JP2018514135A - デュアルダイアフラムマイクロホン - Google Patents

デュアルダイアフラムマイクロホン Download PDF

Info

Publication number
JP2018514135A
JP2018514135A JP2017550707A JP2017550707A JP2018514135A JP 2018514135 A JP2018514135 A JP 2018514135A JP 2017550707 A JP2017550707 A JP 2017550707A JP 2017550707 A JP2017550707 A JP 2017550707A JP 2018514135 A JP2018514135 A JP 2018514135A
Authority
JP
Japan
Prior art keywords
microphone
diaphragm
pressure deformable
deformable diaphragm
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017550707A
Other languages
English (en)
Other versions
JP2018514135A5 (ja
Inventor
ヒョン・ジン・パク
Original Assignee
クアルコム,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クアルコム,インコーポレイテッド filed Critical クアルコム,インコーポレイテッド
Publication of JP2018514135A publication Critical patent/JP2018514135A/ja
Publication of JP2018514135A5 publication Critical patent/JP2018514135A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R23/00Transducers other than those covered by groups H04R9/00 - H04R21/00
    • H04R23/006Transducers other than those covered by groups H04R9/00 - H04R21/00 using solid state devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Abstract

デュアルダイアフラムマイクロホンは、マイクロホンの加速による出力信号の成分を低減または除去するために使用されることが可能である。デュアルダイアフラムマイクロホンは、第1の電極から離間された第1のダイアフラムを含み、第1の信号を生成するように構成された第1の音検出構成要素と、第2の電極から離間された第2のダイアフラムを含み、第2の信号を生成するように構成された第2の音検出構成要素とを含むことができる。第1の音検出構成要素および第2の音検出構成要素は、反対方向に向けられ、デュアルダイアフラムマイクロホンは、マイクロホンの加速によって実質的に影響を受けない結合出力信号を生成するために第1および第2の出力信号を合計するように構成された電子回路を含む。

Description

本開示は、マイクロホンに関する。詳細には、本開示は、マイクロホンの機械的振動または物理的加速によって引き起こされる成分を実質的に含まない出力信号を生成するように構成されたマイクロホンデバイス、システム、および方法に向けられている。
いくつかのマイクロホンは、音を電気信号に変換するために変形可能なダイアフラムを使用する。圧力波の形態における音は、ダイアフラムを変形させ、ダイアフラムに作用する圧力の変化に比例する場合がある出力信号を生成する。マイクロホン自体の機械的振動または物理的加速も、ダイアフラムを変形させる可能性がある。振動または加速によって誘発された変形も、マイクロホンの出力信号を生成するか、またはマイクロホンの出力信号に影響を及ぼす可能性がある。したがって、マイクロホンは、マイクロホンに入射する音波を示す第1の成分と、マイクロホンの振動または加速から生じる第2の成分とを生成する場合がある。これらの2つの成分は、区別するのが困難である場合があり、音波によって引き起こされないマイクロホンの出力信号のどのような変更も、望ましくない場合がある。
多くの消費者デバイスは、オーディオ信号を測定、記録、または伝送するためにマイクロホンを含む。しばしば、そのような消費者デバイスはまた、携帯用である場合もあり、多くは、ハンドヘルドである。たとえば、携帯電話は、しばしば、ユーザの声を録音し、送信するために、マイクロホンを含む。これらのデバイスにおけるマイクロホンは、しばしば、使用中に、マイクロホンの出力信号に影響を及ぼす可能性がある振動または加速を経験する。
本開示は、マイクロホン自体の物理的加速または振動によって引き起こされる場合がある出力信号の任意の成分を除去または低減する出力信号を提供するように構成されたマイクロホンデバイス、システム、および方法に関する。本開示のデバイス、システム、および方法は、各々、いくつかの革新的な態様を有し、そのうちのどの単一のものも、本明細書で開示する所望の属性の単独の要因ではない。
いくつかの態様では、マイクロホンは、第1の方向に面する外側を有する第1の圧力変形可能ダイアフラムを用いて第1の信号を生成するように構成された第1のマイクロホン構成要素であって、第1の信号が第1の圧力変形可能ダイアフラムの変形とともに変化する、第1のマイクロホン構成要素と、第2の方向に面する外側を有する第2の圧力変形可能ダイアフラムを用いて第2の信号を生成するように構成された第2のマイクロホン構成要素であって、第2の信号が第2の圧力変形可能ダイアフラムの変形とともに変化し、第2の方向が第1の方向と実質的に反対である、第2のマイクロホン構成要素と、出力信号を生成するために第1および第2の信号を合計するように構成された電子回路とを含んでもよい。いくつかの態様では、第1のマイクロホン構成要素は、第2のマイクロホンに強固に取り付けられる。第1の圧力変形可能ダイアフラムは、第2の圧力変形可能ダイアフラムと平行な位置に向けられてもよい。マイクロホンの出力信号は、マイクロホンの加速による成分を実質的に含まない場合がある。
いくつかの態様では、マイクロホンは、第1の電極から離間され、第1の信号を生成するように構成された第1のダイアフラムを含む第1の音検出構成要素と、第2の電極から離間され、第2の信号を生成するように構成された第2のダイアフラムを含む第2の音検出構成要素であって、第1の音検出構成要素および第2の音検出構成要素が反対方向に向けられた、第2の音検出構成要素と、出力信号を生成するために第1および第2の出力信号を合計するように構成された電子回路とを含む。いくつかの態様では、第1の音検出構成要素は、第2の音検出構成要素に強固に取り付けられる。結合出力信号は、実質的には、マイクロホンの加速によって影響を受けない場合がある。第1および第2の音検出構成要素の各々は、周囲に曝されてもよい。いくつかの態様では、第1のダイアフラムは、第2のダイアフラムと平行な位置に向けられる。
いくつかの態様では、デュアルダイアフラムマイクロホンは、第1の容積を少なくとも部分的に取り囲む第1の圧力変形可能ダイアフラムと、第1の容積内に配置され、第1の圧力変形可能ダイアフラムから離間された第1の感知電極と、第2の容積を少なくとも部分的に取り囲む第2の圧力変形可能ダイアフラムであって、第1の圧力変形可能ダイアフラムと実質的に平行に向けられた、第2の圧力変形可能ダイアフラムと、第2の容積内に配置され、第2の圧力変形可能ダイアフラムから離間された第2の感知電極であって、第1および第2の感知電極が第1および第2の圧力変形可能ダイアフラムの反対側にそれぞれ配置された、第2の感知電極とを含む。マイクロホンはまた、本体を含んでもよく、第1および第2の容積は、本体によって少なくとも部分的に画定される。いくつかの態様では、第1および第2の容積は、第1の圧力変形可能ダイアフラムに対して垂直に延びる軸に沿って実質的に整列される。いくつかの態様では、第1および第2の圧力変形可能ダイアフラムならびに第1および第2の感知電極はまた、第1の圧力変形可能ダイアフラムに対して垂直に延びる軸に沿って実質的に整列される。いくつかの態様では、第1および第2の容積は、第1の圧力変形可能ダイアフラムに対して垂直に延びる軸に沿って実質的に整列される。
いくつかの態様では、方法は、第1の方向に向けられた第1の音検出構成要素から第1の信号を受信するステップと、第1の音検出構成要素に強固に取り付けられ、第1の方向と実質的に反対の第2の方向に向けられた第2の音検出構成要素から第2の信号を受信するステップと、第1および第2の音検出構成要素の加速によって生成された信号成分を実質的に含まない結合出力を生成するために第1および第2の信号を合計するステップとを含む。第1の音検出構成要素は、第1の方向で周囲に向けられた外側表面を含む第1の圧力変形可能ダイアフラムを含んでもよく、第2の音検出構成要素は、第1の方向と実質的に反対の第2の方向で周囲に向けられた外側表面を含む第2の圧力変形可能ダイアフラムを含んでもよい。いくつかの態様では、第1および第2の圧力変形可能ダイアフラムは、空気圧の変化によって引き起こされる第1および第2の信号の成分が大きさおよび極性において実質的に等しいように構成される。いくつかの態様では、第1および第2の圧力変形可能ダイアフラムは、マイクロホンの加速によって引き起こされる第1および第2の信号の成分が大きさにおいて実質的に等しく、極性において反対であるように構成される。
いくつかの態様では、マイクロホンは、第1の信号を生成するように構成された第1のマイクロホン構成要素であって、第1の方向に面する外側を有する第1の圧力変形可能ダイアフラムであって、第1の信号が第1の圧力変形可能ダイアフラムの変形とともに変化する、第1の圧力変形可能ダイアフラムと、第1の圧力変形可能ダイアフラムの内側から離間され、第1の圧力変形可能ダイアフラムによって少なくとも部分的に取り囲まれた第1の容積内に配置された第1の電極とを含む第1のマイクロホン構成要素と、第2の信号を生成するように構成された第2のマイクロホン構成要素であって、第2の方向に面する外側を有する第2の圧力変形可能ダイアフラムであって、第2の信号が第2の圧力変形可能ダイアフラムの変形とともに変化し、第2の方向が第1の方向と実質的に反対である、第2の圧力変形可能ダイアフラムと、第2の圧力変形可能ダイアフラムから離間され、第2の圧力変形可能ダイアフラムによって少なくとも部分的に取り囲まれた第2の容積内に配置された第2の電極とを含む、第2のマイクロホン構成要素と、第1のマイクロホン構成要素および第2のマイクロホン構成要素を少なくとも部分的に取り囲むように構成されたハウジングであって、第1の圧力変形可能ダイアフラムを周囲に露出させるように構成された少なくとも1つの開口部を含み、第2の圧力変形可能ダイアフラムを音響的に隔離する、ハウジングと、出力信号を生成するために第1および第2の信号を合計するように構成された電子回路とを含む。
本開示で説明する主題の1つまたは複数の実装形態の詳細は、添付図面および以下の説明に示される。他の特徴、態様、および利点は、説明、図面、および特許請求の範囲から明らかになるであろう。
必ずしもすべての目的および利点が本明細書で説明する任意の特定の実装形態に従って達成されるとは限らないことが理解されるべきである。たとえば、特定の実装形態の態様は、他の実装形態によって教示または示唆され得るような他の目的または利点を必ずしも達成することなく、本明細書で教示されるような1つの利点または利点のグループを達成または最適化する方法で具体化または実行されてもよい。さらに、異なる実装形態からの様々な態様および特徴は、交換可能であってもよい。
以下は、図面の各々の簡単な説明である。図から図まで、本明細書で議論する実装形態の同様の構成要素またはステップを示すために同様の参照番号が使用される。以下の図の相対的な寸法は、縮尺通りに描かれていない場合があることに留意すべきである。
マイクロホンの実装形態を示す図である。 音波によって引き起こされるダイアフラムの変形によるマイクロホンにおける出力信号生成を示す図である。 音波によって引き起こされるダイアフラムの変形によるマイクロホンにおける出力信号生成を示す図である。 物理的加速によって引き起こされるダイアフラムの変形によるマイクロホンにおける出力信号生成を示す図である。 物理的加速によって引き起こされるダイアフラムの変形によるマイクロホンにおける出力信号生成を示す図である。 マイクロホンの物理的加速によって引き起こされる信号成分を低減するように構成されたデュアルダイアフラムマイクロホンの実装形態を示す図である。 図4に示すマイクロホンの物理的加速によって引き起こされる信号成分を低減するように構成された例示的な回路の実装形態を概略的に示す図である。 図4に示すマイクロホンの物理的加速によって引き起こされる信号成分を低減するように構成された例示的な回路の実装形態を概略的に示す図である。 音によって引き起こされるダイアフラムの変形による図4および図5に示すデュアルダイアフラムマイクロホンにおける出力信号生成を示す図である。 物理的加速によって引き起こされるダイアフラムの変形による図4および図5に示すデュアルダイアフラムマイクロホンにおける出力信号生成を示す図である。 マイクロホンの物理的加速によって実質的に影響を受けない出力信号を生成するように構成されたデュアルダイアフラムマイクロホンの代替実装形態を示す図である。 ハンドヘルドデバイスに組み込まれたデュアルダイアフラムマイクロホンの実装形態を示す図である。 2つの開口部を含むハウジング内に配置されたデュアルダイアフラムマイクロホンの実装形態を示す図である。 単一の開口部を含むハウジング内に配置されたデュアルダイアフラムマイクロホンの実装形態を示す図である。 単一の開口部を含むハウジング内に配置されたデュアルダイアフラムマイクロホンの追加の実装形態を示す図である。 物理的加速によるいかなる成分も実質的に含まない出力信号を生成するための方法を示すフローチャートである。 デュアルダイアフラムマイクロホンを含むヘッドセットの実装形態を示す図である。
本開示は、マイクロホン自体の物理的加速または振動によって引き起こされる場合がある出力信号の成分を低減または除去するように構成されたマイクロホンデバイス、システム、および方法を議論する。一般に、マイクロホンのいくつかの実装形態は、音圧波によって引き起こされる空気圧の変化を検出するために膜を使用し、膜の変位を、音波を示す電気信号に変換する。しかしながら、マイクロホン膜の変位はまた、マイクロホンの動きまたは振動によって誘発される場合もあり、マイクロホン膜のこの変位はまた、マイクロホンの出力信号を生成または変更することになる。そのような加速によって誘発された信号成分は、入射音波によって生成された信号と区別することが困難である可能性がある。いくつかの実装形態では、マイクロホンの加速または他の動きによって実質的に影響を受けない結合出力信号を生成するデュアルダイアフラムマイクロホンが構成されてもよい。
図1は、マイクロホン100の実装形態を示す。いくつかの実装形態では、マイクロホン100は、音を電気信号に変換する任意の音響−電気トランスデューサまたはセンサである。いくつかの実装形態では、マイクロホンは、ダイナミックマイクロホン、コンデンサマイクロホン、エレクトリックコンデンサマイクロホン、アナログ/デジタルMEMSマイクロホン、または他の音検出デバイスであってもよい。
マイクロホン100は、本体101と、ダイアフラム102と、感知電極104とを含む。ダイアフラム102は、少なくとも部分的に取り囲まれた容積106を画定するように本体101に接続されてもよい。いくつかの実装形態では、容積106は、圧縮可能な空気で満たされる。感知電極104は、容積106内に据え付けられ、ダイアフラム102から離間される。いくつかの実装形態では、感知電極104は、本体101と感知電極104との間の固定された空間的関係を作成するために、容積106内に強固に据え付けられ、または他の方法で固定される。
ダイアフラム102は、圧力変形可能な膜であってもよい。いくつかの実装形態では、ダイアフラム102の外側102aは、図示のように直接、または、本体もしくはマイクロホン100を取り囲むハウジングにおける開口部を介して周囲に露出される。マイクロホン100の外側からの音波は、ダイアフラム102の外側102aに到達し、これに衝突することになる。ダイアフラム102の内側102bは、容積106の方に向けられ、感知電極104から離間される。いくつかの実装形態では、感知電極104は、出力端子105に接続されてもよく、マイクロホン100の出力信号は、出力端子105において測定されることが可能である。出力端子105は、いくつかの実装形態では、出力信号のさらなる処理のために、増幅器またはフィルタなどの他の回路と電気的に通信してもよい。いくつかの実装形態では、ダイアフラム102は、マイクロホン回路を接地するために使用される接地端子103に接続されてもよい。いくつかの実装形態では、接地端子103および出力端子105との接続は、逆にされてもよい。たとえば、感知電極104は、接地端子103に接続されることが可能であり、ダイアフラム102は、出力端子105に接続されることが可能である。以下でより完全に議論するように、マイクロホン100は、感知電極104に対するダイアフラム102の変形、変位、または動きに応答して出力信号を生成する。
いくつかの実装形態では、マイクロホン100の出力信号は、電圧であることができる。たとえば、いくつかの実装形態では、マイクロホン100は、キャパシタのプレートとして機能する膜またはダイアフラム102と感知電極104とを有するコンデンサマイクロホンとして構成されることが可能である。ダイアフラム102が入射音波に応答して変形するにつれて、ダイアフラム102と感知電極104との間の距離が変化する。ダイアフラム102と感知電極104との間の距離の変化は、キャパシタンスの変化と、結果として生じる、ダイアフラム102および感知電極104によって形成されるキャパシタにわたる電圧の変化とを引き起こす。この時間とともに変化する電圧は、マイクロホン100の出力信号であってもよい。
他の実装形態では、マイクロホンは、ダイアフラムに取り付けられ、永久磁石の磁場内に配置された誘導コイルを有するダイナミックマイクロホンとして構成されることが可能である。ダイアフラムが変形するにつれて、磁場を通る誘導コイルの動きは、電磁誘導によって変化する電流を生成する。変化する電流は、たとえば、取り付けられた抵抗器にわたって電圧変化を発生させることができる。いくつかの実装形態では、この変化する電圧または変化する電流は、マイクロホンの出力信号であることができる。出力信号という用語は、ダイアフラムの変形に応答してマイクロホンによって生成される任意の電気信号(電圧、電流、キャパシタンス、または他のもの)を示すために本出願を通じて使用される。
いくつかの実装形態では、マイクロホン100は、図1に具体的に示されていない追加の構成要素または特徴を含むことができる。たとえば、マイクロホン100は、マイクロホン100の出力信号を処理および/または送信するための追加の電子回路を含むことができる。いくつかの実装形態では、マイクロホン100は、音がダイアフラム102に到達するのを妨げることなくダイアフラム102の外側102aを保護するように構成されたガードなどの追加の構造的構成要素を含むことができる。いくつかの実装形態では、マイクロホン100は、セルラー電話、タブレット、または他の電子デバイスなどの別の電子デバイス内に組み込まれてもよく、またはそれらに接続されてもよい。
図1において、マイクロホン100は、ダイアフラム102が未変形または静止位置で示されている。この位置は、ダイアフラム102の外側表面102aに作用する周囲空気圧が、ダイアフラムの内側表面102bに作用する容積106内の空気圧と実質的に等しい状態を表すことができる。この位置は、ダイアフラム102のベースライン位置を表し、ベースライン位置では、マイクロホン100によって生成される出力信号は、いくつかの実装形態では実質的にゼロであってもよいベースライン状態であってもよい。
図2Aおよび図2Bは、音波150に関連する空気圧の変化によって引き起こされるダイアフラム102の変形によるマイクロホン100による出力信号の生成を示す。具体的には、図2Aは、ダイアフラム102の内側への変形を示し、図2Bは、ダイアフラム102の外側への変形を示す。
図2Aおよび図2Bに示すように、ダイアフラム102の外側表面102aに作用する音波150は、電極104とダイアフラム102との間の距離を減少または増加させるように、マイクロホン100のダイアフラム102を変形させる場合がある。たとえば、図2Aに示すように、(感知電極104に向かって)内側への変形は、音波150によって誘起される圧力差のために音波150がダイアフラム102に衝突するときに起こる場合がある。同様に、図2Bに示すように、(感知電極104に向かって)外側への変形は、図2Aに示す位置から跳ね返るときに、または容積106内のより高い圧力とダイアフラム102の外側102aに作用するより低い圧力との間の圧力差のために起こる場合がある。
出力端子105においてマイクロホン100によって生成される出力信号は、図1に示し、上記で説明した(静止位置における)ダイアフラム102のベースライン位置からの信号の変化を表す。本出願を通じて使用される約束事を確立する目的のため、ダイアフラム102の外側への変形は、正の出力信号を生じさせてもよく、ダイアフラム102の内側への変形は、負の出力信号を生じさせてもよい。しかしながら、当業者は、この約束事が本開示の範囲から逸脱することなく逆にされてもよいことを理解するであろう。
いくつかの実装形態では、ダイアフラム102は、ダイアフラム102の変形が、マイクロホン100が曝されることが予測される圧力の範囲全体にわたる圧力差に実質的に比例するように構成される。したがって、マイクロホン100の出力信号の大きさは、測定される音波150の圧力にも比例する場合がある。
当業者は、マイクロホン100が指向性である必要はないことを理解するであろう。たとえば、いくつかの実装形態では、マイクロホン100は、実質的に無指向性であってもよく、任意の方向から発する音波150が、ダイアフラム102の変形を引き起こす可能性がある。したがって、図2Aおよび図2Bに示す音波150は、単に例として提供され、音波150のいずれの図示の指向性も必要とされない。
図3Aおよび図3Bは、マイクロホン100の物理的加速によって引き起こされるダイアフラム102の変形を示し、この変形もまた、マイクロホン100の出力信号を生成する、またはこれに影響を及ぼす可能性がある。具体的には、図3Aは、マイクロホン100のダイアフラム102の外側への変形を示し、図3Bは、マイクロホン100のダイアフラム102の内側への変形を示す。これらの図において、上方向および下方向は、未変形ダイアフラム102(図1参照)の表面に対して垂直に延びる軸に対して定義され、下向きは、未変形ダイアフラム102の平面に対して垂直に延び、感知電極104に向かう方向を示す。同様に、上向きは、未変形ダイアフラム102の平面に対して垂直に延び、感知電極104から離れる反対方向を示す。したがって、図3Aおよび図3Bにおいて、上向きという用語は、図の上部に向かう方向を指し、下向きという用語は、図の下部に向かう方向を指す。
マイクロホン100の本体101は、一般に、加速の下で実質的に変形しないように、剛性材料から作製されてもよい。上記で議論したように、感知電極104は、容積106内に配置され、本体101に強固に取り付けられてもよい。感知電極104はまた、マイクロホンが振動するか、落下するか、動かされるか、または他の方法で加速を受けたときに実質的に変形しないように、十分に剛性であってもよい。したがって、マイクロホン100が加速を受けたとき、本体101と感知電極104との間の空間的関係は、一定のままである。ダイアフラム102は、剛性ではないので、ダイアフラム102と感知電極104との間の空間的関係は、マイクロホンが加速の影響を受けているときに変化する。
図3Aに示すように、マイクロホン100が下向きに加速する場合、ダイアフラム102は、マイクロホン100の残りの部分と同じ速度で下向きに移動せず、結果としてダイアフラム102の初期の外側への変形を生じる。外側への変形は、ダイアフラム102と感知電極104との間の距離を増加させ、正の出力信号を生成する。図3Bに示すように、マイクロホン100が上方向に加速する場合、ダイアフラム102は、マイクロホン100の残りの部分と同じ速度で上向きに移動せず、ダイアフラム102の初期の内側への変形を引き起こす。内側への変形は、ダイアフラム102と感知電極104との間の距離を減少させ、負の出力信号を生成する。
したがって、マイクロホン100の実装形態は、音によって誘起された変形からもたらされる成分と、加速によって誘起された変形からもたらされる成分とを有する出力信号を生成する可能性がある。時には、マイクロホン100は、ダイアフラム102と感知電極104との間の相対的な間隔が、各々が出力信号に寄与する入射音と加速の両方によって誘起されるダイアフラム102の動きによって影響を受けることになるように、加速中、またはダイアフラム102が最近の加速によって依然として振動している間、音波に曝される場合がある。いくつかの実装形態では、加速からもたらされる出力信号の成分と、マイクロホン100の入射音波への曝露からもたらされる出力信号の成分との間を区別することは、困難である可能性がある。
マイクロホン100の純粋に横方向の加速、すなわち、未変形状態のダイアフラム102の平面内の加速は、ダイアフラム102の実質的な変形を生じさせない場合がある。したがって、マイクロホン100の純粋に横方向の加速は、出力信号に影響を及ぼさない場合がある。しかしながら、任意の上向きまたは下向きの成分を有するマイクロホン100の任意の加速は、出力信号に対する入射音波の影響から区別できない場合がある出力信号に対する影響を生成することになる。
当業者は、マイクロホン100の出力信号が、(図2Aおよび図2Bに関連して説明したように)音によって引き起こされる信号成分と、(図3Aおよび図3Bに関連して説明したように)マイクロホン100の加速によって引き起こされる信号成分とを含む場合があることを理解するであろう。しかしながら、大部分のアプリケーションでは、入力音波から結果として生じる出力信号の成分を分離することが有利である可能性がある。たとえば、出力信号の加速によって誘起された成分は、たとえば、音声取り込み、能動ノイズ相殺、または送信アップリンク処理を含む様々なマイクロホンアプリケーションにおいて問題となる場合がある。したがって、加速による出力信号の成分を低減または除去することができるマイクロホン設計が望ましい。
図4は、マイクロホン200の物理的加速によって引き起こされる出力信号成分を低減するように構成されたデュアルダイアフラムマイクロホン200の実装形態を示す。マイクロホン200は、反対方向に向けられた2つの音検出構成要素200a、200bを含む。いくつかの実装形態では、各音検出構成要素200a、200bは、図1〜図3Bを参照して上記で説明したマイクロホン100の構成要素を含んでもよい。いくつかの実装形態では、音検出構成要素200a、200bは、変形可能な膜などのサブ構成要素の動きに基づいて音を電気信号に変換する任意の音響−電気トランスデューサまたはセンサであることが可能である。たとえば、いくつかの実装形態では、各音検出構成要素は、ダイナミックマイクロホン、コンデンサマイクロホン、エレクトリックコンデンサマイクロホン、アナログ/デジタルMEMSマイクロホン、または他の適切な音検出デバイスであってもよい。
一般に、マイクロホン200の実装形態は、第1の方向に向けられた第1の音検出構成要素200aを含む。いくつかの実装形態では、第1の音検出構成要素200aは、第1の本体201と、第1のダイアフラム202と、第1の感知電極204とを含む。第1のダイアフラム202は、少なくとも部分的に取り囲まれた第1の容積206を画定するように第1の本体201によって支持される。いくつかの実装形態では、第1の容積206は、圧縮可能な空気の容積で満たされる。第1の感知電極204は、第1の容積206内に据え付けられ、第1のダイアフラム202から離間される。いくつかの実装形態では、第1の感知電極204は、第1の本体201と第1の感知電極204との間の固定された空間的関係を作成するために、第1の容積206内に強固に据え付けられる。
第1のダイアフラム202は、圧縮変形可能な膜であってもよい。いくつかの実装形態では、第1のダイアフラム202の外側202aは、周囲に曝され、音波が第1のダイアフラム202に衝突し、これを変形させることを可能にする。第1のダイアフラム202の内側202bは、容積206の方に向けられ、第1の感知電極204から離間される。いくつかの実装形態では、第1のダイアフラム202は、第1のダイアフラム202を接地するための第1の接地端子203に接続される。第1の感知電極202は、第1の出力端子205に接続されてもよく、第1の音検出構成要素200aの出力信号は、第1の出力端子205において測定されることが可能である。第1の出力端子205は、結合出力端子225を形成するために電子回路220に電気的に接続されることが可能である。
マイクロホン200の実装態様はまた、第1の方向と実質的に反対の第2の方向に向けられた第2の音検出構成要素200bを含む。第2の音検出構成要素200bは、第1の音検出構成要素200aに強固に取り付けられてもよい。いくつかの実装形態では、第2の音検出構成要素200bは、第2の本体211と、第2のダイアフラム212と、第2の感知電極214とを含む。いくつかの実装形態では、第2の本体211は、第1の本体201と一体である。たとえば、いくつかの実装形態では、第1および第2の本体201、211は、単一の構造またはアセンブリとして形成される。いくつかの実装形態では、第1および第2の本体201、211は、直接または間接的に互いに取り付けられるか、または固定される別個の部品であってもよい。第2のダイアフラム212は、少なくとも部分的に取り込まれた第2の容積216を画定するように第2の本体211に接続される。いくつかの実装形態では、第2の容積216は、圧縮可能な空気の容積で満たされる。第2の感知電極214は、第2の容積216内に据え付けられ、第2のダイアフラム212から離間される。いくつかの実装形態では、第2の感知電極214は、第2の本体211と第2の感知電極214との間の固定された空間的関係を作成するために、第2の容積216内に強固に据え付けられる。
第2のダイアフラム212は、圧縮変形可能な膜であってもよい。いくつかの実装形態では、第2のダイアフラム212の外側212aは、周囲に曝され、音波が第2のダイアフラム212に衝突し、これを変形させることを可能にする。第2のダイアフラム212の内側212bは、第2の容積216の方に向けられ、第2の感知電極214から離間される。いくつかの実装形態では、第2のダイアフラム212は、第2のダイアフラム212を接地するための第2の接地端子213に接続される。いくつかの実装形態では、第2の感知電極214は、第2の出力端子215に接続され、第2の音検出構成要素200bの出力信号は、第2の出力端子215において測定されることが可能である。第2の出力端子215はまた、結合出力端子225を形成するために電子回路220に電気的に接続されることが可能である。したがって、結合出力端子225は、マイクロホン200の結合出力信号、すなわち、第1および第2の音検出構成要素200a、200bの加算された出力信号を測定するために使用されることが可能である。
上述したように、第1および第2の音検出構成要素200a、200bは、互いに対するそれらのそれぞれの向きを維持するために、互いに対して強固に取り付けられるか、または固定されることが可能である。いくつかの実装形態では、第1および第2の音検出構成要素200a、200bは、第1および第2の容積206、216を画定する単一の一体ハウジング内に形成される。いくつかの実装形態では、第1および第2の音検出構成要素200a、200bは、互いに強固に取り付けられた別個の本体(たとえば、上記で説明した本体201、211)として形成される。したがって、マイクロホン200が加速を受けたとき、第1および第2の音検出構成要素200a、200bは、一緒に加速する。
さらに、第1および第2の音検出構成要素200a、200bは、反対方向に向けられる。したがって、いくつかの実装形態では、第1および第2のダイアフラム202、212の内側表面202b、212bは、それぞれ、実質的に互いに向き合うような向きに配置されてもよい。いくつかの実装形態では、第1および第2の第2の202、212の外側表面202a、212aは、それぞれ、実質的に互いから離れる方向を向くような向きに配置されてもよい。いくつかの実装形態では、第1および第2の感知電極204、214は、各々、第1のダイアフラム202を含む平面によって一方の側において境界付けられ、第2のダイアフラム212を含む平面によって他方の側において境界付けられた空間内に含まれる。いくつかの実装形態では、たとえば、第1の感知電極204が第1のダイアフラム202の下方に配置され、第2の感知電極214が第2のダイアフラム212の上方に配置されるか、またはその逆に配置されるように、第1の感知電極204は、第1のダイアフラム202に対して垂直な軸に沿って第1のダイアフラム202の第1の側において配置され、第2の感知電極214は、第2のダイアフラムに対して垂直な軸に沿って第2のダイアフラム212の第2の側において配置される。いくつかの実装形態では、第1および第2のダイアフラム202、212は、平行な向きに配置される。
図4に示すように、マイクロホン200のいくつかの実装形態では、第1のダイアフラム202、第1の感知電極204、第1の容積206、第2のダイアフラム212、第2の感知電極214、および第2の容積216は、単一の軸に沿って整列されてもよく、軸は、第1および第2のダイアフラム202、212の静止位置に対して実質的に直交する。いくつかの実装形態では、第1および第2の音検出構成要素200a、200bは、いずれかのダイアフラム202、212に対して垂直に延びる軸を横切って反射される鏡面配置において配置されてもよい。いくつかの実装形態では、第1および第2の音検出構成要素200a、200bは、積み重ねられる。しかしながら、いくつかの実装形態では、これらの要素のうちのいくつかのみが整列され、いくつかの実装形態では、これらの要素のいずれも整列される必要はない。
一般に、マイクロホン200の出力信号は、第1および第2の音検出構成要素200a、200bの各々の結合出力信号である。いくつかの実装形態では、第1および第2の音検出構成要素200a、200bの出力信号は、電子回路220を使用して結合される。いくつかの実装形態では、電子回路220は、受動加算回路である。たとえば、いくつかの実装形態では、第1の音検出構成要素200aの第1の出力端子205は、第2の音検出構成要素200bの第2の出力端子215に直接接続されることが可能である。結合された第1および第2の出力端子205、215は、それによって、結合出力端子225を形成するように一緒に加算され、結合出力端子225において、マイクロホン200の結合出力信号は、測定されるか、またはさらなる処理のために他のデバイスもしくは回路に電気的に接続されることが可能である。いくつかの実装形態では、電子回路220は、第1および第2の音検出構成要素200a、200bの出力信号を合計するように構成された能動構成要素を含んでもよい。たとえば、いくつかの実装形態では、電子回路220は、演算増幅器を含む加算増幅器回路を含んでもよい。
図5Aおよび図5Bは、図4に示すマイクロホン200の物理的加速によって引き起こされる信号成分を低減するように構成された例示的な回路実装態様を概略的に示す。図5Aに示す回路実装形態は、マイクロホン200とともに使用されることが可能な受動回路の一例を示す。図示のように、回路は、図4に示すようにダイアフラムが反対方向に向けられた第1および第2の音検出構成要素200a、200bを含む。図示のように、第1および第2の音検出構成要素200a、200bの第1および第2の出力端子205、215はそれぞれ、マイクロホン200の結合出力端子205を作成するために互いに直接接続される。電圧源280がまた、抵抗R1を介して結合出力端子225に接続され、第1および第2の音検出構成要素200a、200bの各々のための駆動電圧を提供するように構成される。
第1および第2の音検出構成要素200a、200bはまた、それぞれ、第1および第2の接地端子203、213を含む。図5Aの実装態様に示すように、第1および第2の接地端子203、213は、各々、抵抗器R2を介してグランドに接続される。いくつかの実装形態では、抵抗器R1およびR2の抵抗は、結合出力端子205においてマイクロホン200のクリーンな出力信号を提供するために、当該技術分野において公知の原理に従って調整されてもよい。いくつかの実装形態では、抵抗器R2は、各々、第1の音検出構成要素200aと第2の音検出構成要素200bとの間の製造上のばらつきを補償するように選択されてもよい。したがって、各抵抗器R2の抵抗は、異なってもよい。いくつかの実装形態では、抵抗器R1およびR2の一方または両方は、可変抵抗器を含んでもよい。いくつかの実装形態では、抵抗器R1およびR2は、省略されてもよい。
図5Bは、マイクロホン200とともに使用されてもよい能動回路の一例を示す。図示のように、第1および第2の出力端子205、215は、結合出力端子225と結合出力信号とを作成するために、当該技術分野において公知のように、各々、能動加算回路220に独立して接続されてもよい。図示のように、第1および第2の出力端子205、215はまた、各々、抵抗器R1を介して電圧源280a、280bに独立して接続されてもよい。第1および第2の接地端子203、213は、各々、グランドに接続されてもよい。いくつかの実装形態では、図5Aに示し、上記で説明したように、抵抗器R2(図5Bに示さず)が、各音検出構成要素200a、200bとグランドとの間に含まれてもよい。図5Aおよび図5Bの概略図において提示した原理は、当該技術分野において公知の原理に従って変更されてもよい。いくつかの実装形態では、出力端子205からの信号と出力端子215からの信号との間の差は、これらの信号の音によって誘起された成分を低減または除去しながら、これらの信号の加速によって誘起された成分を示す信号を取得するために、出力端子205および215からの信号の一方を他方から減算することによって取得されてもよい。
図6Aおよび図6Bは、それぞれ、音波250および物理的加速によって引き起こされるダイアフラム202、212の変位による図4および図5に示すデュアルダイアフラムマイクロホン200の実装形態における出力信号生成を示す。図示し、以下で説明するように、マイクロホン200は、マイクロホン200の加速によって引き起こされる出力信号の任意の成分を除去または低減しながら、測定された音波を示す結合出力信号を生成するように構成される。
図6Aは、音波250によって引き起こされた第1および第2のダイアフラム202、212の変形によるデュアルダイアフラムマイクロホン200における出力信号生成を示す。いくつかの実装形態では、第1および第2の音検出構成要素200a、200bは、指向性である必要はない。すなわち、いくつかの実装形態では、第1および第2の音検出構成要素200a、200bは、任意の方向から来る音波250を測定するように構成される。したがって、図6Aに示す音波250の任意の方向は、単なる例の目的のために提供され、限定することを意図するものではない。
いくつかの実装形態では、デュアルダイアフラムマイクロホン200は、第1のダイアフラム202と第2の第2のダイアフラム212との間で測定される全高hを有し、それは、各ダイアフラム202、212に作用する音波の影響が実質的に同じになるように十分に小さい。すなわち、いくつかの実装形態では、マイクロホン200は、圧力の変化が、時間および大きさにおいて、第1および第2のダイアフラム202、212に実質的に等しく作用するように、全高hを有して構成される。たとえば、いくつかの実装形態では、マイクロホン200は、5mm未満、4mm未満、3mm未満、2mm未満、または1mm未満の全高hを有する。当業者は、小さい高さhに関して、音波250が第1および第2のダイアフラム202、212の実質的に等しい変形を引き起こすことを理解するであろう。これは、低周波音、たとえば、2mmよりもはるかに小さい波長を有する音に関して特に当てはまる。いくつかの実装形態では、マイクロホン200は、高周波音に関するビーム成形効果のために小さい方向利得差を示す場合があるが、パターンは、20kHz未満の周波数を有する音に関して実質的に単一指向性であることに留意されたい。たとえば、約2mmの高さhを有するマイクロホン200について、2つの音検出構成要素200aと200bとの間の位相差は、4kHz音波に関して8.5度と同じ大きさであることが可能である。8.5度の位相差を有するマイクロホン200の利得低下は、約0.024dBであると計算され、これは、非常に小さい。20kHzの音に関して、位相差は、42.4度と同じ大きさである可能性があり、約0.61dBの利得低下を引き起こし、これもまた非常に小さい。
図6Aに示すように、音波250は、各ダイアフラム202、212の外側表面202a、212aに作用する音波250と容積206、216の内部圧力との間の圧力差のために、ダイアフラム202、212の各々をそれらのそれぞれの感知電極204、214に向かって内側に変形させる場合がある。内側への変形は、各ダイアフラム202、212とそのそれぞれの感知電極204、214との間の距離を減少させ、各音検出構成要素200a、200bに負の出力信号を生成させる。第1の音検出構成要素200aの出力信号は、第2の音検出構成要素200bの出力信号に加算されるように、第1の出力端子205を介して電子回路220に送信される。したがって、音波250によって引き起こされるマイクロホン200の結合出力信号は、(加速によって誘起される成分がないと仮定して)いずれかの音検出構成要素によって生成される出力信号の2倍に実質的に等しい。図6Aには特に示されていないが、各ダイアフラム202、212の同期した外側への変形は、反対の極性を有するが同様の結合出力信号を結果として生じる。
図6Bは、加速を受けている図4〜図6Aに示すデュアルダイアフラムマイクロホン200の実装形態を示し、マイクロホン200の実装形態が、どのように、マイクロホン200の加速によって引き起こされる出力信号の成分を低減または除去するように構成されることが可能であるのかを示す。図6Bにおいて、マイクロホン200は、下向きの加速を受けて示されている。しかしながら、ここで説明する原理は、任意の上向きまたは下向きの成分を有するマイクロホン200の任意の加速に適用可能であることが理解されよう。
マイクロホン200の本体は、加速されたときに実質的に変形しないように、概して剛性の材料を含む。上記で議論したように、第1および第2の感知電極204および214は、それぞれ、第1および第2の容積206および216内に配置され、マイクロホン200の本体に強固に取り付けられてもよい。感知電極204および214はまた、加速されたときに変形しようように概して十分に剛性である。したがって、マイクロホン200が加速するとき、本体201および211と感知電極204および214との間の空間的関係は、一定のままである。しかしながら、第1および第2のダイアフラム202、212は、加速されたときに変形する場合がある変形可能な膜である。
たとえば、図6Bに示すように、マイクロホン200の第1の音検出構成要素200aが下方向に加速するとき、第1のダイアフラム202は、マイクロホン200の残りの部分と同じ速度で下向きに移動せず、ダイアフラム202の初期の外側への変形を結果として生じる。外側への変形は、第1のダイアフラム202と第1の感知電極204との間の距離を増加させ、第1の音検出構成要素200aからの正の第1の出力信号を生成する。
第2の音検出構成要素200bは、第1の音検出構成要素200aに強固に取り付けられ、したがって、等しい加速を受ける。しかしながら、第2の音検出構成要素200bは、第1の音検出構成要素200aと反対の方向に向けられているので、加速は、反対の出力信号を生成する。たとえば、マイクロホン200の第2の音検出構成要素200bが下向きに加速するとき、第2のダイアフラム212は、マイクロホン200の残りの部分と同じ速度で下向きに移動せず、ダイアフラム212の初期の内側への変形を結果として生じる。内側への変形は、第2のダイアフラム212と第2の感知電極214との間の距離を減少させ、第2の音検出構成要素200bからの負の第2の出力信号を生成する。
いくつかの実装形態では、第1および第2のダイアフラム202、212は、加速の影響下にあるとき、それらが、それぞれの感知電極204、214に対して反対の方向であるが、実質的に同じ変形を経験するように、同じ変形可能材料から形成されることが可能であり、実質的に同様の寸法を有することができる。したがって、入射音波が存在しない場合、第1および第2の音検出構成要素200a、200bの加速から生じる出力信号は、大きさが実質的に等しく、極性が反対である。電子回路220を用いてこれらの信号を合計することは、結合信号がいくつかの実装形態では実質的にゼロに等しくなるように、加速によって引き起こされた成分が実質的にない結合出力信号を結合出力端子225において生成する。
前述のように、マイクロホン200の実装形態は、純粋に横方向の加速に敏感ではない場合がある。それにもかかわらず、これらの原理は、上方向または下方向の成分を有する任意の加速に適用可能である。
図6Aおよび図6Bを参照して上記で議論した原理は、物理的加速と音波250による圧力の変化の両方を経験するマイクロホン200の実装形態に同時に適用されることが可能であることが理解するであろう。図6Aを参照して議論したように、音波は、各音検出構成要素200a、200bに、大きさおよび極性が実質的に等しい出力信号を生成させる。音によって引き起こされた出力信号の成分は、本明細書ではSとして表記される。図6Bを参照して議論したように、マイクロホン200の加速は、各音検出構成要素200a、200bに、大きさが実質的に等しいが、極性が反対の信号を生成させる。第1の音検出構成要素200aによって生成された加速によって誘起された信号成分は、本明細書ではAとして表記され、第2の音検出構成要素200bによって生成された加速によって誘起された信号は、本明細書ではBとして表記される。
したがって、マイクロホン200が音波250と加速の両方に曝されたとき、第1の音検出構成要素200aによって生成される出力信号Output200aは、
Output200a=S+A
(1)
のように、音によって誘起された成分Sと加速によって誘起された成分Aの組合せである。
同様に、第2の音検出構成要素200bの出力信号Ouput200bは、
Output200b=S+B
(2)
のように、音によって誘起された成分Sと加速によって誘起された成分Bの組合せである。
上述したように、第1および第2の音検出構成要素200a、200bは、強固に取り付けられ、反対方向に向けられているので、各々の加速によって誘起された出力信号は、
B=−A
(3)
のように、大きさが等しく、極性が反対である。
第1および第2の音検出構成要素200a、200bの出力信号が電子回路220によって合計されたとき、マイクロホン200の結合出力Output200は、
Output200=Output200a+Output200b=S+A+S+B=S+A+S+(−A)=2S
(4)
によって与えられる。
2つの音検出構成要素200a、200bの反対の向きのため、マイクロホン200の出力信号Output200は、出力信号Output200aおよびOutput200bの音によって誘起された成分Sのみを含み、加速によって誘起された成分AまたはBのどちらも実質的に含まず、代わりに、音による成分の2倍に等しい。
図7は、マイクロホン700の物理的加速によって引き起こされるいかなる成分も実質的に含まない出力信号を生成するように構成されたデュアルダイアフラムマイクロホン700の実装形態を示す。図7に示すマイクロホン700は、図4〜図6Bを参照して説明したマイクロホン200と同様である。たとえば、マイクロホン700は、反対方向に向けられた2つの音検出構成要素700a、700bを含む。概して、第1の音検出構成要素700aの実装形態は、第1の本体701に取り付けられた第1のダイアフラム702であって、第1のダイアフラム702および第1の本体701が、少なくとも部分的に取り囲まれた第1の容積706を画定する、第1のダイアフラム702と、第1の容積706内に配置され、第1のダイアフラム702から離間された第1の感知電極704とを含む。同様に、第2の音検出構成要素700bの実装形態は、第2の本体711に取り付けられた第2のダイアフラム712であって、第2のダイアフラム712および第2の本体711が、少なくとも部分的に取り囲まれた第2の容積716を画定する、第2のダイアフラム712と、第2の容積716内に配置され、第2のダイアフラム712から離間された第2の感知電極714とを含む。これらの個々の構成要素の各々は、上記で説明した対応する構成要素と実質的に同様であってもよい。
図7に示す実装形態では、反対方向を向いた第1および第2の音検出構成要素700a、700bは、横方向に整列される。すなわち、第1および第2の容積706、716は、いずれかのダイアフラム702、712に対して直交して延びる軸に対して垂直な軸に沿って実質的に整列されてもよい。いくつかの実装形態では、第1の音検出構成要素700aは、各ダイアフラム702、712の中心に垂直に延びる軸の間で測定された横方向距離dだけ、第2の音検出構成要素700bから横方向にオフセットされる。いくつかの実装形態では、横方向距離dは、各ダイアフラム702、712に作用する空気圧およびハウジングによって誘起された振動または加速の変化がほぼ同じであるように、十分に小さい。すなわち、いくつかの実装形態では、マイクロホン700は、圧力の変化が第1および第2のダイアフラム702、712に対して時間および大きさにおいて実質的に等しく作用するように、第1の音検出構成要素700aと第2の音検出構成要素700bとの間にオフセットされた横方向距離dを有して構成される。たとえば、いくつかの実装形態では、マイクロホン700は、5mm未満、4mm未満、3mm未満、2mm未満、または1mm未満の横方向オフセット距離dを有する。いくつかの実装形態では、距離dは、音検出構成要素700a、700bのダイアフラム702、712の直径にほぼ等しい。電子デバイスにおいて使用される多くのアナログまたはデジタル音検出構成要素は、約3mmと10mmとの間の範囲の直径を有し、4mmの直径が特に一般的である。当業者は、小さい距離dに関して、音波が第1および第2のダイアフラム702、712の実質的に等しい変形を引き起こすことを理解するであろう。これは、2mm未満の波長を有する低周波音、たとえば音に関して特に当てはまる。いくつかの実装形態では、マイクロホン700は、高周波音に関するビーム成形効果のために小さい方向利得差を示す場合があるが、上記で説明したように、パターンは、20kHz未満の周波数を有する音に関して実質的に単一指向性である。
横方向オフセット距離dを含むマイクロホン700のいくつかの実装形態では、第1および第2のダイアフラム702、712は、いずれかのダイアフラム702、712に対して垂直に延びる軸に沿って実質的に整列されてもよい。いくつかの実装形態では、第1および第2の感知電極704、714は、いずれかのダイアフラム702、712に対して垂直に延びる軸に対して垂直な軸に沿って実質的に整列されてもよい。
上記のように、第1および第2の音検出構成要素700a、700bの第1および第2の出力端子705、715は、電子回路720に電気的に接続され、電子回路720を用いて合計される。したがって、図7に示すマイクロホン700の実装形態は、図6Aおよび図6Bを参照して上記で議論した原理に従って、加速によるどのような成分も実質的に含まない結合出力信号を出力端子705において生成するように構成される。
図8は、ハンドヘルドデバイス870に組み込まれたデュアルダイアフラムマイクロホン800の実装形態を示す。デュアルダイアフラムマイクロホン800は、上記で説明したマイクロホン200またはマイクロホン700と同様に構成されてもよい。本明細書で開示する原理に従って構成されたデュアルダイアフラムマイクロホン800の実装形態は、音を測定し、使用中に移動する可能性が高い任意のデバイスに有利に組み込まれてもよい。いくつかの実装形態では、マイクロホン800は、図示のようにハンドヘルドデバイス870に組み込まれることが可能である。いくつかの実装形態では、ハンドヘルドデバイス870は、ワイヤレス通信デバイス、たとえば、ラップトップコンピュータ、セルラーフォン、スマートフォン、電子リーダ、タブレットデバイス、ゲームシステムなどであることが可能である。そのようなデバイスは、一般に、使用中に手持ち式であり、したがって、加速を経験する場合がある。
いくつかの実装形態では、マイクロホン800は、ハンドヘルドデバイス870のハウジング871内に配置される。ハウジング871は、マイクロホン800のダイアフラムに到達する音波の能力を制限する場合があるので、ハウジング871は、音波がマイクロホン800のダイアフラムに到達し、これを変形させることを可能にするように構成された、ハウジング871を通って延在する穴として形成された1つまたは複数の開口部873を含んでもよい。開口部873の位置、数、およびサイズは、特定の用途に応じて変化してもよい。いくつかの実施形態では、本出願で説明した各開口部873は、単一の穴、複数の穴、または音響メッシュである。図9〜図11は、開口部を有して構成されたハウジング内のデュアルダイアフラムマイクロホンの様々な配置を示す。
図9は、2つの開口部973aおよび973bを有するハウジング971内に配置されたデュアルダイアフラムマイクロホン900の実装形態を示す。図示のように、マイクロホン900は、反対方向に向けられた第1の音検出構成要素900aと第2の音検出構成要素900bとを含む。マイクロホン900は、2つの開口部973aおよび973bを有するハウジング971内に配置される。開口部973aおよび973bの各々は、ハウジング971を通って延在し、音波がハウジング971に入ることを可能にするように構成された穴、複数の穴、または音響メッシュを含んでもよい。図9の実装形態では、第1の開口部973aは、ハウジング971の第1の側において配置され、音波がマイクロホン900の第1のダイアフラム902に到達することを可能にするように構成される。第2の開口部973bは、第1の開口部973aと実質的に反対側のハウジング971の第2の側において配置される。第2の開口部973bは、音波がマイクロホン900の第2のダイアフラム912に到達することを可能にするように構成される。
図10は、単一開口部ハウジング1071内に配置されたデュアルダイアフラムマイクロホン1000の実装形態を示す。開口部1073は、ハウジング1071の側面を通って延在する穴、複数の穴、または音響メッシュとして構成されてもよい。いくつかの実装形態では、開口部1073は、マイクロホン1000の第1および第2の膜1002、1012の各々の平面に対して垂直な平面内にある。いくつかの実装形態では、開口部1073は、開口部1073と第1および第2の膜1002、1012の各々との間の距離が実質的に等しいように、ハウジング1071上に配置される。いくつかの実装形態では、図10に示す実装形態などの単一開口部ハウジング1071は、デバイスの所要空間または他の内部構成要素が、複数開口部ハウジング、または2つ以上の側において開口部を有するハウジングの使用を妨げる場合、使用される場合がある。他の実装形態では、単一開口部ハウジング1071は、入射音の指向性が重要である場合、使用される場合がある。たとえば、マイクロホン1000が携帯電話などのハンドヘルドデバイスに組み込まれる実装形態では、ユーザの口に向かって配置された単一の開口部1073が望ましい場合がある。
図11は、単一開口部ハウジング1171内に配置されたデュアルダイアフラムマイクロホン1100の別の実装形態を示す。いくつかの実装形態では、マイクロホン1100は、単一の開口部1173を含むハウジング1171内に配置されてもよい。単一の開口部1173は、ハウジング1171を通って延在する穴、複数の穴、または音響メッシュとして構成され、音波がマイクロホン1100の1つのダイアフラム、たとえば、第1のダイアフラム1102に到達すること可能にするように配置されてもよい。ハウジング1171は、反対側のダイアフラム、たとえば、第2のダイアフラム1112を実質的に音響的に隔離してもよい。この実装形態では、第1の音検出構成要素1100aは、音および加速による信号を生成するように構成され、第2の音検出構成要素1100bは、実質的に加速のみによる信号を生成する。第1および第2の音検出構成要素1100a、1100bに関する信号が加算されたとき、マイクロホン1100の結合出力は、次のように、加速によるどのような成分も実質的に含まない。
上記のように、音によって引き起こされた出力信号の成分は、本明細書ではSとして表記される。第1の音検出構成要素1100aによって生成された、加速によって誘起された信号成分は、本明細書ではAとして表記され、第2の音検出構成要素1100bによって生成された、加速によって誘起された信号成分は、本明細書ではBとして表記される。
したがって、図11に示すようなハウジング1171の実装形態内に配置されたマイクロホン1100が、音波と加速の両方に曝されたとき、第1の音検出構成要素1100aによって生成される出力信号Output200aは、
Output200a=S+A
(5)
のように、音によって誘起された成分Sと加速によって誘起された成分Aの組合せである。
第2の音検出構成要素1100bの出力信号Output200bは、ハウジング1171がダイアフラム1112を音響的に隔離するので、
Output200b=B
(6)
のように、加速によって誘起された成分Bのみを含む。
上述したように、第1および第2の音検出構成要素1100a、1100bは、強固に取り付けられ、反対方向に向けられているので、各々の加速によって誘起された出力信号は、
B=−A
(7)
のように、大きさが等しく、極性が反対である。
第1および第2の音検出構成要素1100a、1100bの出力信号が電子回路1120によって合計されたとき、マイクロホン1100の結合出力Output200は、
Output200=Output200a+Output200b=S+A+B=S+A+(−A)=S
(8)
によって与えられる。
2つの音検出構成要素1100a、1100bの反対の向きにより、マイクロホン1100の出力信号Output200は、音によって誘起された成分Sのみを含み、加速によって誘起された成分AまたはBのどちらも実質的に含まず、代わりに、第1の音検出構成要素1100aによって測定された音による成分に等しい。
当業者は、開口部の他の配置が本開示の範囲内であることを理解するであろう。
図12は、記録デバイスの物理的加速または他の動きに実質的に影響されない出力信号を生成するための方法1200を示すフローチャートである。方法1200は、ブロック1205において開始し、ブロック1205では、第1の信号が第1の方向に向けられた第1の音検出デバイスから受信される。第1の信号は、第1の音検出デバイスの測定された音と物理的加速の両方によって引き起こされた成分を含む場合がある。
ブロック1210において、第2の信号が第1の方向と実質的に反対の第2の方向に向けられた第2の音検出デバイスから受信される。第2の信号は、第2の音検出デバイスの測定された音と物理的加速の両方によって引き起こされた成分を含む場合がある。第2の受信信号は、一般に、同じ測定された音および同じ物理的加速によって引き起こされる。
ブロック1215において、第1および第2の信号が合計される。いくつかの実装形態では、合計は、第1および第2の信号が受信される信号線を単に結合することによって達成される。いくつかの実装形態では、合計は、能動加算回路を使用して達成される。いくつかの実装形態では、第1および第2の音検出デバイスの反対の向きが、加速による実質的に等しく、反対の信号成分を結果として生じるので、第1および第2の信号の合計は、記録デバイスの加速または他の動きによって実質的に影響を受けない結合信号を結果として生じる。第1および第2の信号が加算されたとき、加速による成分は、互いに相殺される。
図13は、デュアルダイアフラムマイクロホンを含むヘッドセットの実装形態を示す。ヘッドセット1370は、ユーザの耳を取り囲むように構成された1つまたは複数の音響エンクロージャ1371を含んでもよい。1つまたは複数のスピーカ1373が、各音響エンクロージャ1371内に含まれ、ユーザの耳に音を伝達するように構成されてもよい。図13は、位置1300a、1300b、および1300cのヘッドセット1370内のマイクロホンの3つの可能な位置を示す。可能なマイクロホン位置1300a、1300b、および1300cのいずれかに配置されたマイクロホンは、上記で説明したように、加速によって誘起された任意の出力信号成分を低減または除去するように構成されてもよい。3つの可能なマイクロホン位置1300a、1300b、および1300cが図13に示されているが、いくつかの実施形態では、ヘッドセット1370は、3つの位置1300a、1300b、および1300cの各々においてマイクロホンを含まなくてもよい。たとえば、ヘッドセット1370は、位置1300aにおける単一のマイクロホンのみを含んでもよく、または、ヘッドセット1370は、位置1300aおよび1300cにおける2つのマイクロホンを含んでもよい。いくつかの実施形態では、ヘッドセット1370は、3つ以上のマイクロホンを含んでもよく、ヘッドセット1370内またはヘッドセット1370上の任意の他の位置においてマイクロホンを含んでもよい。
いくつかの実施形態では、位置1300aにおいて配置されたマイクロホンが、一般に、ヘッドセットが使用されているときにユーザの口の前面に、または、ユーザの顔の側面に沿った別の位置に配置され得るように、ヘッドセット1370は、音響エンクロージャ1371またはヘッドセット1370の別の構成要素から延び得るブームまたは他の構造1375を含んでもよい。いくつかの実施形態では、ヘッドセット1370は、音響エンクロージャ1371の外側の位置1300bにおいて配置された1つまたは複数のマイクロホンを含んでもよい。いくつかの実施形態では、ヘッドセット1370は、音響エンクロージャ1371内の位置1300cにおいて配置された1つまたは複数のマイクロホンを含んでもよい。
上記で説明したようなデュアルダイアフラムマイクロホンは、ウェアラブルデバイスによって取り込まれたまたは生成されたオーディオ信号に対するユーザの動きの影響を低減するために、様々なウェアラブルデバイス、たとえば、イヤホン、ヘッドセット、ヘッドフォン、補聴器、または他のウェアラブルデバイスに有利に組み込まれてもよい。
本明細書で開示する方法は、説明した方法を達成するための1つまたは複数のステップまたはアクションを備える。方法ステップおよび/または方法アクションは、特許請求の範囲から逸脱することなく互いに入れ替えられてもよい。言い換えれば、説明されている方法の適切な動作のためにステップまたはアクションの特定の順序が必要とされない限り、特定のステップおよび/またはアクションの順序および/または使用は、特許請求の範囲から逸脱することなく変更されてもよい。
「取り付ける」、「取り付けられる」という用語、もしくは「取り付ける」という単語の他の変形、または同様の単語は、本明細書で使用される場合、間接的接続または直接的接続のいずれかを示す場合があることに留意すべきである。たとえば、第1の構成要素が第2の構成要素に取り付けられているか、または強固に据え付けられている場合、第1の構成要素は、第2の構成要素に間接的に接続されてもよく、または、第2の構成要素に直接接続されてもよい。本明細書で使用される場合、「複数」という用語は、2つ以上を示す。たとえば、複数の構成要素は2つ以上の構成要素を示す。
本開示において説明する実装形態に対する様々な変更は、当業者には容易に明らかである場合があり、本明細書で定義した一般的な原理は、本開示の要旨または範囲から逸脱することなく、他の実装形態に適用されてもよい。したがって、特許請求の範囲は、本明細書で示されている実装形態に限定されることを意図するものではなく、本開示、本明細書で開示する原理および新規な特徴と一致する最も広い範囲を与えられるべきである。加えて、当業者は、「上方」および「下方」などの相対的な用語が、時には、図面を説明することの容易さのために使用され、適切に向けられたページ上の図の向きに対応する相対的な位置を示し、実装されるとき、または使用中の特定の構成要素の適切な向きを反映しないことがあることを容易に理解するであろう。
別個の実装形態の文脈において本明細書で説明される特定の特徴は、単一の実装形態において組み合わせて実装されることも可能である。逆に、単一の実装形態の文脈において説明される様々な特徴は、複数の実装形態において別々に、または任意の適切なサブ組合せにおいて実装されることも可能である。さらに、特徴は、特定の組合せにおいて作用するものとして上記で説明されている場合があり、当初はそのように特許請求されている場合さえあるが、特許請求された組合せからの1つまたは複数の特徴は、いくつかのハウジングにおいて、組合せから切り取られることが可能であり、特許請求された組合せは、サブ組合せまたはサブ組合せの変形が対象とされてもよい。
同様に、動作は、特定の順序において図面に示されているが、当業者は、そのような動作が示された特定の順序で、もしくは順次に実行される必要はないこと、または、所望の結果を達成するために、図示されたすべての動作が実行されることを容易に認識するであろう。さらに、図面は、フロー図の形式で1つまたは複数の例示的なプロセスを概略的に示している場合がある。しかしながら、概略的に示されているプロセス例には、図に示されていない他の動作を組み込むことも可能である。たとえば図に示されている任意の動作の前、後、同時、またはこれらの動作と動作との間に、1つまたは複数の追加動作を実施することができる。特定の状況では、マルチタスク処理および並列処理が有利である場合がある。さらに、上で説明した実装形態における様々なシステム構成要素の分類は、そのような分類がすべての実装形態に必要であるものとして理解してはならず、説明されているプログラムコンポーネントおよびシステムは、通常、単一のソフトウェア製品の中にまとめて統合することができ、あるいは複数のソフトウェア製品の中にパッケージ化することができることを理解すべきである。さらに、他の実装形態も以下の特許請求の範囲内である。いくつかのハウジングにおいて、特許請求の範囲に列挙されたアクションは、異なる順序で実行されることが可能であり、依然として望ましい結果を達成することができる。
100 マイクロホン
101 本体
102 ダイアフラム
102a 外側
102b 内側
103 接地端子
104 感知電極
105 出力端子
106 容量
150 音波
200 マイクロホン
200a 第1の音検出構成要素
200b 第2の音検出構成要素
201 第1の本体
202 第1のダイアフラム
202a 外側
202b 内側
203 第1の接地端子
204 第1の感知電極
205 第1の出力端子
206 第1の容量
211 第2の本体
212 第2のダイアフラム
212a 外側
212b 内側
213 第2の接地端子
214 第2の感知電極
215 第2の出力端子
216 第2の容積
220 電子回路
225 結合出力端子
280 電圧源
280a 電圧源
280b 電圧源
700 デュアルダイアフラムマイクロホン
700a 第1の音検出構成要素
700b 第2の音検出構成要素
701 第1の本体
702 第1のダイアフラム
704 第1の感知電極
705 第1の出力端子
706 第1の容量
711 第2の本体
712 第2のダイアフラム
714 第2の感知電極
715 第2の出力端子
716 第2の容量
720 電子回路
800 デュアルダイアフラムマイクロホン
870 ハンドヘルドデバイス
871 ハウジング
873 開口部
900 デュアルダイアフラムマイクロホン
900a 第1の音検出構成要素
900b 第2の音検出構成要素
902 第1のダイアフラム
912 第2のダイアフラム
971 ハウジング
973a 開口部
973b 開口部
1000 デュアルダイアフラムマイクロホン
1002 第1の膜
1012 第2の膜
1071 単一開口部ハウジング
1073 開口部
1100 デュアルダイアフラムマイクロホン
1100a 第1の音検出構成要素
1100b 第2の音検出構成要素
1102 第1のダイアフラム
1112 第2のダイアフラム
1120 電子回路
1171 単一開口部ハウジング
1173 開口部
1300a マイクロホン位置
1300b マイクロホン位置
1300c マイクロホン位置
1370 ヘッドセット
1371 音響エンクロージャ
1373 スピーカ
1375 ブームまたは他の構造

Claims (30)

  1. 第1の信号を生成するように構成された第1のマイクロホン構成要素であって、
    第1の方向に面する外側を有する第1の圧力変形可能ダイアフラムであって、前記第1の信号が前記第1の圧力変形可能ダイアフラムの変形とともに変化する、第1の圧力変形可能ダイアフラムと、
    前記第1の圧力変形可能ダイアフラムの内側から離間され、前記第1の圧力変形可能ダイアフラムによって少なくとも部分的に取り囲まれた第1の容積内に配置された第1の電極と
    を備える第1のマイクロホン構成要素と、
    第2の信号を生成するように構成された第2のマイクロホン構成要素であって、
    第2の方向に面する外側を有する第2の圧力変形可能ダイアフラムであって、前記第2の信号が前記第2の圧力変形可能ダイアフラムの変形とともに変化し、前記第2の方向が前記第1の方向と実質的に反対である、第2の圧力変形可能ダイアフラムと、
    前記第2の圧力変形可能ダイアフラムの内側から離間され、前記第2の圧力変形可能ダイアフラムによって少なくとも部分的に取り囲まれた第2の容積内に配置された第2の電極と
    を備える第2のマイクロホン構成要素と、
    出力信号を生成するために前記第1および第2の信号を合計するように構成された電子回路と
    を備えるマイクロホン。
  2. 前記第1のマイクロホン構成要素が、前記第2のマイクロホン構成要素に強固に取り付けられた、請求項1に記載のマイクロホン。
  3. 前記第1の圧力変形可能ダイアフラムが、前記第2の圧力変形可能ダイアフラムと平行な位置に向けられた、請求項1に記載のマイクロホン。
  4. 前記出力信号が、前記マイクロホンの加速によって実質的に影響を受けない、請求項1に記載のマイクロホン。
  5. 前記電子回路が、受動加算回路を備える、請求項1に記載のマイクロホン。
  6. 前記電子回路が、能動加算回路を備える、請求項1に記載のマイクロホン。
  7. 前記第1のマイクロホン構成要素および前記第2のマイクロホン構成要素が、前記第1の圧力変形可能ダイアフラムに対して垂直な軸に沿って整列された、請求項1に記載のマイクロホン。
  8. 前記第1のマイクロホン構成要素が、前記第2のマイクロホン構成要素から横方向にオフセットされた、請求項1に記載のマイクロホン。
  9. 前記第1および第2の圧力変形可能ダイアフラムの各々が、周囲に露出された、請求項1に記載のマイクロホン。
  10. 前記第1の圧力変形可能ダイアフラムが、前記第2の圧力変形可能ダイアフラムと平行な位置に向けられた、請求項1に記載のマイクロホン。
  11. 第1の容積を少なくとも部分的に取り囲む第1の圧力変形可能ダイアフラムと、
    前記第1の容積内に配置され、前記第1の圧力変形可能ダイアフラムから離間された第1の感知電極と、
    第2の容積を少なくとも部分的に取り囲む第2の圧力変形可能ダイアフラムであって、前記第1の圧力変形可能ダイアフラムと実質的に平行に向けられた、第2の圧力変形可能ダイアフラムと、
    前記第2の容積内に配置され、前記第2の圧力変形可能ダイアフラムから離間された第2の感知電極であって、前記第1および第2の感知電極が前記第1および第2の圧力変形可能ダイアフラムの反対側にそれぞれ配置された、第2の感知電極と
    を備えるデュアルダイアフラムマイクロホン。
  12. 本体をさらに備え、前記第1および第2の容積が、前記本体によって少なくとも部分的に画定された、請求項11に記載のマイクロホン。
  13. 前記第1および第2の容積が、前記第1の圧力変形可能ダイアフラムに対して垂直に延びる軸に沿って実質的に整列された、請求項11に記載のマイクロホン。
  14. 前記第1および第2の圧力変形可能ダイアフラムならびに前記第1および第2の感知電極がまた、前記第1の圧力変形可能ダイアフラムに対して垂直に延びる前記軸に沿って実質的に整列された、請求項13に記載のマイクロホン。
  15. 前記第1および第2の容積が、前記第1の圧力変形可能ダイアフラムに対して垂直に延びる軸に対して垂直な軸に沿って実質的に整列された、請求項11に記載のマイクロホン。
  16. 第1の方向に向けられた第1の音検出構成要素から第1の信号を受信するステップと、
    前記第1の音検出構成要素に強固に取り付けられ、前記第1の方向と実質的に反対の第2の方向に向けられた第2の音検出構成要素から第2の信号を受信するステップと、
    前記第1および第2の音検出構成要素の加速によって生成された信号成分を実質的に含まない結合出力を生成するために前記第1および第2の信号を合計するステップと
    を備える方法。
  17. 前記第1の音検出構成要素が、前記第1の方向で周囲に面するように向けられた外側表面を含む第1の圧力変形可能ダイアフラムを備え、前記第2の音検出構成要素が、前記第1の方向と実質的に反対の第2の方向で周囲に向けられた外側表面を含む第2の圧力変形可能ダイアフラムを備える、請求項16に記載の方法。
  18. 前記第1および第2の圧力変形可能ダイアフラムが、空気圧の変化によって引き起こされる前記第1および第2の信号の成分が大きさおよび極性において実質的に等しいように構成された、請求項17に記載の方法。
  19. 前記第1および第2の圧力変形可能ダイアフラムが、前記マイクロホンの加速によって引き起こされる前記第1および第2の信号の成分が大きさにおいて実質的に等しく、極性において反対であるように構成された、請求項16に記載の方法。
  20. 前記第1および第2の信号を合計するステップが、前記第1および第2の信号を合計するために受動加算回路を使用するステップを備える、請求項16に記載の方法。
  21. 前記第1および第2の信号を合計するステップが、前記第1および第2の信号を合計するために能動加算回路を使用するステップを備える、請求項16に記載の方法。
  22. 第1の信号を生成するように構成された第1のマイクロホン構成要素であって、
    第1の方向に面する外側を有する第1の圧力変形可能ダイアフラムであって、前記第1の信号が前記第1の変形可能ダイアフラムの変形とともに変化する、第1の圧力変形可能ダイアフラムと、
    前記第1の圧力変形可能ダイアフラムの内側から離間され、前記第1の圧力変形可能ダイアフラムによって少なくとも部分的に取り囲まれた第1の容積内に配置された第1の電極と
    を含む第1のマイクロホン構成要素と、
    第2の信号を生成するように構成された第2のマイクロホン構成要素であって、
    第2の方向に面する外側を有する第2の圧力変形可能ダイアフラムであって、前記第2の信号が前記第2の圧力変形可能ダイアフラムの変形とともに変化し、前記第2の方向が前記第1の方向と実質的に反対である、第2の圧力変形可能ダイアフラムと、
    前記第2の圧力変形可能ダイアフラムから離間され、前記第2の圧力変形可能ダイアフラムによって少なくとも部分的に取り囲まれた第2の容積内に配置された第2の電極と
    を含む、第2のマイクロホン構成要素と、
    前記第1のマイクロホン構成要素および前記第2のマイクロホン構成要素を少なくとも部分的に取り囲むように構成されたハウジングであって、前記第1の圧力変形可能ダイアフラムを周囲に露出させるように構成された少なくとも1つの開口部を含み、前記第2の圧力変形可能ダイアフラムを音響的に隔離する、ハウジングと、
    出力信号を生成するために前記第1および第2の信号を合計するように構成された電子回路と
    を備えるマイクロホン。
  23. 前記第1のマイクロホン構成要素が、前記第2のマイクロホン構成要素に強固に取り付けられた、請求項22に記載のマイクロホン。
  24. 前記第1の圧力変形可能ダイアフラムが、前記第2の圧力変形可能ダイアフラムと平行な位置に向けられた、請求項23に記載のマイクロホン。
  25. 前記出力信号が、前記マイクロホンの加速によって実質的に影響を受けない、請求項24に記載のマイクロホン。
  26. 前記第1のマイクロホン構成要素および前記第2のマイクロホン構成要素が、前記第1の圧力変形可能ダイアフラムに対して垂直な軸に沿って整列された、請求項22に記載のマイクロホン。
  27. 前記第1のマイクロホン構成要素が、前記第2のマイクロホン構成要素から横方向にオフセットされた、請求項22に記載のマイクロホン。
  28. 前記電子回路が、受動加算回路を備える、請求項22に記載のマイクロホン。
  29. 前記電子回路が、能動加算回路を備える、請求項22に記載のマイクロホン。
  30. 前記少なくとも1つの開口部が、音響メッシュを備える、請求項22に記載のマイクロホン。
JP2017550707A 2015-03-31 2016-03-15 デュアルダイアフラムマイクロホン Pending JP2018514135A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/675,384 US9602930B2 (en) 2015-03-31 2015-03-31 Dual diaphragm microphone
US14/675,384 2015-03-31
PCT/US2016/022493 WO2016160327A1 (en) 2015-03-31 2016-03-15 Dual diaphragm microphone

Publications (2)

Publication Number Publication Date
JP2018514135A true JP2018514135A (ja) 2018-05-31
JP2018514135A5 JP2018514135A5 (ja) 2019-04-04

Family

ID=55640913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017550707A Pending JP2018514135A (ja) 2015-03-31 2016-03-15 デュアルダイアフラムマイクロホン

Country Status (7)

Country Link
US (1) US9602930B2 (ja)
EP (1) EP3278574A1 (ja)
JP (1) JP2018514135A (ja)
KR (1) KR20170132180A (ja)
CN (1) CN107431866A (ja)
BR (1) BR112017020919A2 (ja)
WO (1) WO2016160327A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2982447A1 (fr) 2011-11-07 2013-05-10 France Telecom Procede de codage et decodage d'images, dispositif de codage et decodage et programmes d'ordinateur correspondants
FR2982446A1 (fr) 2011-11-07 2013-05-10 France Telecom Procede de codage et decodage d'images, dispositif de codage et decodage et programmes d'ordinateur correspondants
US11540057B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11832060B2 (en) 2014-01-06 2023-11-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368800B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11805375B2 (en) 2014-01-06 2023-10-31 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11950055B2 (en) * 2014-01-06 2024-04-02 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
DE102017213277B4 (de) * 2017-08-01 2019-08-14 Infineon Technologies Ag Mems-sensoren, verfahren zum bereitstellen derselben und verfahren zum betreiben eines mems-sensors
US11470411B2 (en) 2017-08-04 2022-10-11 Cochlear Limited Microphone unit having a pressurized chamber
CN107548001B (zh) * 2017-09-18 2020-04-24 联想(北京)有限公司 传感器组及电子设备
US10771904B2 (en) * 2018-01-24 2020-09-08 Shure Acquisition Holdings, Inc. Directional MEMS microphone with correction circuitry
US11509994B2 (en) * 2018-04-26 2022-11-22 Shenzhen Shokz Co., Ltd. Vibration removal apparatus and method for dual-microphone earphones
CN112637738B (zh) * 2018-04-26 2022-10-21 深圳市韶音科技有限公司 一种耳机系统
CN112673646B (zh) * 2018-08-13 2023-12-12 奥正有限公司 包含非音频传感器的抗干扰换能器设备
CN109246566B (zh) * 2018-10-09 2020-05-12 歌尔股份有限公司 Mems传感器
US11875796B2 (en) 2019-04-30 2024-01-16 Microsoft Technology Licensing, Llc Audio-visual diarization to identify meeting attendees
KR20210091397A (ko) 2020-01-13 2021-07-22 삼성전자주식회사 지향성 음향 센서
CN113784266A (zh) * 2020-06-09 2021-12-10 通用微(深圳)科技有限公司 硅基麦克风装置及电子设备
CN113784265B (zh) * 2020-06-09 2022-06-14 通用微(深圳)科技有限公司 硅基麦克风装置及电子设备
CN113784264A (zh) * 2020-06-09 2021-12-10 通用微(深圳)科技有限公司 硅基麦克风装置及电子设备
CN116762360A (zh) * 2021-01-28 2023-09-15 声扬荷兰有限公司 声音和振动传感器
JP2022149103A (ja) * 2021-03-25 2022-10-06 ヤマハ株式会社 音響/信号変換器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3008013A (en) * 1954-07-20 1961-11-07 Ferranti Ltd Electrostatic loudspeakers
US4160882A (en) * 1978-03-13 1979-07-10 Driver Michael L Double diaphragm electrostatic transducer each diaphragm comprising two plastic sheets having different charge carrying characteristics
US5363452A (en) 1992-05-19 1994-11-08 Shure Brothers, Inc. Microphone for use in a vibrating environment
IL108676A0 (en) 1994-02-16 1994-05-30 Kaplan Shay A background noise reducing microphone
US6031922A (en) 1995-12-27 2000-02-29 Tibbetts Industries, Inc. Microphone systems of reduced in situ acceleration sensitivity
JP4176003B2 (ja) * 2003-12-18 2008-11-05 株式会社オーディオテクニカ 可変指向性コンデンサマイクロホン
US7840020B1 (en) 2004-04-01 2010-11-23 Otologics, Llc Low acceleration sensitivity microphone
US8369555B2 (en) 2006-10-27 2013-02-05 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Piezoelectric microphones
JP2009284110A (ja) 2008-05-20 2009-12-03 Funai Electric Advanced Applied Technology Research Institute Inc 音声入力装置及びその製造方法、並びに、情報処理システム
JP2009284111A (ja) 2008-05-20 2009-12-03 Funai Electric Advanced Applied Technology Research Institute Inc 集積回路装置及び音声入力装置、並びに、情報処理システム
DE102010015400B4 (de) 2010-04-19 2013-01-17 Siemens Medical Instruments Pte. Ltd. Mikrofon für eine Hörvorrichtung sowie Verfahren zum Ermitteln eines Luftschalls und eines Körperschalls
US9560444B2 (en) 2013-03-13 2017-01-31 Cisco Technology, Inc. Kinetic event detection in microphones

Also Published As

Publication number Publication date
KR20170132180A (ko) 2017-12-01
US9602930B2 (en) 2017-03-21
WO2016160327A1 (en) 2016-10-06
BR112017020919A2 (pt) 2018-07-10
CN107431866A (zh) 2017-12-01
US20160295328A1 (en) 2016-10-06
EP3278574A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP2018514135A (ja) デュアルダイアフラムマイクロホン
US11356765B2 (en) Vibration removal apparatus and method for dual-microphone earphones
JP5325555B2 (ja) マイクロホンユニット
JP5325554B2 (ja) 音声入力装置
US9613614B2 (en) Noise-reducing headphone
JP4293378B2 (ja) マイクロフォンユニット、及び、接話型の音声入力装置、並びに、情報処理システム
JP6409187B2 (ja) 電気音響変換器
JP5166117B2 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
JP2010206541A (ja) マイクロホンユニット
JP2009284110A (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
CN110999322B (zh) 具有辅助端口的移动线圈麦克风换能器
JP2014155144A (ja) 音声入力装置及び雑音抑圧方法
JP2009239631A (ja) マイクロフォンユニット、接話型の音声入力装置、情報処理システム、及びマイクロフォンユニットの製造方法
CN101442695B (zh) 麦克风系统、声音输入设备和制造所述系统和设备的方法
WO2022100551A1 (zh) Mems压电微扬声器、微扬声器单元及电子设备
JP5262859B2 (ja) マイクロホンユニット
EP4285603A1 (en) Sound and vibration sensor
JP5250899B2 (ja) 携帯電話およびマイクロホンユニット
JP5166007B2 (ja) マイクロフォンユニットおよびその製造方法
JP5008638B2 (ja) マイクロフォンユニット、音声入力装置、情報処理システム及びマイクロフォンユニットの製造方法
SELF-ELIMINATES et al. Reviews Of Acoustical Patents

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201019