JP2018521374A - ニューラルネットワークプロセッサで使用される重みのプリフェッチ - Google Patents
ニューラルネットワークプロセッサで使用される重みのプリフェッチ Download PDFInfo
- Publication number
- JP2018521374A JP2018521374A JP2017550913A JP2017550913A JP2018521374A JP 2018521374 A JP2018521374 A JP 2018521374A JP 2017550913 A JP2017550913 A JP 2017550913A JP 2017550913 A JP2017550913 A JP 2017550913A JP 2018521374 A JP2018521374 A JP 2018521374A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- input
- cell
- circuit
- dimension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 71
- 230000004913 activation Effects 0.000 claims description 109
- 238000004364 calculation method Methods 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 32
- 238000004260 weight control Methods 0.000 claims description 18
- 230000001186 cumulative effect Effects 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 description 48
- 230000008569 process Effects 0.000 description 12
- 238000004590 computer program Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000013515 script Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
- G06F15/80—Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
- G06F15/8007—Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors single instruction multiple data [SIMD] multiprocessors
- G06F15/8023—Two dimensional arrays, e.g. mesh, torus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored program computers
- G06F15/80—Architectures of general purpose stored program computers comprising an array of processing units with common control, e.g. single instruction multiple data processors
- G06F15/8046—Systolic arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/002—Biomolecular computers, i.e. using biomolecules, proteins, cells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Databases & Information Systems (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Algebra (AREA)
- Image Processing (AREA)
- Complex Calculations (AREA)
- Image Analysis (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Multi Processors (AREA)
Abstract
Description
本明細書は、ハードウェアにおいてニューラルネットワーク推測値を計算することに関する。
全体として、本明細書では、ニューラルネットワーク推測値を計算する特定目的ハードウェア回路について説明する。
詳細な説明
複数の層を有するニューラルネットワークは、推測値の計算に使用することができる。たとえば、入力を前提として、ニューラルネットワークは当該入力について推測値を計算することができる。ニューラルネットワークは、ニューラルネットワークの各層を介して入力を処理することによってこの推測値を計算する。特に、ニューラルネットワークの層は、各々が重みのそれぞれのセットを有する状態で、ある順序で配置される。各層は、入力を受け取って、当該層の重みのセットに従って入力を処理して、出力を生成する。
本明細書に記載されている主題および機能動作の実施形態は、デジタル電子回路で実現されてもよく、有形に実施されたコンピュータソフトウェアもしくはファームウェアで実現されてもよく、本明細書に開示されている構造およびそれらの構造的等価物を含むコンピュータハードウェアで実現されてもよく、またはそれらのうちの1つ以上の組み合わせで実現されてもよい。本明細書に記載されている主題の実施形態は、1つ以上のコンピュータプログラムとして実現されてもよく、すなわちデータ処理装置による実行またはデータ処理装置の動作の制御のために有形の非一時的なプログラムキャリアに符号化されたコンピュータプログラム命令の1つ以上のモジュールとして実現されてもよい。代替的にまたは加えて、プログラム命令は、人工的に生成された伝搬信号、たとえば機械によって生成された電気信号、光信号または電磁信号、に符号化されてもよく、当該信号は、情報を符号化して好適な受信機装置に送信してデータ処理装置によって実行するように生成される。コンピュータ記憶媒体は、機械読取可能な記憶装置であってもよく、機械読取可能な記憶基板であってもよく、ランダムもしくはシリアルアクセスメモリデバイスであってもよく、またはそれらのうちの1つ以上の組み合わせであってもよい。
Claims (20)
- 複数の層を備えるニューラルネットワークについてニューラルネットワーク計算を実行するための回路であって、
複数のセルを備えるシストリックアレイと、
重みフェッチャユニットとを備え、
前記重みフェッチャユニットは、前記複数のニューラルネットワーク層の各々について、前記ニューラルネットワーク層のための前記シストリックアレイの第1の次元に沿ったセルに複数の重み入力を送るように構成され、前記回路はさらに、
複数の重みシーケンサユニットを備え、各々の重みシーケンサユニットは、前記シストリックアレイの前記第1の次元に沿った個別のセルに結合され、
前記複数の重みシーケンサユニットは、前記複数のニューラルネットワーク層の各々について、複数のクロックサイクルにわたって前記ニューラルネットワーク層のための前記シストリックアレイの第2の次元に沿ったセルに前記複数の重み入力をシフトするように構成され、各々の重み入力は、前記第2の次元に沿ったそれぞれのセル内に格納され、各々のセルは、乗算回路を使用して起動入力とそれぞれの重み入力との積を計算するように構成される、回路。 - 前記複数のニューラルネットワーク層の各々について、前記ニューラルネットワーク層のための前記シストリックアレイの前記第2の次元に沿ったセルに複数の起動入力を送るように構成された値シーケンサユニットをさらに備える、請求項1に記載の回路。
- 前記シストリックアレイの前記第1の次元は、前記シストリックアレイの行に対応し、前記シストリックアレイの前記第2の次元は、前記シストリックアレイの列に対応する、請求項1または2に記載の回路。
- 各々のセルは、重み制御信号を隣接するセルに渡すように構成され、前記重み制御信号は、前記隣接するセル内の回路に、前記隣接するセルについての重み入力をシフトまたはロードさせる、請求項1〜3のいずれか1項に記載の回路。
- 各々のセルは、
前記セルにシフトされた前記重み入力を格納するように構成された重みパスレジスタと、
前記重みパスレジスタに結合された重みレジスタと、
前記重みレジスタに前記重み入力を格納するか否かを判断するように構成された重み制御レジスタと、
起動入力を格納するように構成され、前記起動入力を前記第1の次元に沿った第1の隣接するセル内の別の起動レジスタに送るように構成された起動レジスタと、
前記重みレジスタおよび前記起動レジスタに結合された前記乗算回路とを備え、前記乗算回路は、前記重み入力と前記起動入力との積を出力するように構成され、前記各々のセルはさらに、
前記乗算回路に結合され、前記積および第1の部分和を前記第2の次元に沿った第2の隣接するセルから受け取るように構成された総和回路を備え、前記総和回路は、前記積と前記第1の部分和との第2の部分和を出力するように構成され、前記各々のセルはさらに、
前記総和回路に結合され、前記第2の部分和を格納するように構成された部分和レジスタを備え、前記部分和レジスタは、前記第2の部分和を前記第2の次元に沿った第3の隣接するセル内の別の総和回路に送るように構成される、請求項1〜3のいずれか1項に記載の回路。 - 各々の重みシーケンサユニットは、
前記重みシーケンサユニットに結合された前記対応するセル内の前記重み制御レジスタに対応する一時停止カウンタと、
デクリメント回路とを備え、前記デクリメント回路は、前記重みシーケンサユニットへの入力をデクリメントして、デクリメントされた出力を生成し、前記デクリメントされた出力を前記一時停止カウンタに送るように構成される、請求項5に記載の回路。 - 各々の一時停止カウンタにおける値は同一であり、各々の重みシーケンサユニットは、対応する重み入力を前記シストリックアレイの前記対応する個別のセルにロードするように構成され、前記ロードは、前記重み入力を前記乗算回路に送ることを備える、請求項6に記載の回路。
- 各々の一時停止カウンタにおける値は異なっており、各々の重みシーケンサユニットは、対応する重み入力を前記第2の次元に沿って隣接する重みシーケンサユニットにシフトするように構成される、請求項6に記載の回路。
- 各々の一時停止カウンタにおける値は、予め定められた値に到達して、前記複数の重みシーケンサユニットに前記第2の次元に沿った前記複数の重み入力のシフトを一時停止させる、請求項6に記載の回路。
- 前記シストリックアレイは、前記複数のニューラルネットワーク層の各々について、前記ニューラルネットワーク層のための累積出力を各々の積から生成するように構成される、請求項1〜9のいずれか1項に記載の回路。
- 複数の層を備えるニューラルネットワークについてニューラルネットワーク計算を実行するための方法であって、前記方法は、前記複数のニューラルネットワーク層の各々について、
重みフェッチャユニットにおいて、複数のセルを備えるシストリックアレイの第1の次元に沿ったセルに複数の重み入力を送るステップと、
複数の重みシーケンサユニットの各々において、複数のクロックサイクルにわたって前記シストリックアレイの第2の次元に沿ったセルに前記複数の重み入力をシフトするステップとを備え、各々の重みシーケンサユニットは、前記シストリックアレイの前記第1の次元に沿った個別のセルに結合され、各々の重み入力は、前記第2の次元に沿ったそれぞれのセル内に格納され、各々のセルは、乗算回路を使用して起動入力とそれぞれの重み入力との積を計算するように構成される、方法。 - 値シーケンサユニットにおいて、前記ニューラルネットワーク層のための前記シストリックアレイの前記第2の次元に沿ったセルに複数の起動入力を送るステップをさらに備える、請求項11に記載の方法。
- 前記シストリックアレイの前記第1の次元は、前記シストリックアレイの行に対応し、前記シストリックアレイの前記第2の次元は、前記シストリックアレイの列に対応する、請求項11または12に記載の方法。
- 各々のセルについて、隣接するセルに対する重み制御信号を当該セルに渡すステップをさらに備え、前記重み制御信号は、前記隣接するセル内の回路に、前記隣接するセルについての重み入力をシフトまたはロードさせる、先行するいずれかの請求項に記載の方法。
- 各々のセルは、
前記セルにシフトされた前記重み入力を格納するように構成された重みパスレジスタと、
前記重みパスレジスタに結合された重みレジスタと、
前記重みレジスタに前記重み入力を格納するか否かを判断するように構成された重み制御レジスタと、
起動入力を格納するように構成され、前記起動入力を前記第1の次元に沿った第1の隣接するセル内の別の起動レジスタに送るように構成された起動レジスタと、
前記重みレジスタおよび前記起動レジスタに結合された前記乗算回路とを備え、前記乗算回路は、前記重み入力と前記起動入力との積を出力するように構成され、前記各々のセルはさらに、
前記乗算回路に結合され、前記積および第1の部分和を前記第2の次元に沿った第2の隣接するセルから受け取るように構成された総和回路を備え、前記総和回路は、前記積と前記第1の部分和との第2の部分和を出力するように構成され、前記各々のセルはさらに、
前記総和回路に結合され、前記第2の部分和を格納するように構成された部分和レジスタを備え、前記部分和レジスタは、前記第2の部分和を前記第2の次元に沿った第3の隣接するセル内の別の総和回路に送るように構成される、請求項11〜13のいずれか1項に記載の方法。 - 各々の重みシーケンサユニット内のデクリメント回路において、前記重みシーケンサユニットへのそれぞれの入力をデクリメントして、それぞれのデクリメントされた出力を生成するステップと、
各々の重みシーケンサユニットについて、前記それぞれのデクリメントされた出力をそれぞれの一時停止カウンタに送るステップとをさらに備え、前記それぞれの一時停止カウンタは、前記重みシーケンサユニットに結合された対応するセル内の前記重み制御レジスタに対応する、請求項15に記載の方法。 - 各々の一時停止カウンタにおける値は同一であり、各々の重みシーケンサユニットにおいて、対応する重み入力を前記シストリックアレイの前記対応する個別のセルにロードするステップをさらに備え、前記ロードするステップは、前記重み入力を前記乗算回路に送るステップを備える、請求項16に記載の方法。
- 各々の一時停止カウンタにおける値は異なっており、各々の重みシーケンサユニットにおいて、対応する重み入力を前記第2の次元に沿って隣接する重みシーケンサユニットにシフトするステップをさらに備える、請求項16に記載の方法。
- 各々の一時停止カウンタにおける値は、予め定められた値に到達して、前記複数の重みシーケンサユニットに前記第2の次元に沿った前記複数の重み入力のシフトを一時停止させる、請求項16に記載の方法。
- 前記シストリックアレイにおいて、前記複数のニューラルネットワーク層の各々について、前記ニューラルネットワーク層のためのそれぞれの累積出力を各々の積から生成するステップをさらに備える、請求項11〜19のいずれか1項に記載の方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020069854A JP6953577B2 (ja) | 2015-05-21 | 2020-04-08 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2021159352A JP7071577B2 (ja) | 2015-05-21 | 2021-09-29 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2022076581A JP7383757B2 (ja) | 2015-05-21 | 2022-05-06 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2023190654A JP2024016196A (ja) | 2015-05-21 | 2023-11-08 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562164981P | 2015-05-21 | 2015-05-21 | |
US62/164,981 | 2015-05-21 | ||
US14/844,670 | 2015-09-03 | ||
US14/844,670 US10049322B2 (en) | 2015-05-21 | 2015-09-03 | Prefetching weights for use in a neural network processor |
PCT/US2016/029965 WO2016186810A1 (en) | 2015-05-21 | 2016-04-29 | Prefetching weights for use in a neural network processor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020069854A Division JP6953577B2 (ja) | 2015-05-21 | 2020-04-08 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018521374A true JP2018521374A (ja) | 2018-08-02 |
JP6689878B2 JP6689878B2 (ja) | 2020-04-28 |
Family
ID=56081550
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017550913A Active JP6689878B2 (ja) | 2015-05-21 | 2016-04-29 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2020069854A Active JP6953577B2 (ja) | 2015-05-21 | 2020-04-08 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2021159352A Active JP7071577B2 (ja) | 2015-05-21 | 2021-09-29 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2022076581A Active JP7383757B2 (ja) | 2015-05-21 | 2022-05-06 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2023190654A Pending JP2024016196A (ja) | 2015-05-21 | 2023-11-08 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020069854A Active JP6953577B2 (ja) | 2015-05-21 | 2020-04-08 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2021159352A Active JP7071577B2 (ja) | 2015-05-21 | 2021-09-29 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2022076581A Active JP7383757B2 (ja) | 2015-05-21 | 2022-05-06 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
JP2023190654A Pending JP2024016196A (ja) | 2015-05-21 | 2023-11-08 | ニューラルネットワークプロセッサで使用される重みのプリフェッチ |
Country Status (11)
Country | Link |
---|---|
US (6) | US10049322B2 (ja) |
EP (2) | EP3298546B1 (ja) |
JP (5) | JP6689878B2 (ja) |
KR (4) | KR102105128B1 (ja) |
CN (2) | CN112465132A (ja) |
DE (2) | DE202016107439U1 (ja) |
DK (1) | DK3298546T3 (ja) |
GB (2) | GB2597611B (ja) |
HK (1) | HK1245462A1 (ja) |
TW (1) | TWI636368B (ja) |
WO (1) | WO2016186810A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020077449A (ja) * | 2018-10-11 | 2020-05-21 | 力晶積成電子製造股▲ふん▼有限公司Powerchip Semiconductor Manufacturing Corporation | 人工知能動作を実行できるメモリチップおよびその方法 |
JP2020077298A (ja) * | 2018-11-09 | 2020-05-21 | 株式会社Preferred Networks | プロセッサおよびプロセッサの制御方法 |
JP2020516991A (ja) * | 2017-05-17 | 2020-06-11 | グーグル エルエルシー | 低レイテンシ行列乗算ユニット |
JP2020091861A (ja) * | 2018-12-07 | 2020-06-11 | 三星電子株式会社Samsung Electronics Co.,Ltd. | テンソル計算データフロー加速器半導体回路 |
JP2022164559A (ja) * | 2021-04-16 | 2022-10-27 | 旺宏電子股▲ふん▼有限公司 | メモリデバイスおよびその動作方法 |
US11790225B2 (en) | 2019-02-28 | 2023-10-17 | Canon Kabushiki Kaisha | Data processing apparatus configured to execute hierarchical calculation processing and method thereof |
US12130884B2 (en) | 2021-07-13 | 2024-10-29 | Samsung Electronics Co., Ltd. | Dataflow accelerator architecture for general matrix-matrix multiplication and tensor computation in deep learning |
Families Citing this family (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10846591B2 (en) * | 2015-12-29 | 2020-11-24 | Synopsys, Inc. | Configurable and programmable multi-core architecture with a specialized instruction set for embedded application based on neural networks |
US10360496B2 (en) * | 2016-04-01 | 2019-07-23 | Intel Corporation | Apparatus and method for a digital neuromorphic processor |
KR20180034853A (ko) * | 2016-09-28 | 2018-04-05 | 에스케이하이닉스 주식회사 | 합성곱 신경망의 연산 장치 및 방법 |
IE87469B1 (en) * | 2016-10-06 | 2024-01-03 | Google Llc | Image processing neural networks with separable convolutional layers |
US10521488B1 (en) | 2016-12-30 | 2019-12-31 | X Development Llc | Dynamic partitioning |
EP4160449A1 (en) * | 2016-12-30 | 2023-04-05 | Intel Corporation | Deep learning hardware |
US10146768B2 (en) * | 2017-01-25 | 2018-12-04 | Google Llc | Automatic suggested responses to images received in messages using language model |
JP6823495B2 (ja) * | 2017-02-27 | 2021-02-03 | 株式会社日立製作所 | 情報処理装置および画像認識装置 |
US10896367B2 (en) * | 2017-03-07 | 2021-01-19 | Google Llc | Depth concatenation using a matrix computation unit |
US10909447B2 (en) | 2017-03-09 | 2021-02-02 | Google Llc | Transposing neural network matrices in hardware |
US10241972B2 (en) * | 2017-03-16 | 2019-03-26 | International Business Machines Corporation | Matrix multiplication on a systolic array |
KR102414583B1 (ko) * | 2017-03-23 | 2022-06-29 | 삼성전자주식회사 | 머신 러닝을 수행하는 전자 장치 및 머신 러닝 수행 방법 |
US10552733B2 (en) | 2017-04-03 | 2020-02-04 | Gyrfalcon Technology Inc. | Memory subsystem in CNN based digital IC for artificial intelligence |
US10534996B2 (en) | 2017-04-03 | 2020-01-14 | Gyrfalcon Technology Inc. | Memory subsystem in CNN based digital IC for artificial intelligence |
US10546234B2 (en) | 2017-04-03 | 2020-01-28 | Gyrfalcon Technology Inc. | Buffer memory architecture for a CNN based processing unit and creation methods thereof |
US10331999B2 (en) * | 2017-04-03 | 2019-06-25 | Gyrfalcon Technology Inc. | Memory subsystem in CNN based digital IC for artificial intelligence |
US10824938B2 (en) | 2017-04-24 | 2020-11-03 | Intel Corporation | Specialized fixed function hardware for efficient convolution |
US10019668B1 (en) * | 2017-05-19 | 2018-07-10 | Google Llc | Scheduling neural network processing |
US11328037B2 (en) * | 2017-07-07 | 2022-05-10 | Intel Corporation | Memory-size- and bandwidth-efficient method for feeding systolic array matrix multipliers |
CN109284827A (zh) | 2017-07-19 | 2019-01-29 | 阿里巴巴集团控股有限公司 | 神经网络计算方法、设备、处理器及计算机可读存储介质 |
US11157287B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system with variable latency memory access |
US11409692B2 (en) | 2017-07-24 | 2022-08-09 | Tesla, Inc. | Vector computational unit |
US11157441B2 (en) | 2017-07-24 | 2021-10-26 | Tesla, Inc. | Computational array microprocessor system using non-consecutive data formatting |
US10671349B2 (en) | 2017-07-24 | 2020-06-02 | Tesla, Inc. | Accelerated mathematical engine |
US11893393B2 (en) | 2017-07-24 | 2024-02-06 | Tesla, Inc. | Computational array microprocessor system with hardware arbiter managing memory requests |
US11243880B1 (en) | 2017-09-15 | 2022-02-08 | Groq, Inc. | Processor architecture |
US11114138B2 (en) | 2017-09-15 | 2021-09-07 | Groq, Inc. | Data structures with multiple read ports |
US11360934B1 (en) | 2017-09-15 | 2022-06-14 | Groq, Inc. | Tensor streaming processor architecture |
US11868804B1 (en) | 2019-11-18 | 2024-01-09 | Groq, Inc. | Processor instruction dispatch configuration |
US11170307B1 (en) | 2017-09-21 | 2021-11-09 | Groq, Inc. | Predictive model compiler for generating a statically scheduled binary with known resource constraints |
CN111149090B (zh) * | 2017-09-21 | 2023-12-01 | 华为技术有限公司 | 多线程脉动阵列 |
CN107832839B (zh) * | 2017-10-31 | 2020-02-14 | 南京地平线机器人技术有限公司 | 执行卷积神经网络中的运算的方法和装置 |
GB2568086B (en) * | 2017-11-03 | 2020-05-27 | Imagination Tech Ltd | Hardware implementation of convolution layer of deep neutral network |
EP3480748A1 (en) | 2017-11-06 | 2019-05-08 | Imagination Technologies Limited | Neural network hardware |
KR102424962B1 (ko) | 2017-11-15 | 2022-07-25 | 삼성전자주식회사 | 병렬 연산 처리를 수행하는 메모리 장치 및 이를 포함하는 메모리 모듈 |
JP7179853B2 (ja) * | 2017-12-12 | 2022-11-29 | アマゾン テクノロジーズ インコーポレイテッド | オンチップの計算ネットワーク |
CN107909148B (zh) * | 2017-12-12 | 2020-10-20 | 南京地平线机器人技术有限公司 | 用于执行卷积神经网络中的卷积运算的装置 |
US10803379B2 (en) | 2017-12-12 | 2020-10-13 | Amazon Technologies, Inc. | Multi-memory on-chip computational network |
CN109961134B (zh) * | 2017-12-14 | 2020-06-23 | 中科寒武纪科技股份有限公司 | 集成电路芯片装置及相关产品 |
US11119677B2 (en) * | 2017-12-15 | 2021-09-14 | Samsung Electronics Co., Ltd. | HBM based memory lookup engine for deep learning accelerator |
KR102637735B1 (ko) * | 2018-01-09 | 2024-02-19 | 삼성전자주식회사 | 근사 곱셈기를 구비하는 뉴럴 네트워크 처리 장치 및 이를 포함하는 시스템온 칩 |
CN109416756A (zh) * | 2018-01-15 | 2019-03-01 | 深圳鲲云信息科技有限公司 | 卷积器及其所应用的人工智能处理装置 |
CN108364063B (zh) * | 2018-01-24 | 2019-09-27 | 福州瑞芯微电子股份有限公司 | 一种基于权值分配资源的神经网络训练方法和装置 |
US11561791B2 (en) | 2018-02-01 | 2023-01-24 | Tesla, Inc. | Vector computational unit receiving data elements in parallel from a last row of a computational array |
CN108416434B (zh) * | 2018-02-07 | 2021-06-04 | 复旦大学 | 针对神经网络的卷积层与全连接层进行加速的电路结构 |
US11769042B2 (en) | 2018-02-08 | 2023-09-26 | Western Digital Technologies, Inc. | Reconfigurable systolic neural network engine |
US11741346B2 (en) | 2018-02-08 | 2023-08-29 | Western Digital Technologies, Inc. | Systolic neural network engine with crossover connection optimization |
DE102018202095A1 (de) * | 2018-02-12 | 2019-08-14 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Überprüfen einer Neuronenfunktion in einem neuronalen Netzwerk |
US11468302B2 (en) * | 2018-03-13 | 2022-10-11 | Recogni Inc. | Efficient convolutional engine |
US11475306B2 (en) | 2018-03-22 | 2022-10-18 | Amazon Technologies, Inc. | Processing for multiple input data sets |
JP7108702B2 (ja) * | 2018-03-22 | 2022-07-28 | アマゾン テクノロジーズ インコーポレイテッド | 複数の入力データセットのための処理 |
CN110210610B (zh) * | 2018-03-27 | 2023-06-20 | 腾讯科技(深圳)有限公司 | 卷积计算加速器、卷积计算方法及卷积计算设备 |
US10621489B2 (en) * | 2018-03-30 | 2020-04-14 | International Business Machines Corporation | Massively parallel neural inference computing elements |
US11188814B2 (en) * | 2018-04-05 | 2021-11-30 | Arm Limited | Systolic convolutional neural network |
US20190332924A1 (en) * | 2018-04-27 | 2019-10-31 | International Business Machines Corporation | Central scheduler and instruction dispatcher for a neural inference processor |
US11537838B2 (en) | 2018-05-04 | 2022-12-27 | Apple Inc. | Scalable neural network processing engine |
US11823376B2 (en) | 2018-05-16 | 2023-11-21 | Benevis Informatics, Llc | Systems and methods for review of computer-aided detection of pathology in images |
TWI735886B (zh) * | 2018-06-05 | 2021-08-11 | 美商光子智能股份有限公司 | 計算系統 |
US12099912B2 (en) * | 2018-06-22 | 2024-09-24 | Samsung Electronics Co., Ltd. | Neural processor |
US10839894B2 (en) * | 2018-06-29 | 2020-11-17 | Taiwan Semiconductor Manufacturing Company Ltd. | Memory computation circuit and method |
US20200019836A1 (en) * | 2018-07-12 | 2020-01-16 | International Business Machines Corporation | Hierarchical parallelism in a network of distributed neural network cores |
CN110751276A (zh) * | 2018-07-24 | 2020-02-04 | 闪迪技术有限公司 | 在nand存储器阵列中实现具有三值输入和二值权重的神经网络 |
US10643119B2 (en) * | 2018-07-24 | 2020-05-05 | Sandisk Technologies Llc | Differential non-volatile memory cell for artificial neural network |
US11954573B2 (en) * | 2018-09-06 | 2024-04-09 | Black Sesame Technologies Inc. | Convolutional neural network using adaptive 3D array |
CN109543830B (zh) * | 2018-09-20 | 2023-02-03 | 中国科学院计算技术研究所 | 一种用于卷积神经网络加速器的拆分累加器 |
US10817042B2 (en) * | 2018-09-27 | 2020-10-27 | Intel Corporation | Power savings for neural network architecture with zero activations during inference |
US11636325B2 (en) | 2018-10-24 | 2023-04-25 | Macronix International Co., Ltd. | In-memory data pooling for machine learning |
KR102637733B1 (ko) | 2018-10-31 | 2024-02-19 | 삼성전자주식회사 | 뉴럴 네트워크 프로세서 및 그것의 컨볼루션 연산 방법 |
US11537687B2 (en) | 2018-11-19 | 2022-12-27 | Groq, Inc. | Spatial locality transform of matrices |
US11562229B2 (en) * | 2018-11-30 | 2023-01-24 | Macronix International Co., Ltd. | Convolution accelerator using in-memory computation |
CN111291874B (zh) * | 2018-12-06 | 2023-12-01 | 神盾股份有限公司 | 卷积神经网络处理器及其数据处理方法 |
US11494645B2 (en) | 2018-12-06 | 2022-11-08 | Egis Technology Inc. | Convolutional neural network processor and data processing method thereof |
US11934480B2 (en) | 2018-12-18 | 2024-03-19 | Macronix International Co., Ltd. | NAND block architecture for in-memory multiply-and-accumulate operations |
CN109933371A (zh) * | 2019-02-01 | 2019-06-25 | 京微齐力(北京)科技有限公司 | 其单元可访问本地存储器的人工智能模块和系统芯片 |
CN109857024B (zh) * | 2019-02-01 | 2021-11-12 | 京微齐力(北京)科技有限公司 | 人工智能模块的单元性能测试方法和系统芯片 |
CN109919321A (zh) * | 2019-02-01 | 2019-06-21 | 京微齐力(北京)科技有限公司 | 单元具有本地累加功能的人工智能模块及系统芯片 |
CN109902064A (zh) * | 2019-02-01 | 2019-06-18 | 京微齐力(北京)科技有限公司 | 一种二维脉动阵列的芯片电路 |
US20200249996A1 (en) * | 2019-02-04 | 2020-08-06 | Pathtronic Inc. | Systems and methods for artificial intelligence hardware processing |
US11507662B2 (en) | 2019-02-04 | 2022-11-22 | Sateesh Kumar Addepalli | Systems and methods of security for trusted artificial intelligence hardware processing |
US11150720B2 (en) | 2019-02-04 | 2021-10-19 | Sateesh Kumar Addepalli | Systems and methods for power management of hardware utilizing virtual multilane architecture |
US11544525B2 (en) | 2019-02-04 | 2023-01-03 | Sateesh Kumar Addepalli | Systems and methods for artificial intelligence with a flexible hardware processing framework |
US11423454B2 (en) | 2019-02-15 | 2022-08-23 | Sateesh Kumar Addepalli | Real-time customizable AI model collaboration and marketplace service over a trusted AI model network |
KR20200107295A (ko) * | 2019-03-07 | 2020-09-16 | 에스케이하이닉스 주식회사 | 시스톨릭 어레이 및 프로세싱 시스템 |
CN113396400A (zh) | 2019-03-15 | 2021-09-14 | 英特尔公司 | 用于针对高速缓存操作提供层级开放划分扇区和可变扇区大小的系统和方法 |
US11783176B2 (en) | 2019-03-25 | 2023-10-10 | Western Digital Technologies, Inc. | Enhanced storage device memory architecture for machine learning |
US10929058B2 (en) | 2019-03-25 | 2021-02-23 | Western Digital Technologies, Inc. | Enhanced memory device architecture for machine learning |
US11671111B2 (en) | 2019-04-17 | 2023-06-06 | Samsung Electronics Co., Ltd. | Hardware channel-parallel data compression/decompression |
US11880760B2 (en) | 2019-05-01 | 2024-01-23 | Samsung Electronics Co., Ltd. | Mixed-precision NPU tile with depth-wise convolution |
CN111985628B (zh) * | 2019-05-24 | 2024-04-30 | 澜起科技股份有限公司 | 计算装置及包括所述计算装置的神经网络处理器 |
KR102351087B1 (ko) | 2019-06-04 | 2022-01-14 | 주식회사 딥엑스 | 인공신경망의 데이터 로컬리티 기반의 데이터 캐슁을 이용하여 고속의 인공신경망 오퍼레이션을 지원하는 데이터 관리 장치 |
US11233049B2 (en) | 2019-06-14 | 2022-01-25 | Macronix International Co., Ltd. | Neuromorphic computing device |
US11514300B2 (en) | 2019-06-14 | 2022-11-29 | Macronix International Co., Ltd. | Resistor circuit, artificial intelligence chip and method for manufacturing the same |
TWI698810B (zh) * | 2019-06-14 | 2020-07-11 | 旺宏電子股份有限公司 | 類神經計算裝置 |
CN110210615B (zh) * | 2019-07-08 | 2024-05-28 | 中昊芯英(杭州)科技有限公司 | 一种用于执行神经网络计算的脉动阵列系统 |
CN110543934B (zh) * | 2019-08-14 | 2022-02-01 | 北京航空航天大学 | 一种用于卷积神经网络的脉动阵列计算结构及方法 |
EP3973394A1 (en) * | 2019-08-22 | 2022-03-30 | Google LLC | Propagation latency reduction |
US11501145B1 (en) * | 2019-09-17 | 2022-11-15 | Amazon Technologies, Inc. | Memory operation for systolic array |
US11842169B1 (en) | 2019-09-25 | 2023-12-12 | Amazon Technologies, Inc. | Systolic multiply delayed accumulate processor architecture |
CN114930351A (zh) * | 2019-11-26 | 2022-08-19 | 格罗克公司 | 使用仅单个侧从多维阵列加载操作数并输出结果 |
US11816446B2 (en) | 2019-11-27 | 2023-11-14 | Amazon Technologies, Inc. | Systolic array component combining multiple integer and floating-point data types |
KR20210065605A (ko) | 2019-11-27 | 2021-06-04 | 한국전자통신연구원 | 선인출 정보를 이용한 메모리 제어 방법 및 장치 |
US11467806B2 (en) | 2019-11-27 | 2022-10-11 | Amazon Technologies, Inc. | Systolic array including fused multiply accumulate with efficient prenormalization and extended dynamic range |
US12112141B2 (en) | 2019-12-12 | 2024-10-08 | Samsung Electronics Co., Ltd. | Accelerating 2D convolutional layer mapping on a dot product architecture |
US11586889B1 (en) * | 2019-12-13 | 2023-02-21 | Amazon Technologies, Inc. | Sensory perception accelerator |
US11669733B2 (en) | 2019-12-23 | 2023-06-06 | Marvell Asia Pte. Ltd. | Processing unit and method for computing a convolution using a hardware-implemented spiral algorithm |
TWI733334B (zh) * | 2020-02-15 | 2021-07-11 | 財團法人工業技術研究院 | 卷積神經網路運算裝置及其運算的方法 |
KR20210105053A (ko) * | 2020-02-18 | 2021-08-26 | 에스케이하이닉스 주식회사 | 연산 회로 및 그것을 포함하는 딥 러닝 시스템 |
US12073310B2 (en) * | 2020-04-01 | 2024-08-27 | Microsoft Technology Licensing, Llc | Deep neural network accelerator with independent datapaths for simultaneous processing of different classes of operations |
CN113496117B (zh) * | 2020-04-02 | 2024-03-12 | 北京庖丁科技有限公司 | 交叉检查表格中单元格数字内容的方法和电子设备 |
US11507817B2 (en) | 2020-04-17 | 2022-11-22 | Samsung Electronics Co., Ltd. | System and method for performing computations for deep neural networks |
JP7537213B2 (ja) | 2020-09-30 | 2024-08-21 | セイコーエプソン株式会社 | 情報処理装置、演算方法、及び、コンピュータープログラム |
WO2021246818A1 (ko) * | 2020-06-05 | 2021-12-09 | 주식회사 퓨리오사에이아이 | 뉴럴 네트워크 프로세싱 방법 및 이를 위한 장치 |
US11422773B1 (en) | 2020-06-29 | 2022-08-23 | Amazon Technologies, Inc. | Multiple busses within a systolic array processing element |
US11308027B1 (en) | 2020-06-29 | 2022-04-19 | Amazon Technologies, Inc. | Multiple accumulate busses in a systolic array |
CN111737193B (zh) * | 2020-08-03 | 2020-12-08 | 深圳鲲云信息科技有限公司 | 数据存储方法、装置、设备和存储介质 |
US12008469B1 (en) | 2020-09-01 | 2024-06-11 | Amazon Technologies, Inc. | Acceleration of neural networks with stacks of convolutional layers |
CN112580787B (zh) * | 2020-12-25 | 2023-11-17 | 北京百度网讯科技有限公司 | 神经网络加速器的数据处理方法、装置、设备及存储介质 |
TWI847030B (zh) | 2021-05-05 | 2024-07-01 | 創鑫智慧股份有限公司 | 矩陣乘法器及其操作方法 |
US20230004523A1 (en) * | 2021-06-30 | 2023-01-05 | Amazon Technologies, Inc. | Systolic array with input reduction to multiple reduced inputs |
US11880682B2 (en) | 2021-06-30 | 2024-01-23 | Amazon Technologies, Inc. | Systolic array with efficient input reduction and extended array performance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03131965A (ja) * | 1989-10-10 | 1991-06-05 | Hnc Inc | ニューラルネットワーク用二次元収縮アレイ及びその方法 |
JPH06131308A (ja) * | 1990-10-04 | 1994-05-13 | Natl Semiconductor Corp <Ns> | 多次元シストリックアレイ処理装置及び方法 |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU8698582A (en) | 1981-08-14 | 1983-02-17 | Rca Corp. | Digital air filter |
JPS6028345A (ja) | 1983-07-26 | 1985-02-13 | Fujitsu Ltd | 並列計算機における通信方式 |
JPS63293668A (ja) | 1987-05-27 | 1988-11-30 | Matsushita Electric Ind Co Ltd | 並列計算機の通信方法 |
US5014235A (en) | 1987-12-15 | 1991-05-07 | Steven G. Morton | Convolution memory |
US5136717A (en) | 1988-11-23 | 1992-08-04 | Flavors Technology Inc. | Realtime systolic, multiple-instruction, single-data parallel computer system |
US5337395A (en) | 1991-04-08 | 1994-08-09 | International Business Machines Corporation | SPIN: a sequential pipeline neurocomputer |
US5146543A (en) | 1990-05-22 | 1992-09-08 | International Business Machines Corp. | Scalable neural array processor |
JP2760170B2 (ja) | 1990-11-29 | 1998-05-28 | 松下電器産業株式会社 | 学習機械 |
JP2749725B2 (ja) | 1991-03-18 | 1998-05-13 | 富士通株式会社 | 並列計算機の通信方法 |
JPH04290155A (ja) | 1991-03-19 | 1992-10-14 | Fujitsu Ltd | 並列データ処理方式 |
US5903454A (en) | 1991-12-23 | 1999-05-11 | Hoffberg; Linda Irene | Human-factored interface corporating adaptive pattern recognition based controller apparatus |
JPH05346914A (ja) | 1992-06-16 | 1993-12-27 | Matsushita Electron Corp | ニューロプロセッサ |
US5465041A (en) | 1993-09-17 | 1995-11-07 | Penberthy, Inc. | Bipolar tracking current source/sink with ground clamp |
JPH0823874B2 (ja) * | 1993-11-18 | 1996-03-06 | 株式会社ジーデイーエス | シストリックアレイプロセサー |
DE4414821A1 (de) | 1994-04-28 | 1995-11-02 | Vorwerk Co Interholding | Küchenmaschine mit einem Rührgefäß und einem Antrieb für ein Rührwerk in dem Rührgefäß |
US5583964A (en) * | 1994-05-02 | 1996-12-10 | Motorola, Inc. | Computer utilizing neural network and method of using same |
US5799134A (en) | 1995-03-13 | 1998-08-25 | Industrial Technology Research Institute | One dimensional systolic array architecture for neural network |
US5812993A (en) | 1996-03-07 | 1998-09-22 | Technion Research And Development Foundation Ltd. | Digital hardware architecture for realizing neural network |
US6038337A (en) | 1996-03-29 | 2000-03-14 | Nec Research Institute, Inc. | Method and apparatus for object recognition |
KR100189195B1 (ko) | 1996-04-04 | 1999-06-01 | 박래홍 | 단일화된 시스톨릭어레이 구조에 의한 2차원 dct/dst/dht의 수행장치 |
JPH11177399A (ja) | 1997-12-15 | 1999-07-02 | Mitsubishi Electric Corp | クロック遅延回路およびこれを用いた発振回路、位相同期回路、クロック生成回路 |
GB9902115D0 (en) | 1999-02-01 | 1999-03-24 | Axeon Limited | Neural networks |
KR100450750B1 (ko) * | 2002-04-17 | 2004-10-01 | 한국전자통신연구원 | 향상된 선형 궤환 시프트 레지스터 구조의 유한체 승산기 |
JP4314017B2 (ja) | 2002-11-06 | 2009-08-12 | キヤノン株式会社 | 階層処理装置 |
US7197721B2 (en) | 2002-12-17 | 2007-03-27 | Intel Corporation | Weight compression/decompression system |
FR2853424B1 (fr) * | 2003-04-04 | 2005-10-21 | Atmel Corp | Architecture de multiplicateurs polynomial et naturel combines |
US7245767B2 (en) | 2003-08-21 | 2007-07-17 | Hewlett-Packard Development Company, L.P. | Method and apparatus for object identification, classification or verification |
US7634137B2 (en) | 2005-10-14 | 2009-12-15 | Microsoft Corporation | Unfolded convolution for fast feature extraction |
WO2008067676A1 (en) | 2006-12-08 | 2008-06-12 | Medhat Moussa | Architecture, system and method for artificial neural network implementation |
US8184696B1 (en) | 2007-09-11 | 2012-05-22 | Xilinx, Inc. | Method and apparatus for an adaptive systolic array structure |
TW200923803A (en) | 2007-11-26 | 2009-06-01 | Univ Nat Taipei Technology | Hardware neural network learning and recall architecture |
TWI417798B (zh) | 2008-11-21 | 2013-12-01 | Nat Taipei University Oftechnology | High - speed reverse transfer neural network system with elastic structure and learning function |
JP5376920B2 (ja) | 2008-12-04 | 2013-12-25 | キヤノン株式会社 | コンボリューション演算回路、階層的コンボリューション演算回路及び物体認識装置 |
US8442927B2 (en) | 2009-07-30 | 2013-05-14 | Nec Laboratories America, Inc. | Dynamically configurable, multi-ported co-processor for convolutional neural networks |
US9141386B2 (en) * | 2010-09-24 | 2015-09-22 | Intel Corporation | Vector logical reduction operation implemented using swizzling on a semiconductor chip |
TWI525558B (zh) | 2011-01-17 | 2016-03-11 | Univ Nat Taipei Technology | Resilient high - speed hardware reverse transfer and feedback type neural network system |
US8924455B1 (en) | 2011-02-25 | 2014-12-30 | Xilinx, Inc. | Multiplication of matrices using systolic arrays |
US9111222B2 (en) * | 2011-11-09 | 2015-08-18 | Qualcomm Incorporated | Method and apparatus for switching the binary state of a location in memory in a probabilistic manner to store synaptic weights of a neural network |
TW201331855A (zh) | 2012-01-19 | 2013-08-01 | Univ Nat Taipei Technology | 具自由回饋節點的高速硬體倒傳遞及回饋型類神經網路 |
US9477925B2 (en) | 2012-11-20 | 2016-10-25 | Microsoft Technology Licensing, Llc | Deep neural networks training for speech and pattern recognition |
US9811775B2 (en) | 2012-12-24 | 2017-11-07 | Google Inc. | Parallelizing neural networks during training |
US9190053B2 (en) | 2013-03-25 | 2015-11-17 | The Governing Council Of The Univeristy Of Toronto | System and method for applying a convolutional neural network to speech recognition |
CN104035751B (zh) | 2014-06-20 | 2016-10-12 | 深圳市腾讯计算机系统有限公司 | 基于多图形处理器的数据并行处理方法及装置 |
EP3064130A1 (en) | 2015-03-02 | 2016-09-07 | MindMaze SA | Brain activity measurement and feedback system |
US20160267111A1 (en) | 2015-03-11 | 2016-09-15 | Microsoft Technology Licensing, Llc | Two-stage vector reduction using two-dimensional and one-dimensional systolic arrays |
-
2015
- 2015-09-03 US US14/844,670 patent/US10049322B2/en active Active
-
2016
- 2016-04-29 DK DK16725266.7T patent/DK3298546T3/da active
- 2016-04-29 KR KR1020177028188A patent/KR102105128B1/ko active IP Right Grant
- 2016-04-29 DE DE202016107439.8U patent/DE202016107439U1/de active Active
- 2016-04-29 EP EP16725266.7A patent/EP3298546B1/en active Active
- 2016-04-29 WO PCT/US2016/029965 patent/WO2016186810A1/en active Application Filing
- 2016-04-29 KR KR1020227021145A patent/KR102641283B1/ko active IP Right Grant
- 2016-04-29 KR KR1020247005904A patent/KR20240029112A/ko not_active Application Discontinuation
- 2016-04-29 DE DE112016002298.0T patent/DE112016002298T5/de not_active Ceased
- 2016-04-29 CN CN202011278833.6A patent/CN112465132A/zh active Pending
- 2016-04-29 JP JP2017550913A patent/JP6689878B2/ja active Active
- 2016-04-29 EP EP21205423.3A patent/EP3968232A1/en active Pending
- 2016-04-29 CN CN201680020202.XA patent/CN107454966B/zh active Active
- 2016-04-29 KR KR1020207011552A patent/KR102413522B1/ko active IP Right Grant
- 2016-04-29 GB GB2112401.1A patent/GB2597611B/en active Active
- 2016-04-29 GB GB1715437.8A patent/GB2553052B/en active Active
- 2016-05-20 TW TW105115866A patent/TWI636368B/zh active
- 2016-12-22 US US15/389,273 patent/US9805304B2/en active Active
-
2018
- 2018-04-03 HK HK18104415.9A patent/HK1245462A1/zh unknown
- 2018-08-02 US US16/053,305 patent/US11281966B2/en active Active
-
2020
- 2020-03-23 US US16/826,466 patent/US10878316B2/en active Active
- 2020-04-08 JP JP2020069854A patent/JP6953577B2/ja active Active
- 2020-12-28 US US17/134,936 patent/US11853865B2/en active Active
-
2021
- 2021-09-29 JP JP2021159352A patent/JP7071577B2/ja active Active
-
2022
- 2022-05-06 JP JP2022076581A patent/JP7383757B2/ja active Active
-
2023
- 2023-11-01 US US18/386,037 patent/US20240062055A1/en active Pending
- 2023-11-08 JP JP2023190654A patent/JP2024016196A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03131965A (ja) * | 1989-10-10 | 1991-06-05 | Hnc Inc | ニューラルネットワーク用二次元収縮アレイ及びその方法 |
JPH06131308A (ja) * | 1990-10-04 | 1994-05-13 | Natl Semiconductor Corp <Ns> | 多次元シストリックアレイ処理装置及び方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11907330B2 (en) | 2017-05-17 | 2024-02-20 | Google Llc | Low latency matrix multiply unit |
JP2020516991A (ja) * | 2017-05-17 | 2020-06-11 | グーグル エルエルシー | 低レイテンシ行列乗算ユニット |
US11989259B2 (en) | 2017-05-17 | 2024-05-21 | Google Llc | Low latency matrix multiply unit |
US11599601B2 (en) | 2017-05-17 | 2023-03-07 | Google Llc | Low latency matrix multiply unit |
US11443185B2 (en) | 2018-10-11 | 2022-09-13 | Powerchip Semiconductor Manufacturing Corporation | Memory chip capable of performing artificial intelligence operation and method thereof |
JP2020077449A (ja) * | 2018-10-11 | 2020-05-21 | 力晶積成電子製造股▲ふん▼有限公司Powerchip Semiconductor Manufacturing Corporation | 人工知能動作を実行できるメモリチップおよびその方法 |
JP2020077298A (ja) * | 2018-11-09 | 2020-05-21 | 株式会社Preferred Networks | プロセッサおよびプロセッサの制御方法 |
JP7315317B2 (ja) | 2018-11-09 | 2023-07-26 | 株式会社Preferred Networks | プロセッサおよびプロセッサのデータ転送方法 |
JP2020091861A (ja) * | 2018-12-07 | 2020-06-11 | 三星電子株式会社Samsung Electronics Co.,Ltd. | テンソル計算データフロー加速器半導体回路 |
JP7474586B2 (ja) | 2018-12-07 | 2024-04-25 | 三星電子株式会社 | テンソル計算データフロー加速器半導体回路 |
US11790225B2 (en) | 2019-02-28 | 2023-10-17 | Canon Kabushiki Kaisha | Data processing apparatus configured to execute hierarchical calculation processing and method thereof |
JP7206531B2 (ja) | 2021-04-16 | 2023-01-18 | 旺宏電子股▲ふん▼有限公司 | メモリデバイスおよびその動作方法 |
JP2022164559A (ja) * | 2021-04-16 | 2022-10-27 | 旺宏電子股▲ふん▼有限公司 | メモリデバイスおよびその動作方法 |
US12130884B2 (en) | 2021-07-13 | 2024-10-29 | Samsung Electronics Co., Ltd. | Dataflow accelerator architecture for general matrix-matrix multiplication and tensor computation in deep learning |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7383757B2 (ja) | ニューラルネットワークプロセッサで使用される重みのプリフェッチ | |
JP7561916B2 (ja) | ニューラルネットワークプロセッサにおけるバッチ処理 | |
JP6615902B2 (ja) | ニューラルネットワークプロセッサにおけるベクトル計算ユニット | |
US10521488B1 (en) | Dynamic partitioning | |
TWI787262B (zh) | 用於執行類神經網路層之計算的方法、系統及非暫時性電腦可讀儲存媒體 | |
JP2020506454A (ja) | ハードウェアにおける平均プーリングの実行 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190604 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190531 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190903 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191023 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200408 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6689878 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |