JP2019003880A - 蓄電素子及び蓄電モジュール - Google Patents

蓄電素子及び蓄電モジュール Download PDF

Info

Publication number
JP2019003880A
JP2019003880A JP2017119262A JP2017119262A JP2019003880A JP 2019003880 A JP2019003880 A JP 2019003880A JP 2017119262 A JP2017119262 A JP 2017119262A JP 2017119262 A JP2017119262 A JP 2017119262A JP 2019003880 A JP2019003880 A JP 2019003880A
Authority
JP
Japan
Prior art keywords
wall
power storage
positive electrode
case
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017119262A
Other languages
English (en)
Inventor
謙志 河手
Kenji Kawate
謙志 河手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lithium Energy and Power GmbH and Co KG
Original Assignee
Lithium Energy and Power GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lithium Energy and Power GmbH and Co KG filed Critical Lithium Energy and Power GmbH and Co KG
Priority to JP2017119262A priority Critical patent/JP2019003880A/ja
Publication of JP2019003880A publication Critical patent/JP2019003880A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Separators (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】本発明は、エネルギー密度を大きくできる蓄電素子を提供することを課題とする。【解決手段】蓄電素子は、底壁及び天壁と、それぞれ前記天壁より面積が小さい前壁及び後壁と、それぞれ前記天壁より面積が大きい一対の側壁とを有する、直方体形状のケースと、前記ケース内に収容され、セパレータを介して積層された板状の複数の正極板及び負極板、並びに前記正極板及び前記負極板から前記前壁に向けて延びる正極タブ及び負極タブを有する積層電極体と、前記前壁に設けられ、前記正極タブ又は前記負極タブと電気的に接続される外部端子とを備え、前記底壁が設置面に設置され、前記前壁が前記底壁から立ち上がる。【選択図】図2

Description

本発明は、蓄電素子及び蓄電モジュールに関する。
携帯電話、自動車等の様々な機器に、充放電可能な蓄電素子が使用されている。特開2005−197279号公報は、奥行き(短側壁)が、高さ、及び幅(長側壁)に比して小さく、幅が高さよりも大きい直方体状のケースを有しこのケースの中に蓄電要素(正極板及び負極板をセパレータを介して積層して形成される電極体)を収容し、ケースの天壁に一対の外部電極(外部端子)を突設した複数の蓄電素子を、奥行き方向に複数並べて保持した蓄電モジュールを開示している。蓄電モジュールは、複数の蓄電素子の上側に配線部材を備える。
特開2005−197279号公報
電気自動車(EV)やプラグインハイブリッド電気自動車(PHEV)等の電気エネルギーを動力源とする車両は、大きなエネルギーを必要とするため、複数の蓄電素子を備える大容量の蓄電モジュールを搭載している。
このような車両に用いられる蓄電モジュールは、例えば座席の下部空間等、比較的高さが小さい空間に搭載できることが求められる。蓄電モジュールの容量を大きくするためには、蓄電モジュールの高さを小さくしたまま蓄電モジュールの幅及び/又は奥行きを大きくせざるをえない。このため、車両用蓄電モジュールの外形形状は、幅及び奥行きが高さに比して大きいものとなる。
蓄電モジュールの容量を大きくするための他のアプローチとして、エネルギー密度(単位容積当たりの蓄電量)を大きくする方法がある。具体的には、蓄電素子や蓄電モジュールのデッドスペース(蓄電に寄与しないスペース)を小さくして、相対的に蓄電要素(電極体)の容積を大きくすることにより、蓄電素子や蓄電モジュールのエネルギー密度を大きくすることができる。
特開2005−197279号公報に記載される従来の蓄電素子では、外部電極(外部端子)がケースの天壁に配設されるため、ケースの天壁と蓄電要素と間に(すなわち、ケース内部に)、蓄電要素と外部電極とを接続するための構造を配置するために所定高さの空間を確保する必要がある。さらに、このような蓄電素子を並べて配置する蓄電モジュールでは、ケースの上側(すなわち、ケース外部)にも外部電極同士を接続するために所定高さの空間を確保する必要がある。
従って、従来の蓄電モジュールでは、個々の蓄電素子において、天壁を挟んで、蓄電要素と外部電極との接続構造(ケース内部の構造)及び外部電極同士の接続構造(ケース外部の構造)が、高さ方向に所定の空間を占有する。個々の蓄電素子は、幅が高さより大きく、天壁は面積が比較的大きい。その天壁を挟んで、ケース内部及びケース外部において、蓄電要素と外部電極との接続構造及び外部電極同士の接続構造が空間を占有する。比較的面積が大きい天壁の、下側(ケース内部)と上側(ケース外部)に空間が必要なため、従来の蓄電素子及び蓄電モジュールでは、デッドスペースが大きくなりやすく、エネルギー密度の増大が制約されている。
本発明は、エネルギー密度を大きくできる蓄電素子及び蓄電モジュールを提供することを課題とする。
本発明の一態様に係る蓄電素子は、底壁及び天壁と、それぞれ前記天壁より面積が小さい前壁及び後壁と、それぞれ前記天壁より面積が大きい一対の側壁とを有する、直方体形状のケースと、前記ケース内に収容され、セパレータを介して積層された板状の複数の正極板及び負極板、並びに前記正極板及び前記負極板から前記前壁に向けて延びる正極タブ及び負極タブを有する積層電極体と、前記前壁に設けられ、前記正極タブ又は前記負極タブと電気的に接続される外部端子とを備え、前記底壁が設置面に設置され、前記前壁が前記底壁から立ち上がる。
本発明に係る蓄電素子は、エネルギー密度を大きくできると共に、新規な蓄電モジュール設計を実現可能とする。
本発明の一実施形態の蓄電素子を示す模式的斜視図である。 図1の蓄電素子の側壁に平行な面で切断した模式的断面図である。 図1の蓄電素子の底壁に平行な面で切断した模式的断面図である。 図1の蓄電素子を備える蓄電モジュールの模式的正面図である。 本発明の図1とは異なる実施形態の蓄電素子の模式的断面図である。 本発明の図1及び図5とは異なる実施形態の蓄電素子の模式的断面図である。 図6の蓄電素子の積層電極体の模式的平面図である。
本発明の一態様に係る蓄電素子は、底壁及び天壁と、それぞれ前記天壁より面積が小さい前壁及び後壁と、それぞれ前記天壁より面積が大きい一対の側壁とを有する、直方体形状のケースと、前記ケース内に収容され、セパレータを介して積層された板状の複数の正極板及び負極板、並びに前記正極板及び前記負極板から前記前壁に向けて延びる正極タブ及び負極タブを有する積層電極体と、前記前壁に設けられ、前記正極タブ又は前記負極タブと電気的に接続される外部端子とを備え、前記底壁が設置面に設置され、前記前壁が前記底壁から立ち上がる。
蓄電素子において、積層電極体を直方体形状のケースに収容することで、ケース内のデッドスペースを減らすことができる。外部端子を備える前壁は、ケースを形成する壁の中で最も面積が小さい。前壁は、設置面に設置される底壁から立ち上がり、その前壁に設けられた外部端子は、蓄電素子が設置面に設置された状態で蓄電素子の側方に配置される。前壁の面積が小さいため、積層電極体と前壁に設けられた外部端子との間の電気的接続のための構造がケース内で占有するスペースが比較的小さい。これらの特徴を、以下に詳しく述べる。
従来、長尺の単一正極板及び長尺の単一負極板を、長尺のセパレータを介して積層した状態でその積層物を巻回した、いわゆる巻回タイプの電極体が多く用いられている。巻回タイプの電極体は一対の円弧部を有するため、直方体形状のケースに収容したときに、ケース内でそれら円弧部のまわりにデッドスペースが生じる。上述した本発明の一態様に係る蓄電素子は、円弧部を有しない積層タイプの電極体を用いるため、巻回タイプの電極体と比較して、電極体を直方体形状のケースに収容したときにケース内に生じるデッドスペースが小さい。
本発明の一態様に係る蓄電素子は、積層タイプの電極体を用いることに加えて、正極タブと負極タブが、前壁に向けて同じ方向に延びている。これにより、正極タブと負極タブとが反対方向に延びる構造に比べて、ケース内に生じるデッドスペースが小さい。さらに、ケース前壁の面積が小さいため、積層電極体と前壁に設けられた外部端子との間の電気的接続のための構造がケース内で占有するスペースが比較的小さい。積層電極体と、ケース前壁に設けられた外部端子との電気接続のためには、所定の高さのスペースが確保されなければならない。ここで、本発明の一態様に係る蓄電素子は、ケース前壁の面積が小さい。そのため、積層電極体と前壁の外部端子との電気接続のために必要な所定の高さと前壁の面積との積であるケース内のデッドスペースが、ケース天壁に外部端子を設けていた従来の蓄電素子と比較して小さい。
蓄電素子が車両用の蓄電モジュールに適用されて蓄電モジュールの高さが制限される場合、蓄電素子のケース前壁の高さは大きくできない。車両用蓄電モジュール以外の蓄電モジュールの高さが制限される用途に、蓄電素子が適用される場合も同様に、ケース前壁の高さは大きくできない。これらの状況下で個々の蓄電素子の容量を大きくするためには、底壁、天壁及び一対の側壁の長さが大きくされる。ケース前壁の高さは低く維持されるので、積層電極体と外部端子との間の電気的接続のための構造が占有するケース内のスペース容積は大きくならない。従って、当該蓄電素子は、底壁、天壁及び一対の側壁の長さを大きくして容量を大きくするほど電気的接続のための構造がケース内で占有するスペースが相対的に小さくなるため、従来の構造に比してエネルギー密度をより大きくすることができる。
蓄電素子は、前記ケースの前記前壁と対向する後壁に、破裂弁が設けられてもよい。この構成によれば、外部端子が破裂弁に干渉しないため、破裂弁(及びその開口面積)を大きくすることができる。このため、通常予見される使用形態ではない特異な状況(例えば、蓄電素子が搭載された車両のクラッシュ時)において蓄電素子の内圧が所定値以上に上昇した時には破裂弁を開いて速やかに蓄電素子の内圧を下げることができるので、エネルギー密度を大きくしても安全性を保つことができる。
蓄電素子において、前記ケースが、前記底壁、天壁、後壁及び一対の側壁を形成するケース本体と、前記前壁を形成し前記ケース本体の開口を封止する蓋板とを有してもよい。この構成によれば、ケース本体の強度を高くすることが容易であり、特に後壁が変形しにくいため、破裂弁が開放する圧力の変動を抑制することができる。
蓄電素子において、前記外部端子が、前記前壁と略平行に延びる板状の集電部材を介して前記正極タブ又は前記負極タブと接続されてもよい。この構成によれば、積層電極体の本体(正極板、負極板及びセパレータの積層体)と前壁との間隔を比較的小さくして、蓄電素子のエネルギー密度を大きくすることができる。また、前記集電部材を用いることによって、集電部材と前記正極タブ又は前記負極タブとの接続面積を大きくすることが容易であり、前記正極タブ又は前記負極タブと外部端子との間の電気抵抗を小さくすることができる。
蓄電素子において、前記積層電極体は直方体形状を有し、前記ケースの底壁、天壁、前壁及び後壁のそれぞれの内面に対向する、略平面状の底面、天面、前面及び後面を有し、前記前面から延びる前記正極タブ及び前記負極タブが前記前面と前記前壁との間で湾曲又は屈曲していてもよい。記積層電極体の底面、天面及び後面は、絶縁シートを介して前記ケースの底壁、天壁及び後壁のそれぞれの内面に接してもよい。これらの特徴により、ケース内のデッドスペースをより小さくすることができる。絶縁シートは、樹脂フィルムであってもよいし、緩衝性を有する発泡性材料(多孔性材料)からなるクッションシートであってもよい。絶縁シートが、樹脂フィルムとクッションシートとを有してもよい。
蓄電素子において、前記複数の正極板は、前記セパレータから形成されるセパレータ袋にそれぞれ収容され、前記セパレータ袋は、前記底壁に近接する外縁部に固化部を有してもよい。正極板をセパレータ袋に収容することで、負極において電析によって生成される金属析出物(例えばリチウムデンドライト)の生成を抑制でき、正極板と負極板との微小短絡を防止できる。また、セパレータ袋の固化部が正極板を支持するので、ケース内における正極板の位置決めを確実に行える。固化部は、例えば、2枚以上のセパレータの樹脂層が溶融して固化した溶着部であってもよいし、2枚以上のセパレータが接着されて固化した接着固化部であってもよい。
蓄電素子において、前記セパレータは、前記正極板に対向する面に耐熱層又は対酸化層を有してもよい。この構成によれば、正極板と負極板との微小短絡をより確実に防止できる。また、2つの耐熱層又は対酸化層が対向するセパレータ袋の外縁は剛性が高いため、ケース内における正極板の位置決めをより確実に行える。対酸化層は、耐熱層よりも薄いものであってもよい。耐酸化層は、高電圧環境下でセパレータを保護するが、セパレータに十分な耐熱性を与えないものであってもよい。
蓄電素子は、前記前壁より面積が大きい前記底壁に当接する放熱部材をさらに備えてもよい。この構成によれば、放熱部材が蓄電素子からの設置面への放熱を促進するので、蓄電素子の温度上昇を抑制することができる。放熱部材としては、例えば、設置面に対する隙間のない接触を確保するべく、弾性を有する樹脂シート等を用いることができる。
本発明の別の態様に係る蓄電モジュールは、複数の前記蓄電素子と、前記複数の蓄電素子を前記側壁同士が対向するよう並べて保持する保持部材と、前記複数の蓄電素子の、前記前壁より面積が大きい前記底壁に当接する冷却部材とを備える。
当該蓄電モジュールは、ケースの天壁には外部端子が設けられていない。そのため、天壁の上側(蓄電素子の設置面とは反対側)に、複数の蓄電素子同士を電気的に接続する構造を配置するための空間を確保しなくてよい。保持部材が、複数の蓄電素子を最も面積が大きい側壁同士を対向させるよう並べて保持するため、外部端子を設けた前壁が、それぞれの蓄電素子の短手方向に並んで配置される。このため、複数の蓄電素子同士を電気的に接続するための部材が小さくてよい。また、当該蓄電モジュールは、側壁に次いで面積が大きい底壁に当接する冷却部材を備えるため、効率よく蓄電素子を冷却できる。複数の蓄電素子の底壁と冷却部材との間に、空気より熱伝導性の高い、樹脂シート等の伝熱シートが介在してもよい。伝熱シートは、弾性を有してもよい。
以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。図1乃至図3に、本発明の一実施形態に係る蓄電素子1を示す。
当該蓄電素子1は、直方体形状のケース2と、このケース2内に収容される積層電極体3と、ケース2に設けられる正極外部端子4及び負極外部端子5とを備える。ケース2内には、積層電極体3と共に電解液が封入される。
ケース2は、対向して配設される寸法が略等しい長方形状の底壁6及び天壁7を有する。ケース2はさらに、底壁6及び天壁7の短辺間を接続し、底壁6及び天壁7より面積が小さい長方形状の前壁8及び後壁9と、底壁6及び天壁7の長辺間を接続し、底壁6及び天壁7より面積が大きい長方形状の一対の側壁10とを有する。
図2に示すように、正極外部端子4及び負極外部端子5は、ケース2の前壁8に設けられる。前壁8に対向する後壁9には、ケース2の内圧が所定の圧力以上となった場合に開口する破裂弁(Rupture Valve)11が設けられている。
ケース2の材質としては、例えばアルミニウムやアルミニウム合金、ステンレス等の金属を用いることができる。
ケース2は、底壁6、天壁7、後壁9及び一対の側壁10を形成する有底筒状のケース本体と、前壁8を形成しケース本体の開口を封止する蓋板とを有する。有底筒状のケース本体によって底壁6、天壁7、後壁9及び一対の側壁10を一体に形成することで、ケース2の強度を向上することができる。また、破裂弁11を有する後壁9が、底壁6、天壁7、及び一対の側壁10と一体に形成されることで、後壁9の変形が抑制されるため、蓄電素子を大量生産したときの破裂弁11が開口する圧力のばらつきが小さくなる。
前壁8の長辺の長さは、当該蓄電素子1に許容される高さ以下とされ、例えば7cm以上11cm以下とすることができる。前壁8の短辺の長さは、積層電極体3の仕様に合わせて選択されるが、例えば1.5cm以上5cm以下とすることができる。また、底壁6の長辺の長さは、当該蓄電素子1に許容される長さ以下とされ、例えば10cm以上20cm以下とすることができる。
前壁8の厚さは、材質や寸法にもよるが、例えば0.5mm以上2mm以下とすることができる。後壁9の厚さは、例えば0.5mm以上1.8mm以下とすることができる。底壁6、天壁7、及び一対の側壁10の厚さは、例えば0.5mm以上1.5mm以下とすることができる。このように、ケース2は、四角筒状に一体に形成することができる底壁6、天壁7、及び一対の側壁10の厚さよりも前壁8及び後壁9の厚さを大きくすることが好ましい。また、底壁6、天壁7、及び一対の側壁10と一体に形成することができる後壁9の厚さよりも最後に接合される前壁8の厚さを大きくすることが好ましい。
後壁9に設けられる破裂弁11は、板厚を部分的に減じて形成される溝を有し、内圧上昇時にこの溝に沿って破断して、フラップ状(舌片状)の部分を形成し、このフラップ状の部分を外側に跳ね上げることで後壁9に開口を形成する。
破裂弁11は、後壁9を構成する材料に溝を設けることによって形成してもよく、後壁9に形成した開口に予め別の部材に溝を形成した破裂弁11を溶接してもよい。破裂弁9は、蓄電素子1の内圧上昇時に速やかに内圧を下げることができるよう、開口面積が大きいことが好ましい。正極外部端子4及び負極外部端子5が設けられる前壁8とは反対側の後壁9に破裂弁9を設けることで、外部端子が破裂弁9に干渉しないため、破裂弁9の大きさ、形状、配置位置について設計自由度が高い。好ましくは、破裂弁9の開口面積は、後壁9の外形(輪郭)の面積の、4%以上18%以下であり、より好ましくは、10%以上16%以下である。
図2及び図3に示すように、積層電極体3は、積層された方形板状の複数の正極板12、負極板13及びセパレータ14、並びに正極板12及び負極板13から前壁8に向けて延びる正極タブ15及び負極タブ16を有する。より詳しくは、積層電極体3は複数の正極板12及び負極板13がセパレータ14を介して交互に積層されて概略直方体形状に形成される本体と、この本体から延びる正極タブ15及び負極タブ16とを有する。積層される正極板12の枚数は、当該蓄電素子を高容量化するために、例えば40枚以上60枚以下とすることができる。負極板13の枚数も同様である。
積層電極体3は、直方体形状を有し、ケース2の底壁6、天壁7、前壁8、及び後壁9のそれぞれの内面に対向する、略平面状の底面、天面、前面及び後面を有する。積層電極体3の前面から、正極タブ15及び負極タブ16が、ケース2の前壁8に向けて延びている。積層電極体3の底面、天面、及び後面は、絶縁シート(図示せず)を介してケース2の底壁6、天壁7、及び後壁9のそれぞれの内面に接している。絶縁シートが樹脂フィルムの場合、その厚みは、好ましくは0.5mm以下であり、より好ましくは0.15mm以下である。
正極板12は、導電性を有する箔状乃至シート状の正極集電体と、この正極集電体の両面に積層される正極活物質層とを有する。
正極板12の正極集電体の材質としては、アルミニウム、銅、鉄、ニッケル等の金属又はそれらの合金が用いられる。これらの中でも、導電性の高さとコストとのバランスからアルミニウム、アルミニウム合金、銅及び銅合金が好ましく、アルミニウム及びアルミニウム合金がより好ましい。また、正極集電体の形状としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極集電体としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS−H4000(2014)に規定されるA1085P、A3003P等が例示できる。
正極板12の正極活物質層は、正極活物質を含むいわゆる合材から形成される多孔性の層である。また、正極活物質層を形成する合材は、必要に応じて導電剤、結着剤(バインダ)、増粘剤、フィラー等の任意成分を含む。
前記正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(LiCoO、LiNiO、LiMn、LiMnO、LiNiαCo(1−α)、LiNiαMnβCo(1−α−β)、LiNiαMn(2−α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは他の元素又はアニオン種で一部が置換されていてもよい。正極活物質層においては、これら化合物の一種を単独で用いてもよく、二種以上を混合して用いてもよい。また、正極活物質の結晶構造は、層状構造又はスピネル構造であることが好ましい。
負極板13は、導電性を有する箔状乃至シート状の負極集電体と、この負極集電体の両面に積層される多孔性の負極活物質層とを有する。
負極板13の負極集電体の材質としては、銅又は銅合金が好ましい。また、負極集電体の形状としては、箔が好ましい。つまり、負極板13の負極集電体としては銅箔が好ましい。負極集電体として用いられる銅箔としては、例えば圧延銅箔、電解銅箔等が例示される。
負極活物質層は、負極活物質を含むいわゆる合材から形成される多孔性の層である。また、負極活物質層を形成する合材は、必要に応じて導電剤、結着剤(バインダ)、増粘剤、フィラー等の任意成分を含む。
負極活物質としては、リチウムイオンを吸蔵及び放出することができる材質が好適に用いられる。具体的な負極活物質としては、例えばリチウム、リチウム合金等の金属;金属酸化物;ポリリン酸化合物;黒鉛、非晶質炭素(易黒鉛化炭素又は難黒鉛化性炭素)等の炭素材料などが挙げられる。
前記負極活物質の中でも、正極板12と負極板13との単位対向面積当たりの放電容量を好適な範囲とする観点から、Si、Si酸化物、Sn、Sn酸化物又はこれらの組み合わせを用いることが好ましく、Si酸化物を用いることが特に好ましい。なお、SiとSnとは、酸化物にした際に、黒鉛の3倍程度の放電容量を持つことができる。
セパレータ14は、電解液が浸潤するシート状乃至フィルム状の材料から形成される。セパレータ14を形成する材料としては、例えば織布、不織布等を用いることもできるが、典型的には多孔性を有するシート状乃至フィルム状の樹脂が用いられる。このセパレータ14は、正極板12と負極板13とを隔離すると共に、正極板12と負極板13との間に電解液を保持する。
このセパレータ14の主成分としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、エチレン−酢酸ビニル共重合体、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、塩素化ポリエチレン等のポリオレフィン誘導体、エチレン−プロピレン共重合体等のポリオレフィン、ポリエチレンテレフタレートや共重合ポリエステル等のポリエステルなどを採用することができる。中でも、セパレータ14の主成分としては、耐電解液性、耐久性及び溶着性に優れるポリエチレン及びポリプロピレンが好適に用いられる。
セパレータ14は、両面又は片面(好ましくは正極板12に対向する面)に耐熱層を有することが好ましい。これにより、セパレータ14の熱による破損を防止して、正極板12と負極板13との短絡をより確実に防止することができる。
セパレータ14の耐熱層は、多数の無機粒子と、この無機粒子間を接続するバインダとを含む構成とすることができる。
無機粒子の主成分としては、例えばアルミナ、シリカ、ジルコニア、チタニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄等の酸化物、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレイ、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウムなどが挙げられる。中でも、耐熱層の無機粒子の主成分としては、アルミナ、シリカ及びチタニアが特に好ましい。
正極タブ15及び負極タブ16は、正極板12及び負極板13の正極集電体及び負極集電体を、活物質層が積層されている方形状の領域からそれぞれ帯状に突出するよう延長して形成することができる。
図2に示すように、正極タブ15と負極タブ16とは、積層電極体3の本体の一辺から積層方向視で互いに重ならないよう突出する。また、正極タブ15及び負極タブ16は、各正極板12及び負極板13から延び、それらの先端部付近で1つに束ねられる(図3参照)。
正極外部端子4には正極集電部材17を介して正極タブ15が接続され、負極外部端子5には負極集電部材18を介して負極タブ16が接続される。
正極外部端子4及び負極外部端子5は、前壁8の外側に配置され、外部のバスバーや配線が接続される板状の端子部と、この端子部から延び、前壁8を貫通する軸部とを有してもよい。
正極外部端子4及び負極外部端子5は、前壁8に電気的に接触せず、かつ電解液を漏出させないよう、絶縁性の外側ガスケット19を挟んで前壁8に気密に固定される。
この正極外部端子4及び負極外部端子5の材質としては、導電性を有する材料とされる。また、正極外部端子4及び負極外部端子5は、少なくともケース2内に露出する部分の材質が正極集電体、負極集電体と同種の金属とされることが好ましい。
図2に示すように、正極集電部材17及び負極集電部材18は、板状に形成されて正極外部端子4及び負極外部端子5の内側の端部に取り付けられ、内側ガスケット20を介して前壁8と略平行に延びる。この正極集電部材17及び負極集電部材18の正極外部端子4及び負極外部端子5への取り付けは、例えば正極集電部材17及び負極集電部材18を貫通する正極外部端子4及び負極外部端子5の端部を押し広げるかしめ等によって行うことができる。かしめによって、正極外部端子4及び負極外部端子5の前壁8への固定と、正極集電部材17及び負極集電部材18の前壁8への固定とを兼ねることができる。
正極タブ15は、正極集電部材17の正極外部端子4への取り付け構造を避けて、正極集電部材17の前壁8と略平行に延びる部分に接続される。負極タブ16は、負極集電部材18の負極外部端子への取り付け構造を避けて、負極集電部材18の前壁8と略平行に延びる部分に接続される。本実施形態における正極タブ15及び負極タブ16は、積層電極体3の、正極外部端子4及び負極外部端子5の内側端部に正対しない領域から延びている。正極タブ15及び負極タブ16は、先端部が前壁8と平行になるよう折り曲げられて正極集電部材17及び負極集電部材18に接続される。前壁8を貫通する方向に見て(前壁の法線方向視で)、積層電極体3と正極集電部材17との間に、正極タブ15の湾曲部が形成され、積層電極体3と負極数電部材18との間に負極タブ16の湾曲部が形成される。湾曲部は、屈曲部であってもよい。正極タブ15及び負極タブ16は、図3に示す断面図において、前壁8に略平行な第一直線部と、積層電極体3の前壁8と対向する面(前面)に略平行な第二直線部と、第一直線部と第二直線部とを繋ぐ湾曲部又は屈曲部を有してもよい。
正極集電部材17及び負極集電部材18に対する正極タブ15及び負極タブ16の接続は、例えば超音波溶接、レーザー溶接、かしめ等によって行うことができる。
正極集電部材17は、正極集電体と同種の金属から形成されることが好ましく、負極集電部材18は、負極集電体と同種の金属から形成されることが好ましい。
このように、正極タブ15及び負極タブ16を正極集電部材17及び負極集電部材18介して正極外部端子4及び負極外部端子5に接続することによって、正極タブ15及び負極タブ16を接続するための構造と、正極外部端子4及び負極外部端子5を前壁に固定するための構造とが前壁の法線方向視で重複しないようにして、積層電極体3の本体と前壁8との間隔を小さくすることができる。これにより、ケース2の中での積層電極体3の本体の容積を大きくして、当該蓄電素子1のエネルギー密度を大きくすることができる。
また、前壁8と平行に延びる正極集電部材17及び負極集電部材18を用いることによって、正極タブ15及び負極タブ16との接続面積を大きくすることが容易であり、正極外部端子4及び負極外部端子5と正極タブ15及び負極タブ16との間の電気抵抗を小さくすることができる。
積層電極体3と共にケース2に封入される電解液としては、蓄電素子に通常用いられる公知の電解液が使用でき、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)等の環状カーボネート、又はジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等の鎖状カーボネートを含有する溶媒に、リチウムヘキサフルオロホスフェート(LiPF)等を溶解した溶液を用いることができる。
以上の構成を有する蓄電素子1は、積層電極体3を直方体形状のケース2に収容し、正極タブ15及び負極タブ16を積層電極体3から前壁8に向けて同じ方向に延ばしている。正極外部端子4及び負極外部端子5が設けられる前壁8の面積が小さい。そのため、正極集電部材17及び負極集電部材18を含む、正極タブ15及び負極タブ16を正極外部端子4及び負極外部端子5に接続するための構造が、占有するスペースが比較的小さい。
本発明者は、電極体のタイプと、外部端子を設ける位置が異なる、同一サイズ(PHEV2サイズ)の複数の蓄電素子について、電極体の体積がケース容積に占める割合(体積占有率)を検討した。具体的には、電極体のタイプは巻回タイプ又は積層タイプとし、外部端子の位置は天壁又は前壁とした。なお、巻回タイプの電極体は、巻回の軸が外部端子を設ける壁に垂直な方向となるよう配置した。なお、電極体の体積占有率は、電極体の正極活物質が形成されている領域に基づいて算出した。この結果を次の表1にまとめて示す。
Figure 2019003880
このように、本発実施形態の構成(サンプル4)が、最も体積占有率を大きくでき、蓄電素子のエネルギー密度を大きくできる。
蓄電素子1が、車両用の蓄電モジュールに適用されて蓄電モジュールの高さが制限される場合、当該蓄電素子1の容量を大きくするためには、前壁8の高さは大きくされず、底壁6、天壁7、及び一対の側壁10の長さ(前壁8と後壁9との間隔)が大きくされる。よって、当該蓄電素子1は、その容量を大きくしても、積層電極体3の正極タブ15及び負極タブ16を正極外部端子4及び負極外部端子5に接続するための構造が占有するスペースが大きくならない。
このように、当該蓄電素子1は、容量を大きくするほど内部の電気的接続のための構造が占有するスペースが相対的に小さくなるので、従来の構造に比してエネルギー密度をより大きくすることができる。
当該蓄電素子1は、正極外部端子4及び負極外部端子5が設けられる前壁8と対向する後壁9に破裂弁11を設けるため、正極外部端子4及び負極外部端子5が破裂弁11に干渉しない。このため、当該蓄電素子1は、破裂弁11の開口面積を大きくすることができる。この結果、当該蓄電素子1は、通常予見される使用形態ではない特異な状況においてケース2の内圧が所定の圧力に達したときに確実且つ迅速に破裂弁11が開口し、速やかに内圧を下げることができるので、エネルギー密度を大きくしても安全性を保つことができる。
図4に、本発明の別の態様に係る蓄電モジュールを示す。
当該蓄電モジュールは、複数の前記蓄電素子1と、この複数の蓄電素子1を側壁10同士が対向するよう並べて保持するフレーム21と、複数の蓄電素子1の底壁6に当接する冷却板22とを備える。当該蓄電モジュールは、複数の蓄電素子1を電気的に直列に接続するよう、正極外部端子4及び負極外部端子5に取り付けられる複数のバスバー23をさらに備える。
当該蓄電モジュールは、正極外部端子4及び負極外部端子5が面積が小さい前壁8に設けられた複数の蓄電素子1を備えるため、この複数の蓄電素子1間を電気的に接続するためのバスバー23が占有するスペースも小さくなる。このため、当該蓄電モジュールは、相対的に蓄電素子1の積層電極体3の本体の容積を大きくすることができ、エネルギー密度を大きくすることができる。
当該蓄電モジュールはフレーム21によって、複数の蓄電素子1を、最も面積が大きい側壁10同士を対向させるよう並べて保持するため、正極外部端子4及び負極外部端子5を設けた前壁8が、それぞれの蓄電素子1の短手方向に並んで配置される。このため、当該蓄電モジュールは、複数の蓄電素子1間を電気的に接続するバスバー23を小さくできる。
冷却板22は、蓄電素子1が載置される載置面を有し、蓄電素子1の底壁6に当接して底壁6から蓄電素子1の熱を奪う。冷却板2は、内部に冷媒が通る流路を備えてもよい。冷却部材は、図4に示す冷却板22には限定されない。冷却部材は、水冷タイプのものでもよいし、空冷タイプのものでもよい。冷却効果を高める視点からは、水冷タイプ(内部に液体冷媒が通るタイプ)の冷却部材が好ましい。冷却部材は、蓄電素子1の設置面として機能してもよい。冷却部材(設置面)は、図4に示すように重力方向に対して略直交する方向に(略水平方向に)延びてもよいが、これに限定はされない。例えば、冷却部材(設置面)は、重力方向に対して略平行に延びてもよい。
当該蓄電モジュールは、側壁に次いで面積が大きい底壁6に当接する冷却板22を備えるため、蓄電素子1を効率よく冷却することができるので、発熱を伴う、蓄電素子1に対する比較的大きい入出力(ハイレート充放電)を許容することができる。
図5に、本発明の他の実施形態に係る蓄電素子1aを示す。当該蓄電素子1aは、直方体形状のケース2aと、このケース2a内に収容される積層電極体3と、ケース2aに設けられる負極外部端子5とを備える。ケース2a内には、積層電極体3と共に電解液が封入される。
図5の蓄電素子1aにおける積層電極体3、負極外部端子5及び電解液は、図1の蓄電素子1における積層電極体3、負極外部端子5及び電解液と同様であってもよい。
ケース2aは、対向して配設される寸法が略等しい長方形状の底壁6及び天壁7を有する。ケース2aはさらに、底壁6及び天壁7の短辺間を接続し、天壁7より面積が小さい長方形状の前壁8a及び後壁9と、底壁6及び天壁7の長辺間を接続し、天壁7より面積が大きい長方形状の一対の側壁10とを有する。
負極外部端子5は、ケース2aの前壁8aに設けられる。前壁8aに対向する後壁9には、ケース2aの内圧が所定の圧力以上となった場合に開口する破裂弁11が設けられている。
図5の蓄電素子1aにおけるケース2aの底壁6、天壁7、後壁9(破裂弁11を含む)及び一対の側壁10の構成は、図1の蓄電素子1におけるケース2の底壁6、天壁7、後壁9及び一対の側壁10の構成と同様であってもよい。
当該蓄電素子1aでは、積層電極体3の正極タブ15は、ケース2aの前壁8aの内面に接続されている。一方、積層電極体3の負極タブ16は、負極集電部材18を介して負極外部端子5に接続されている。
図5の蓄電素子1aにおける負極外部端子5及び負極集電部材18の構成(前壁8aに対する固定構造及び負極タブ16との接続を含む)は、図1の蓄電素子1における負極外部端子5及び負極集電部材18の構成と同様であってもよい。
本実施形態に係る蓄電素子1aは、ケース2a(主に前壁8a)が正極外部端子として使用される。
図5の蓄電素子1aは、底壁6から立ち上がる面積が小さい前壁8aに積層電極体3の正極タブ15が直接接続され、前壁8aそのものが正極外部端子として機能する。通常予見される使用形態ではない特異な状況(例えば、蓄電素子が搭載された車両のクラッシュ時)において蓄電素子を急速放電するために、蓄電素子1aの外部に放電機構(外部短絡機構)を設けることが検討されている。本実施形態によれば、前壁8aそのものが正極外部端子として機能するため、放電機構を設置するための設計自由度が高い。
図6に、本発明のさらに他の実施形態に係る蓄電素子1bを示す。当該蓄電素子1bは、直方体形状のケース2と、このケース2内に収容される積層電極体3bと、ケース2に設けられる正極外部端子及び負極外部端子(不図示)と、ケース2の底壁6の外面に積層される放熱部材24とを備える。
図6の蓄電素子1bにおけるケース2、正極外部端子及び負極外部端子の構成は、図1の蓄電素子1におけるケース2、正極外部端子4及び負極外部端子5の構成と同様とすることができる。このため、図6の蓄電素子1bについて、図1の蓄電素子1と同じ構成要素には同じ符号を付して重複する説明を省略する。
ケース2に収容された積層電極体3bは、積層された方形板状の複数の正極板12、負極板13及びセパレータ14b、並びに図7に示すように正極板12及び負極板13から前壁に向けて延びる正極タブ15及び負極タブ16を有する。図6の蓄電素子1bにおける正極板12、負極板13、正極タブ15及び負極タブ16の形状は、図1の蓄電素子1における正極板12、負極板13、正極タブ15及び負極タブ16と同様とすることができる。
この積層電極体3bにおけるセパレータ14bは、正極板12を挟んで対向し合う複数の対を形成し、各対の外縁部(外縁近傍)に溶着部(第1溶着部A1及び第2溶着部A2)が設けられることによって互いに接続され、正極板12を収容するセパレータ袋25を形成している。つまり、積層電極体3bは、正極板12をセパレータ袋25の中に収容した袋詰正極板と、負極板13とを交互に積層したものである。なお、セパレータ袋25を形成する2枚のセパレータ14bは、1枚のシートを2つ折りにしたものであってもよい。この場合、シートの折目が、正極タブ15及び負極タブ16と反対側(ケース2の後壁近傍)に配置されることが好ましい。
この積層電極体3bにおけるセパレータ14bは、シート状の樹脂層26と、この樹脂層26に積層される耐熱層27とを有する。各セパレータ14bは、耐熱層27が正極板12に対向するよう配置される。つまり、セパレータ袋25を形成する2枚のセパレータ14bは、耐熱層27同士が対向するよう配置される。セパレータ14bの平面形状は、正極板12を覆い隠すことができればよいが、典型的には方形状とされる。
溶着部A1,A2は、正極板12を挟んで対向し合う2枚のセパレータ14bをその外縁部(外縁近傍)の溶着領域で互いに溶着することにより形成される。この溶着部A1,A2では、耐熱層27が破壊されて樹脂層26同士が溶着している。溶着部A1,A2は、少なくとも正極板12の正極タブ16が延びる辺を除く外縁に沿って、連続的又は間欠的に形成されることが好ましい。より具体的には、セパレータ14bの外縁の中で、ケース2の底壁6及び天壁に近接する外縁部には、線状に連続的に延在する第1溶着部A1が形成され、ケース2の前壁及び後壁に近接する外縁部には、間隔を空けて断続的に配置される複数の第2溶着部A2が形成されることが好ましい。
セパレータ袋25は、溶着部A1,A2が正極板12の周囲に形成されることによって、正極板12を2枚のセパレータ14の間の所定位置に正確に保持する。これにより、ガイド等を用いてセパレータ5の外縁を負極板13の外縁に位置合わせすることで、正極板12を負極板13の投影領域内に確実に保持することができる。2枚のセパレータ14が溶着された溶着部A1,A2は、溶着されずに重ね合わされた2枚のセパレータ15よりも剛性が大きくなるので、溶着部A2をケース底壁6の内面に直接的又は間接的に当接させることにより、袋詰正極板を比較的容易かつ正確にケース2内に位置決めすることができる。また、セパレータ袋25は、断続的に形成される第2溶着部A2を有していることによって、この第2溶着部A2の間の非溶着部からセパレータ袋25の内部に電解液を供給することができる。
放熱部材24は、ケース2の底壁6から載置面(例えば図5の蓄電モジュールの冷却板22等)への放熱を促進できるものであればよく、例えば柔軟な樹脂、高分子ゲル等から形成され、蓄電素子1bと載置面との接触面積を増大することができる伝熱シート等を用いることができる。
[その他の実施形態]
前記実施形態は、本発明の構成を限定するものではない。従って、前記実施形態は、本明細書の記載及び技術常識に基づいて前記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
図2に示す蓄電素子1の後壁9や、図5に示す蓄電素子1aの後壁9に、図6に示す放熱部材24が設けられてもよい。
セパレータの固化部は、2枚以上のセパレータが溶融固化又は接着固化したものであってもよい。
セパレータが、耐熱層に代えて対酸化層を有する場合、セパレータ同士の接合が容易になる。
集電部材を介してタブを外部端子に接続される構成に限定されず、積層電極体の正極タブ及び負極タブを正極外部端子及び負極外部端子に直接接続してもよい。
ケースは、有底筒状のケース本体と蓋体とによって構成されるものに限定されない。例として、本発明に係る蓄電素子のケースは、底壁、天壁及び一対の側壁を形成する筒状体と、この筒状体の両端の開口を封止して前壁及び底壁をそれぞれ形成する一対の蓋体とを有するものであってもよい。
破裂弁は、例えば、前壁の正極外部端子と負極外部端子との間など、後壁以外の壁に設けられていてもよい。
蓄電素子は、前壁の底壁に近い領域に正極外部端子が設けられ、前壁の天壁に近い領域に負極外部端子が設けられてもよい。
蓄電モジュールは、前壁の天壁に近い領域に正極外部端子が設けられた蓄電素子と、前壁の底壁に近い領域に正極外部端子が設けられた蓄電素子とを交互に配置するものであってもよい。
本発明に係る蓄電素子及び蓄電モジュールは、車両用の動力源として特に好適に利用することができる。
1,1a,1b 蓄電素子
2,2a ケース
3,3b 積層電極体
4 正極外部端子
5 負極外部端子
6 底壁
7 天壁
8,8a 前壁
9 後壁
10 側壁
11 破裂弁
12 正極板
13 負極板
14,14b セパレータ
15 正極タブ
16 負極タブ
17 正極集電部材
18 負極集電部材
19 外側ガスケット
20 内側ガスケット
21 フレーム(保持部材)
22 冷却板(冷却部材)
23 バスバー
24 放熱部材
25 セパレータ袋
26 樹脂層
27 耐熱層

Claims (10)

  1. 底壁及び天壁と、それぞれ前記天壁より面積が小さい前壁及び後壁と、それぞれ前記天壁より面積が大きい一対の側壁とを有する、直方体形状のケースと、
    前記ケース内に収容され、セパレータを介して積層された板状の複数の正極板及び負極板、並びに前記正極板及び前記負極板から前記前壁に向けて延びる正極タブ及び負極タブを有する積層電極体と、
    前記前壁に設けられ、前記正極タブ又は前記負極タブと電気的に接続される外部端子と、を備え、
    前記底壁が設置面に設置され、前記前壁が前記底壁から立ち上がる蓄電素子。
  2. 前記ケースの前記後壁に、破裂弁が設けられる請求項1に記載の蓄電素子。
  3. 前記ケースが、前記底壁、天壁、後壁及び一対の側壁を形成するケース本体と、前記前壁を形成し前記ケース本体の開口を封止する蓋板とを有する請求項2に記載の蓄電素子。
  4. 前記外部端子が、前記前壁と略平行に延びる板状の集電部材を介して前記正極タブ又は前記負極タブと接続される請求項1、請求項2又は請求項3に記載の蓄電素子。
  5. 前記積層電極体は直方体形状を有し、前記ケースの底壁、天壁、前壁及び後壁のそれぞれの内面に対向する、略平面状の底面、天面、前面及び後面を有し、前記前面から延びる前記正極タブ及び前記負極タブが前記前面と前記前壁との間で湾曲又は屈曲している、請求項1から請求項4のいずれか1項に記載の蓄電素子。
  6. 前記積層電極体の底面、天面及び後面は、絶縁シートを介して前記ケースの底壁、天壁及び後壁のそれぞれの内面に接している、請求項5に記載の蓄電素子。
  7. 前記複数の正極板は、前記セパレータから形成されるセパレータ袋にそれぞれ収容され、前記セパレータ袋は、前記底壁に近接する外縁部に固化部を有する、請求項1から請求項6のいずれか1項に記載の蓄電素子。
  8. 前記セパレータは、前記正極板に対向する面に耐熱層又は対酸化層を有する、請求項7に記載の蓄電素子。
  9. 前記前壁より面積が大きい前記底壁に当接する放熱部材をさらに備える請求項1から請求項6のいずれか1項に記載の蓄電素子。
  10. 請求項1から請求項8のいずれか1項に記載の複数の蓄電素子と、
    前記複数の蓄電素子を前記側壁同士が対向するよう並べて保持する保持部材と、
    前記複数の蓄電素子の、前記前壁より面積が大きい前記底壁に当接する冷却部材と
    を備える蓄電モジュール。
JP2017119262A 2017-06-19 2017-06-19 蓄電素子及び蓄電モジュール Pending JP2019003880A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017119262A JP2019003880A (ja) 2017-06-19 2017-06-19 蓄電素子及び蓄電モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017119262A JP2019003880A (ja) 2017-06-19 2017-06-19 蓄電素子及び蓄電モジュール

Publications (1)

Publication Number Publication Date
JP2019003880A true JP2019003880A (ja) 2019-01-10

Family

ID=65007968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017119262A Pending JP2019003880A (ja) 2017-06-19 2017-06-19 蓄電素子及び蓄電モジュール

Country Status (1)

Country Link
JP (1) JP2019003880A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021006926T5 (de) 2021-01-29 2023-11-23 Gs Yuasa International Ltd. Energiespeichervorrichtung und Verfahren zur Verwendung der Energiespeichervorrichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021006926T5 (de) 2021-01-29 2023-11-23 Gs Yuasa International Ltd. Energiespeichervorrichtung und Verfahren zur Verwendung der Energiespeichervorrichtung

Similar Documents

Publication Publication Date Title
US11387482B2 (en) Energy storage device and energy storage module
EP3035434B1 (en) Battery module
US11509015B2 (en) Energy storage module and energy storage device
JP6686286B2 (ja) 角形二次電池及びそれを用いた組電池
EP3933993A1 (en) Battery, electrical apparatus and cell installation method
WO2020175201A1 (ja) 蓄電装置
KR101821488B1 (ko) 전지
JP2019003880A (ja) 蓄電素子及び蓄電モジュール
JP2019003891A (ja) 蓄電素子、蓄電装置及び蓄電素子の製造方法
JP5664068B2 (ja) 積層型電池、および積層型電池の製造方法
JP2018098154A (ja) 蓄電素子、蓄電装置及び蓄電素子の製造方法
JP2022024044A (ja) 積層電極体の製造方法及び蓄電素子の製造方法
JP2018081792A (ja) 蓄電素子
JP2017162711A (ja) 電池モジュール及び組電池
JP2009016235A (ja) 蓄電装置
WO2018116735A1 (ja) 蓄電装置
JP6950416B2 (ja) 蓄電モジュール及び蓄電パック
JP2014146467A (ja) 蓄電装置
JP6726398B2 (ja) 蓄電素子
JP6673858B2 (ja) 蓄電素子
JP2024017914A (ja) 電池
WO2018043406A1 (ja) 積層電極体及び蓄電素子
JP2019021434A (ja) 蓄電素子
JP2024024498A (ja) 電池および該電池を備えた組電池
JP2024508121A (ja) 安全性が強化されたバッテリーモジュール