryostat in which a refrigerant having a condensation heat exchanger is enclosed;
(B) a JT valve connected to one end of the condensing heat exchanger;
(C) a first heat exchanger connected to the other end of the condensing heat exchanger and connected in series to the JT valve;
( D ) a turbine expander to which a first heat exchanger connected in series with the JT valve is connected in parallel;
( E ) a first heat exchanger connected in series with the JT valve and a second heat exchanger connected to the turbine expander;
(F) a compressor connected in parallel to the second heat exchanger,
( G ) an automatic bypass valve connected in parallel to the compressor;
( H ) a temperature sensor provided in the cryostat;
(I) A refrigeration capacity control device for a turbine-type refrigerator, comprising: a PID controller that adjusts an opening degree of the JT valve based on an output signal from the temperature sensor.
請求項記載のタービン型冷凍機の冷凍能力制御装置において、前記冷媒として液体窒素を用いることを特徴とするタービン型冷凍機の冷凍能力制御装置。 2. The refrigeration capacity control device for a turbine type refrigerator according to claim 1 , wherein liquid nitrogen is used as the refrigerant.
JP2005195726A 2005-07-05 2005-07-05 Refrigeration capacity control device for turbine-type refrigerator Expired - Fee Related JP4563269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195726A JP4563269B2 (en) 2005-07-05 2005-07-05 Refrigeration capacity control device for turbine-type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195726A JP4563269B2 (en) 2005-07-05 2005-07-05 Refrigeration capacity control device for turbine-type refrigerator

Publications (2)

Publication Number Publication Date
JP2007017010A JP2007017010A (en) 2007-01-25
JP4563269B2 true JP4563269B2 (en) 2010-10-13

Family

ID=37754323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195726A Expired - Fee Related JP4563269B2 (en) 2005-07-05 2005-07-05 Refrigeration capacity control device for turbine-type refrigerator

Country Status (1)

Country Link
JP (1) JP4563269B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255652A (en) * 2017-06-02 2017-10-17 中国科学院合肥物质科学研究院 The heat exchanger performance testing device tested under low temperature in the range of large Reynold number

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2958025A1 (en) * 2010-03-23 2011-09-30 Air Liquide METHOD AND INSTALLATION OF REFRIGERATION IN PULSE LOAD
US10156386B2 (en) 2010-05-12 2018-12-18 Brooks Automation, Inc. System and method for cryogenic cooling
JP6526191B2 (en) * 2014-10-14 2019-06-19 トヨタ モーター ヨーロッパ Traffic sign support system and method
JP2023159757A (en) * 2022-04-20 2023-11-01 三菱重工業株式会社 Freezing container
CN114923295B (en) * 2022-06-27 2024-02-20 北京中科富海低温科技有限公司 Variable working condition adjusting method for two-stage series-connection intermediate heat exchange turbine expander

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61210208A (en) * 1985-03-15 1986-09-18 Mitsubishi Heavy Ind Ltd Turbine inlet steam temperature control device
JPS62501304A (en) * 1984-10-10 1987-05-21 ポ−ル マリウス エイ gas turbine engine
JPS63315868A (en) * 1987-06-17 1988-12-23 Hitachi Ltd Cryogenic refrigerator device
JPH0473554A (en) * 1990-07-13 1992-03-09 Hitachi Ltd Cryogenic freezer device
JPH05296589A (en) * 1992-04-16 1993-11-09 Kobe Steel Ltd Operation control method for turbine type expander and device thereof
JPH06265230A (en) * 1993-03-11 1994-09-20 Kobe Steel Ltd Method and device for controlling operation of liquefaction-refrigerating device
JPH08128745A (en) * 1991-09-02 1996-05-21 Hitachi Ltd Supercritical helium cooling system and method for operating the same
JP2000008878A (en) * 1998-06-26 2000-01-11 Ishikawajima Harima Heavy Ind Co Ltd Co-generation equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62501304A (en) * 1984-10-10 1987-05-21 ポ−ル マリウス エイ gas turbine engine
JPS61210208A (en) * 1985-03-15 1986-09-18 Mitsubishi Heavy Ind Ltd Turbine inlet steam temperature control device
JPS63315868A (en) * 1987-06-17 1988-12-23 Hitachi Ltd Cryogenic refrigerator device
JPH0473554A (en) * 1990-07-13 1992-03-09 Hitachi Ltd Cryogenic freezer device
JPH08128745A (en) * 1991-09-02 1996-05-21 Hitachi Ltd Supercritical helium cooling system and method for operating the same
JPH05296589A (en) * 1992-04-16 1993-11-09 Kobe Steel Ltd Operation control method for turbine type expander and device thereof
JPH06265230A (en) * 1993-03-11 1994-09-20 Kobe Steel Ltd Method and device for controlling operation of liquefaction-refrigerating device
JP2000008878A (en) * 1998-06-26 2000-01-11 Ishikawajima Harima Heavy Ind Co Ltd Co-generation equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255652A (en) * 2017-06-02 2017-10-17 中国科学院合肥物质科学研究院 The heat exchanger performance testing device tested under low temperature in the range of large Reynold number

Also Published As

Publication number Publication date
JP2007017010A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
RU2362096C2 (en) Withdrawal of instantly releasing gas from cooling system header
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
JP2014134374A (en) Controlling liquefaction of natural gas
CN102812310B (en) For the method and apparatus of pulsating load refrigeration
EP2660537A1 (en) Heat source system and control method therefor
RU2671479C1 (en) Method for adjusting cryogenic cooling apparatus and device therefor
JP5783945B2 (en) Liquefaction device and starting method thereof
JP2841955B2 (en) Supercritical helium cooling device and operating method thereof
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JPH08285395A (en) Device for liquefying herium
JP3856538B2 (en) Refrigeration equipment
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JP5412073B2 (en) Heat source system and control method thereof
US20130061607A1 (en) Cooling system
JPH08121892A (en) Operation controlling method for turbine type expansion unit
US11913719B2 (en) Liquefaction apparatus
JPH01269875A (en) Liquefaction control method and device for liquefying and refrigerating equipment
JP2793074B2 (en) Operation control method and apparatus for turbine type expander
JPH05322344A (en) Method and apparatus for controlling operating state of turbine type expansion machine in freezer device
JP2000337716A (en) Multiple refrigerant circuit facility combined
JPH0579719A (en) Helium liquefaction refrigerator
JPH01244254A (en) Method of controlling auxiliary cold source for cryogenic refrigerating plant
JPH01150759A (en) Method of controlling cryogenic liquefying refrigerator
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees