JP2019001986A - フッ化物蛍光体とそれを用いた発光装置 - Google Patents

フッ化物蛍光体とそれを用いた発光装置 Download PDF

Info

Publication number
JP2019001986A
JP2019001986A JP2018000777A JP2018000777A JP2019001986A JP 2019001986 A JP2019001986 A JP 2019001986A JP 2018000777 A JP2018000777 A JP 2018000777A JP 2018000777 A JP2018000777 A JP 2018000777A JP 2019001986 A JP2019001986 A JP 2019001986A
Authority
JP
Japan
Prior art keywords
light
fluoride
phosphor
fluoride phosphor
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018000777A
Other languages
English (en)
Other versions
JP6964524B2 (ja
JP2019001986A5 (ja
Inventor
真義 市川
Masayoshi Ichikawa
真義 市川
良祐 近藤
Ryosuke Kondo
良祐 近藤
秀幸 江本
Hideyuki Emoto
秀幸 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017117160A external-priority patent/JP6273395B1/ja
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2018000777A priority Critical patent/JP6964524B2/ja
Publication of JP2019001986A publication Critical patent/JP2019001986A/ja
Publication of JP2019001986A5 publication Critical patent/JP2019001986A5/ja
Application granted granted Critical
Publication of JP6964524B2 publication Critical patent/JP6964524B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】良好な外部量子効率を有し、かつ白色LEDを安定的に作製するために適したフッ化物蛍光体の提供。【解決手段】組成が一般式(1)で表され、安息角が30°以上60°以下であるフッ化物蛍光体。一般式:A2M(1-n)F6:Mn4+n・・・(1)(0<n≦0.1、元素Aは少なくともKを含有する1種以上のアルカリ金属元素であり、元素MはSi単体、Ge単体、又はSiとGe、Sn、Ti、Zr及びHfからなる群から選ばれる1種以上の元素との組み合わせである。)【選択図】なし

Description

本発明は、青色光により励起され赤色に発光するフッ化物蛍光体とそれを用いた発光装置に関する。
近年、白色光源として、発光ダイオード(Light emitting diode:LED)と蛍光体を組み合わせた白色発光ダイオード(白色LED)がディスプレイのバックライト光源や照明装置に適用されている。その中でも、InGaN系青色LEDを励起源とした白色LEDが幅広く普及している。
白色LEDに用いられる蛍光体は、青色LEDの発光で効率良く励起され、可視光の蛍光を発光するものである必要がある。白色LED用蛍光体としては、青色光で効率良く励起され、ブロードな黄色発光を示すCe付活イットリウムアルミニウムガーネット(YAG)蛍光体が代表的な例として挙げられる。YAG蛍光体単独で青色LEDと組み合わせることにより疑似白色が得られ、また幅広い可視光領域の発光を示す。このことからYAG蛍光体を含む白色LEDは照明及びバックライト光源に使用されているが、赤色成分が少ないために、照明用途では演色性が低く、バックライト用途では色再現範囲が狭いという問題がある。
演色性及び色再現性を改善する目的で、青色LEDで励起可能な赤色蛍光体と、Eu付活β型サイアロンやオルソシリケートなどの緑色蛍光体とを組み合わせた白色LEDも開発されている。
そうした白色LED用の赤色蛍光体としては、蛍光変換効率が高く、高温での輝度低下が少なく、化学的安定性に優れることから、Eu2+を発光中心とした窒化物若しくは酸窒化物蛍光体が多く用いられており、代表的なものとして、化学式Sr2Si58:Eu2+、CaAlSiN3:Eu2+、(Ca,Sr)AlSiN3:Eu2+で示される蛍光体が挙げられる。しかしながら、Eu2+を用いた蛍光体の発光スペクトルはブロードであり、視感度が低い発光成分も多く含まれるために、蛍光変換効率が高い割には白色LEDの輝度がYAG蛍光体単独使用の場合に比べて大きく低下してしまう。また、特にディスプレイ用途に用いる蛍光体は、カラーフィルターとの組み合わせの相性が求められるので、ブロードな(シャープでない)発光スペクトルを有する蛍光体は好ましくない問題がある。
シャープな発光スペクトルを有する赤色蛍光体の発光中心としては、Eu3+やMn4+が挙げられる。中でも、K2SiF6の様なフッ化物結晶にMn4+を固溶させて付活することで得られる赤色蛍光体は、青色光で効率良く励起され、半値幅の狭いシャープな発光スペクトルを有する。このため白色LEDの輝度を低下させることなく、優れた演色性や色再現性が実現できることから、近年、K2SiF6:Mn4+蛍光体の白色LEDへの適用検討が盛んに行われている。(非特許文献1参照)
また特許文献1には、ケイ素を含む所定の組成を有するフッ化物蛍光体であって、重量メジアン径が35μm以上で嵩密度が0.80g/cm3以上であるものが開示されている。
特許第6024850号公報
A.G.Paulusz,Journal of The Electrochemical Society,1973年、第120巻、第7号、p.942−947
液晶ディスプレイのバックライトや照明などの発光装置では発光特性の改善が常に求められ、そのために各部材の特性向上が必要とされており、蛍光体も発光特性の改善が求められている。またK2SiF6:Mn4+蛍光体を用いた白色LEDにおいては、発光特性のバラつきが大きいという課題がある。
また上記特許文献1に開示されているフッ化物蛍光体でも、実際には十分な輝度が安定して得られず、白色LED製品としての歩留りが悪いという問題が発生することを本発明者らは見出した。
このため良好な外部量子効率を有し、かつ白色LEDを安定的に作製するために適したフッ化物蛍光体が希求されている。
本発明者らは、フッ化物蛍光体の物性を種々検討した結果、特定の粉体特性を有するフッ化物蛍光体を使用することで、外部量子効率に優れた白色LEDを安定的に作製出来ることを見出し、本発明に至った。
すなわち本発明は、以下を提供する。
[1]
組成が下記一般式(1)で表され、安息角が30°以上かつ60°以下であるフッ化物蛍光体。
一般式:A2(1-n)6:Mn4+ n ・・・ (1)
(尚、0<n≦0.1、元素Aは少なくともKを含有する1種以上のアルカリ金属元素であり、元素MはSi単体、Ge単体、又はSiとGe、Sn、Ti、Zr及びHfからなる群から選ばれる1種以上の元素との組み合わせである。)
[2] 前記一般式(1)において、元素AはK単体、元素MはSi単体である[1]記載のフッ化物蛍光体。
[3]
嵩密度が0.80g/cm3以上かつ1.40g/cm3以下である[1]又は[2]記載のフッ化物蛍光体。
[4]
質量基準の累積分布曲線から得られる10%径(D10)、質量メジアン径(D50)、および90%径(D90)から下記式(2)により算出されるスパン値が、1.5以下である[1]〜[3]記載のフッ化物蛍光体。
式:(スパン値)=(D90−D10)/D50 ・・・ (2)
[5]
[1]〜[4]記載のフッ化物蛍光体と、
発光光源と
を含む、発光装置。
[6]
前記発光光源のピーク波長が420nm以上480nm以下である、[5]記載の発光装置。
[7]
白色LED装置である、[5]又は[6]記載の発光装置。
本発明によれば、良好な発光特性を有した白色LEDを安定的に作製するために適したフッ化物蛍光体を提供することができる。
実施例1で得た蛍光体のX線回折パターンを、比較例1および対照であるK2SiF6(ICSD−29407)のそれと比較して示す図である。図の縦軸はシグナルのカウント数である。 実施例1で得た蛍光体の励起・蛍光スペクトルを示す図である。 実施例1〜2に係る蛍光体の累積分布曲線である。 比較例1〜4に係る蛍光体の累積分布曲線である。 実施例1〜2に係る蛍光体の頻度分布曲線である。 比較例1〜4に係る蛍光体の頻度分布曲線である。
本明細書においては、別段の断りが無いかぎりは、数値範囲を示す場合はその上限値および下限値が含まれる。
本発明は、一般式:A2(1-n)6:Mn4+ nで表されるフッ化物蛍光体である。当該一般式中、元素Aはカリウム(K)を少なくとも含むアルカリ金属元素であり、具体的にはカリウム単体、またはカリウムとリチウム(Li)、ナトリウム(Na)、ルビジウム(Rb)、セシウム(Cs)のなかから選ばれる少なくとも1種以上のアルカリ金属元素との組み合わせである。化学的安定性の観点から、元素A中のカリウムの含有割合は高い方が好ましく、最も好ましくは元素Aとしてカリウム単体を使用できる。
また当該一般式中、元素Mはケイ素(Si)を少なくとも含む4価の元素であり、具体的にはケイ素単体、ゲルマニウム(Ge)単体、または、ケイ素とゲルマニウム、スズ(Sn)、チタン(Ti)、ジルコニウム(Zr)、及びハフニウム(Hf)からなる群から選ばれる1種以上の元素との組み合わせである。化学的安定性の観点から、元素M中のケイ素の含有割合は高い方が好ましく、最も好ましくは元素Mとしてケイ素単体を使用できる。また、当該一般式中のFはフッ素であり、Mnはマンガンである。
本発明の実施形態に係るフッ化物蛍光体においては、JIS R9301-2-2:1999に準じて測定した安息角が30°以上かつ60°以下である必要がある。安息角はフッ化物蛍光体の流動性を示すことから、即ちフッ化物蛍光体のLEDへの使用時の分散の程度を表す指標となる。安息角が30°未満の場合にはフッ化物蛍光体の流動性が十分に得られず、また安息角が60°超の場合にはフッ化物蛍光体の流動性が高すぎ、いずれにしても作製したLEDの外部量子効率のバラつきが大きくなってしまうために好ましくないという問題が発生する。さらに好ましい実施形態においては、安息角が32°以上58°以下の範囲、より好ましくは34°以上56°以下の範囲であってもよい。
本発明の実施形態に係るフッ化物蛍光体では、嵩密度は0.80g/cm3以上であることが好ましい。嵩密度が0.80g/cm3未満であると外部量子効率が低下し、またこの蛍光体を使用して作成されるLEDの外部量子効率のバラつきが大きくなる場合がある。また当該嵩密度は、1.40g/cm3以下であることも好ましく、嵩密度が1.40g/cm3を超えるとLEDの外部量子効率のバラつきが大きくなる傾向にあるので性能が劣る場合がある。さらに好ましい実施形態では、嵩密度は0.90g/cm3以上かつ1.40g/cm3以下の範囲とすることができ、さらに好ましくは1.00g/cm3以上かつ1.30g/cm3以下の範囲とすることもできる。
なお嵩密度は、粉体の表面の状態や製造時の後処理方法によって変化しうるものであり、粒度分布のみから直ちに定まるものでは無い。すなわち本発明は、所定の嵩密度と質量メジアン径の新規な組み合わせから得られる効果に基づくものである。
本発明の実施形態に係るフッ化物蛍光体においては、さらにスパン値が1.5以下であることが好ましい。なお本明細書においてスパン値とは、(D90−D10)/D50で算出される値のことを意味し、ここでD10、D50、およびD90とはそれぞれ、JIS R1622:1995およびR1629:1997に準じてレーザー回折散乱法で測定した体積基準の累積分布曲線から換算した質量基準の累積分布曲線から得られる10%径、50%径(質量メジアン径)、および90%径のことを指す。またD100とは上記と同様に100%径のことを指す。スパン値は、粒度分布の分布幅、即ちフッ化物蛍光体の粒子の大きさのバラつきを表す指標となる。スパン値が大きすぎると、作製したLEDの外部量子効率のバラつきが大きくなってしまう場合がある。すなわちスパン値が1.5以下であることは、フッ化物蛍光体の粒度分布がシャープになり、粉体として粒が揃っているという特性を有することを意味し、封止樹脂への分散性がさらに良くなる効果を発揮できることになると考えられる。好ましい実施形態においては、スパン値が0.1以上1.4以下の範囲、0.1以上1.3以下の範囲、0.1以上1.2以下の範囲、または0.1以上1.1以下の範囲であってもよい。
また好ましい実施形態では、上記質量メジアン径(D50)が30μm以下であってもよい。D50が30μmを超えると、白色LEDとして製造する際の封止樹脂への分散性が悪くなってしまい、輝度が低下し、また製造安定性も低くなる場合もある。またD50が15μm以上であることも好ましく、D50が15μm未満であると外部量子効率が低下してしまう場合がある。さらに好ましい実施形態においては、D50は15μm以上30μm以下の範囲とすることができ、より好ましくは16μm以上29μm以下の範囲とすることもできる。
本発明の実施形態に係るフッ化物蛍光体においては、さらに質量基準の頻度分布曲線が単峰性であることが好ましい。またその単峰(モード径)が10μm以上であるのがさらに好ましく、10μm以上100μmであるのがより好ましい。
好ましい実施形態においては、フッ化物蛍光体が、30°以上60°以下の安息角と、0.80g/cm3以上の嵩密度と、1.5以下のスパン値との組み合わせを有することができる。より好ましい実施形態においては、フッ化物蛍光体が、34°以上56°以下の安息角と、0.80g/cm3以上1.40g/cm3以下の嵩密度と、0.1以上1.4以下のスパン値との組み合わせを有することもできる。
本発明の実施形態に係るフッ化物蛍光体が所定の粉体特性(嵩密度や質量メジアン径など)を有するように、例えば下記の工程を含む方法により調製可能である。フッ化水素酸とフッ化水素酸アルカリ金属化合物とを混合して溶液を得る工程。当該溶液に4価元素の酸化物およびヘキサフルオロマンガン酸アルカリ金属化合物を添加し、沈澱を得る工程。当該沈澱を回収、洗浄、乾燥させてフッ化物蛍光体(粉体)を得る工程。
粉体特性の調節にあたっては、上述したフッ化水素酸、フッ化水素酸アルカリ金属化合物、4価元素の酸化物、およびヘキサフルオロマンガン酸アルカリ金属化合物の配合比や、4価元素の酸化物およびヘキサフルオロマンガン酸アルカリ金属化合物の添加速度によって制御可能である。また一般に蛍光体分野においては、蛍光体の主要成分が異なれば物理的性質(物質としての形態や発光スペクトルのピーク波長・スペクトル形状など)もまた異なることが知られている。すなわち本発明の実施形態に係るフッ化物蛍光体は、YAG蛍光体やサイアロン蛍光体などの他の蛍光体と仮に粉体特性が一見同じようであっても、発光装置に使用した際の挙動は当然に全く異なることに留意されたい。
また得られるフッ化物蛍光体粉体をさらに、篩や分級器などの手段を用いて分級し、所望の粉体特性が得られるように調節してもよい。また上記の工程群は常温下で行うことが好ましい。なお本明細書において「常温」とは、JIS Z8703:1983により定められる温度範囲すなわち20±15℃の範囲の温度のことを指す。
また本発明の実施形態では、上述したフッ化物蛍光体と発光光源とを含む発光装置(LEDなど)も提供可能である。そのような発光装置においては、フッ化物蛍光体を封止材中に封止して使用することが好ましい。そのような封止材としては特に限定はされず、例えばシリコーン樹脂、エポキシ樹脂、ペルフルオロポリマー樹脂、ガラスなどが挙げられる。ディスプレイのバックライト用途などの高出力・高輝度が求められる用途では、高温や強い光に曝露されても耐久性を有する封止材が好ましく、この観点からシリコーン樹脂が特に好ましい。
また発光光源としては、フッ化物蛍光体の赤色発光を補完する色の波長の光やフッ化物蛍光体を効率よく励起できる波長の光を発するものが好ましく、例えば青色光源(青色LEDなど)を使用可能である。好ましくは、当該発光光源からの光のピーク波長を、青色を含む範囲の波長(例えば420nm以上560nm以下の範囲)とすることができ、より好ましくは420nm以上480nm以下の範囲とすることができる。
以下、本発明の実施例と比較例を示し、本発明をさらに具体的に説明する。
<K2MnF6の製造工程>
実施例、及び比較例のフッ化物蛍光体の製造方法を実施する際に用いるK2MnF6は、非特許文献1に記載されている方法に準拠して準備した。具体的には、容量2000mlのフッ素樹脂製ビーカーに濃度40質量%フッ化水素酸800mlを入れ、フッ化水素カリウム粉末(和光純薬工業社製、特級試薬)260.00g及び過マンガン酸カリウム粉末(和光純薬工業社製、試薬1級)12.00gを溶解させた。このフッ化水素酸溶液をマグネティックスターラーで撹拌しながら、30%過酸化水素水(特級試薬)8mlを少しずつ滴下した。過酸化水素水の滴下量が一定量を超えると黄色粉末が析出し始め、反応液の色が紫色から変化し始めた。過酸化水素水を一定量滴下後、しばらく撹拌を続けた後、撹拌を止め、析出粉末を沈殿させた。沈殿後、上澄み液を除去し、メタノールを加え、撹拌し、静置し、上澄み液を除去し、更にメタノールを加えるという操作を、液が中性になるまで繰り返した。その後、濾過により析出粉末を回収し、更に乾燥を行い、メタノールを完全に蒸発除去することで、K2MnF6粉末を19.00g得た。これらの操作は全て常温で行った。
<実施例1>
実施例1として、K2SiF6:Mnで表されるフッ化物蛍光体の製造方法を以下に示す。常温下で、容量500mlのフッ素樹脂製ビーカーに濃度55質量%フッ化水素酸200mlを入れ、KHF2粉末(和光純薬工業社製、特級試薬)25.6gを溶解させ、水溶液(B)を調製した。この溶液に、シリカ(SiO2、デンカ社製、商品名FB−50R)6.9g及びK2MnF6粉末1.1gを入れた。シリカの粉末を水溶液に添加すると溶解熱の発生により水溶液温度が上昇した。溶液温度はシリカを添加して約3分後に最高温度に到達し、その後はシリカの溶解が終了したために溶液温度は下降した。なお、シリカ粉末を添加すると直ぐに水溶液中で黄色粉末が生成し始めていることが目視で確認された。
シリカ粉末が完全に溶解した後、しばらく水溶液を撹拌し、黄色粉末の析出を完了させた後、水溶液を静置して固形分を沈殿させた。沈殿確認後、上澄み液を除去し、濃度20質量%のフッ化水素酸及びメタノールを用いて黄色粉末を洗浄し、さらにこれを濾過して固形部を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去した。乾燥処理後、目開き75μmのナイロン製篩を用い、この篩を通過した黄色粉末だけを分級して回収し、最終的に19.9gの黄色粉末を得た。
<結晶相測定による黄色粉末母結晶の確認>
実施例1で得た黄色粉末について、X線回折装置(リガク社製、商品名Ultima4、CuKα管球使用)を用いて、X線回折パターンを測定した。得られたX線回折パターンを図1に示す。その結果、実施例1で得られたサンプルのX線回折パターンは、K2SiF6結晶と同一パターンであることから、K2SiF6:Mnが単相で得られたことを確認した。
<実施例2、比較例1〜4>
実施例1の仕込み組成を下記の表1に示す配合に変更した以外は実施例1と同様に製造し、実施例2および比較例1〜4を得た。得られた黄色粉末についてX線回折パターンを測定したところ、いずれもK2SiF6結晶と同一パターンを示した。
<フッ化物蛍光体の発光特性評価>
実施例1〜2及び比較例1〜4の各フッ化物蛍光体の発光特性について、以下の方法で吸収率、内部量子効率、外部量子効率を測定することにより評価した。即ち、積分球(φ60mm)の側面開口部(φ10mm)に反射率が99%の標準反射板(Labsphere社製、商品名スペクトラロン)をセットした。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を光ファイバーにより導入し、反射光のスペクトルを分光光度計(大塚電子社製、商品名MCPD−7000)により測定した。その際、450〜465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。次に、凹型のセルに表面が平滑になるように蛍光体を充填したものを積分球の開口部にセットし、波長455nmの単色光を照射し、励起の反射光及び蛍光のスペクトルを分光光度計により測定した。実施例1のフッ化物蛍光体から得られた励起・蛍光スペクトルを代表として図2に示す。得られたスペクトルデータから励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465〜800nmの範囲で算出した。得られた三種類のフォトン数から外部量子効率(=Qem/Qex×100)、吸収率(=(Qex−Qref)/Qex×100)、内部量子効率(=Qem/(Qex−Qref)×100)を求めた。
<フッ化物蛍光体の安息角の評価>
実施例1〜2及び比較例1〜4の各フッ化物蛍光体の安息角を、JIS R 9301-2-2:1999に準じて注入法により評価した。すなわち、ノズル内径6mmの市販のガラス製ロートの上縁2〜4cmの高さから、測定対象の粉末200gを毎分20〜60gの速さで該ロートを介して基板上に落下させ、生成した円錐状の堆積物の直径及び高さから、安息角を算出した。
<フッ化物蛍光体の嵩密度>
実施例1〜2及び比較例1〜4の各フッ化物蛍光体の嵩密度を、JIS R 1628:1997に準じて評価した。すなわち、測定容器に定容容器(100cc)を用い、その質量を、はかりによって量りとった。振動や圧力が加わらないように十分注意しながら、測定容器にふるいを通して試料があふれるまで入れた。測定容器の上端面から盛り上がった粉末を、すり切り板を使ってすり切った。このときすり切り板は、粉末を圧縮しないようすりきる方向から後ろへ傾斜させて使用した。測定容器ごと質量をはかりで量り、測定容器の質量を差し引いて試料の質量を計算した。この測定を3回行った。各測定で計算した試料の質量を、測定容器の容積で除した値の平均値を嵩密度として算出した。
<フッ化物蛍光体のスパン値の評価>
実施例1〜2及び比較例1〜4の各フッ化物蛍光体のスパン値は、以下の方法で評価した。即ち、50mlのビーカーにエタノール30mlを計量し、その中に蛍光体0.03gを入れた。次に、その容器を事前に出力を「Altitude:100%」に調整したホモジナイザー(日本精機製作所社製、商品名US−150E)にセットし、3分間前処理を実施した。前記のように準備した溶液を対象にして、レーザー回折散乱式粒度分布測定装置(マイクロトラックベル社製、商品名MT3300EXII)を用いて、D10、D50(質量メジアン径)、D90、およびD100を求めた。求めたD10、D50、D90を用いて、スパン値を(D90−D10)/D50として算出した。
実施例1〜2及び比較例1〜4の各フッ化物蛍光体の評価結果を以下に表2にまとめた。また、図3及び図5に実施例1〜2の累積分布曲線及び頻度分布曲線をそれぞれ示した。さらに図4及び図6に比較例1〜4の累積分布曲線及び頻度分布曲線をそれぞれ示した。
<フッ化物蛍光体を使用したLEDの発光特性評価>
実施例1のフッ化物蛍光体を、βサイアロン緑色蛍光体(デンカ社製、商品名GR−MW540K)とともにシリコーン樹脂に添加した。脱泡・混練後、ピーク波長455nmの青色LED素子を接合した表面実装タイプのパッケージにポッティングし、更にそれを熱硬化させることにより実施例3の白色LEDを作製した。フッ化物蛍光体とβサイアロン緑色蛍光体の添加量比は、通電発光時に白色LEDの色度座標(x、y)が(0.28、0.27)になる様に調整した。
実施例1の蛍光体の代わりに、実施例2の蛍光体を使用したこと以外は実施例3と同じ方法で、実施例4を作製した。また比較例1〜4の蛍光体をそれぞれ使用したこと以外は実施例3と同様にして、比較例5〜8の白色LEDもそれぞれ作製した。フッ化物蛍光体とβサイアロン緑色蛍光体の添加量比は、いずれも通電発光時に白色LEDの色度座標(x、y)が(0.28、0.27)になる様に調整した。
<発光特性のバラつきの評価>
実施例3、4及び比較例5〜8を同様の方法で、10回白色LEDを作製し、10回の製造毎に得られたサンプルの発光特性(外部量子効率)を測定し、フッ化物蛍光体の違いによる外部量子効率のバラつきを比較評価した。実施例3の1回目に作製した白色LEDの明るさを100とした時のそれぞれの白色LEDの明るさ、及び平均値、標準偏差を下記の表3に示す。実施例3は、比較例5と比較して外部量子効率が高く、かつ10回測定時の標準偏差が小さいことから、品質のバラつきが少なく、歩留まりが優れて安定することが分かった。また、実施例4でも実施例3と同様の優れた結果が得られた。比較例5〜8はいずれも、外部量子効率が低くかつバラつきが大きかった。
表2〜3に示される実施例と比較例の結果から、本発明のA2(1-n)6:Mn4+ nで表されるフッ化物蛍光体では、安息角が特定の範囲にあることにより、LEDとして使用したときに安定して高い外部量子効率が得られる効果があることがわかる。安息角が特定の範囲に無い場合は、効果が発揮されないことも理解される。
本発明のA2(1-n)6:Mn4+ nで表されるフッ化物蛍光体をLEDに使用することで、発光特性の良好なLEDを安定して得られる。本発明に係るフッ化物蛍光体は、青色光を光源とする白色LED用蛍光体として好適に使用できるものであり、照明器具、画像表示装置などの発光装置に好適に使用できる。

Claims (7)

  1. 組成が下記一般式(1)で表され、安息角が30°以上かつ60°以下であるフッ化物蛍光体。
    一般式:A2(1-n)6:Mn4+ n ・・・ (1)
    (尚、0<n≦0.1、元素Aは少なくともKを含有する1種以上のアルカリ金属元素であり、元素MはSi単体、Ge単体、又はSiとGe、Sn、Ti、Zr及びHfからなる群から選ばれる1種以上の元素との組み合わせである。)
  2. 前記一般式(1)において、元素AはK単体、元素MはSi単体である請求項1記載のフッ化物蛍光体。
  3. 嵩密度が0.80g/cm3以上かつ1.40g/cm3以下である請求項1又は2記載のフッ化物蛍光体。
  4. 質量基準の累積分布曲線から得られる10%径(D10)、質量メジアン径(D50)、および90%径(D90)から下記式(2)により算出されるスパン値が、1.5以下である請求項1乃至3記載のフッ化物蛍光体。
    式:(スパン値)=(D90−D10)/D50 ・・・ (2)
  5. 請求項1乃至4記載のフッ化物蛍光体と、
    発光光源と
    を含む、発光装置。
  6. 前記発光光源のピーク波長が420nm以上480nm以下である、請求項5記載の発光装置。
  7. 白色LED装置である、請求項5又は6記載の発光装置。
JP2018000777A 2017-06-14 2018-01-05 フッ化物蛍光体とそれを用いた発光装置 Active JP6964524B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018000777A JP6964524B2 (ja) 2017-06-14 2018-01-05 フッ化物蛍光体とそれを用いた発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017117160A JP6273395B1 (ja) 2017-06-14 2017-06-14 フッ化物蛍光体とそれを用いた発光装置
JP2018000777A JP6964524B2 (ja) 2017-06-14 2018-01-05 フッ化物蛍光体とそれを用いた発光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017117160A Division JP6273395B1 (ja) 2017-06-14 2017-06-14 フッ化物蛍光体とそれを用いた発光装置

Publications (3)

Publication Number Publication Date
JP2019001986A true JP2019001986A (ja) 2019-01-10
JP2019001986A5 JP2019001986A5 (ja) 2020-07-27
JP6964524B2 JP6964524B2 (ja) 2021-11-10

Family

ID=65005925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018000777A Active JP6964524B2 (ja) 2017-06-14 2018-01-05 フッ化物蛍光体とそれを用いた発光装置

Country Status (1)

Country Link
JP (1) JP6964524B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203488A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339761A (ja) * 1995-06-09 1996-12-24 Nichia Chem Ind Ltd 蛍光ランプの製造方法
JP2015044973A (ja) * 2013-08-01 2015-03-12 日亜化学工業株式会社 フッ化物蛍光体及びそれを用いる発光装置
WO2016133606A1 (en) * 2015-02-20 2016-08-25 General Electric Company Color stable red-emitting phosphors
WO2017057671A1 (ja) * 2015-09-30 2017-04-06 デンカ株式会社 フッ化物蛍光体、発光装置及びフッ化物蛍光体の製造方法
WO2017094832A1 (ja) * 2015-12-04 2017-06-08 東レ株式会社 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法
JP6273395B1 (ja) * 2017-06-14 2018-01-31 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置
JP6273394B1 (ja) * 2017-06-14 2018-01-31 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339761A (ja) * 1995-06-09 1996-12-24 Nichia Chem Ind Ltd 蛍光ランプの製造方法
JP2015044973A (ja) * 2013-08-01 2015-03-12 日亜化学工業株式会社 フッ化物蛍光体及びそれを用いる発光装置
WO2016133606A1 (en) * 2015-02-20 2016-08-25 General Electric Company Color stable red-emitting phosphors
WO2017057671A1 (ja) * 2015-09-30 2017-04-06 デンカ株式会社 フッ化物蛍光体、発光装置及びフッ化物蛍光体の製造方法
WO2017094832A1 (ja) * 2015-12-04 2017-06-08 東レ株式会社 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法
JP6273395B1 (ja) * 2017-06-14 2018-01-31 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置
JP6273394B1 (ja) * 2017-06-14 2018-01-31 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203488A1 (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
JP2020164754A (ja) * 2019-03-29 2020-10-08 デンカ株式会社 蛍光体粉末、複合体および発光装置
US11359139B2 (en) 2019-03-29 2022-06-14 Denka Company Limited Phosphor powder, composite, and light-emitting device

Also Published As

Publication number Publication date
JP6964524B2 (ja) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6273394B1 (ja) フッ化物蛍光体とそれを用いた発光装置
JP6273395B1 (ja) フッ化物蛍光体とそれを用いた発光装置
JP5954355B2 (ja) フッ化物蛍光体及びそれを用いる発光装置
KR102624694B1 (ko) 불화물 형광체, 발광 장치 및 불화물 형광체의 제조 방법
JP6024850B2 (ja) フッ化物蛍光体及びそれを用いる発光装置
JP7303822B2 (ja) 蛍光体及び発光装置
JP6149606B2 (ja) フッ化物蛍光体の製造方法
JP6359066B2 (ja) マンガン付活複フッ化物蛍光体原料用のフッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体の製造方法
JP2019044017A (ja) フッ化物蛍光体及び発光装置
JP6964524B2 (ja) フッ化物蛍光体とそれを用いた発光装置
TWI751140B (zh) 螢光體、發光元件及發光裝置
JP6966945B2 (ja) フッ化物蛍光体とそれを用いた発光装置
JP7242368B2 (ja) フッ化物蛍光体の製造方法
WO2022202689A1 (ja) 蛍光体粒子、複合体および発光装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150