JP2018533770A - 保護素子を有する光学アセンブリおよびそのような光学アセンブリを有する光学装置 - Google Patents

保護素子を有する光学アセンブリおよびそのような光学アセンブリを有する光学装置 Download PDF

Info

Publication number
JP2018533770A
JP2018533770A JP2018522015A JP2018522015A JP2018533770A JP 2018533770 A JP2018533770 A JP 2018533770A JP 2018522015 A JP2018522015 A JP 2018522015A JP 2018522015 A JP2018522015 A JP 2018522015A JP 2018533770 A JP2018533770 A JP 2018533770A
Authority
JP
Japan
Prior art keywords
optical
optical assembly
thin film
oxide
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018522015A
Other languages
English (en)
Other versions
JP2018533770A5 (ja
JP6805248B2 (ja
Inventor
ハインリッヒ エーム ディルク
ハインリッヒ エーム ディルク
シュミット ステファン−ウォルフガング
シュミット ステファン−ウォルフガング
Original Assignee
カール・ツァイス・エスエムティー・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カール・ツァイス・エスエムティー・ゲーエムベーハー filed Critical カール・ツァイス・エスエムティー・ゲーエムベーハー
Publication of JP2018533770A publication Critical patent/JP2018533770A/ja
Publication of JP2018533770A5 publication Critical patent/JP2018533770A5/ja
Application granted granted Critical
Publication of JP6805248B2 publication Critical patent/JP6805248B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本発明は特にEUV放射(4)を反射させる光学素子(13)と、光学素子(13,14)の表面(31)を汚染物質(P)から保護する保護素子(30)とを含む光学アセンブリ(32)に関し、保護素子(30)は、薄膜(33a〜33c)と、この薄膜(33a〜33c)が装着されたフレーム(34)とを含む。薄膜(33a〜33c)は、光学素子(13)の表面(31)における部分領域(T)を汚染物質(P)からそれぞれ保護する複数の薄膜セグメント(33a, 33b, 33c)によって形成される。また本発明は少なくとも1つのこのような光学アセンブリ(32)を有する、例えばEUVリソグラフィシステムなどの光学装置にも関する。
【選択図】図3

Description

関連出願の相互参照
本願は2015年10月29日に出願された独国特許出願第10 2015 221 209.2号に基づいて優先権を主張するものであり、その開示を本明細書の一部とみなし、参照として援用する。
本発明は、特にEUV放射を反射する光学素子と、光学素子の表面を汚染物質から保護する保護素子とを含む光学アセンブリに関し、保護素子は、薄膜と、薄膜が装着されたフレームとを含む。また本発明はそのような光学アセンブリを少なくとも1つ有する、例えばEUVリソグラフィシステム用の光学装置にも関する。
本願において、EUVリソグラフィシステムはEUVリソグラフィ用の光学系または光学装置、すなわちEUVリソグラフィの分野で使用されることのできる光学系を意味すると理解されよう。半導体部品の製造に使用されるEUVリソグラフィ装置の他に、光学系は、例えばEUVリソグラフィ装置で使用されるフォトマスク(以後レチクルとも称する)および構造化される半導体基板(以後ウエハとも称する)を検査する検査システム、またはEUVリソグラフィ装置もしくはその一部、例えば投影系の測定に使用される計測システムであってもよい。
例えばEUVリソグラフィ装置において波長約5nm〜約30nmのEUV放射を使用する場合、汚染物質による光学素子の汚染は特に問題である。汚染物質は、例えばスズ液滴の形態のターゲット材がEUV放射の生成に用いられるEUV光源において生成され得る。液滴形態のターゲット材はレーザ光線によってプラズマ状態に変わり、このためスズ液滴の一部が蒸発してスズ粒子が生成され得る。スズ粒子はEUVリソグラフィ装置内に広がり、例えば照明系または投影系内の光学素子の光学面、およびEUVリソグラフィ装置の機械部品または電子機械部品にも直接、またはスズ層の形態で堆積し得る。
スズ粒子による表面の汚染は様々な方法で発生し得る。スズ粒子は気相から直接光学面に堆積され得る、またはスズ層はスズの表面拡散によって生成され得る。スズによる汚染は、EUVリソグラフィ装置に存在する水素または水素プラズマによって誘発される、EUVリソグラフィ装置におけるスズ含有成分へのアウトガス効果によっても引き起こされる可能性がある。光学素子の光学面にスズが堆積することにより、光学素子の反射コーティングにブリスターが生じる可能性もあり、これにより最悪の場合にはコーティングの剥離が生じる。電子機械部品はSn粒子の浸透によってその機能が大きく制限されることもあり、または破壊されることもある。
いわゆるペリクルと称される形態の保護素子により、リソグラフィシステムで使用されるマスクまたはウエハを汚染物質から保護することが知られている。ペリクルは、リソグラフィシステムの波長の放射に対して透明な材料、またはこれをできる限り吸収しない材料から成る薄膜である。特にEUV放射を使用する場合、ペリクルを通過する放射線の吸収ができる限り低く抑えられるよう、通常このようなペリクルの厚さは薄い。
特許文献1は、ペリクルがマスクの透明基板の近傍に配置された、リソグラフィ用のマスクペリクルシステムを開示している。ペリクルはマスク上のフレームに固定される。フレームには機械的応力を吸収するデバイスが装着される。応力吸収装置をリソグラフィプロセスからの放射エネルギーから保護するために、フレームはある角度で相互に接続された少なくとも2つのセグメントを有する。
特許文献2は、例えば基板などの物体を保持する支持台を有する液浸リソグラフィ用のリソグラフィ装置を開示している。液浸媒体において泡の形成を最小限に抑えるため、物体と支持台との間の隙間は最小限に抑えられる。このために被覆板を設けることができ、一例においてこれはペリクルとして形成され、支持台の外部に装着される。別の例では被覆板を分割してその各々は相互に摺動される。
特許文献3はリソグラフィデバイス用の光学薄膜素子を開示しており、この薄膜素子は少なくとも1つの薄膜層とフレームとを含み、フレームは少なくとも1つの薄膜層の少なくとも一部を取り囲み、薄膜層のエッジの少なくとも一部が固定される。薄膜を調節可能にクランプするために、少なくとも1つの引張素子が設けられる。EUVリソグラフィ装置において、薄膜素子を例えば照明系のミラーの前に配置し、中性灰色フィルタとして使用してもよい。
米国特許第7829248(B2)号明細書 欧州特許出願第1791027(A1)号明細書 米国特許出願公開第2010/0195076(A1)号明細書
本発明の目的は、比較的大きな保護される表面を有する光学素子を汚染物質から効果的に保護することのできる光学アセンブリおよび光学装置、特に少なくとも1つのこのような光学アセンブリを有するEUVリソグラフィシステムを提供することである。
この目的は、薄膜が複数の薄膜セグメントを含み、各セグメントが光学素子の表面の一部の領域を汚染物質から保護する、冒頭に記載したような光学アセンブリによって達成される。光学素子がEUVリソグラフィ用の光学装置に配置される場合、薄膜はその真空環境でEUV放射によって生じるプラズマから光学素子をさらに保護し得る。汚染物質から表面を保護するために1枚の薄膜を使用する場合、このような薄膜を任意の所望する表面積で容易に製造することはできないという問題がある。また別の問題として、膜の厚さが薄いため、膜は自己支持性がなく曲がりやすい傾向があり、薄膜の表面積が大きくなるほど曲がりが大きくなるという問題がある。特許文献3の冒頭には、薄膜を横方向にクランプすることによって薄膜の曲がりに対策することが提案されている。また特許文献3には、このような薄膜は通常、最大エッジ長さ200mmを超えないと記載されている。しかしながら大型の光学素子の表面またはエッジ長さは200mmを超える可能性があるため、通常このような光学素子の表面を1枚の薄膜で汚染物質から完全に保護することはできない。
複数部分の薄膜、すなわち複数の薄膜セグメントを有する薄膜を使用することにより、保護素子によって汚染物質から保護される表面領域の面積を著しく増加させることができる。通常薄膜セグメントは薄膜よりも厚さが大幅に大きく、自己支持性のある共通のフレームに装着される。フレームに装着される複数の薄膜セグメントは光学面を通常完全に被覆する、または放射、例えばEUV放射が入射する光学面の少なくとも一部の領域を被覆する。
特にEUV放射を用いる場合、この際に使用される13.5nm未満の波長に対して実質的に透過性のある材料がないという問題がある。従って通常薄膜よりも大幅に厚いフレームは、材料の選択に関係なく、EUV放射に対して透過的ではない。そのため、フレーム、より正確には光路に配置されたフレームの一部は、表面へのフレームの投影に対応する一部の領域において光学素子の表面を遮蔽する。
一実施形態において、フレームはエッジにそれぞれの薄膜セグメントを固定させる複数のウェブを有する。フレーム、より正確にはフレームのウェブは、それぞれの薄膜セグメントを少なくとも部分的に、特に完全に取り囲む。一般に、それぞれの薄膜セグメントはそのエッジがウェブ上に完全に位置するか、またはウェブに固定される。薄膜セグメントは接着剤または他の方法によってフレームのウェブに固定させることもできる。ウェブはラスター状またはグリッド状に形成してもよく、薄膜セグメントはグリッドのウェブ間にメッシュ状に配置される。フレームまたはフレームのウェブは真空環境に適した材料、例えば高級スチール、アルミニウムなどの金属で形成してもよい。フレームは特にワイヤグリッドとして形成してもよい。
フレームによる光学素子の遮光をできる限り少なくするには、フレームのウェブ幅はできる限り小さくなくてはならず、一方では薄膜セグメントを固定するための十分な厚さを有していなくてはならない。通常、薄膜セグメントのエッジは、ウェブの対向する2つの長手方向の面に固定される。理想的には、2つの隣接する薄膜セグメントのエッジはそれぞれのウェブにおいて同一平面上にあるので、セグメント化された薄膜は光学素子の保護される面を平面的に被覆する。また、隣接する薄膜セグメントのエッジを少し相互に離してウェブに固定し、ウェブは薄膜によって完全に被覆されないが、表面は平面的に被覆されるようにすることもできる。この場合、薄膜セグメント間のウェブの少なくとも一部の領域は汚染物質に曝される。汚染物質から保護するために、ウェブを少なくとも一部のコーティングで被覆されてない領域に設けてもよい。ウェブに装着された2つの薄膜セグメントは重ね合わせてもよい。
一実施形態において、光学素子は、表面の少なくとも1つの部分領域を動かすことのできる少なくとも1つのアクチュエータを有する。光学素子は、例えば(光学)面がアクチュエータによって傾斜される、または直線的に変位されるミラーであってもよい。しかしながらこのようなミラーは、例えば傾斜させたり変位させたりと個々に動かすことのできる多くの部分領域を有してもよい。このように駆動可能なミラーでは、原則として、表面の領域に配置されたアクチュエータの一部の領域が汚染物質と接触して機能が損なわれるという問題がある。
一実施形態において、光学素子は複数のミラーセグメントを有するセグメント化されたミラー、特に複数のファセット素子を有するファセットミラーである。セグメント化されたミラーは複数のミラーセグメントを含み、その各々は鏡面の一部の領域を形成し、ミラーセグメントは通常相互に隣接して配置される。ミラーセグメントは例えば傾斜または変位させて個々に駆動することができる、または全く駆動することはできない。後者はミラーの表面積が大き過ぎて1枚として製造できない場合である。
ファセットミラーは、例えばEUVリソグラフィ装置の照明系で使用され、照明系によって照明される照明領域上で、EUV光源によって生成される放射を均質化するための、分割ミラーという特殊なケースを構成する。このようなファセットミラーはしばしば少なくとも1つの空間方向に比較的長いエッジ長を有し、これは例えば数百ミリから千ミリ、またはそれ以上となる可能性もあるため、このようなファセットミラーの表面は一般に1枚の薄膜で保護することはできない。例えば、このようなファセットミラーは800nm×800nm(長さ×幅)の線膨張(linear extent)を有することがあり、これは通常1枚の薄膜で被覆するには大き過ぎる。以下の説明はファセットミラーおよびファセット素子に関するものであるが、当業者であれば以下に記載する原理がセグメント化されたミラーのより一般的なケースにも適用可能であることをすぐに理解されよう。
上述のようなファセットミラーのファセット素子は、一般に、アクチュエータによって駆動することができる、すなわち、個々に動かすことができる、特に傾斜させることができる。ファセットミラーはアクチュエータとして通常機械部品または電子機械部品を有する。このため、ファセットミラーは例えばMEMS(micro-electro-mechanical system;微小電気機械システム)ミラーとして構成される。このようなファセットミラーの表面上の電気機械部品は、特に個々のファセット素子が傾斜される場合には被覆されず、汚染物質に曝されるため、それらの機能は損なわれることとなるが、これは保護素子によって防止することができる。
発展形態において、フレームの形状はファセット素子の形状に適合される。ファセット素子の形状は、通常、照明される照明視野に適合される。ファセット素子は例えば長方形、正方形、六角形とすることができる。ファセット素子が例えば長方形や正方形の形状である場合、フレームの形状もそれに応じて適合される、すなわちフレームのウェブも同様に行と列に配置される。
更なる実施形態において、フレームのウェブはファセット素子間の中間領域にわたって配置される。ファセットミラーの隣接するファセット素子の間には通常中間領域が形成され、ここでは入射放射はファセット素子によって反射されない。EUV放射を用いる場合、フレームのウェブは入射放射に対して透過的でないので、何れにしてもファセットミラーから反射される放射はなく、保護される表面上に投影されるウェブ、より正確にはウェブの「影」がファセット素子間の中間領域に落ちるのであれば有利である。この場合、保護素子が保護される表面の前に短い距離をおいて配置されるのは有利であることが証明されている、というのも、フレームのウェブによる影の位置は、反射される放射がファセットミラーに入射する方向とほぼ無関係だからである。本例示的実施形態において、ウェブの幅は、ウェブが配置されるファセット素子間の中間領域の幅よりも小さいことは言うまでもない。
更なる実施形態において、(セグメント化された)薄膜は光学素子の表面から10mm未満、好適には5mm未満、より好適には2mm未満の距離をおいて配置される。ファセットミラーの形態の光学素子の場合、距離が測定される表面は、傾斜していない状態のファセット素子が配置される表面である。上述の様に、短い距離はフレームのウェブによるファセットミラーの遮光に有利な影響を及ぼす。しかしながら、傾斜中、ファセット素子が薄膜またはフレームのウェブと衝突しないくらいに十分な距離を選択しなければならない。
更なる実施形態において、薄膜セグメントの線膨張はファセット素子の長手方向の線膨張の整数倍(通常1以外)にほぼ相当する。通常各々の薄膜セグメントは1つのファセット素子のみを被覆する必要はなく、1つの薄膜セグメントは複数のファセット素子、例えばN×Mのファセット素子群を被覆してもよい。この場合、薄膜セグメントの相互に垂直な2つの方向の線膨張は、各々のファセット素子の線膨張のN倍またはM倍に(ほぼ)相当する。中間領域はファセット素子間に形成されるので、薄膜セグメントの線膨張は通常1つのファセット素子の線膨張の整数倍よりも幾分大きく、収差は通常約20%以下、好適には10%以下である。ファセット素子の線膨張のほぼ整数倍とは、薄膜セグメントの線膨張のこのような収差であると理解されよう。
理想的には、少なくとも1つの薄膜セグメントの長手方向の線膨張は、ファセット素子の長さと隣接するファセット素子間の長手方向の距離との合計の整数倍に相当する。従って、少なくとも1つの薄膜セグメントの幅方向の線膨張は、ファセット素子の幅と隣接するファセット素子間の幅方向の距離との合計の整数倍に相当する。通常、フレームの隣接するウェブは相互に対応する位置(すなわち、ファセット素子の線膨張の約N倍またはM倍)に配置されることは言うまでもない。
ファセットミラーの場合、ファセット素子はしばしばN×Mのファセット素子群に配置され、隣接する群間の距離は隣接するファセット素子間の距離よりも大きい。遮光をできるだけ少なく抑えるために、薄膜セグメントの線膨張をそのようなN×Mのファセット素子群の整数倍または正確にその線膨張に相当するように選択することは有利であろう。
一実施形態において、薄膜はシリコン、特にポリシリコンで形成される。この材料の吸収率は低く、従ってEUV放射に対する透過性の高いことがわかっている。(ポリ)シリコンの薄膜は、例えば、入射するEUV放射に対して85%以上の平均透過率を有し得る。
更なる実施形態において、薄膜セグメントは光学素子に面していない側面に、汚染物質の付着を低減させるコーティングを有する。EUV放射の透過に対して最適化される薄膜の材料は、通常、可能な限り少ない汚染物質の付着に関しては最適化されないので、薄膜の材料よりも汚染物質の付着が少ないコーティングを薄膜に適用することは有利であることが証明された。
一実施形態において、コーティングの材料は、酸化物、窒化物、炭化物およびホウカ物からなる群より選択される。コーティングに適した材料は、光学素子がそれから保護される、例えばスズ汚染物質などの汚染物質の種類や化学成分に応じて選択される。特定の種類の汚染物質の場合、通常、コーティングは(純)金属を含まない。EUVリソグラフィ用の光学アセンブリを使用する場合、薄膜のコーティングはEUVリソグラフィシステム内の真空状態に対する耐性を有していなくてはならないことは言うまでもない。
更なる実施形態において、コーティングの材料は、酸化チタン、酸化ジルコニウム、酸化イットリウム、酸化セリウム、酸化ニオブ、酸化ランタン、酸化バナジウム、酸化クロム、酸化マンガン、酸化アルミニウム、酸化コバルト、酸化モリブデンおよび酸化タングステンからなる群より選択される。これらの材料は特に(スズ、例えばスズ水酸化物の形態の)スズ汚染物質の付着を低減させるために有利であることが証明されている。例えば実験において、ZrOで被覆された表面に付着するスズ粒子の表面積または体積は、例えばEUV放射によってEUVリソグラフィシステムの真空環境に誘導される水素プラズマに曝されると減少することがわかった。
汚染物質からの保護を提供するコーティングに加え、またはこれに代えて、薄膜は別の目的を果たす機能性コーティングを有し得る。例えば、このコーティングはEUV光源から放出される放射線から所望のEUV波長を濾過するスペクトルフィルタとして機能することもできる。中性灰色フィルタの機能を果たすコーティングも可能である。
更なる実施形態において、薄膜セグメントはそれぞれ5nm〜500nmの厚さを有する。上述の様に、薄膜セグメントは、薄膜におけるEUV放射の透過が可能な限り高くなるよう、厚すぎてはならない。しかしながら、例えば過大な量の汚染物質が付着する場合に破れないように、薄膜の厚さは薄過ぎてもいけない。
別の実施形態において、保護素子は取り外し可能な接続、すなわち例えばねじ接続、クランプ接続などによって光学アセンブリに取り外し可能に取り付けられる。光学アセンブリは保護素子を光学素子の表面から所定の距離をあけて取り付けるための台を有してもよく、保護素子は台に取り付け可能に接続される。このように保護素子は、光学素子を交換する必要なく、コスト又は時間を削減して交換することができる。保護素子の交換は、例えば過大な量の汚染物質が薄膜セグメントの光学素子に面していない側面に蓄積された場合に、必要となる場合がある。
更なる実施形態において、光学アセンブリは、光学素子と薄膜の光学素子に面した側面との空間をパージガスでパージするパージデバイスを含む。薄膜と光学素子との間の空間は、光学アセンブリが配置された光学装置の(真空)環境の残りの部分から分離された、いわゆるミニ環境を形成する。薄膜と光学素子との間の空間は、気密状態で環境から分離することができるが、必ずしもそうでなくてもよい。何れの場合であっても、専用のパージガスフローを空間に提供することによって、光学素子から放出される汚染物質をミニ環境の外部の真空環境に到達しないようにすることができる。パージデバイスは通常パージガスを薄膜と光学素子との間の空間に流し出すノズルを有する。パージデバイスはまた、パージガスを光学素子と薄膜との間の空間から吸い取る吸引部も有し得る。複数の種類の気体をパージガスとして使用することができる。例えば、水素またはヘリウムなどの希ガスを用いることができるが、窒素のように分子量の大きな重い気体を用いることもできる。これらの重い気体は、同じ圧力(例えば水素よりも高い圧力)において、光路の長さに対する光吸収率が通常高くても、EUV光線の光度を大幅に損なうことなく、パージガスとして適用することができる、というのも、光学面と近くの薄膜との間の空間を(2度)通過する光線の長さは(通常ほんの数ミリに)限定されるからである。
本発明の更なる態様は、光学装置、特に上述の少なくとも1つの光学アセンブリを含むEUVリソグラフィシステムに関する。1つまたは複数の光学アセンブリは特に、比較的大きな光学的に使用される表面を有する光学素子を保護する機能を果たすことができる。これは通常EUVリソグラフィ装置の照明系におけるファセットミラーに当てはまるが、その他のファセット光学素子も上述の保護素子によって汚染物質から効果的に保護することができる。
一実施形態において、光学装置は、薄膜の光学素子に面していない側面から汚染物質を取り除く少なくとも1つの洗浄デバイスを有する。洗浄デバイスは、薄膜の光学素子に面していない側面を洗浄剤、特に洗浄ガス、例えば(可能であれば活性化)水素と接触させるように構成される。通常この場合、洗浄デバイスはノズルを有し、ノズルから洗浄ガスが流れ出て薄膜の光学素子に面していない側面に衝突する。このため、通常洗浄ガスはガス貯蔵器から取り出されてノズルに供給される。ノズルを有する洗浄デバイスの一部は光学装置内に移動され、薄膜の様々な部分を洗浄する、または光学装置の作動中、ノズルまたは洗浄デバイス全体が光線路の外部に配置されるようにする。汚染物質は粒子または分子汚染物質であり得る。
一実施形態において、光学装置は照明系を有し、照明系には光学アセンブリが配置され、光学アセンブリの光学素子は照明系のファセットミラーによって形成される。
上述の様に、ファセットミラーはその構成の性質に応じて比較的大きな表面を有する。通常このようなファセットミラーのファセット素子は、汚染物質による損傷をうける可能性のある機械部品または電気機械部品によって駆動されるので、このようなファセットミラーを汚染物質から保護するのは有利である。
本発明の更なる特徴および利点は、本発明にとって不可欠な詳細を示す図面に基づく本発明の例示的実施形態の説明および請求項によって明らかとなる。個々の特徴はそれ自身、または本発明の変形実施例との任意の組み合わせによって実現することができる。
例示的実施形態を概略図に示し、以下に説明する。
2つのファセットミラーを有するEUVリソグラフィ装置の概略図である。 表面が汚染物質に曝された、図1のファセットミラーの詳細を説明する略面図である。 多くの薄膜セグメントを有する保護素子によって表面が汚染物質から保護される、図1のファセットミラーの詳細を説明する略面図である。 前に保護素子が配置された図1のファセットミラーの略平面図である。
以下の説明において、同じ構造または同じ機能を有する部品には同じ参照記号を使用する。
図1は、EUVリソグラフィシステムの形態、より正確にはEUVリソグラフィ装置1の形態の光学装置を略的に示す。これは、50nm未満、特に約5nm〜約15nmのEUV波長範囲において高いエネルギー密度を有するEUV放射を生成するためのEUV光源2を有する。EUV光源2は、例えば、レーザ誘起プラズマを生成するプラズマ光源の形態をとる、またはシンクロトロン放射源として形成される。特にプラズマ光源の場合、図1に示す様に、集光ミラー3を用いてEUV光源2のEUV放射を照明光線4に集中させ、エネルギー密度を更に高めることもできる。照明光線4は、EUVリソグラフィ装置1が作動される動作波長λ周辺の狭帯域波長に集中される波長スペクトルを有する。モノクロメータ12は動作波長λの選択または狭帯域波長範囲の選択に使用される。
照明光線4は、本例において、4つの反射光学素子13〜16を有する照明系10によって構造化物体Mを照明する働きをする。構造化物体Mは例えば反射マスクMであってもよく、これは、少なくとも1つの構造を物体Mに生成するための、反射もしくは非反射、または少なくともかなり低反射の領域を有する。あるいは、構造化物体Mは一次元または複数の次元に配置され、少なくとも1つの軸を中心に回転可能であり、各々のミラー上にEUV放射4の入射角度を設定する複数のマイクロミラーであってもよい。
構造化物体Mは照明光線4の一部を反射して投影光線5を形成し、これは構造化物体Mの構造に関する情報を伝え、投影系20に照射される。投影系20は構造化物体Mまたはその各々の部分領域の投影像を基板W上に生成し、このために4つの反射光学素子21〜24が投影系20に配置される。基板W,例えばウエハは、半導体材料、例えばシリコンより成り、ウエハステージWSとも称される台の上に置かれる。
この場合、照明系10の第1および第2反射素子はファセットミラー13,14の形態のセグメント化されたミラーとして形成され、ラスター配置されるマイクロミラーの形態の複数のファセット素子13a〜13d,14a〜14dをそれぞれ有する。各ファセットミラー13,14に関しては、照明光線4または照明光線4の一部の光線を反射する4つのファセット素子13a〜13d,14a〜14dをそれぞれ例として図1に示す。第1光学素子13は視野ファセットミラー13とも称され、照明系10で二次光源を生成する働きをする。第2光学素子14は通常第1光学素子13によって生成される二次光源の位置に配置され、瞳ファセットミラー14とも称される。
視野ファセットミラー13のファセット素子13a〜13dのそれぞれに入射する照明光線4の一部の光線は、そこで瞳ファセットミラー14のファセット素子14a〜14dにそれぞれ偏向される。視野ファセットミラー13のファセット素子13a〜13dは長方形であってもよく、アスペクト比(x;y)は例えば20:1以下であってもよい。X方向は図1の平面に対して垂直である。ファセット素子13a〜13dのアスペクト比は、この場合、照明系10によって照明される照明視野のアスペクト比に対応し、例えば長方形である。照明視野またはファセット素子13a〜13dは長方形以外の形状とすることもできることは言うまでもない。
視野ファセットミラー13の各々のファセット素子13a〜13dは、この場合、図1に例として示すように、視野ファセットミラー13における第1ファセット素子13aの2つの角度位置W1,W2でX方向に平行な軸方向を中心に傾斜され得る。更に、各々のファセット素子13a〜13dは、XZ面(図面内の平面)にある別の軸を中心に傾斜可能であり得る。このように、照明光線4がファセット素子13a〜13dに入射する方向を設定することができる。照明された物体Mの位置に所望の照明分布(照明瞳または角度分布)を生成するため、傾斜は、特に視野ファセットミラー13のファセット素子13a〜13dと瞳ファセットミラー14のファセット素子14a〜14dとの間の割り当てを変える効果も持ち得る。従って、瞳ファセットミラー14のファセット素子14a〜14dはX方向に平行な軸方向を中心として傾斜可能でもあり、XZ面(図面内の平面)にある別の軸を中心として傾斜可能でもある。
図示する例において、EUV光源2は、スズドロップレットの形状の対象材料上にレーザ誘起プラズマを生成するプラズマ光源として形成される。プラズマの形成中、EUV光源2のスズ材料のうちの一部は気相となり、例えばスズ粒子またはスズ化合物、特に水素化スズ(Sn)の汚染物質の形態の汚染物質Pを形成する。汚染物質PはEUVリソグラフィ装置1内においてEUV光源2から光学素子、例えば、視野ファセットミラー13または瞳ファセットミラー14へと広がり、これらに堆積する、またはこれらを汚染する。
図2は、例えば汚染物質Pに曝される5つのファセット素子13a〜13eを有する、図1の視野ファセットミラー13の詳細を示す。図2に示すように、視野ファセットミラー13はシリコンの基板17を有し、これは円柱状の支持素子18を有し、その上にファセット素子13a〜13eが移動可能に装着されている。基板17の下には各ファセット素子13a〜13eの領域内に、例えば電極の形態の1つまたは複数のアクチュエータ19が電場を生成するために装着され、静電気引力によってファセット素子13a〜13eを、X方向に延び、それぞれの支持素子18の領域内を走るX軸を中心として傾斜させる。
図2に示すように、汚染物質Pは、EUV放射4を反射するコーティングが適用されたファセット素子13a〜13eの表面に堆積するだけではなく、隣接するファセット素子13a〜13e間の中間領域に入り、それぞれの支持素子18および/またはファセットミラー13の基板17に留まる。これは、図2に示す第2および第3のファセット素子13b,13cのように、個々のファセット素子13a〜13eが図2の破線で示される共通面の外に傾斜された場合に特にあてはまる。
スズ粒子の形態の汚染物質Pの堆積によって支持素子18の表面上の電位が変化し、これにより、アクチュエータ19によるファセット素子13a〜13eの駆動または傾斜は影響を受ける。特に、ファセット素子13a〜13eの駆動が可能な角度範囲は汚染物質Pの堆積によって制限され得る。
図3は図2のファセットミラー13を示し、ファセットミラー13の前には保護素子30が配置され、保護素子30は、ファセットミラー13、より正確にはファセットミラー13の平面31を汚染物質Pから保護する。平面31は図3において破線で示され、これに沿ってファセット素子13a〜13eが傾斜されない状態で、その上面がEUV放射4に向けられて配置されている。ファセットミラー13は保護素子30と共に光学アセンブリ32を形成する。
図示する例において、保護素子30は複数の薄膜セグメントによって形成された薄膜を有し、そのうちの少なくとも一部の3つの薄膜セグメント33a〜33cが図3に例として示される。保護素子30は更に(ワイヤ)グリッドの形態のフレーム34を有し、そのうちの2つのウェブ35のみが図3に示されている。図3において左側に位置する第1薄膜セグメント33aおよび中央に位置する第2薄膜セグメント33bは、エッジにおいて第1ウェブ35aに固定される。これにより、図3の中央の薄膜セグメント33bおよび右側に位置する薄膜セグメント33cはエッジにおいて第2ウェブ35bに固定される。薄膜セグメント33a〜33cのウェブ35a、35bへの固定は接着またはその他の方法によって行うことができる。
図に示す例において、隣接する薄膜セグメント33a,33bおよび33b,33cは、直接相互に接合され、ウェブ35a,35bの上面全体は薄膜セグメント33a〜33cによって被覆されている。また図3に示すように、中央の薄膜セグメント33bは、図3に示す5つのファセット素子33a〜eを含む表面31の一部の領域Tを被覆し、これを汚染物質Pから保護する。同じことは、光学アセンブリ32を上から見た平面図、すなわち保護素子30を上から見た図4から特にわかるように、同様に表面31のそれぞれの部分領域を被覆する第1および第3薄膜セグメント33a,33cにも言える。
図4には保護素子30のグリッド状のフレーム34が示され、この例では長手方向に平行に5つのウェブが配置され、横方向に平行に4つのウェブが配置され、これらはそれぞれグリッドノードで接続されている。長手方向または横方向に隣接する2つのウェブ35の間にはそれぞれ、全部で12の薄膜セグメントのうちの1つが配置されており、これらは視野ファセット素子13の保護される表面31を平面的に被覆する。
図4においては、視野ファセットミラー13の横方向の第1薄膜セグメント33aから第4薄膜セグメント33dまでのみが例として示されている。この例において、保護素子30の下に配置される視野ファセットミラー13は15×20のファセット素子のグリッド状の配置を有し、この中で共通の列に配置された5つのファセット素子13a〜13eのみを参照符号で図4に示している。15×20のファセット素子は説明の目的のみに選択したものであり、実際のファセット素子の数はこれより大幅に多くてもよいのは言うまでもない。
図4に示す視野ファセットミラー13の場合、ファセット素子は5×5のファセット素子群でそれぞれ配置され、その間には中間領域36(図3も参照のこと)が形成され、これは通常同じ群の隣接するファセット素子13a〜13e間の中間領域37よりも大きい。薄膜素子35a〜cはそれぞれ5×5のファセット素子群を被覆し、フレーム34のウェブ35はファセット素子の隣接する群間の中間領域36(図3も参照のこと)にわたって配置されている。このように、ファセット素子13a〜13eが配置されていないので何れにしてもEUV放射4の反射に貢献できない表面31の一部の領域のみが、フレーム34、より正確にはウェブ35によって遮蔽される。
視野ファセットミラー13の表面31に斜めに入射する可能性のあるEUV放射4の場合においても、EUV放射4を透過させない材料、例えばアルミニウム製のフレーム34のウェブ35がファセット素子13a〜13eの反射面を遮蔽できないようにするには、保護素子30をファセットミラー13の表面31から比較的短い距離A,例えば10mm未満、好適には5mm未満、特に好適には2mm未満だけ離して配置することは有利である。その距離は、傾斜したファセット素子13b,13cが保護素子30またはそれぞれの薄膜セグメント33a〜33cとぶつからない程度であれば少なくとも十分である。保護素子30と保護される表面31との間の距離は、この場合、それぞれの薄膜セグメント33a〜33c間、より正確には、その視野ファセットミラー13に面する側面と表面31との間の測定値である。
光学アセンブリ32の保護素子30、より正確には保護素子30のフレーム34は、視野ファセット素子13自身も固定される台に固定してもよいが、視野ファセット素子13およびフレーム34を相互に離して設置された異なる台に固定することも可能である。何れの場合においても、保護素子30を台に、ねじ接続やクランプ接続などの取り外し可能な接続で固定することができる。これにより、薄膜セグメント33a〜33cが汚染された場合に必要となれば、保護素子30のEUVリソグラフィ装置からの取り外しを簡単に行うことができるようになる。
図4に示す例の場合、グリッド状フレーム34の形状、すなわち長さと幅は、ファセット素子13a〜13eの形状、すなわち長さと幅に適合される。より正確には、フレーム34のウェブ35は隣接するファセット素子群間の中間領域36にわたって配置される。図4に示す例において、ファセット素子13a〜13eはそれぞれX(長さ)方向Lの約3mmの線膨張とY(幅)方向Bの約1mmの線膨張とを有する。薄膜セグメント33a〜33cそれぞれの線膨張5×L,5×Bは、それぞれのファセット素子13a〜13e長さLと幅Bの整数倍にほぼ相当する。隣接するファセット素子13a〜13e間の中間領域37のため、それぞれの薄膜セグメント33a〜33cの長さと幅は、通常それぞれのファセット素子13a〜13eの長さLと幅Bの整数倍よりもわずかに大きく、すなわち5×(L+L)および6×(B+B)であり、ここでLおよびBは隣接するファセット素子13a〜13e間のそれぞれの中間領域37の長さと幅を示す。
図4に示す状況とは異なり、薄膜素子33a〜33cはそれぞれより少ない数のファセット素子、特に1つのファセット素子13a〜13cのみを被覆することもあることは言うまでもない。この場合、4つのウェブ35によって画定されるフレーム34のそれぞれの部分のアスペクト比、すなわち長さと幅の割合は、それぞれ被覆されたファセット素子13a〜13eのアスペクト比、すなわち長さと幅の割合とほぼ一致する。
図示する例において、視野ファセットミラー13の表面31を共に被覆する薄膜セグメント33a〜33cは、EUV放射4に対する吸収率の低い多結晶シリコンで形成される。シリコン吸収率は低いが薄膜セグメント33a〜33cの厚さDは厚過ぎてはならず、厚さDの値は通常約5nm〜約500nmである。
汚染物質Pが薄膜セグメント33a〜33cに堆積するのを防止し、このような堆積の可能性を低減するために、図3に示す例においては、薄膜セグメント33a〜33cにおける視野ファセットミラー13に面していない側面にコーティング38が適用されている。コーティング38に堆積する汚染粒子Pは、コーティングされていない薄膜セグメント33a〜33cよりも少ない。コーティング38の材料としては、酸化物、窒化物、炭化物およびホウカ物が有利であることがわかった。スズ汚染物質の形態の汚染物質Pが堆積する可能性を低減するには、例えば、酸化チタン、酸化ジルコニウム、酸化イットリウム、酸化セリウム、酸化ニオブ、酸化ランタン、酸化バナジウム、酸化クロム、酸化マンガン、酸化アルミニウム、酸化コバルト、酸化モリブデン、酸化タングステンなどの酸化物のコーティング材料が有利であることがわかった。特にZrOのコーティング38の場合、汚染による影響を受ける表面領域は、EUV放射4下において小さくなることがわかった。従ってEUVリソグラフィシステム1の露光動作中、ZrOコーティング38の表面に(分子)スズ汚染物の堆積する可能性は非常に低い。
図3および図4に示す視野ファセットミラー13を有する光学アセンブリ32は、図1のEUVリソグラフィ装置1の照明系10に配置してもよい。図1に示す様に、EUVリソグラフィ装置1は、図3に示す光学アセンブリ32における薄膜33a〜33cの光学素子13に面していない側面から汚染物質Pを取り除く洗浄デバイス39を有する。洗浄デバイス39は洗浄ガス40、例えば(活性)水素を光学素子13上に向けるように構成される。このために、洗浄デバイス39はノズルを有し、ノズルから洗浄ガス40が流れ出し、図3に示す薄膜33a〜33cの光学素子13に面していない側面に衝突する。このために洗浄ガス40は(図1に示さない)ガス貯蔵器から抽出される。図に示す例において、洗浄デバイス39またはその洗浄ガス40を流出させる一部の領域はEUVリソグラフィ装置1内を移動することができ、薄膜33a〜33cの様々な部分の領域を洗浄する、または露光工程中、洗浄デバイス39が照明系10の照明光線4に突出するのを防止することができる。
図3からわかるように、光学素子13またはアクチュエータ19によって排出された汚染物質がEUVリソグラフィシステム1の真空環境に到達しないようにするために、光学アセンブリ32は、光学素子13と光学素子13に面する薄膜33a〜33cの面との間の空間44をパージガス42でパージするパージデバイス41を有する。このためににパージガス42はガス貯蔵器から抽出されてパージデバイス41のノズル43に提供され、パージガス42はこのノズルから空間44に流出する。図3に示す例において、薄膜33a〜33cと光学素子13との間の空間44は、EUVリソグラフィシステム1における真空環境の残りの部分から気密状態で分離される。パージデバイス41は空間44からパージガス42を取り除く(図示しない)吸収部を有する。パージガス42として、例えば水素、ヘリウムなどの希ガス、または窒素のように分子量の大きな重い気体などの数種類のガスを使用することができる。
瞳ファセットミラー14を含む別の光学アセンブリを、図1の照明系10に光学素子として配置させ得ることは言うまでもない。また、投影系20または他の光学装置、例えばEUVリソグラフィ計測システム内のミラー21〜24を対応する保護素子30と共に設けて、汚染物質Pから保護することもできる。反射光学素子の代わりに透過性光学素子も、保護素子を用いて汚染物質から保護することができるのは言うまでもない。特に、このような保護素子の使用分野はEUVリソグラフィの用途に限定されない。

Claims (19)

  1. 光学アセンブリ(32)であって、
    特にEUV放射(4)を反射するための光学素子(13,14)と、
    前記光学素子(13,14)の表面(31)を汚染物質(P)から保護する、薄膜(33a〜33d)と該薄膜(33a〜33d)が装着されたフレーム(34)とを含む保護素子(30)とを含み、
    前記薄膜(33a〜33d)は、それぞれ前記光学素子(13,14)の前記表面(31)の一部の領域(T)を前記汚染物質(P)から保護する複数の薄膜セグメント(33a,33b,33c,33d)によって形成される光学アセンブリ。
  2. 請求項1に記載の光学アセンブリであって、前記フレーム(34)はそれぞれの前記薄膜セグメント(33a,33b,33c)をエッジで固定するための複数のウェブ(35,35a,35b)を有する光学アセンブリ。
  3. 請求項1または2に記載の光学アセンブリであって、前記光学素子(13,14)は前記表面(31)の少なくとも一部の領域を移動させるための少なくとも1つのアクチュエータ(19)を有する光学アセンブリ。
  4. 請求項1〜3の何れか一項に記載の光学アセンブリであって、前記光学素子は複数のミラーセグメントを有するセグメント化されたミラー、特に複数のファセット素子(13a〜13e,14a〜14d)を有するファセットミラー(13,14)である光学アセンブリ。
  5. 請求項4に記載の光学アセンブリであって、前記フレーム(34)の形状は前記ファセット素子(13a〜13e)の形状に適合される光学アセンブリ。
  6. 請求項4または5に記載の光学アセンブリであって、前記フレーム(34)のウェブ(35,35a,35b)は前記ファセット素子(13a〜13e)間の中間領域(36,37)に配置される光学アセンブリ。
  7. 請求項1〜6の何れか一項に記載の光学アセンブリであって、前記光学素子(13)の前記表面(31)と前記保護素子(34)との間の距離(A)は、10mm未満、好適には5mm未満、より好適には2mm未満である光学アセンブリ。
  8. 請求項1〜7の何れか一項に記載の光学アセンブリであって、少なくとも1つの薄膜セグメント(33a〜33d)の線膨張は、ファセット素子(13a〜13e)の線膨張(L,B)の整数倍にほぼ相当する光学アセンブリ。
  9. 請求項1〜8の何れか一項に記載の光学アセンブリであって、少なくとも1つの薄膜セグメント(33a〜33d)の長手方向の線膨張は、ファセット素子(13a〜13e)の長さ(L)と、隣接するファセット素子(13a〜13e)間の長手方向における距離(L)との合計の整数倍に相当し、前記少なくとも1つの薄膜セグメント(33a〜33d)の幅方向の線膨張は、ファセット素子の幅(B)と、隣接するファセット素子(13a〜13e)間の幅方向の距離(B)との合計の整数倍に相当する光学アセンブリ。
  10. 請求項1〜9の何れか一項に記載の光学アセンブリであって、前記薄膜セグメント(33a〜33c)はシリコン、特に多結晶シリコンから形成される光学アセンブリ。
  11. 請求項1〜10の何れか一項に記載の光学アセンブリであって、前記薄膜セグメント(33a〜33c)は前記光学素子(13)に面していない側面に汚染物質(P)の付着を低減させるコーティング(38)を有する光学アセンブリ。
  12. 請求項11に記載の光学アセンブリであって、前記コーティング(38)の材料は、酸化物、窒化物、炭化物およびホウカ物からなる群より選択される光学アセンブリ。
  13. 請求項11または12に記載の光学アセンブリであって、前記コーティング(38)の材料は、酸化チタン、酸化ジルコニウム、酸化イットリウム、酸化セリウム、酸化ニオブ、酸化ランタン、酸化バナジウム、酸化クロム、酸化マンガン、酸化アルミニウム、酸化コバルト、酸化モリブデンおよび酸化タングステンからなる群より選択される光学アセンブリ。
  14. 請求項1〜13の何れか一項に記載の光学アセンブリであって、前記薄膜セグメント(33a〜33c)はそれぞれ5nm〜500nmの厚さ(D)を有する光学アセンブリ。
  15. 請求項1〜14の何れか一項に記載の光学アセンブリであって、前記保護素子(30)は取り外し可能に装着される光学アセンブリ。
  16. 請求項1〜15の何れか一項に記載の光学アセンブリであって、前記光学素子(13)と該光学素子(13)に面する前記薄膜(33a〜33d)の面との間の空間(44)をパージガス(42)でパージするパージデバイス(41)を更に含む光学アセンブリ。
  17. 請求項1〜16に記載の少なくとも1つの光学アセンブリ(32)を含む、特にEUVリソグラフィシステム(1)用の光学装置。
  18. 請求項17に記載の光学装置であって、前記薄膜(33a〜33d)における前記光学素子(13)に面していない側面から汚染物質(P)を取り除く洗浄デバイス(39)を更に含む光学装置。
  19. 請求項17または18に記載の光学装置であって、照明系(10)を含み、該照明系(10)に前記光学アセンブリ(32)が配置され、前記光学アセンブリ(32)の前記光学素子は前記照明系(10)のファセットミラー(13,14)によって形成される光学装置。
JP2018522015A 2015-10-29 2016-10-26 保護素子を有する光学アセンブリおよびそのような光学アセンブリを有する光学装置 Active JP6805248B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015221209.2A DE102015221209A1 (de) 2015-10-29 2015-10-29 Optische Baugruppe mit einem Schutzelement und optische Anordnung damit
DE102015221209.2 2015-10-29
PCT/EP2016/075845 WO2017072195A1 (en) 2015-10-29 2016-10-26 Optical assembly with a protective element and optical arrangement therewith

Publications (3)

Publication Number Publication Date
JP2018533770A true JP2018533770A (ja) 2018-11-15
JP2018533770A5 JP2018533770A5 (ja) 2019-12-05
JP6805248B2 JP6805248B2 (ja) 2020-12-23

Family

ID=57209463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018522015A Active JP6805248B2 (ja) 2015-10-29 2016-10-26 保護素子を有する光学アセンブリおよびそのような光学アセンブリを有する光学装置

Country Status (6)

Country Link
US (1) US11022893B2 (ja)
EP (1) EP3368948B1 (ja)
JP (1) JP6805248B2 (ja)
DE (1) DE102015221209A1 (ja)
TW (1) TWI745312B (ja)
WO (1) WO2017072195A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015967A (ja) * 2017-07-05 2019-01-31 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv光学ユニットを有する計測システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11272606B2 (en) * 2017-06-27 2022-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. EUV light source and apparatus for lithography
DE102018110251B4 (de) * 2018-04-27 2021-03-25 Friedrich-Schiller-Universität Jena Kontaminationsabweisender Spiegel und Verfahren zu dessen Herstellung
DE102019117964A1 (de) 2019-07-03 2020-07-23 Asml Netherlands B.V. Lithographieanlage mit einer Überwachungseinrichtung für ein Pellikel
DE102019214269A1 (de) * 2019-09-19 2021-03-25 Carl Zeiss Smt Gmbh Facettenspiegel für eine Beleuchtungsoptik einer Projektionsbelichtungsanlage
DE102022121000B4 (de) 2021-08-23 2024-03-07 Carl Zeiss Smt Gmbh Spiegelanordnung für eine EUV-Projektionsbelichtungsanlage mit einer Schutzvorrichtung zum Schutz der optischen Wirkfläche und EUV-Projektionsbelichtungsanlage
DE102021211619A1 (de) 2021-10-14 2023-04-20 Carl Zeiss Smt Gmbh EUV- Mehrfachspiegelanordnung
DE102022209427A1 (de) * 2022-09-09 2024-03-14 Carl Zeiss Smt Gmbh Mikrospiegelanordnung mit federnd gelagerten Einzelspiegelelementen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153396A (ja) * 2006-12-15 2008-07-03 Nikon Corp 照度均一化装置、露光装置、露光方法および半導体デバイスの製造方法
JP2010525570A (ja) * 2007-04-19 2010-07-22 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびデバイス製造方法
JP2013516055A (ja) * 2009-12-23 2013-05-09 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびデバイス製造方法
JP2013534727A (ja) * 2010-06-25 2013-09-05 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびリソグラフィ方法
JP2014049677A (ja) * 2012-09-03 2014-03-17 Shin Etsu Chem Co Ltd Euv用ペリクル

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445844B1 (en) * 1999-09-15 2002-09-03 Xros, Inc. Flexible, modular, compact fiber optic switch
US6701512B2 (en) * 2001-01-24 2004-03-02 Kabushiki Kaisha Toshiba Focus monitoring method, exposure apparatus, and exposure mask
US6594073B2 (en) * 2001-05-30 2003-07-15 Micro Lithography, Inc. Antistatic optical pellicle
DE602004003015T2 (de) 2003-10-06 2007-02-08 Asml Netherlands B.V. Verfahren und Gerät zur Herstellung einer Schutzschicht auf einem Spiegel
US7633073B2 (en) 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7829248B2 (en) 2007-07-24 2010-11-09 Taiwan Semiconductor Manufacturing Company, Ltd. Pellicle stress relief
DE102008041436A1 (de) 2007-10-02 2009-04-09 Carl Zeiss Smt Ag Optisches Membranelement
DE102008028868A1 (de) * 2008-06-19 2009-12-24 Carl Zeiss Smt Ag Optische Baugruppe
JP2012216743A (ja) * 2010-06-16 2012-11-08 Gigaphoton Inc スペクトル純度フィルタ及びそれを備える極端紫外光生成装置
DE102012202057B4 (de) * 2012-02-10 2021-07-08 Carl Zeiss Smt Gmbh Projektionsobjektiv für EUV-Mikrolithographie, Folienelement und Verfahren zur Herstellung eines Projektionsobjektivs mit Folienelement
DE102012204295A1 (de) * 2012-03-19 2013-03-28 Carl Zeiss Smt Gmbh Filterelement
US9599912B2 (en) * 2012-05-21 2017-03-21 Asml Netherlands B.V. Lithographic apparatus
WO2014055582A1 (en) * 2012-10-05 2014-04-10 Rudolph Technologies, Inc. Multiple-blade device for substrate edge protection during photolithography
JP6382298B2 (ja) * 2013-03-27 2018-08-29 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153396A (ja) * 2006-12-15 2008-07-03 Nikon Corp 照度均一化装置、露光装置、露光方法および半導体デバイスの製造方法
JP2010525570A (ja) * 2007-04-19 2010-07-22 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびデバイス製造方法
JP2013516055A (ja) * 2009-12-23 2013-05-09 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびデバイス製造方法
JP2013534727A (ja) * 2010-06-25 2013-09-05 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびリソグラフィ方法
JP2014049677A (ja) * 2012-09-03 2014-03-17 Shin Etsu Chem Co Ltd Euv用ペリクル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015967A (ja) * 2017-07-05 2019-01-31 カール・ツァイス・エスエムティー・ゲーエムベーハー Euv光学ユニットを有する計測システム

Also Published As

Publication number Publication date
TW201727277A (zh) 2017-08-01
US11022893B2 (en) 2021-06-01
US20180246413A1 (en) 2018-08-30
WO2017072195A1 (en) 2017-05-04
EP3368948A1 (en) 2018-09-05
DE102015221209A1 (de) 2017-05-04
TWI745312B (zh) 2021-11-11
EP3368948B1 (en) 2019-09-18
JP6805248B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6805248B2 (ja) 保護素子を有する光学アセンブリおよびそのような光学アセンブリを有する光学装置
KR102068146B1 (ko) 리소그래피 장치 및 방법
JP2019105860A (ja) 薄膜スペクトル純度フィルタコーティングとともに画像センサを使用するeuv化学線レチクル検査システム
JP4222996B2 (ja) 汚染を抑制したリソグラフィ装置、デバイス製造方法、及びこれらによって製造されたデバイス
KR20200032175A (ko) 플라즈마의 에칭 효과에 대한 보호를 위한 차폐부를 갖는 euv 방사선용 광학 장치
US7211810B2 (en) Method for the protection of an optical element, lithographic apparatus, and device manufacturing method
JP2013509693A (ja) スペクトル純度フィルタ、リソグラフィ装置、スペクトル純度フィルタの製造方法、およびリソグラフィ装置を用いるデバイス製造方法
KR101797052B1 (ko) 스펙트럼 퓨리티 필터
US20170052290A1 (en) Multilayer reflective mirror, method for producing same, and exposure device
JP2022546442A (ja) 光学素子及びeuvリソグラフィシステム
KR20220008831A (ko) 리소그래피 장치에서 사용하기 위한 미러
WO2018114159A1 (en) Optical element, in particular for a microlithographic projection exposure apparatus
US20240136218A1 (en) Substrate restraining system
US20240234196A9 (en) Substrate restraining system
US20220206401A1 (en) Mirror assembly having a hydrogen barrier and optical assembly
CN117597631A (zh) 屏蔽设备和方法
KR20240054292A (ko) 필름 형태의 가스 결합 컴포넌트를 포함하는 euv 리소그래피 시스템
WO2022167177A1 (en) Lithographic apparatus, assembly, and method
JP2023538620A (ja) 反射光学素子、照明光学ユニット、投影露光装置、及び保護層を作成する方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R150 Certificate of patent or registration of utility model

Ref document number: 6805248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250