JP2022038035A - Liquid gas type spray freezing device - Google Patents

Liquid gas type spray freezing device Download PDF

Info

Publication number
JP2022038035A
JP2022038035A JP2020142317A JP2020142317A JP2022038035A JP 2022038035 A JP2022038035 A JP 2022038035A JP 2020142317 A JP2020142317 A JP 2020142317A JP 2020142317 A JP2020142317 A JP 2020142317A JP 2022038035 A JP2022038035 A JP 2022038035A
Authority
JP
Japan
Prior art keywords
gas
liquefied gas
supply path
cooling tank
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020142317A
Other languages
Japanese (ja)
Inventor
雅紀 前田
Masaki Maeda
英治 多畑
Eiji Tabata
東士夫 竹口
Toshio Takeguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2020142317A priority Critical patent/JP2022038035A/en
Publication of JP2022038035A publication Critical patent/JP2022038035A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a liquid gas type spray freezing device which can stably manufacture a freeze object.SOLUTION: A liquid gas type spray freezing device 1 includes a cooling tank 2 which sprays a raw material and a low temperature liquid gas to freeze the raw material, a raw material supply passage L1 which supplies the raw material to the cooling tank 2, a low temperature liquid gas supply passage L2 which supplies the low temperature liquid gas to the cooling tank 2, and a gas liquid separator 3 which is located in the low temperature liquid gas supply passage L2 and separates the low temperature liquid gas into gas and liquid.SELECTED DRAWING: Figure 1

Description

本発明は、液化ガス式噴霧凍結装置に関する。 The present invention relates to a liquefied gas spray freezing device.

食品等の液状原料を凍結する装置として、霧状に噴霧した液体窒素や液体アルゴン等の低温液化ガスの冷熱を利用する液化ガス式噴霧凍結装置が知られている。
例えば、特許文献1には、被凍結物と無菌液化ガスである寒剤とを個別のノズルからそれぞれ冷却槽内に供給する方法および噴霧凍結装置が開示されている。
また、特許文献2には、被凍結物と寒剤(極低温液体)とを個別のノズルからそれぞれ冷却槽内に供給し、凍結粒子を製造する方法および噴霧凍結装置が開示されている。
As a device for freezing a liquid raw material such as food, a liquefied gas type spray freezing device using the cold heat of a low-temperature liquefied gas such as liquid nitrogen or liquid argon sprayed in the form of a mist is known.
For example, Patent Document 1 discloses a method of supplying an object to be frozen and a cryogen which is a sterile liquefied gas into a cooling tank from individual nozzles, and a spray freezing device.
Further, Patent Document 2 discloses a method of supplying frozen particles and a cryogen (ultra-low temperature liquid) into a cooling tank from individual nozzles to produce frozen particles, and a spray freezing device.

特許第5837670号公報Japanese Patent No. 5837670 特開平6-323712号公報Japanese Unexamined Patent Publication No. 6-323712

しかしながら、特許文献1及び2に記載の噴霧凍結装置では、冷却槽内の温度が不安定となる場合や、冷却槽内の温度の低下が不十分となる場合があり、被凍結物を安定的に製造できないという課題があった。したがって、噴霧凍結装置を必要以上にサイズアップする必要や、液化ガスを過剰に供給する必要があった。 However, in the spray freezing device described in Patent Documents 1 and 2, the temperature in the cooling tank may become unstable or the temperature in the cooling tank may not be sufficiently lowered, so that the object to be frozen is stable. There was a problem that it could not be manufactured. Therefore, it was necessary to increase the size of the spray freezing device more than necessary and to supply an excessive amount of liquefied gas.

本発明は、上記事情に鑑みてなされたものであって、被凍結物を安定的に製造することが可能な液化ガス式噴霧凍結装置を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a liquefied gas type spray freezing device capable of stably producing an object to be frozen.

一般的に、液化ガスは液化ガス貯槽等の供給設備に高圧状態で貯留されており、真空二重配管等の供給配管を介して供給設備から使用場所まで自圧により移送される。
本願発明者らは、供給設備から使用場所までの供給配管の距離が長い場合、あるいは分岐が多い場合に、液化ガスが気液二相流の状態で供給されることで脈動し、液化ガスを液体状態で噴霧凍結装置に安定供給できないため、冷却槽内の温度が不安定となる場合や、冷却槽内の温度の低下が不十分となる場合が生じることを突き止めて、本発明を完成させた。
Generally, liquefied gas is stored in a supply facility such as a liquefied gas storage tank in a high pressure state, and is transferred from the supply facility to the place of use by self-pressure via a supply pipe such as a vacuum double pipe.
The inventors of the present application pulsate the liquefied gas by being supplied in a gas-liquid two-phase flow when the distance of the supply pipe from the supply facility to the place of use is long or there are many branches. The present invention has been completed by finding out that the temperature inside the cooling tank may become unstable or the temperature inside the cooling tank may not be sufficiently lowered because the spray freezing device cannot be stably supplied in a liquid state. rice field.

上記課題を解決するため、本発明は以下の構成を備える。
[1] 液体状の原料と低温液化ガスとを熱交換させ、前記原料を凍結する液化ガス式噴霧凍結装置であって、
前記原料と前記低温液化ガスとを噴霧し、前記原料を凍結する冷却槽と、
前記原料を前記冷却槽に供給する原料供給経路と、
前記低温液化ガスを前記冷却槽に供給する低温液化ガス供給経路と、
前記低温液化ガス供給経路に位置し、前記低温液化ガスを気液分離する気液分離器と、を備える、液化ガス式噴霧凍結装置。
[2] 前記気液分離器と前記冷却槽との間に位置し、前記気液分離器で分離された気化ガスを前記冷却槽に供給する気化ガス供給経路を備える、前項[1]に記載の液化ガス式噴霧凍結装置。
[3] 前記気化ガス供給経路に位置し、前記気液分離器内の圧力を制御する圧力制御機構を備える、前項[2]に記載の液化ガス式噴霧凍結装置。
[4] 前記圧力制御機構は、前記気液分離器内の圧力を測定する圧力測定器と、前記気化ガス供給経路に位置する圧力制御弁と、前記圧力測定器からの信号を受信して前記圧力制御弁に信号を送信する圧力調節器と、を有する、前項[3]に記載の液化ガス式噴霧凍結装置。
[5] 前記低温液化ガス供給経路に位置し、前記冷却槽への前記低温液化ガスの供給量を制御する流量制御機構を備える、前項[1]乃至[4]のいずれかに記載の液化ガス式噴霧凍結装置。
[6] 前記流量制御機構は、前記低温液化ガスの供給量を決定する流量調節器と、前記気液分離器の二次側の前記低温液化ガス供給経路に位置する流量制御弁と、を有する、前項[5]に記載の液化ガス式噴霧凍結装置。
[7] 前記気液分離器内の前記低温液化ガスの液面の位置を制御する液面制御機構を備える、前項[1]乃至[6]のいずれかに記載の液化ガス式噴霧凍結装置。
[8] 前記液面制御機構は、前記気液分離器内において前記低温液化ガスの液面の位置を検知する液面センサーと、前記気液分離器の一次側の前記低温液化ガス供給経路に位置する液面制御弁と、前記液面センサーからの信号を受信して前記液面制御弁に信号を送信する液面調節器と、を有する、前項[7]に記載の液化ガス式噴霧凍結装置。
In order to solve the above problems, the present invention has the following configurations.
[1] A liquefied gas type spray freezing device that freezes the raw material by exchanging heat between the liquid raw material and the low temperature liquefied gas.
A cooling tank that sprays the raw material and the cryogenic liquefied gas to freeze the raw material,
A raw material supply path for supplying the raw material to the cooling tank, and
A cryogenic gas supply path for supplying the cryogenic liquefied gas to the cooling tank,
A liquefied gas type spray freezing device, which is located in the low temperature liquefied gas supply path and includes a gas-liquid separator for gas-liquid separation of the low-temperature liquefied gas.
[2] The above-mentioned item [1], which is located between the gas-liquid separator and the cooling tank and includes a vaporization gas supply path for supplying the vaporized gas separated by the gas-liquid separator to the cooling tank. Liquefied gas spray freezing device.
[3] The liquefied gas type spray freezing device according to the preceding item [2], which is located in the vaporized gas supply path and includes a pressure control mechanism for controlling the pressure in the gas-liquid separator.
[4] The pressure control mechanism receives signals from the pressure measuring device for measuring the pressure in the gas-liquid separator, the pressure control valve located in the vaporized gas supply path, and the pressure measuring device. The liquefied gas type spray freezing device according to the preceding item [3], comprising a pressure regulator for transmitting a signal to a pressure control valve.
[5] The liquefied gas according to any one of the preceding items [1] to [4], which is located in the cryogenic gas supply path and includes a flow rate control mechanism for controlling the supply amount of the cryogenic liquefied gas to the cooling tank. Type spray freezing device.
[6] The flow rate control mechanism includes a flow rate regulator that determines the supply amount of the low temperature liquefied gas, and a flow rate control valve located in the low temperature liquefied gas supply path on the secondary side of the gas-liquid separator. , The liquefied gas type spray freezing device according to the preceding item [5].
[7] The liquefied gas type spray freezing device according to any one of the preceding items [1] to [6], comprising a liquid level control mechanism for controlling the position of the liquid level of the cryogenic liquefied gas in the gas-liquid separator.
[8] The liquid level control mechanism is connected to a liquid level sensor that detects the position of the liquid level of the low temperature liquefied gas in the gas and liquid separator and the low temperature liquefied gas supply path on the primary side of the gas and liquid separator. The liquefied gas type spray freezing according to the preceding item [7], comprising a liquid level control valve located and a liquid level controller that receives a signal from the liquid level sensor and transmits a signal to the liquid level control valve. Device.

本発明の液化ガス式噴霧凍結装置は、被凍結物を安定的に製造することができる。 The liquefied gas spray freezing device of the present invention can stably produce an object to be frozen.

本発明の一実施形態である液化ガス式噴霧凍結装置の構成を示す系統図である。It is a system diagram which shows the structure of the liquefied gas type spray freezing apparatus which is one Embodiment of this invention.

以下、本発明を適用した一実施形態である液化ガス式噴霧凍結装置について、その運転方法とともに図面を参照しながら詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, the liquefied gas type spray freezing device according to the embodiment to which the present invention is applied will be described in detail with reference to the drawings together with the operation method thereof. In addition, in the drawings used in the following explanation, in order to make the features easy to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. do not have.

<液化ガス式噴霧凍結装置>
先ず、本発明を適用した一実施形態である液化ガス式噴霧凍結装置の構成の一例について説明する。図1は、本実施形態の液化ガス式噴霧凍結装置1の構成を示す系統図である。
本実施形態の液化ガス式噴霧凍結装置1は、液体状の原料と液体窒素や液体アルゴン等の低温液化ガスとを熱交換させて、原料を微粒子状の凍結物にする装置である。
図1に示すように、本実施形態の液化ガス式噴霧凍結装置1は、冷却槽2、気液分離器3、原料供給経路L1、低温液化ガス供給経路L2、気化ガス供給経路L3、気液分離器3内の圧力を制御する圧力制御機構4、冷却槽2への低温液化ガスの供給量を制御する流量制御機構5、及び気液分離器3内の低温液化ガスの液面の位置を制御する液面制御機構6を備える。
<Liquefied gas spray freezing device>
First, an example of the configuration of a liquefied gas type spray freezing device according to an embodiment to which the present invention is applied will be described. FIG. 1 is a system diagram showing the configuration of the liquefied gas type spray freezing device 1 of the present embodiment.
The liquefied gas type spray freezing device 1 of the present embodiment is a device that heat-exchanges a liquid raw material with a low-temperature liquefied gas such as liquid nitrogen or liquid argon to turn the raw material into a fine-grained frozen product.
As shown in FIG. 1, the liquefied gas type spray freezing device 1 of the present embodiment has a cooling tank 2, a gas / liquid separator 3, a raw material supply path L1, a low temperature liquefied gas supply path L2, a vaporized gas supply path L3, and a gas / liquid. The position of the pressure control mechanism 4 that controls the pressure in the separator 3, the flow control mechanism 5 that controls the supply amount of the low-temperature liquefied gas to the cooling tank 2, and the liquid level of the low-temperature liquefied gas in the gas-liquid separator 3. A liquid level control mechanism 6 for controlling is provided.

冷却槽2は、槽内に原料と低温液化ガスとを噴霧して、原料を凍結する密閉容器である。
冷却槽2は、外気からの侵入熱による冷却槽2内の温度上昇をなるべく抑制する観点から、断熱構造を有する。断熱構造としては、真空断熱構造が好ましい。
The cooling tank 2 is a closed container that freezes the raw material by spraying the raw material and the low-temperature liquefied gas into the tank.
The cooling tank 2 has a heat insulating structure from the viewpoint of suppressing the temperature rise in the cooling tank 2 due to the invading heat from the outside air as much as possible. As the heat insulating structure, a vacuum heat insulating structure is preferable.

冷却槽2には、原料供給経路L1、低温液化ガス供給経路L2、及び気化ガス供給経路L3がそれぞれ接続されている。 The raw material supply path L1, the cryogenic liquefied gas supply path L2, and the vaporized gas supply path L3 are connected to the cooling tank 2, respectively.

冷却槽2の上部には、原料供給経路L1が貫通している。原料供給経路L1の先端である原料供給口(原料投入口)は、冷却槽2内に開口しており、液体の原料を冷却槽2内に供給可能となっている。また、原料供給口には、原料を冷却槽2内に下向きに噴霧するためのノズル7が配置されている。ノズル7は、原料を冷却槽2内に噴霧するものであれば特に限定されず、スプレーノズル等、供給する原料に応じて適宜選定できる。 The raw material supply path L1 penetrates the upper part of the cooling tank 2. The raw material supply port (raw material input port) at the tip of the raw material supply path L1 is open in the cooling tank 2, and the liquid raw material can be supplied into the cooling tank 2. Further, a nozzle 7 for spraying the raw material downward into the cooling tank 2 is arranged at the raw material supply port. The nozzle 7 is not particularly limited as long as it sprays the raw material into the cooling tank 2, and can be appropriately selected according to the raw material to be supplied, such as a spray nozzle.

冷却槽2の底部には、低温液化ガス供給経路L2が貫通している。低温液化ガス供給経路L2の先端である低温液化ガス供給口(低温液化ガス投入口)は、冷却槽2内に開口しており、低温液化ガスを冷却槽2内に供給可能となっている。また、低温液化ガス供給口には、低温液化ガスを冷却槽2内に上向きに噴霧するためのスプレーノズル(図示略)が配置されている。 A low-temperature liquefied gas supply path L2 penetrates the bottom of the cooling tank 2. The cryogenic gas supply port (low temperature liquefied gas input port) at the tip of the low temperature liquefied gas supply path L2 is open in the cooling tank 2, and the low temperature liquefied gas can be supplied into the cooling tank 2. Further, a spray nozzle (not shown) for spraying the cryogenic gas upward into the cooling tank 2 is arranged at the cryogenic gas supply port.

本実施形態の液化ガス式噴霧凍結装置1によれば、冷却槽2の上部から原料を下向きに噴霧し、冷却槽2の底部から低温液化ガスを上向きに噴霧することにより、冷却槽2内で液体状の原料と低温液化ガスとが熱交換され、原料が微粒子状の凍結物となる。 According to the liquefied gas type spray freezing device 1 of the present embodiment, the raw material is sprayed downward from the upper part of the cooling tank 2 and the low temperature liquefied gas is sprayed upward from the bottom of the cooling tank 2 in the cooling tank 2. The liquid raw material and the low-temperature liquefied gas exchange heat, and the raw material becomes a finely divided frozen product.

また、冷却槽2の上部には、気化ガス供給経路L3が貫通している。気化ガス供給経路L3の先端である気化ガス供給口(気化ガス投入口)は、冷却槽2内に開口しており、低温状態の気化ガスを冷却槽2内に供給可能となっている。 Further, a vaporization gas supply path L3 penetrates the upper part of the cooling tank 2. The vaporization gas supply port (vaporization gas input port) at the tip of the vaporization gas supply path L3 is open in the cooling tank 2, and the vaporization gas in a low temperature state can be supplied into the cooling tank 2.

冷却槽2の中央付近には、冷却槽2内の温度を測定する温度測定器(温度センサー)8が配置されている。
また、冷却槽2の底部には、原料の凍結物の温度を測定する温度測定器(温度センサー)9が配置されている。
本実施形態の液化ガス式噴霧凍結装置1によれば、冷却槽2内が所定温度で安定したことを確認した後に、ノズル7から原料を冷却槽2内に供給できる。
A temperature measuring device (temperature sensor) 8 for measuring the temperature inside the cooling tank 2 is arranged near the center of the cooling tank 2.
Further, a temperature measuring device (temperature sensor) 9 for measuring the temperature of the frozen material of the raw material is arranged at the bottom of the cooling tank 2.
According to the liquefied gas type spray freezing device 1 of the present embodiment, the raw material can be supplied to the cooling tank 2 from the nozzle 7 after confirming that the inside of the cooling tank 2 is stable at a predetermined temperature.

また、冷却槽2の底部には、原料の凍結物を回収するロータリーバルブ等の回収設備(図示略)が配置されている。回収設備は、原料の凍結物の融解を防止する観点から、設備内を低温かつドライな状態に保持することが好ましい。 Further, at the bottom of the cooling tank 2, a recovery facility (not shown) such as a rotary valve for recovering frozen raw materials is arranged. From the viewpoint of preventing the frozen material from being thawed, it is preferable that the recovery equipment keeps the inside of the equipment in a low temperature and dry state.

原料供給経路L1は、原料供給源である原料タンク10と冷却槽2との間に位置する。原料供給経路L1の基端は、原料タンク10と接続されている。これにより、原料供給経路L1を介して、原料タンク10から冷却槽2に原料を供給できる。
原料供給経路L1としては、液状の原料を移送可能な配管等が挙げられる。
The raw material supply path L1 is located between the raw material tank 10 and the cooling tank 2, which are the raw material supply sources. The base end of the raw material supply path L1 is connected to the raw material tank 10. As a result, the raw material can be supplied from the raw material tank 10 to the cooling tank 2 via the raw material supply path L1.
Examples of the raw material supply path L1 include a pipe capable of transferring a liquid raw material.

原料供給経路L1には、原料を移送する原料供給ポンプ11と、原料供給ポンプ11の回転数を制御するインバータ12と、が配置されている。これにより、原料供給ポンプ11の回転数をインバータ12によって制御することで、冷却槽2への原料の供給量を変更できる。 In the raw material supply path L1, a raw material supply pump 11 for transferring the raw material and an inverter 12 for controlling the rotation speed of the raw material supply pump 11 are arranged. Thereby, by controlling the rotation speed of the raw material supply pump 11 by the inverter 12, the amount of the raw material supplied to the cooling tank 2 can be changed.

原料タンク10には、原料タンク10内の原料の温度を測定する温度測定器(温度センサー)13と、温度センサー13からの信号を受けて温度制御する温度調節器14と、温度調節器14からのON/OFF信号を受けて稼働するヒータ15と、が配置されている。これにより、原料タンク10及び原料供給経路L1を原料の凝固点以上の温度で保持し、貯留中及び移送中における原料の凝固を防止できる。 The raw material tank 10 includes a temperature measuring device (temperature sensor) 13 that measures the temperature of the raw material in the raw material tank 10, a temperature controller 14 that receives a signal from the temperature sensor 13 and controls the temperature, and a temperature controller 14. A heater 15 that operates in response to the ON / OFF signal of the above is arranged. As a result, the raw material tank 10 and the raw material supply path L1 can be maintained at a temperature equal to or higher than the freezing point of the raw material, and solidification of the raw material during storage and transfer can be prevented.

低温液化ガス供給経路L2は、低温液化ガス供給源16と冷却槽2との間に位置する。低温液化ガス供給経路L2の基端は、低温液化ガス供給源16と接続されている。これにより、低温液化ガス供給経路L2を介して、低温液化ガス供給源16から冷却槽2に低温液化ガスを供給できる。
低温液化ガス供給経路L2としては、低温液化ガスを移送可能な配管等が挙げられる。
The cryogenic gas supply path L2 is located between the cryogenic gas supply source 16 and the cooling tank 2. The base end of the cryogenic gas supply path L2 is connected to the cryogenic gas supply source 16. As a result, the low-temperature liquefied gas can be supplied from the low-temperature liquefied gas supply source 16 to the cooling tank 2 via the low-temperature liquefied gas supply path L2.
Examples of the low-temperature liquefied gas supply path L2 include pipes capable of transferring low-temperature liquefied gas.

本実施形態の液化ガス式噴霧凍結装置1では、低温液化ガス供給経路L2に低温液化ガスを気液分離する気液分離器3が配置されている。換言すると、低温液化ガス供給経路L2は、気液分離器3の一次側(上流側)の低温液化ガス供給経路L2Aと、気液分離器3の二次側(下流側)の低温液化ガス供給経路L2Bと、から構成される。 In the liquefied gas type spray freezing device 1 of the present embodiment, a gas-liquid separator 3 for gas-liquid separation of the low-temperature liquefied gas is arranged in the low-temperature liquefied gas supply path L2. In other words, the cryogenic gas supply path L2 is a low temperature liquefied gas supply path L2A on the primary side (upstream side) of the gas-liquid separator 3 and a low-temperature liquefied gas supply on the secondary side (downstream side) of the gas-liquid separator 3. It is composed of a path L2B.

低温液化ガス供給経路L2Aは、低温液化ガス供給源16と気液分離器3との間に位置する。低温液化ガス供給経路L2Aの基端は、低温液化ガス供給源16と接続されている。低温液化ガス供給経路L2Aの先端は、気液分離器3内の気相3A部分に開口している。これにより、低温液化ガス供給経路L2Aを介して、低温液化ガス供給源16から気液分離器3内に低温液化ガスを供給できる。 The cryogenic gas supply path L2A is located between the cryogenic gas supply source 16 and the gas-liquid separator 3. The base end of the cryogenic gas supply path L2A is connected to the cryogenic gas supply source 16. The tip of the cryogenic gas supply path L2A is open to the gas phase 3A portion in the gas-liquid separator 3. As a result, the cryogenic gas can be supplied from the cryogenic gas supply source 16 into the gas-liquid separator 3 via the cryogenic gas supply path L2A.

低温液化ガス供給経路L2Bは、気液分離器3と冷却槽2との間に位置する。低温液化ガス供給経路L2Bの基端は、気液分離器3内の液相3B部分と接続されている。低温液化ガス供給経路L2Bの先端は、冷却槽2内に開口している。これにより、低温液化ガス供給経路L2Bを介して、気液分離器3の液相3B部分から冷却槽2内に低温液化ガスを液体状態で安定して供給できる。 The cryogenic gas supply path L2B is located between the gas-liquid separator 3 and the cooling tank 2. The base end of the cryogenic gas supply path L2B is connected to the liquid phase 3B portion in the gas-liquid separator 3. The tip of the cryogenic gas supply path L2B is open in the cooling tank 2. As a result, the low-temperature liquefied gas can be stably supplied in the liquid state from the liquid phase 3B portion of the gas-liquid separator 3 into the cooling tank 2 via the low-temperature liquefied gas supply path L2B.

気液分離器3は、低温液化ガス供給経路L2に位置し、低温液化ガス供給源16から導入される低温液化ガスを気液分離する密閉容器である。
気液分離器3は、気液分離器3内での低温液化ガスの気化をなるべく抑制する観点から、断熱構造を有する。断熱構造としては、真空断熱構造が好ましい。
The gas-liquid separator 3 is a closed container located in the low-temperature liquefied gas supply path L2 and for gas-liquid separation of the low-temperature liquefied gas introduced from the low-temperature liquefied gas supply source 16.
The gas-liquid separator 3 has a heat insulating structure from the viewpoint of suppressing the vaporization of the low-temperature liquefied gas in the gas-liquid separator 3 as much as possible. As the heat insulating structure, a vacuum heat insulating structure is preferable.

気液分離器3には、低温液化ガスが貯留される。気液分離器3内の低温液化ガスは、低温の気化ガスからなる気相3Aと、液体状態の低温液化ガスからなる液相3Bとに分離されている。気相3Aと液相3Bとの界面である低温液化ガスの液面の位置は、後述する液面制御機構6によって所定の範囲となるように制御されている。 The low temperature liquefied gas is stored in the gas-liquid separator 3. The low-temperature liquefied gas in the gas-liquid separator 3 is separated into a gas phase 3A composed of a low-temperature vaporized gas and a liquid phase 3B composed of a low-temperature liquefied gas in a liquid state. The position of the liquid level of the low-temperature liquefied gas, which is the interface between the gas phase 3A and the liquid phase 3B, is controlled to be within a predetermined range by the liquid level control mechanism 6 described later.

気液分離器3には、低温液化ガス供給経路L2A、低温液化ガス供給経路L2B、及び気化ガス供給経路L3がそれぞれ接続されている。 A low-temperature liquefied gas supply path L2A, a low-temperature liquefied gas supply path L2B, and a vaporization gas supply path L3 are connected to the gas-liquid separator 3, respectively.

気液分離器3の上部には、低温液化ガス供給経路L2Aが貫通している。低温液化ガス供給経路L2Aの先端である低温液化ガス導入口(低温液化ガス受入口)は、気液分離器3内の気相3A部分に開口しており、低温液化ガス供給源16から低温液化ガスを気液分離器3内に供給可能となっている。 A low-temperature liquefied gas supply path L2A penetrates the upper part of the gas-liquid separator 3. The low-temperature liquefied gas introduction port (low-temperature liquefied gas receiving port) at the tip of the low-temperature liquefied gas supply path L2A is open to the gas phase 3A portion in the gas-liquid separator 3, and is liquefied from the low-temperature liquefied gas supply source 16. The gas can be supplied into the gas-liquid separator 3.

気液分離器3の底部には、低温液化ガス供給経路L2Bが貫通している。低温液化ガス供給経路L2Bの基端である低温液化ガス導出口(低温液化ガス吐出口)は、気液分離器3内の液相3B部分に開口しており、気液分離器3から液体状態の低温液化ガスを冷却槽2内に供給可能となっている。 A low temperature liquefied gas supply path L2B penetrates the bottom of the gas-liquid separator 3. The low-temperature liquefied gas outlet (low-temperature liquefied gas discharge port), which is the base end of the low-temperature liquefied gas supply path L2B, is open to the liquid phase 3B portion in the gas-liquid separator 3 and is in a liquid state from the gas-liquid separator 3. The low temperature liquefied gas can be supplied into the cooling tank 2.

本実施形態の液化ガス式噴霧凍結装置1によれば、低温液化ガス供給経路L2に気液分離器3が配置される構成により、低温液化ガス供給源16から供給される低温液化ガスが気液二相流の状態やプラグ流の状態であっても、気液分離器3によって気液分離されるため、液体状態の低温液化ガスを安定して冷却槽2内に供給できる。 According to the liquefied gas type spray freezing device 1 of the present embodiment, the low-temperature liquefied gas supplied from the low-temperature liquefied gas supply source 16 is gas-liquid due to the configuration in which the gas-liquid separator 3 is arranged in the low-temperature liquefied gas supply path L2. Even in a two-phase flow state or a plug flow state, the gas-liquid separator 3 separates the gas and liquid, so that the low-temperature liquefied gas in the liquid state can be stably supplied into the cooling tank 2.

また、気液分離器3の上部には、気化ガス供給経路L3が貫通している。気化ガス供給経路L3の基端である気化ガス導出口(気化ガス供給口)は、気液分離器3内の気相3A部分に開口しており、気液分離器3から低温状態の気化ガスを冷却槽2内に供給可能となっている。 Further, a vaporized gas supply path L3 penetrates the upper part of the gas-liquid separator 3. The vaporization gas outlet (vaporization gas supply port), which is the base end of the vaporization gas supply path L3, is open to the gas phase 3A portion in the gas-liquid separator 3, and the vaporization gas in a low temperature state is opened from the gas-liquid separator 3. Can be supplied into the cooling tank 2.

なお、気液分離器3において、低温液化ガス導入口および気化ガス導出口は、低温液化ガスの液面位置として設定される上限値よりも高い位置に配置される。また、低温液化ガス導出口は、低温液化ガスの液面位置として設定される下限値よりも低い位置に配置される。 In the gas-liquid separator 3, the low-temperature liquefied gas inlet and the vaporized gas outlet are arranged at positions higher than the upper limit set as the liquid level position of the low-temperature liquefied gas. Further, the low temperature liquefied gas outlet is arranged at a position lower than the lower limit value set as the liquid level position of the low temperature liquefied gas.

気化ガス供給経路L3は、気液分離器3と冷却槽2との間に位置し、気液分離器3で分離された低温状態の気化ガスを冷却槽2に供給する。
気化ガス供給経路L3としては、気化ガスを移送可能な配管等が挙げられる。また、気化ガス供給経路L3は、気化ガスの持つ冷熱を有効利用する観点から、断熱構造であることが好ましい。
The vaporization gas supply path L3 is located between the gas-liquid separator 3 and the cooling tank 2, and supplies the low-temperature vaporized gas separated by the gas-liquid separator 3 to the cooling tank 2.
Examples of the vaporized gas supply path L3 include pipes capable of transferring the vaporized gas. Further, the vaporized gas supply path L3 preferably has a heat insulating structure from the viewpoint of effectively utilizing the cold heat of the vaporized gas.

気化ガス供給経路L3は、分岐点Pにおいて、排出経路L4と分岐する。
気化ガス供給経路L3の分岐点Pの二次側には、減圧弁17と流量計18とが配置される。これにより、冷却槽2に供給する気化ガスの圧力及び流量を調整できる。
The vaporized gas supply path L3 branches off from the discharge path L4 at the branch point P.
A pressure reducing valve 17 and a flow meter 18 are arranged on the secondary side of the branch point P of the vaporization gas supply path L3. Thereby, the pressure and the flow rate of the vaporized gas supplied to the cooling tank 2 can be adjusted.

排出経路L4は、分岐点Pにおいて気化ガス供給経路L3から分岐し、気化ガス供給経路L3を流れる気化ガスの一部または全部をバッファータンク等の他設備19に供給する。これにより、気化ガスを有効に利用できる。
排出経路L4としては、気化ガスを移送可能な配管等が挙げられる。また、排出経路L4は、気化ガスの持つ冷熱を有効利用する観点から、断熱構造としてもよいし、気化ガスを常温で使用する場合は断熱構造としなくてもよい。
排出経路L4には、逆止弁20が配置される。これにより、他設備19からの気化ガスの逆流を防止できる。
The discharge path L4 branches from the vaporized gas supply path L3 at the branch point P, and supplies a part or all of the vaporized gas flowing through the vaporized gas supply path L3 to another facility 19 such as a buffer tank. As a result, the vaporized gas can be effectively used.
Examples of the discharge path L4 include piping capable of transferring vaporized gas. Further, the discharge path L4 may have a heat insulating structure from the viewpoint of effectively utilizing the cold heat of the vaporized gas, and may not have a heat insulating structure when the vaporized gas is used at room temperature.
A check valve 20 is arranged in the discharge path L4. This makes it possible to prevent the backflow of the vaporized gas from the other equipment 19.

圧力制御機構4は、気化ガス供給経路L3に位置し、気液分離器3内の圧力をなるべく低い状態に保持するように調整する。圧力制御機構4は、圧力トランスミッター(圧力測定器)21と、圧力制御弁22と、圧力調節器23とを有する。 The pressure control mechanism 4 is located in the vaporization gas supply path L3 and adjusts so as to keep the pressure in the gas-liquid separator 3 as low as possible. The pressure control mechanism 4 includes a pressure transmitter (pressure measuring device) 21, a pressure control valve 22, and a pressure regulator 23.

圧力トランスミッター21は、気液分離器3内の圧力を測定する。圧力トランスミッター21は、気液分離器3の気相3A部分と連通するように配置されていてもよいし、気化ガス供給経路L3の圧力制御弁22の一次側(上流側)と連通するように配置されていてもよい。
圧力制御弁22は、気化ガス供給経路L3の分岐点Pの一次側(上流側)に位置する。
圧力調節器23は、圧力トランスミッター21から圧力測定値の信号を受信して、圧力制御弁22に開度を制御する信号を送信する。なお、圧力トランスミッター21と圧力調節器23とは、一体であってもよい。
The pressure transmitter 21 measures the pressure in the gas-liquid separator 3. The pressure transmitter 21 may be arranged so as to communicate with the gas phase 3A portion of the gas-liquid separator 3 or communicate with the primary side (upstream side) of the pressure control valve 22 of the vaporization gas supply path L3. It may be arranged.
The pressure control valve 22 is located on the primary side (upstream side) of the branch point P of the vaporization gas supply path L3.
The pressure regulator 23 receives a signal of the pressure measurement value from the pressure transmitter 21 and transmits a signal for controlling the opening degree to the pressure control valve 22. The pressure transmitter 21 and the pressure regulator 23 may be integrated.

本実施形態の液化ガス式噴霧凍結装置1では、気液分離器3内の圧力値が予め設定した上限値を超える場合に圧力制御弁22を開放し、下限値未満となる場合に圧力制御弁22を閉止する。このように、圧力制御機構4によって気液分離器3内の圧力を低い状態に維持することで、気液分離器3内の低温液化ガスの温度を下げることができるため、低温液化ガス供給経路L2(L2B)を介して冷却槽2に供給した際、低温液化ガスのフラッシュロスを低減できる。 In the liquefied gas type spray freezing device 1 of the present embodiment, the pressure control valve 22 is opened when the pressure value in the gas-liquid separator 3 exceeds a preset upper limit value, and the pressure control valve 22 is opened when the pressure value is less than the lower limit value. 22 is closed. In this way, by maintaining the pressure in the gas-liquid separator 3 in a low state by the pressure control mechanism 4, the temperature of the low-temperature liquefied gas in the gas-liquid separator 3 can be lowered, so that the low-temperature liquefied gas supply path. When supplied to the cooling tank 2 via L2 (L2B), the flash loss of the low temperature liquefied gas can be reduced.

圧力制御機構4により、気液分離器3内の圧力は、0.1~0.2MPaGの範囲に制御することが好ましい。
気液分離器3内の圧力を0.1MPaG以上とすることにより、気液分離器3内の圧力が大気圧に近づくため、低温液化ガスのフラッシュロスを低減できる。また、低温液化ガスをノズルから霧状に噴霧するための圧力を確保できる。
気液分離器3内の圧力を0.2MPaG以下とすることにより、気液分離器3から冷却槽2までの低温液化ガス供給経路L2(L2B)において圧力損失が生じた場合でも、冷却槽2へ低温液化ガスを確実に供給できる。
It is preferable that the pressure in the gas-liquid separator 3 is controlled in the range of 0.1 to 0.2 MPaG by the pressure control mechanism 4.
By setting the pressure in the gas-liquid separator 3 to 0.1 MPaG or more, the pressure in the gas-liquid separator 3 approaches atmospheric pressure, so that the flash loss of the low-temperature liquefied gas can be reduced. In addition, it is possible to secure a pressure for spraying the cryogenic liquefied gas from the nozzle in the form of mist.
By setting the pressure in the gas-liquid separator 3 to 0.2 MPaG or less, even if a pressure loss occurs in the low-temperature liquefied gas supply path L2 (L2B) from the gas-liquid separator 3 to the cooling tank 2, the cooling tank 2 Low temperature liquefied gas can be reliably supplied to.

流量制御機構5は、気液分離器3の二次側の低温液化ガス供給経路L2(すなわち、低温液化ガス供給経路L2B)に位置し、気液分離器3から冷却槽2への低温液化ガスの供給量を制御する。流量制御機構5は、流量調節器24と、流量制御弁25とを有する。 The flow rate control mechanism 5 is located in the low temperature liquefied gas supply path L2 (that is, the low temperature liquefied gas supply path L2B) on the secondary side of the gas-liquid separator 3, and the low-temperature liquefied gas from the gas-liquid separator 3 to the cooling tank 2. Control the supply of gas. The flow rate control mechanism 5 includes a flow rate regulator 24 and a flow rate control valve 25.

流量調節器24は、気液分離器3から冷却槽2への低温液化ガスの供給量を決定する。
流量制御弁25は、気液分離器3の二次側の低温液化ガス供給経路L2(すなわち、低温液化ガス供給経路L2B)に位置する。
The flow rate controller 24 determines the amount of low-temperature liquefied gas supplied from the gas-liquid separator 3 to the cooling tank 2.
The flow rate control valve 25 is located in the low temperature liquefied gas supply path L2 (that is, the low temperature liquefied gas supply path L2B) on the secondary side of the gas-liquid separator 3.

また、低温液化ガス供給経路L2Bには、圧力測定器26と、安全弁27とが配置される。これにより、低温液化ガス供給経路L2B内の低温液化ガスの圧力が異常上昇した際に系外に放出できる。 Further, a pressure measuring device 26 and a safety valve 27 are arranged in the low temperature liquefied gas supply path L2B. As a result, when the pressure of the cryogenic liquefied gas in the cryogenic gas supply path L2B rises abnormally, it can be released to the outside of the system.

本実施形態の液化ガス式噴霧凍結装置1では、流量制御機構5により、気液分離器3から冷却槽2に低温液化ガスを定量供給できる。 In the liquefied gas type spray freezing device 1 of the present embodiment, the low temperature liquefied gas can be quantitatively supplied from the gas-liquid separator 3 to the cooling tank 2 by the flow rate control mechanism 5.

液面制御機構6は、気液分離器3内の低温液化ガスの液面の位置(高さ)がなるべく一定となるように制御する。液面制御機構6は、液面センサー(液面計)28と、液面制御弁29と、液面調節器30とを有する。 The liquid level control mechanism 6 controls the position (height) of the liquid level of the cryogenic liquefied gas in the gas-liquid separator 3 so as to be as constant as possible. The liquid level control mechanism 6 includes a liquid level sensor (liquid level gauge) 28, a liquid level control valve 29, and a liquid level regulator 30.

液面センサー28は、気液分離器3に位置し、気液分離器3内の低温液化ガスの液面の位置を検知する。
液面制御弁29は、気液分離器3の一次側の低温液化ガス供給経路L2(すなわち、低温液化ガス供給経路L2A)に位置する。
液面調節器30は、液面センサー28から液面測定値の信号を受信して、液面制御弁29に開度を制御する信号を送信する。なお、液面センサー28と液面調節器30とは、一体であってもよい。
The liquid level sensor 28 is located in the gas-liquid separator 3 and detects the position of the liquid level of the cryogenic liquefied gas in the gas-liquid separator 3.
The liquid level control valve 29 is located in the low temperature liquefied gas supply path L2 (that is, the low temperature liquefied gas supply path L2A) on the primary side of the gas-liquid separator 3.
The liquid level regulator 30 receives a signal of the liquid level measured value from the liquid level sensor 28, and transmits a signal for controlling the opening degree to the liquid level control valve 29. The liquid level sensor 28 and the liquid level adjuster 30 may be integrated.

本実施形態の液化ガス式噴霧凍結装置1では、気液分離器3内の液面の位置が予め設定した下限値未満となる場合に液面制御弁29を開放し、上限値を超える場合に液面制御弁29を閉止する。このように、液面制御機構6によって気液分離器3内の低温液化ガスの液面の位置が一定となるように維持することで、一定量の低温液化ガスを気液分離した状態で気液分離器3内に貯留できるため、低温液化ガス供給経路L2(L2B)を介して液体状態の低温液化ガスを冷却槽2に安定して供給できる。
したがって、本実施形態の液化ガス式噴霧凍結装置1では、冷却槽2内の温度が十分に低下し、冷却槽2内の温度が安定するため、粒状の凍結物(被凍結物)を安定的に製造できる。
In the liquefied gas type spray freezing device 1 of the present embodiment, the liquid level control valve 29 is opened when the position of the liquid level in the gas-liquid separator 3 is less than the preset lower limit value, and when the upper limit value is exceeded. The liquid level control valve 29 is closed. In this way, by maintaining the position of the liquid level of the low-temperature liquefied gas in the gas-liquid separator 3 to be constant by the liquid level control mechanism 6, a certain amount of the low-temperature liquefied gas is separated into gas and liquid. Since it can be stored in the liquid separator 3, the low-temperature liquefied gas in a liquid state can be stably supplied to the cooling tank 2 via the low-temperature liquefied gas supply path L2 (L2B).
Therefore, in the liquefied gas type spray freezing device 1 of the present embodiment, the temperature in the cooling tank 2 is sufficiently lowered and the temperature in the cooling tank 2 is stabilized, so that the granular frozen material (freezing material) is stable. Can be manufactured.

<液化ガス式噴霧凍結装置の運転方法>
次に、上述した液化ガス式噴霧凍結装置1の運転方法(すなわち、液化ガス式噴霧凍結装置1を用いた、噴霧凍結方法)の一例について説明する。
<How to operate the liquefied gas spray freezing device>
Next, an example of the operation method of the liquefied gas type spray freezing device 1 described above (that is, the spray freezing method using the liquefied gas type spray freezing device 1) will be described.

先ず、液化ガス式噴霧凍結装置1の運転を開始する前に、以下の運転条件を設定する。
・インバータ12において、原料供給ポンプ11の回転数を設定する。
・温度調節器14において、原料タンク10及び原料供給経路L1を加温するヒータ15の温度の上限値及び下限値を設定する。
・液面調節器30において、気液分離器3内の低温液化ガスの液面位置の上限値及び下限値を設定する。
・流量調節器24において、流量制御弁25の開度を設定する。
・圧力調節器23において、気液分離器3内の圧力の上限値及び下限値を設定する。
・減圧弁17及び流量計18において、冷却槽2に供給する気化ガスの圧力及び流量をそれぞれ設定する。
First, the following operating conditions are set before starting the operation of the liquefied gas type spray freezing device 1.
-In the inverter 12, the rotation speed of the raw material supply pump 11 is set.
-In the temperature controller 14, the upper limit value and the lower limit value of the temperature of the heater 15 that heats the raw material tank 10 and the raw material supply path L1 are set.
-In the liquid level regulator 30, the upper limit value and the lower limit value of the liquid level position of the cryogenic liquefied gas in the gas-liquid separator 3 are set.
-In the flow rate regulator 24, the opening degree of the flow rate control valve 25 is set.
-In the pressure regulator 23, the upper limit value and the lower limit value of the pressure in the gas-liquid separator 3 are set.
The pressure and flow rate of the vaporized gas supplied to the cooling tank 2 are set in the pressure reducing valve 17 and the flow meter 18, respectively.

次に、以下の順序により、液化ガス式噴霧凍結装置1の運転を開始する。
・低温液化ガス供給源16から低温液化ガス供給経路L2Aを介して気液分離器3内に低温液化ガスを供給し、気液分離器3内で低温液化ガスを気液分離する。
・気液分離器3内の液相3B部分から液体状態の低温液化ガスを冷却槽2内に定量供給する。
・原料タンク10及び原料供給経路L1の温度が原料の凝固点以上で安定し、かつ、冷却槽2内の温度が低温状態(例えば、-140~-160℃)で安定した後、原料供給ポンプ11を起動して冷却槽2内に原料を供給する。
・冷却槽2の下部に堆積する微粒子状の凍結物を、図示略の回収設備によって回収する。
Next, the operation of the liquefied gas type spray freezing device 1 is started in the following order.
-The low-temperature liquefied gas is supplied from the low-temperature liquefied gas supply source 16 into the gas-liquid separator 3 via the low-temperature liquefied gas supply path L2A, and the low-temperature liquefied gas is gas-liquid separated in the gas-liquid separator 3.
-A liquid low-temperature liquefied gas is quantitatively supplied into the cooling tank 2 from the liquid phase 3B portion in the gas-liquid separator 3.
After the temperatures of the raw material tank 10 and the raw material supply path L1 are stable above the freezing point of the raw material and the temperature inside the cooling tank 2 is stable at a low temperature (for example, −140 to −160 ° C.), the raw material supply pump 11 Is started to supply the raw material into the cooling tank 2.
-The fine particle-like frozen matter accumulated in the lower part of the cooling tank 2 is recovered by the recovery equipment (not shown).

以上説明したように、本実施形態の液化ガス式噴霧凍結装置1によれば、低温液化ガス供給源16から冷却槽2に低温液化ガスを供給する低温液化ガス供給経路L2に気液分離器3が配置される構成により、低温液化ガス供給源16から供給される低温液化ガスが気液二相流の状態やプラグ流の状態であっても、気液分離器3内で気液分離されるため、液体状態の低温液化ガスを安定して冷却槽2内に供給できる。したがって、冷却槽2内の温度が十分に低下し、冷却槽2内の温度が安定するため、低温液化ガスを過剰に供給することなく、粒状の凍結物(被凍結物)を安定的に製造できる。 As described above, according to the liquefied gas type spray freezing device 1 of the present embodiment, the gas-liquid separator 3 is connected to the low-temperature liquefied gas supply path L2 for supplying the low-temperature liquefied gas from the low-temperature liquefied gas supply source 16 to the cooling tank 2. Is arranged, the gas-liquid separation is performed in the gas-liquid separator 3 even if the low-temperature liquefied gas supplied from the low-temperature liquefied gas supply source 16 is in a gas-liquid two-phase flow state or a plug flow state. Therefore, the low-temperature liquefied gas in a liquid state can be stably supplied into the cooling tank 2. Therefore, the temperature inside the cooling tank 2 is sufficiently lowered and the temperature inside the cooling tank 2 is stabilized, so that a granular frozen product (object to be frozen) can be stably produced without supplying an excessive amount of low-temperature liquefied gas. can.

ところで、液化ガスはその特性により、高圧状態であるほどフラッシュロス(圧力変動に伴うロス)が大きくなる。そのため、従来の液化ガス式噴霧凍結装置では、低温液化ガスを低圧状態で冷却槽に供給することができず、液化ガスを過剰に供給する必要があった。 By the way, due to the characteristics of liquefied gas, the higher the pressure, the larger the flash loss (loss due to pressure fluctuation). Therefore, in the conventional liquefied gas type spray freezing device, the cryogenic liquefied gas cannot be supplied to the cooling tank in a low pressure state, and it is necessary to supply the liquefied gas in excess.

これに対して、本実施形態の液化ガス式噴霧凍結装置1によれば、気液分離器3内の圧力を調整する圧力制御機構4を備える構成により、低温液化ガスを低圧状態で冷却槽2に供給できるため、フラッシュロスを低減できる。 On the other hand, according to the liquefied gas type spray freezing device 1 of the present embodiment, the cooling tank 2 is provided with a pressure control mechanism 4 for adjusting the pressure in the gas-liquid separator 3 so that the low-temperature liquefied gas is in a low pressure state. Since it can be supplied to, flash loss can be reduced.

また、本実施形態の液化ガス式噴霧凍結装置1によれば、低温液化ガスの使用量の適正化、及びフラッシュロスの低減が可能であるため、従来の噴霧凍結装置よりも小型化・コストダウンが可能である。 Further, according to the liquefied gas type spray freezing device 1 of the present embodiment, the amount of low temperature liquefied gas used can be optimized and the flash loss can be reduced, so that the size and cost can be reduced as compared with the conventional spray freezing device. Is possible.

以上、本発明の実施形態を説明したが、本発明はかかる特定の実施の形態に限定されない。また、本発明は特許請求の範囲に記載された本発明の要旨の範囲内で、構成の付加、省略、置換、及びその他の変更が加えられてよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to such specific embodiments. In addition, the present invention may be added, omitted, replaced, or otherwise modified within the scope of the gist of the present invention described in the claims.

なお、上述した実施形態の液化ガス式噴霧凍結装置1では、原料供給口を冷却槽2の上部に配設して原料を冷却槽2内で下向きに噴霧し、低温液化ガス供給口を冷却槽2の底部に配設して低温液化ガスを冷却槽2内で上向きに噴霧する構成を一例として説明したが、これに限定されない。例えば、原料供給口及び低温液化ガス供給口をともに冷却槽2の上部に配設して冷却槽2内にそれぞれ下向きに噴霧する構成であってもよいし、原料供給口及び低温液化ガス供給口をともに冷却槽2の底部に配設して冷却槽2内にそれぞれ上向きに噴霧する構成であってもよい。 In the liquefied gas type spray freezing device 1 of the above-described embodiment, the raw material supply port is arranged above the cooling tank 2, the raw material is sprayed downward in the cooling tank 2, and the low temperature liquefied gas supply port is the cooling tank. Although the configuration in which the low temperature liquefied gas is arranged at the bottom of the 2 and the low temperature liquefied gas is sprayed upward in the cooling tank 2 has been described as an example, the present invention is not limited to this. For example, both the raw material supply port and the low-temperature liquefied gas supply port may be arranged above the cooling tank 2 and sprayed downward into the cooling tank 2, respectively, or the raw material supply port and the low-temperature liquefied gas supply port may be configured. May be arranged at the bottom of the cooling tank 2 and sprayed upward into the cooling tank 2.

以下、本発明の効果を検証例によって詳細に説明する。なお、本発明は、以下の検証例の内容に限定されるものではない。 Hereinafter, the effects of the present invention will be described in detail with reference to verification examples. The present invention is not limited to the contents of the following verification examples.

<検証例1>
以下に、気液分離器の有無による、冷却槽内における低温液化ガス供給口の温度制御の精度を記載する。なお、温度制御精度は、無負荷運転時における低温液化ガス供給口の最低温度と最高温度との差である。
本発明により得られる効果を記載する。
(1)気液分離器あり:2℃程度(冷却槽内の温度が安定)
(2)気液分離器なし:40℃程度(冷却槽内の温度が不安定)
<Verification example 1>
The accuracy of temperature control of the low temperature liquefied gas supply port in the cooling tank depending on the presence or absence of the gas-liquid separator is described below. The temperature control accuracy is the difference between the minimum temperature and the maximum temperature of the low temperature liquefied gas supply port during no-load operation.
The effects obtained by the present invention are described.
(1) With gas-liquid separator: Approximately 2 ° C (the temperature inside the cooling tank is stable)
(2) Without gas-liquid separator: Approximately 40 ° C (the temperature inside the cooling tank is unstable)

<検証例2>
以下に、冷却槽への低温液化ガスの供給圧力が0.6MPaの場合と、0.1MPaの場合とにおけるフラッシュロスの低減量を記載する。なお、フラッシュロスの低減量は理論計算によるものである。
(1)供給圧力が0.6MPaの場合:23%
(2)供給圧力が0.1MPaの場合:7%
上述したように、供給圧力が0.1MPaの場合では、0.6MPaの場合と比較して、16%のフラッシュロスの削減効果が見込まれる。
<Verification example 2>
The amount of reduction in flash loss when the supply pressure of the cryogenic liquefied gas to the cooling tank is 0.6 MPa and when the pressure is 0.1 MPa is described below. The amount of reduction in flash loss is based on theoretical calculation.
(1) When the supply pressure is 0.6 MPa: 23%
(2) When the supply pressure is 0.1 MPa: 7%
As described above, when the supply pressure is 0.1 MPa, the effect of reducing the flash loss by 16% is expected as compared with the case of 0.6 MPa.

1・・・液化ガス式噴霧凍結装置
2・・・冷却槽
3・・・気液分離器
3A・・・気相
3B・・・液相
4・・・圧力制御機構
5・・・流量制御機構
6・・・液面制御機構
7・・・ノズル
8,9・・・温度測定器(温度センサー)
10・・・原料タンク
11・・・原料供給ポンプ
12・・・インバータ
13・・・温度測定器(温度センサー)
14・・・温度調節器
15・・・ヒータ
16・・・低温液化ガス供給源
17・・・減圧弁
18・・・流量計
19・・・他設備
20・・・逆止弁
21・・・圧力トランスミッター(圧力測定器)
22・・・圧力制御弁
23・・・圧力調節器
24・・・流量調節器
25・・・流量制御弁
26・・・圧力測定器
27・・・安全弁
28・・・液面センサー(液面計)
29・・・液面制御弁
30・・・液面調節器
L1・・・原料供給経路
L2,L2A,L2B・・・低温液化ガス供給経路
L3・・・気化ガス供給経路
L4・・・排出経路
P・・・分岐点
1 ... Liquefied gas spray freezing device 2 ... Cooling tank 3 ... Gas-liquid separator 3A ... Gas phase 3B ... Liquid phase 4 ... Pressure control mechanism 5 ... Flow control mechanism 6 ... Liquid level control mechanism 7 ... Nozzle 8, 9 ... Temperature measuring instrument (temperature sensor)
10 ... Raw material tank 11 ... Raw material supply pump 12 ... Inverter 13 ... Temperature measuring instrument (temperature sensor)
14 ... Temperature controller 15 ... Heater 16 ... Low temperature liquefied gas supply source 17 ... Pressure reducing valve 18 ... Flow meter 19 ... Other equipment 20 ... Check valve 21 ... Pressure transmitter (pressure measuring instrument)
22 ... Pressure control valve 23 ... Pressure regulator 24 ... Flow rate regulator 25 ... Flow control valve 26 ... Pressure measuring device 27 ... Safety valve 28 ... Liquid level sensor (liquid level) Total)
29 ... Liquid level control valve 30 ... Liquid level regulator L1 ... Raw material supply path L2, L2A, L2B ... Cryogenic liquefied gas supply path L3 ... Vaporized gas supply path L4 ... Discharge path P ... Branch point

Claims (8)

液体状の原料と低温液化ガスとを熱交換させ、前記原料を凍結する液化ガス式噴霧凍結装置であって、
前記原料と前記低温液化ガスとを噴霧し、前記原料を凍結する冷却槽と、
前記原料を前記冷却槽に供給する原料供給経路と、
前記低温液化ガスを前記冷却槽に供給する低温液化ガス供給経路と、
前記低温液化ガス供給経路に位置し、前記低温液化ガスを気液分離する気液分離器と、を備える、液化ガス式噴霧凍結装置。
A liquefied gas type spray freezing device that freezes the raw material by exchanging heat between the liquid raw material and the low temperature liquefied gas.
A cooling tank that sprays the raw material and the cryogenic liquefied gas to freeze the raw material, and
A raw material supply path for supplying the raw material to the cooling tank, and
A cryogenic gas supply path for supplying the cryogenic liquefied gas to the cooling tank,
A liquefied gas type spray freezing device, which is located in the low temperature liquefied gas supply path and includes a gas-liquid separator for gas-liquid separation of the low-temperature liquefied gas.
前記気液分離器と前記冷却槽との間に位置し、前記気液分離器で分離された気化ガスを前記冷却槽に供給する気化ガス供給経路を備える、請求項1に記載の液化ガス式噴霧凍結装置。 The liquefied gas type according to claim 1, which is located between the gas-liquid separator and the cooling tank and includes a vaporized gas supply path for supplying the vaporized gas separated by the gas-liquid separator to the cooling tank. Spray freezing device. 前記気化ガス供給経路に位置し、前記気液分離器内の圧力を制御する圧力制御機構を備える、請求項2に記載の液化ガス式噴霧凍結装置。 The liquefied gas type spray freezing device according to claim 2, which is located in the vaporized gas supply path and includes a pressure control mechanism for controlling the pressure in the gas-liquid separator. 前記圧力制御機構は、前記気液分離器内の圧力を測定する圧力測定器と、前記気化ガス供給経路に位置する圧力制御弁と、前記圧力測定器からの信号を受信して前記圧力制御弁に信号を送信する圧力調節器と、を有する、請求項3に記載の液化ガス式噴霧凍結装置。 The pressure control mechanism includes a pressure measuring device that measures the pressure in the gas-liquid separator, a pressure control valve located in the vaporization gas supply path, and the pressure control valve that receives a signal from the pressure measuring device. The liquefied gas type spray freezing device according to claim 3, further comprising a pressure regulator for transmitting a signal to the device. 前記低温液化ガス供給経路に位置し、前記冷却槽への前記低温液化ガスの供給量を制御する流量制御機構を備える、請求項1乃至4のいずれか一項に記載の液化ガス式噴霧凍結装置。 The liquefied gas type spray freezing device according to any one of claims 1 to 4, which is located in the cryogenic gas supply path and includes a flow rate control mechanism for controlling the supply amount of the cryogenic gas to the cooling tank. .. 前記流量制御機構は、前記低温液化ガスの供給量を決定する流量調節器と、前記気液分離器の二次側の前記低温液化ガス供給経路に位置する流量制御弁と、を有する、請求項5に記載の液化ガス式噴霧凍結装置。 The flow rate control mechanism includes a flow rate regulator that determines the supply amount of the low temperature liquefied gas, and a flow rate control valve located in the low temperature liquefied gas supply path on the secondary side of the gas-liquid separator. The liquefied gas type spray freezing device according to 5. 前記気液分離器内の前記低温液化ガスの液面の位置を制御する液面制御機構を備える、請求項1乃至6のいずれか一項に記載の液化ガス式噴霧凍結装置。 The liquefied gas type spray freezing device according to any one of claims 1 to 6, further comprising a liquid level control mechanism for controlling the position of the liquid level of the cryogenic liquefied gas in the gas-liquid separator. 前記液面制御機構は、前記気液分離器内において前記低温液化ガスの液面の位置を検知する液面センサーと、前記気液分離器の一次側の前記低温液化ガス供給経路に位置する液面制御弁と、前記液面センサーからの信号を受信して前記液面制御弁に信号を送信する液面調節器と、を有する、請求項7に記載の液化ガス式噴霧凍結装置。 The liquid level control mechanism includes a liquid level sensor that detects the position of the liquid level of the low-temperature liquefied gas in the gas-liquid separator, and a liquid located in the low-temperature liquefied gas supply path on the primary side of the gas-liquid separator. The liquefied gas spray freezing device according to claim 7, further comprising a surface control valve and a liquid level regulator that receives a signal from the liquid level sensor and transmits a signal to the liquid level control valve.
JP2020142317A 2020-08-26 2020-08-26 Liquid gas type spray freezing device Pending JP2022038035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020142317A JP2022038035A (en) 2020-08-26 2020-08-26 Liquid gas type spray freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142317A JP2022038035A (en) 2020-08-26 2020-08-26 Liquid gas type spray freezing device

Publications (1)

Publication Number Publication Date
JP2022038035A true JP2022038035A (en) 2022-03-10

Family

ID=80497636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142317A Pending JP2022038035A (en) 2020-08-26 2020-08-26 Liquid gas type spray freezing device

Country Status (1)

Country Link
JP (1) JP2022038035A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344700U (en) * 1977-09-06 1978-04-17
JPH06174348A (en) * 1992-06-10 1994-06-24 Boc Group Inc:The Method and device for circulating heat transfer fluid and cooling heat load
JP2012062969A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Cooling device and method for joint part of oil-well steel pipe, and oil-well steel pipe manufacturing device
JP2019006264A (en) * 2017-06-26 2019-01-17 大陽日酸株式会社 Space environment testing device, and operational method for space environment testing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344700U (en) * 1977-09-06 1978-04-17
JPH06174348A (en) * 1992-06-10 1994-06-24 Boc Group Inc:The Method and device for circulating heat transfer fluid and cooling heat load
JP2012062969A (en) * 2010-09-16 2012-03-29 Sumitomo Metal Ind Ltd Cooling device and method for joint part of oil-well steel pipe, and oil-well steel pipe manufacturing device
JP2019006264A (en) * 2017-06-26 2019-01-17 大陽日酸株式会社 Space environment testing device, and operational method for space environment testing device

Similar Documents

Publication Publication Date Title
EP1474632B1 (en) A method for non-intermittent provision of fluid supercool carbon dioxide at constant pressure above 40 bar as well as the system for implementation of the method
US10683967B2 (en) Cooling of a supply pipe in a hydrogen refueling system
KR100271192B1 (en) Method for starting low temperature pump device and low temperature pump device
US8549877B2 (en) Apparatus and methods for decompressing and discharging natural gas utilizing a compressor or a temperature-actuated valve
US20110225986A1 (en) Systems and methods for gas supply and usage
US11187382B2 (en) Device and method for filling tanks
CN110792921A (en) Device and method for filling a container with a pressurized gas
CN111188994A (en) Apparatus and method for filling a tank with pressurized gas
US20230067726A1 (en) Pumping of liquid cryogen from a storage tank
CN110792924A (en) Device and method for filling a container with a pressurized gas
JP2022038035A (en) Liquid gas type spray freezing device
CN113227678B (en) Cooling system
JP7228983B2 (en) A BOG recondenser and LNG supply system comprising the same.
EP1139007B1 (en) Apparatus and method for regulating gas flow
CN115135920A (en) Device and method for generating a temperature-controlled cold gas flow
CN114688457B (en) Gas supply system of plasma processing device
JP7006459B2 (en) Cooling device and cooling system
EP3279544A1 (en) Regasification unit
KR20190081141A (en) Flow control stabilization apparatus and method for fuel gas supply system of ship
JP7257827B2 (en) Calorie control device
US20210348841A1 (en) Method for operating a reliquefaction system
JPH05185525A (en) Method of preparing a gas stream and its device
JP7227710B2 (en) Apparatus and method for refilling a container with pressurized gas
JP7352336B2 (en) Apparatus and method for replenishing containers with pressurized gas
CN117231905A (en) Marine carbon dioxide storage system and storage method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231003