JP3946984B2 - Space environment test equipment - Google Patents

Space environment test equipment Download PDF

Info

Publication number
JP3946984B2
JP3946984B2 JP2001341970A JP2001341970A JP3946984B2 JP 3946984 B2 JP3946984 B2 JP 3946984B2 JP 2001341970 A JP2001341970 A JP 2001341970A JP 2001341970 A JP2001341970 A JP 2001341970A JP 3946984 B2 JP3946984 B2 JP 3946984B2
Authority
JP
Japan
Prior art keywords
pipe
door
shroud
space environment
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001341970A
Other languages
Japanese (ja)
Other versions
JP2003137200A (en
Inventor
洋 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2001341970A priority Critical patent/JP3946984B2/en
Publication of JP2003137200A publication Critical patent/JP2003137200A/en
Application granted granted Critical
Publication of JP3946984B2 publication Critical patent/JP3946984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、宇宙環境試験装置に関し、詳しくは、宇宙環境試験装置における真空容器端部に設けられた扉内部の扉部シュラウドに冷媒である液化窒素を供給するための冷媒配管の接続構造に関する。
【0002】
【従来の技術】
宇宙環境試験装置は、宇宙の冷暗黒を模擬するため、高真空に排気された真空容器の内周部に、内面を黒色の高輻射率塗装で塗装され、液化窒素によって冷却されるシュラウドを設けている。このシュラウドに液化窒素を供給する方法として、▲1▼液化窒素貯槽内の圧力とシュラウド出口側の圧力との圧力差を利用して供給する方法、▲2▼液化窒素用ポンプを使用して供給する方法、▲3▼シュラウドよりも高い位置に液化窒素タンク(ヘッドタンク)を設け、このヘッドタンクの下部をシュラウドの下部に接続するとともにシュラウドの上部をヘッドタンクの上部に接続し、シュラウドでのガス化により生じる液密度の差を利用して供給する方法の3方式がある。なお、本明細書においては、液化窒素の供給の意味として、シュラウドへの液化窒素の導入とシュラウドからの液化窒素の導出との両方を含む意味で使用する場合がある。
【0003】
前記3方式の内、特に3番目の方法は、フリーボイリング式又はサーモサイフォン式と呼ばれ、シュラウドを大気圧の液化窒素で冷却できるのでより低い環境温度が得られること、液化窒素の蒸発潜熱を有効に使用できるので液化窒素の消費量が少なくて済むことなどの利点を有しているため、最近の大型装置に多く採用されている。しかし、このフリーボイリング式では、配管途中でのガス溜まりの発生を防止するため、供給側冷媒配管は下り勾配に、戻り側冷媒配管は上り勾配になるようにしなければならないという問題がある。
【0004】
一方、宇宙環境試験装置には、試験を行う人工衛星等を装置内に出し入れするための扉が設けられており、この扉の内部にもシュラウド(扉部シュラウド)が設けられているが、この扉部シュラウドに液化窒素を供給するための冷媒配管は、扉の開閉に対応していなければならない。特に、前記フリーボイリング式で扉部シュラウドを冷却する際には、宇宙環境試験装置を設計する上で大きな問題となる。
【0005】
図7は、シュラウドの冷却にフリーボイリング式を採用した宇宙環境試験装置における冷媒配管の一例を示す概略系統図である。シュラウド冷却用寒冷として使用される液化窒素は、真空容器1よりも上方に設置されたヘッドタンク2から液化窒素供給主管3を通して供給され、真空容器内の複数の本体部シュラウド4と、真空容器1の軸方向端部に設けられた扉5の扉部シュラウド6とに、各供給側分岐管7、8に分岐してそれぞれ供給される。各供給側分岐管7,8における液化窒素流量は、各供給側分岐管7,8に設けた供給弁9によりそれぞれ調節される。各シュラウド4,6で一部又は全量がガス化した窒素は、密度差によって各シュラウド内流路から各戻り側分岐管10,11に上昇し、窒素戻り主管12に集合してヘッドタンク3の上部に戻る。なお、ヘッドタンク3には、流入弁13Vを備えた液化窒素流入管13と、余剰の窒素ガスを排出する窒素ガス排出管14とが設けられており、ヘッドタンク3内の液化窒素量が所定量に維持されている。
【0006】
このような配管系統において、従来の宇宙環境試験装置では、扉5に固定されたシュラウド側冷媒配管6a,6bと、真空容器1の本体側に固定された供給側分岐管8及び戻り側分岐管11との間に、接続部15a,15bを介して着脱可能とした着脱式配管15をそれぞれ設け、扉5を開く際には、この着脱式配管15をシュラウド側冷媒配管6a,6bと供給側分岐管8及び戻り側分岐管11との間から取り外すようにしていた。
【0007】
【発明が解決しようとする課題】
しかし、大型の宇宙環境試験装置では、冷却用に使用する液化窒素量も大量となり、断熱構造を含む着脱式配管15の口径も大きくなって長さも長くなり、重量も相当なものとなるため、着脱作業が大がかりとなって多大な手間と時間とを必要としていた。
【0008】
そこで本発明は、扉部シュラウドをフリーボイリング式で冷却するときでも、該シュラウドに液化窒素を供給する冷媒配管を取り外すことなく扉の開閉を行うことができ、液化窒素のシュラウドへの導入及びガス化した窒素のシュラウドからの導出も確実に行うことができる配管接続構造を備えた宇宙環境試験装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の宇宙環境試験装置は、宇宙環境を模擬する円筒状真空容器の軸方向端部に、ヒンジ軸線を鉛直方向にして設けたヒンジによって開閉可能に支持された扉を有し、前記真空容器本体の内部に本体部シュラウドを、前記扉の内部に扉部シュラウドをそれぞれ有する宇宙環境試験装置において、前記扉部シュラウドを冷却するための液化窒素が流れる本体側冷媒配管である供給管及び戻り管と、前記扉部シュラウドから扉の外側に引き出された供給側及び戻り側のシュラウド側冷媒配管とを備え、前記ヒンジ側に設けた接続用冷媒配管で前記供給管と前記供給側のシュラウド側冷媒配管とを接続するとともに、前記とは別の接続用冷媒配管で前記戻り管と前記戻り側のシュラウド側冷媒配管とを接続し、両接続用冷媒配管の一部をそれぞれ屈曲自在な断熱フレキホースで形成し、前記ヒンジ軸線と直交する方向の水平な平面部を有するステージを、真空容器本体側と扉側とにそれぞれ固着し、真空容器本体側に固着された本体側ステージと、扉側に固着された扉側ステージとは、前記扉を開いたときに両ステージの端縁が当接して上面が面一になるように設置し、前記両ステージ上にそれぞれ配管支持手段を移動可能に設け、該配管支持手段は、液化窒素供給側及び液化窒素戻り側の2本の前記断熱フレキホースをそれぞれ固定するための配管固定部を上下に有する配管支持台を有し、前記接続用冷媒配管は、本体側冷媒配管と前記シュラウド側冷媒配管との間で、水平乃至シュラウド側冷媒配管側に向かって下り勾配になるように前記配管支持手段に保持され、前記ステージには、前記断熱フレキホースの屈曲許容範囲位置に、それ以上の断熱フレキホースの屈曲を規制するストッパー又は前記断熱フレキホースの屈曲許容範囲に対応した位置に、それ以上の前記配管支持手段の移動を規制するストッパーを備えていることを特徴とし、特に、前記扉部シュラウドの冷却方式がフリーボイリング式であること、さらに、前記配管支持手段は、前記配管支持台の下部に前記ステージ上を転動するキャスターを備えた配管支持台車であることを特徴としている。
【0012】
【発明の実施の形態】
図1乃至図6は、本発明の宇宙環境試験装置の一形態例を示すもので、図1は配管系統図、図2は配管保持手段の一形態例を示す平面図、図3は同じく側面図、図4は扉を開いた状態を示す平面図、図5は配管支持手段の一形態例を示す正面図、図6は同じく側面図である。なお、前記図7に示した従来の宇宙環境試験装置における構成要素と同一の構成要素には同一符号を付して詳細な説明は省略する。
【0013】
まず、本形態例に示す宇宙環境試験装置は、宇宙環境を模擬する円筒状真空容器1の軸方向端部に、ヒンジ軸線を鉛直方向としたヒンジ20により開閉可能に支持され、シリンダー20aによって駆動される扉5を有し、前記真空容器1の本体内部に複数のフリーボイリング式の本体部シュラウド4を、前記扉5の内部にフリーボイリング式の扉部シュラウド6をそれぞれ有している。そして、前記扉部シュラウド6を冷却するための液化窒素が流れる本体側冷媒配管である供給側分岐管8及び戻り側分岐管11と、前記扉部シュラウド6から扉5の最上部から外側に引き出されたシュラウド側冷媒配管6a,6bとを、前記ヒンジ20側に設けた屈曲自在な断熱フレキホースからなる可撓性断熱配管21による接続用冷媒配管でそれぞれ接続するとともに、扉開閉時における前記可撓性断熱配管21の屈曲変形を許容するようにして該可撓性断熱配管21を保持する配管保持手段22を設けたものである。なお、屈曲自在な可撓性断熱配管には、通常、内部を真空断熱した二重管方式の断熱フレキホースが用いられるが、他の形式の配管であってもよい。
【0014】
本形態例に示す宇宙環境試験装置において、前記本体部シュラウド4を冷却するための液化窒素は、真空容器1よりも上方に設置されたヘッドタンク2から液化窒素供給主管3に流下し、供給側分岐管7に分岐して供給弁9で流量をそれぞれ調節された後、本体部シュラウド4の最下端部からシュラウド内流路に導入される。本体部シュラウド4内で一部が気化した液化窒素は、液密度差によってシュラウド内流路を上昇し、シュラウド最上部から戻り側分岐管10を経て窒素戻り主管12内を上昇し、ヘッドタンク3の上部に戻る。
【0015】
同様に、扉部シュラウド6を冷却するための液化窒素は、前記ヘッドタンク2から液化窒素供給主管3を経て供給側分岐管8に流れ、供給弁9で流量を調節されてから前記可撓性断熱配管21を通り、供給側のシュラウド側冷媒配管6aを流れ、さらに、シュラウド側冷媒配管6aと扉部シュラウド6の流路最下端部とを扉内部で鉛直方向に接続する立ち下がり管6cを流れて扉部シュラウド6の最下端部からシュラウド内流路に導入される。扉部シュラウド6に導入された液化窒素は、熱負荷を受けた部分で液化窒素がガス化することにより、立ち下がり管6cまでの供給側液化窒素に比べて液密度が小さくなるので、シュラウド内流路を上昇してシュラウド最上部から戻り側のシュラウド側冷媒配管6bに導出し、前記可撓性断熱配管21を通って戻り側分岐管11を通り、窒素戻り主管12内を上昇してヘッドタンク3の上部に戻る。
【0016】
このように、フリーボイリング式の扉部シュラウド6に可撓性断熱配管21を介して液化窒素を供給する際の条件として、可撓性断熱配管21には、扉5の開閉操作において、よじれが発生しないこと、繰り返し曲げ半径以上の曲げ半径であること、局部に過大な曲げが生じないこと、さらに、ガス溜まりの発生を防止するために、供給側の液流れが水平乃至下り勾配であること、戻り側の液流れが水平乃至上り勾配であることなどが求められる。
【0017】
したがって、前記可撓性断熱配管21は、扉5を開閉するときに該可撓性断熱配管21の屈曲変形を許容しながら、前記条件を満足するようにして該可撓性断熱配管21を保持することができる配管保持手段22を設ける必要がある。本形態例では、このような配管保持手段22として、前記ヒンジ軸線と直交する方向の平面部、すなわち、水平な平面部を有するステージ23,24と、該ステージ23,24上を移動可能な複数の配管支持台車25と、可撓性断熱配管21の屈曲範囲を規制するストッパー26,27とを設けている。
【0018】
前記ステージ23,24は、真空容器本体側に固着された本体側ステージ23と、扉側に固着された扉側ステージ24とからなり、両ステージ23,24は、扉5を90度開いたときに両ステージの端縁23a,24aが当接して上面が面一になるように設置されている。
【0019】
配管支持手段である前記配管支持台車25は、図5及び図6に示すように、液化窒素供給側及び液化窒素戻り側の2本の可撓性断熱配管21をそれぞれ固定するための上下に配管固定部31,32を有する門型フレームからなる配管支持台33と、該配管支持台33の脚部34に設けられた4個のキャスター35とにより形成されており、両可撓性断熱配管21は、両配管固定部31,32に固定バンド36でそれぞれ締め付け固定するようにしている。
【0020】
本形態例では、両可撓性断熱配管21は、下方に供給側を、上方に戻り側を上下に重なるようにして配置し、両端をそれぞれ同一高さ位置に設けたフランジ継手21a,21bで前後の固定配管に接続するようにしているため、前記配管支持台車25における両配管固定部31,32は、ステージ23,24上において継手21a,21bと同じ高さに位置している。したがって、両可撓性断熱配管21は、配管保持手段22によって常に水平状態を維持した状態で保持されることになる。なお、本体側のフランジ継手21aを扉側のフランジ継手21bよりも高位置に設置して供給側を下り勾配に、戻り側を上り勾配にすることも可能であるが、この場合は、本体側のフランジ継手21aに近い配管支持台車25の両固定部31,32を、相対的に扉側のフランジ継手21bに近い配管支持台車25の両固定部31,32よりも高くなるように設定すればよい。また、両固定部31,32を同じ高さにしてステージ23,24の平面部を本体側から扉側に向かって下り傾斜にしたり、配管支持台車25の移動範囲に対応させて階段状にしたりすることも可能である。また、継手構造は、着脱が容易に行えるフランジ構造が最適であるが、溶接等の他の方式を選択することもできる。
【0021】
前記ストッパー26,27は、可撓性断熱配管21の屈曲許容範囲を規制するためのものであって、内側のストッパー26は扉閉止時における可撓性断熱配管21の最大屈曲側を規制する位置に設けられており、外側のストッパー27は扉開放時における可撓性断熱配管21の伸長側を規制する位置に設けられている。なお、本形態例では、可撓性断熱配管21がストッパー26,27に当接するようにしているが、可撓性断熱配管21に代えて前記配管支持台車25が当接するようにストッパーを設置して配管支持台車25の移動範囲を規制するようにしてもよい。
【0022】
このようなストッパー26,27を設けることにより、扉5を開閉したときの可撓性断熱配管21の屈曲状態を一定に保つことができるので、可撓性断熱配管21が局所的に折れ曲がってしまうことを防止できる。また、扉5の開位置や閉位置で可撓性断熱配管21に外力が加わっても、可撓性断熱配管21がストッパー26,27に当接して保持された状態となっているので、外力による異常変形も防止できる。なお、ストッパー26,27の形状は任意であり、可撓性断熱配管21の全長にわたって柵状や板状で連続的に設けるようにしてもよい。
【0024】
このようにして可撓性断熱配管21の屈曲変形を所定の範囲内で許容しながら、常に水平方向に保持することにより、扉5を開閉する際に可撓性断熱配管21によじれが発生したり、曲げ半径が小さくなりすぎたり、局部に過大な曲げが生じたりすることを防止でき、ガス溜まりの発生も防止することができる。したがって、密度差を駆動源として液化窒素を供給するフリーボイリング式の扉部シュラウド6への液化窒素の導入及びガス化した窒素のシュラウドからの導出も確実に行うことができる。
【0025】
【発明の効果】
以上説明したように、本発明の宇宙環境試験装置によれば、扉部シュラウドとして効果的かつ高効率で冷却を行えるフリーボイリング式シュラウドを採用しても、扉を開くときに配管を着脱する必要がなくなり、試験対象機器の出し入れや内部点検等を行う際の扉の開閉を、人手を必要とせずに容易にかつ自動的に行うことができる。したがって、使い勝手を損なうことなく、宇宙環境装置全体にフリーボイリング式シュラウドを採用することができる。
【図面の簡単な説明】
【図1】 本発明の宇宙環境試験装置の一形態例を示す配管系統図である。
【図2】 配管保持手段の一形態例を示す平面図である。
【図3】 同じく側面図である。
【図4】 同じく扉を開いた状態を示す平面図である。
【図5】 配管支持手段の一形態例を示す正面図である。
【図6】 同じく側面図である。
【図7】 従来の宇宙環境試験装置における冷媒配管の一例を示す系統図である。
【符号の説明】
1…真空容器、2…ヘッドタンク、3…液化窒素供給主管、4…本体部シュラウド、5…扉、6…扉部シュラウド、6a,6b…シュラウド側冷媒配管、6c…立ち下がり管、7…供給側分岐管、8…供給側分岐管、9…供給弁、10…戻り側分岐管、11…戻り側分岐管、12…窒素戻り主管、20…ヒンジ、20a…シリンダー、21…可撓性断熱配管、21a,21b…フランジ継手、22…配管保持手段、23,24…ステージ、23a,24a…ステージの端縁、25…配管支持台車、26,27…ストッパー、31,32…配管固定部、33…配管支持台、34…脚部、35…キャスター、36…固定バンド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a space environment test apparatus, and more particularly to a connection structure of a refrigerant pipe for supplying liquefied nitrogen as a refrigerant to a door shroud inside a door provided at an end of a vacuum vessel in the space environment test apparatus.
[0002]
[Prior art]
In order to simulate the cold and darkness of the universe, the space environment test equipment is provided with a shroud that is coated with black high emissivity coating on the inner periphery of a vacuum vessel evacuated to high vacuum and cooled by liquefied nitrogen. ing. As a method of supplying liquefied nitrogen to this shroud, (1) a method of supplying using the pressure difference between the pressure in the liquefied nitrogen storage tank and the pressure on the shroud outlet side, and (2) supplying using a liquefied nitrogen pump (3) A liquefied nitrogen tank (head tank) is provided at a position higher than the shroud. The lower part of the head tank is connected to the lower part of the shroud and the upper part of the shroud is connected to the upper part of the head tank. There are three methods of supplying using the difference in liquid density caused by gasification. In the present specification, the meaning of supplying liquefied nitrogen may be used to include both introduction of liquefied nitrogen into the shroud and derivation of liquefied nitrogen from the shroud.
[0003]
Among the three methods, the third method is called a free-boiling method or a thermosiphon method, and the shroud can be cooled with liquefied nitrogen at atmospheric pressure, so that a lower environmental temperature can be obtained, and the latent heat of evaporation of liquefied nitrogen can be reduced. Since it can be used effectively, it has the advantage that the consumption of liquefied nitrogen can be reduced. However, this free-boiling method has a problem that the supply-side refrigerant piping must be downwardly inclined and the return-side refrigerant piping must be upwardly inclined in order to prevent gas accumulation during the piping.
[0004]
On the other hand, a space environment test apparatus is provided with a door for taking in and out an artificial satellite to be tested, and a shroud (door shroud) is provided inside the door. Refrigerant piping for supplying liquefied nitrogen to the door shroud must be capable of opening and closing the door. In particular, when the door shroud is cooled by the free-boiling method, it becomes a big problem in designing the space environment test apparatus.
[0005]
FIG. 7 is a schematic system diagram showing an example of refrigerant piping in a space environment test apparatus that employs a free-boiling method for cooling the shroud. The liquefied nitrogen used as the cooling for shroud cooling is supplied from the head tank 2 installed above the vacuum vessel 1 through the liquefied nitrogen supply main pipe 3, and the plurality of main body shrouds 4 in the vacuum vessel and the vacuum vessel 1 are supplied. To the door shroud 6 of the door 5 provided at the end in the axial direction is branched into the supply side branch pipes 7 and 8 and supplied. The liquefied nitrogen flow rate in the supply side branch pipes 7 and 8 is adjusted by a supply valve 9 provided in the supply side branch pipes 7 and 8, respectively. Nitrogen partially or wholly gasified in each shroud 4, 6 rises from each shroud flow path to each return side branch pipe 10, 11 due to the density difference, and gathers in the nitrogen return main pipe 12 to form the head tank 3. Return to the top. The head tank 3 is provided with a liquefied nitrogen inflow pipe 13 having an inflow valve 13V and a nitrogen gas discharge pipe 14 for discharging excess nitrogen gas, and the amount of liquefied nitrogen in the head tank 3 is limited. Maintained quantitative.
[0006]
In such a piping system, in the conventional space environment test apparatus, the shroud side refrigerant pipes 6 a and 6 b fixed to the door 5, the supply side branch pipe 8 and the return side branch pipe fixed to the main body side of the vacuum vessel 1. 11 is provided with a detachable pipe 15 that can be attached and detached via connection portions 15a and 15b. When the door 5 is opened, the detachable pipe 15 is connected to the shroud-side refrigerant pipes 6a and 6b and the supply side. It was made to remove from between the branch pipe 8 and the return side branch pipe 11.
[0007]
[Problems to be solved by the invention]
However, in a large space environment test apparatus, the amount of liquefied nitrogen used for cooling becomes large, the diameter of the detachable pipe 15 including the heat insulating structure becomes large, the length becomes long, and the weight becomes considerable. The attaching / detaching work is a large amount of time and requires a lot of labor and time.
[0008]
Therefore, the present invention can open and close the door without removing the refrigerant pipe for supplying liquefied nitrogen to the shroud even when the door shroud is cooled by a free-boiling method. An object of the present invention is to provide a space environment test apparatus equipped with a pipe connection structure that can reliably lead out nitrogen from the shroud.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a space environment test apparatus according to the present invention is a door supported to be opened and closed by a hinge provided with a hinge axis in a vertical direction at an axial end of a cylindrical vacuum vessel simulating a space environment. In the space environment test apparatus having a main body shroud inside the vacuum vessel main body and a door shroud inside the door, a main body side refrigerant pipe through which liquefied nitrogen for cooling the door shroud flows a supply pipe and a return pipe is provided with a shroud-side refrigerant pipe of the supply side was led out of the door from the door section shroud and return side, said supply pipe by connecting a refrigerant pipe provided on the hinge side wherein while connecting the shroud side refrigerant pipe of the supply side, and connects the return side of the shroud-side refrigerant pipe and the return pipe in the refrigerant pipes for a different connection than the above, for both connections Some of the medium piping formed in each bendable insulation flexible hose, a stage having a horizontal planar portion in a direction orthogonal to the hinge axis, and respectively fixed to the vacuum container body side and the door side, the vacuum container body The main body stage fixed to the door side and the door side stage fixed to the door side are set so that the edges of both stages abut when the door is opened and the upper surfaces are flush with each other. Piping support means are movably provided on the stage, and the pipe support means has pipe fixing portions for fixing the two heat insulating flexible hoses on the liquefied nitrogen supply side and the liquefied nitrogen return side, respectively. The connecting refrigerant pipe is connected to the pipe support means so as to be inclined downwardly from the main body side refrigerant pipe and the shroud side refrigerant pipe toward the horizontal or shroud side refrigerant pipe side. The stage is held at a bending allowable range position of the heat-insulating flexible hose, a stopper for restricting further bending of the heat-insulating flexible hose, or a position corresponding to the bending allowable range of the heat-insulating flexible hose. In particular, the door shroud is cooled by a free-boiling method , and the pipe support means is mounted on the stage below the pipe support base. It is characterized by being a piping support cart provided with casters that roll .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
1 to 6 show one embodiment of the space environment test apparatus of the present invention. FIG. 1 is a piping system diagram, FIG. 2 is a plan view showing one embodiment of a pipe holding means, and FIG. 4 is a plan view showing a state in which the door is opened, FIG. 5 is a front view showing an embodiment of the pipe support means, and FIG. 6 is a side view of the same. The same components as those in the conventional space environment test apparatus shown in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0013]
First, the space environment test apparatus shown in this embodiment is supported at the axial end of a cylindrical vacuum vessel 1 simulating a space environment so that it can be opened and closed by a hinge 20 whose hinge axis is a vertical direction, and is driven by a cylinder 20a. And a plurality of free-boiling main body shrouds 4 inside the main body of the vacuum vessel 1 and a free-boiling door portion shroud 6 inside the door 5, respectively. Then, a supply side branch pipe 8 and a return side branch pipe 11 which are main body side refrigerant pipes through which liquefied nitrogen for cooling the door portion shroud 6 flows, and the door portion shroud 6 are pulled out from the top of the door 5 to the outside. The shroud-side refrigerant pipes 6a and 6b are connected to each other by connecting refrigerant pipes using flexible heat-insulating pipes 21 made of a bendable heat-insulating flexible hose provided on the hinge 20 side. A pipe holding means 22 for holding the flexible heat insulating pipe 21 is provided so as to allow bending deformation of the heat insulating pipe 21. The flexible heat insulating pipe that can be bent is usually a double pipe type heat insulating flexible hose whose inside is vacuum insulated, but other types of pipes may be used.
[0014]
In the space environment test apparatus shown in the present embodiment, liquefied nitrogen for cooling the main body shroud 4 flows down from the head tank 2 installed above the vacuum vessel 1 to the liquefied nitrogen supply main pipe 3, and is supplied to the supply side. After branching to the branch pipe 7 and adjusting the flow rate by the supply valve 9, the flow is introduced from the lowermost end of the main body shroud 4 into the shroud flow path. The liquefied nitrogen partially vaporized in the main body shroud 4 rises in the shroud flow path due to the difference in liquid density, rises from the top of the shroud through the return side branch pipe 10, and rises in the nitrogen return main pipe 12. Return to the top of.
[0015]
Similarly, liquefied nitrogen for cooling the door shroud 6 flows from the head tank 2 to the supply side branch pipe 8 through the liquefied nitrogen supply main pipe 3 and the flow rate is adjusted by the supply valve 9 before the flexibility. A falling pipe 6c that passes through the heat insulating pipe 21 and flows through the supply-side shroud-side refrigerant pipe 6a, and further connects the shroud-side refrigerant pipe 6a and the lowermost flow path of the door shroud 6 in the vertical direction inside the door. It flows and is introduced into the flow path in the shroud from the lowermost end portion of the door shroud 6. Since the liquefied nitrogen introduced into the door shroud 6 is gasified at the portion subjected to the heat load, the liquid density becomes smaller than the supply side liquefied nitrogen up to the falling pipe 6c. The flow path is raised and led out from the uppermost part of the shroud to the return side shroud side refrigerant pipe 6b, passes through the flexible heat insulating pipe 21, passes through the return side branch pipe 11, and rises in the nitrogen return main pipe 12 to raise the head. Return to the top of tank 3.
[0016]
As described above, as a condition for supplying liquefied nitrogen to the free-boiling door portion shroud 6 through the flexible heat insulating pipe 21, the flexible heat insulating pipe 21 is not kinked during the opening / closing operation of the door 5. In order to prevent the occurrence of gas pooling, the liquid flow on the supply side must be horizontal or down-gradient so that it does not occur, the bending radius is greater than the repeated bending radius, excessive bending does not occur locally. The liquid flow on the return side is required to be horizontal or ascending.
[0017]
Therefore, the flexible heat insulating pipe 21 holds the flexible heat insulating pipe 21 so as to satisfy the above condition while allowing the flexible heat insulating pipe 21 to bend and deform when the door 5 is opened and closed. It is necessary to provide a pipe holding means 22 that can do this. In this embodiment, as such a pipe holding means 22, a plurality of stages 23 and 24 having a plane part in a direction orthogonal to the hinge axis, that is, a horizontal plane part, and movable on the stages 23 and 24 are provided. The pipe support carriage 25 and the stoppers 26 and 27 for restricting the bending range of the flexible heat insulating pipe 21 are provided.
[0018]
The stages 23 and 24 include a main body side stage 23 fixed to the vacuum vessel main body side and a door side stage 24 fixed to the door side, and both the stages 23 and 24 open the door 5 by 90 degrees. The stage edges 23a and 24a are in contact with each other so that the upper surfaces are flush with each other.
[0019]
As shown in FIGS. 5 and 6, the pipe support carriage 25 serving as a pipe support means is vertically connected to fix two flexible heat insulating pipes 21 on the liquefied nitrogen supply side and the liquefied nitrogen return side, respectively. It is formed by a pipe support base 33 formed of a portal frame having fixing portions 31 and 32, and four casters 35 provided on the legs 34 of the pipe support base 33. Are fixed to the two pipe fixing portions 31 and 32 by a fixing band 36.
[0020]
In this embodiment, the flexible heat insulating pipes 21 are arranged with flange joints 21a and 21b arranged so that the supply side is located below and the return side is located above the top and bottom, and both ends are provided at the same height. Since the pipes are connected to the front and rear fixed pipes, both the pipe fixing parts 31 and 32 in the pipe support carriage 25 are located on the stages 23 and 24 at the same height as the joints 21a and 21b. Accordingly, both the flexible heat insulating pipes 21 are held by the pipe holding means 22 in a state where the horizontal state is always maintained. It is possible to install the flange joint 21a on the main body side higher than the flange joint 21b on the door side so that the supply side has a downward slope and the return side has an upward slope. If both the fixed portions 31, 32 of the pipe support carriage 25 near the flange joint 21a are set to be relatively higher than the both fixed sections 31, 32 of the pipe support carriage 25 close to the flange joint 21b on the door side. Good. Further, both the fixing portions 31 and 32 are set to the same height so that the flat portions of the stages 23 and 24 are inclined downward from the main body side toward the door side, or are stepped corresponding to the moving range of the pipe support carriage 25. It is also possible to do. The joint structure is optimally a flange structure that can be easily attached and detached, but other methods such as welding can be selected.
[0021]
The stoppers 26 and 27 are for restricting the allowable bending range of the flexible heat insulating pipe 21, and the inner stopper 26 is a position for restricting the maximum bent side of the flexible heat insulating pipe 21 when the door is closed. The outer stopper 27 is provided at a position that regulates the extension side of the flexible heat insulating pipe 21 when the door is opened. In this embodiment, the flexible heat insulating pipe 21 is in contact with the stoppers 26 and 27. However, a stopper is provided so that the pipe support carriage 25 is in contact with the flexible heat insulating pipe 21. Thus, the movement range of the pipe support carriage 25 may be restricted.
[0022]
By providing such stoppers 26 and 27, the bent state of the flexible heat insulation pipe 21 when the door 5 is opened and closed can be kept constant, so that the flexible heat insulation pipe 21 is locally bent. Can be prevented. Even if an external force is applied to the flexible heat insulation pipe 21 at the open position or the closed position of the door 5, the flexible heat insulation pipe 21 is in contact with and held by the stoppers 26 and 27. Abnormal deformation due to can also be prevented. The shapes of the stoppers 26 and 27 are arbitrary, and the stoppers 26 and 27 may be continuously provided in a fence shape or a plate shape over the entire length of the flexible heat insulating pipe 21.
[0024]
In this way, the flexible heat insulation pipe 21 is allowed to bend and deform within a predetermined range, and is always held in the horizontal direction, so that the flexible heat insulation pipe 21 is twisted when the door 5 is opened and closed. In addition, it is possible to prevent the bending radius from becoming too small or excessive bending from occurring in the local portion, and to prevent the occurrence of gas accumulation. Accordingly, the introduction of liquefied nitrogen into the free-boiling door shroud 6 that supplies liquefied nitrogen using the density difference as a driving source and the derivation of the gasified nitrogen from the shroud can be performed reliably.
[0025]
【The invention's effect】
As described above, according to the space environment test apparatus of the present invention, it is necessary to attach and detach piping when opening the door, even if a free-boiling type shroud capable of effective and highly efficient cooling is used as the door shroud. Therefore, the door can be opened and closed easily and automatically without the need for manual operations when the equipment to be tested is taken in and out and the internal inspection is performed. Therefore, a free-boiling shroud can be adopted for the entire space environment apparatus without impairing usability.
[Brief description of the drawings]
FIG. 1 is a piping system diagram showing an example of a space environment test apparatus according to the present invention.
FIG. 2 is a plan view illustrating an example of a pipe holding unit.
FIG. 3 is a side view of the same.
FIG. 4 is a plan view showing a state where the door is similarly opened.
FIG. 5 is a front view showing an example of a form of piping support means.
FIG. 6 is a side view of the same.
FIG. 7 is a system diagram showing an example of refrigerant piping in a conventional space environment test apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Head tank, 3 ... Liquid nitrogen supply main pipe, 4 ... Main-body part shroud, 5 ... Door, 6 ... Door part shroud, 6a, 6b ... Shroud side refrigerant | coolant piping, 6c ... Falling pipe, 7 ... Supply side branch pipe, 8 ... Supply side branch pipe, 9 ... Supply valve, 10 ... Return side branch pipe, 11 ... Return side branch pipe, 12 ... Nitrogen return main pipe, 20 ... Hinge, 20a ... Cylinder, 21 ... Flexible Insulating piping, 21a, 21b ... flange joint, 22 ... piping holding means, 23, 24 ... stage, 23a, 24a ... stage edge, 25 ... piping support carriage, 26, 27 ... stopper, 31, 32 ... piping fixing part 33 ... Pipe support base, 34 ... Leg, 35 ... Caster, 36 ... Fixing band

Claims (3)

宇宙環境を模擬する円筒状真空容器の軸方向端部に、ヒンジ軸線を鉛直方向にして設けたヒンジによって開閉可能に支持された扉を有し、前記真空容器本体の内部に本体部シュラウドを、前記扉の内部に扉部シュラウドをそれぞれ有する宇宙環境試験装置において、
前記扉部シュラウドを冷却するための液化窒素が流れる本体側冷媒配管である供給管及び戻り管と、前記扉部シュラウドから扉の外側に引き出された供給側及び戻り側のシュラウド側冷媒配管とを備え、
前記ヒンジ側に設けた接続用冷媒配管で前記供給管と前記供給側のシュラウド側冷媒配管とを接続するとともに、前記とは別の接続用冷媒配管で前記戻り管と前記戻り側のシュラウド側冷媒配管とを接続し、両接続用冷媒配管の一部をそれぞれ屈曲自在な断熱フレキホースで形成し、
前記ヒンジ軸線と直交する方向の水平な平面部を有するステージを、真空容器本体側と扉側とにそれぞれ固着し、真空容器本体側に固着された本体側ステージと、扉側に固着された扉側ステージとは、前記扉を開いたときに両ステージの端縁が当接して上面が面一になるように設置し、
前記両ステージ上にそれぞれ配管支持手段を移動可能に設け、
該配管支持手段は、液化窒素供給側及び液化窒素戻り側の2本の前記断熱フレキホースをそれぞれ固定するための配管固定部を上下に有する配管支持台を有し、
前記接続用冷媒配管は、本体側冷媒配管と前記シュラウド側冷媒配管との間で、水平乃至シュラウド側冷媒配管側に向かって下り勾配になるように前記配管支持手段に保持され、
前記ステージには、前記断熱フレキホースの屈曲許容範囲位置に、それ以上の断熱フレキホースの屈曲を規制するストッパー又は前記断熱フレキホースの屈曲許容範囲に対応した位置に、それ以上の前記配管支持手段の移動を規制するストッパーを備えていることを特徴とする宇宙環境試験装置。
At the axial end of a cylindrical vacuum vessel that simulates the space environment , it has a door that can be opened and closed by a hinge provided with the hinge axis in the vertical direction, and a main body shroud inside the vacuum vessel main body, In the space environment test apparatus having a door shroud inside the door,
A supply pipe and a return pipe is the body-side refrigerant pipe liquefied nitrogen for cooling the door portion shroud flows, and a shroud-side refrigerant pipe of the supply side and the return side are led out of the door from the door portion shroud Prepared,
The supply pipe and the supply-side shroud-side refrigerant pipe are connected by a connection-use refrigerant pipe provided on the hinge side, and the return pipe and the return-side shroud-side refrigerant are connected by another connection refrigerant pipe. Connect the pipes, and form part of the refrigerant pipes for both connections with flexible heat-insulating flexible hoses,
A stage having a horizontal flat portion in a direction perpendicular to the hinge axis is fixed to the vacuum vessel main body side and the door side, respectively, and a main body side stage fixed to the vacuum vessel main body side and a door fixed to the door side The side stage is installed so that the edges of both stages abut when the door is opened, and the upper surface is flush with it,
A pipe support means is movably provided on each of the stages,
The pipe support means has a pipe support base having pipe fixing portions for fixing the two heat insulating flexible hoses on the liquefied nitrogen supply side and the liquefied nitrogen return side, respectively.
The connection refrigerant pipe is held by the pipe support means between the main body side refrigerant pipe and the shroud side refrigerant pipe so as to have a downward slope toward the horizontal or shroud side refrigerant pipe.
On the stage, the pipe support means is moved further to a position corresponding to the bending allowable range of the heat insulating flexible hose or a stopper that restricts the bending of the heat insulating flexible hose to the position of the allowable bending range of the heat insulating flexible hose. Space environment test equipment characterized by having a stopper to regulate .
前記扉部シュラウドの冷却方式がフリーボイリング式であることを特徴とする請求項1記載の宇宙環境試験装置。  The space environment test apparatus according to claim 1, wherein a cooling method for the door shroud is a free boiling type. 前記配管支持手段は、前記配管支持台の下部に前記ステージ上を転動するキャスターを備えた配管支持台車であることを特徴とする請求項1又は2記載の宇宙環境試験装置。The space environment test apparatus according to claim 1 or 2 , wherein the pipe support means is a pipe support carriage provided with a caster that rolls on the stage below the pipe support base .
JP2001341970A 2001-11-07 2001-11-07 Space environment test equipment Expired - Lifetime JP3946984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341970A JP3946984B2 (en) 2001-11-07 2001-11-07 Space environment test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341970A JP3946984B2 (en) 2001-11-07 2001-11-07 Space environment test equipment

Publications (2)

Publication Number Publication Date
JP2003137200A JP2003137200A (en) 2003-05-14
JP3946984B2 true JP3946984B2 (en) 2007-07-18

Family

ID=19155911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341970A Expired - Lifetime JP3946984B2 (en) 2001-11-07 2001-11-07 Space environment test equipment

Country Status (1)

Country Link
JP (1) JP3946984B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006264A (en) * 2017-06-26 2019-01-17 大陽日酸株式会社 Space environment testing device, and operational method for space environment testing device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673181B2 (en) * 2005-10-17 2011-04-20 大陽日酸株式会社 Space environment test equipment
JP5199703B2 (en) * 2008-03-05 2013-05-15 大陽日酸株式会社 Door open / close device for vacuum equipment
JP5075793B2 (en) 2008-11-06 2012-11-21 東京エレクトロン株式会社 Movable gas introduction structure and substrate processing apparatus
JP5292160B2 (en) 2009-03-31 2013-09-18 東京エレクトロン株式会社 Gas flow path structure and substrate processing apparatus
JP5583437B2 (en) * 2010-03-16 2014-09-03 株式会社日立製作所 Vacuum environment test equipment
JP6092697B2 (en) * 2013-04-23 2017-03-08 大陽日酸株式会社 Space environment test equipment
JP6163693B2 (en) * 2014-03-26 2017-07-19 大陽日酸株式会社 Space environment test equipment
CN104571183B (en) * 2014-12-02 2016-10-12 兰州华宇航天技术应用有限责任公司 A kind of back-heating type gas mixing circulation refrigeration heating thermoregulating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006264A (en) * 2017-06-26 2019-01-17 大陽日酸株式会社 Space environment testing device, and operational method for space environment testing device

Also Published As

Publication number Publication date
JP2003137200A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP3946984B2 (en) Space environment test equipment
CN107710894A (en) The computer server thermal conditioning flowed using integrated fine air
JP4673181B2 (en) Space environment test equipment
PT854837E (en) FILLING OF DEPOSITS
US7334420B1 (en) Air conditioning unit installation
JP3572528B2 (en) Space environment test equipment
US6591788B2 (en) Rooftop water heater
AU2008101131B4 (en) Boom
CN102175457B (en) Flat-shaped liquid-nitrogen and liquid-helium dual-media compatible heat sink device and cooling method thereof
JP3833671B2 (en) Space environment test equipment
JP2017009216A (en) Heat insulating structure of hot water storage tank
JPH0963857A (en) Oil-immersed electric machine with forced air-cooled oil
JP2006125806A (en) Air-conditioning equipment, method for installing outdoor air conditioner, and method for producing air-conditioning equipment
JP3342897B2 (en) Gas evaporator
CN207991344U (en) A kind of detachable phase-change thermal storage equipment
KR101219390B1 (en) Immersion heat exchanger packaged heat pump unit installed
CN205825586U (en) Modularity deep-cooling nitrogen-making device
CN220061976U (en) Air treatment device
CN104795227B (en) Transformer air-cooled remodeling method
CN212109608U (en) Circulation system of cyclone well
CN217272176U (en) Box-type substation exhaust valve
JP3299704B2 (en) Refrigeration equipment
JPS6321281Y2 (en)
CN220601974U (en) Water spraying and moisturizing structure of drying water tank
CN218923650U (en) Galvanized fire-fighting pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3946984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term