JP2018207675A - 電源装置、画像形成装置、及び駆動周波数の設定方法 - Google Patents

電源装置、画像形成装置、及び駆動周波数の設定方法 Download PDF

Info

Publication number
JP2018207675A
JP2018207675A JP2017110746A JP2017110746A JP2018207675A JP 2018207675 A JP2018207675 A JP 2018207675A JP 2017110746 A JP2017110746 A JP 2017110746A JP 2017110746 A JP2017110746 A JP 2017110746A JP 2018207675 A JP2018207675 A JP 2018207675A
Authority
JP
Japan
Prior art keywords
voltage
frequency
power supply
image
piezoelectric transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017110746A
Other languages
English (en)
Inventor
貴幸 秦
Takayuki Hata
貴幸 秦
大輝 工藤
Daiki Kudo
大輝 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Finetech Nisca Inc
Original Assignee
Canon Finetech Nisca Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Finetech Nisca Inc filed Critical Canon Finetech Nisca Inc
Priority to JP2017110746A priority Critical patent/JP2018207675A/ja
Publication of JP2018207675A publication Critical patent/JP2018207675A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】電源装置の出力電圧に生じるノイズや電圧変動を低減する。
【解決手段】圧電トランス405は、交流電圧である入力電圧V1を交流電圧である出力電圧V2に変換する。整流部406は、出力電圧V2を整流して、直流電圧である出力電圧Vdcを出力する。フィードバック部402は、出力電圧Vdcをフィードバックし、帰還電圧VFBと制御電圧Vcontとを比較してトランス入力信号Vinを生成する。駆動部404は、トランス入力信号Vin及びクロック信号DC_CLKにより入力電圧V1を生成する。圧電トランス405の出力電圧V2を一定に維持した状態で、トランス入力信号Vinを分圧した検出電圧Vdのサンプリング値を周波数掃引して順次取得する。予め設定された電圧閾値以下となるサンプリング値のうち、電圧閾値に最も近いサンプリング値に対応する周波数を、圧電トランス405を駆動する入力電圧V1の駆動周波数に設定する。
【選択図】図4

Description

本発明は、圧電トランスを有する電源装置、電源装置を備える画像形成装置、及び圧電トランスを駆動する入力電圧の駆動周波数の設定方法に関する。
画像形成装置の高電圧を発生する電源装置において、圧電トランスにより一次側の入力電圧を昇圧させて二次側に高電圧の出力電圧を出力させるものが広く用いられている。圧電トランスを有する電源装置は、圧電トランスの共振周波数と等しい周波数(駆動周波数)に設定された入力電圧で作動させた場合に大きな昇圧比と高い電力効率とが得られる。
特許文献1には、圧電トランスを用いて生成した出力電圧を帯電ローラ等に印加する電源装置が記載される。特許文献1に記載の電源装置では、圧電トランスを駆動する入力電圧の周波数を掃引することにより、その時に検出した入力電圧の電圧レベルが最小となる周波数を共振周波数として保持し、共振周波数に駆動周波数を調整している。
特開2011−125145号公報
しかし、瞬間的又は変動周期が短い負荷変動に対して、特許文献1に記載の電源装置のように、その都度周波数掃引を実行して駆動周波数を調整していたのでは、調整そのものが間に合わず、電源装置の出力にノイズや電圧変動が発生することがあった。
本発明は、電源装置の出力電圧に生じるノイズや電圧変動を低減することを目的とする。
本発明の電源装置は、入力電圧を出力電圧に変換する圧電トランスと、前記入力電圧の電圧レベルを検出する検出手段と、前記検出手段の検出値が予め設定された閾値以下であって、前記圧電トランスの共振周波数よりも低い周波数となるように、前記入力電圧の駆動周波数を設定する設定手段と、を備える、ことを特徴とする。
本発明によれば、電源装置の出力電圧に生じるノイズや電圧変動を低減することができる。
実施の形態1のプリンタの構成の説明図である。 帯電ローラに電圧を印加する電源装置のブロック図である。 電源装置の直流高圧電源のブロック図である。 電源装置の直流高圧電源の回路図である。 圧電トランスの周波数特性の説明図である。 直流高圧電源の負荷の等価回路の説明図である。 プリンタの動作制御のフローチャートである。 駆動周波数設定制御のフローチャートである。 駆動周波数ごとの検出電圧のサンプリングの説明図である。 画像形成中の動的負荷変動に伴う直流電圧の変動の説明図であり、(a)は負荷変動、(b)は比較例における出力電圧の変動、(c)は実施の形態1における出力電圧の変動である。
以下、添付図面を参照して、本発明の実施の形態を詳しく説明する。
<実施の形態1>
実施の形態1では、電子写真方式の画像形成装置において像担持体を帯電させる帯電ローラに直流電圧を出力する電源装置について説明する。
図1は実施の形態1のプリンタの構成の説明図である。図1に示すように、画像形成装置の一例であるプリンタ100は、装置本体100Aを備え、装置本体100Aにおいて電子写真方式の画像形成を実行する。装置本体100Aには、下側(シート搬送方向の上流側)から上側(シート搬送方向の下流側)に向かってシート給送部10、画像形成部20、定着装置30、シート排出部40が設けられている。
シート給送部10は、カセット11又は手差しトレイ16に積載されたシートPを画像形成部20へ給送する。シート検知センサS1は、カセット11にシートPが収納されているか否かを検知する。ピックアップローラ12は、カセット11に収納されたシートPを分離部13へ送出する。分離部13は、正転ローラにより最上位のシートPを給送しつつ反転ローラにより重送されたシートを逆送してシートPを1枚に分離する。給送ローラ14は、分離部13が給送パスPS1に送り出したシートPをレジストローラ15へ搬送する。レジ前センサS2は、シートPの先端がレジストローラ15のニップに到達するタイミングを検知する。レジストローラ15は、回転を停止したニップにシートPの先端を突き当ててシートPの斜行を矯正する。レジストローラ15は、シートPを、所定のタイミングで画像形成部20に搬送する。
手差しトレイ16からシートPを給送する場合、供給ローラ17および分離パッド18によってシートPを1枚に分離して装置本体100A内に引き込む。1枚に分離されたシートPは、供給ローラ19から給送ローラ14を経て、レジストローラ15へ搬送される。
画像形成部20は、像担持体の一例である感光ドラム21を有し、感光ドラム21に現像剤像を形成してシートPに転写する。現像剤像を転写されたシートPは、定着装置30へ搬送される。
定着装置30は、加熱ローラ方式であって、内部に配置されたハロゲンランプ等の熱源により周面が所定温度に加熱された定着ローラ31と、定着ローラ31に対して所定の圧力で圧接する加圧ローラ32と、により定着ニップ部N2を形成する。定着装置30は、シートPを定着ニップ部N2で加熱及び加圧することにより、現像剤像を溶融させてシートP上に画像を定着させる。定着センサS3は、シートPの先端が定着ニップ部N2を抜けたことを検知する。画像が定着されたシートPは、シート排出部40へ搬送され、排出ローラ41によって排出トレイ42へ排出される。
なお、定着装置30は、加熱ローラ方式の替わりに、いわゆるオンデマンド定着方式を用いてもよい。オンデマンド定着方式は、セラミックヒータ等の熱源と加圧ローラとの間に無端ベルトを挟み込んで定着ニップ部を形成する。
画像形成部20、定着装置30の右側には、両面印刷に対応するためのシート再給送部50が設けられている。シートPの両面に画像を形成する場合、1面目に画像形成されたシートPの先端が定着センサS3を抜けた後、シートPの後端が排出ローラ41を抜ける前に排出ローラ41を停止させる。その後、排出ローラ41を逆回転させることで、シートPを反転させてシート再給送部50へ搬送する。再給送ローラ51、52は、破線で示す再給送パスPS2へシートPを搬送し、再給送ローラ53によってシートPをレジストローラ15へ搬送する。レジストローラ15は、シートPの斜行を修正して転写ニップ部N1へ搬送する。転写ニップ部N1を通過する過程でシートPの2面目にも現像剤像が現像され、1面目と同様に定着ニップ部N2を通過することでシートPに現像剤像が定着される。両面に画像形成されたシートPは、排出ローラ41によって排出トレイ42へ排出される。
次に、画像形成部20について詳細に説明する。画像形成部20は、感光ドラム21の周囲に配置された、帯電手段の一例である帯電ローラ22、露光手段の一例である露光装置23、現像手段の一例である現像装置24、転写手段の一例である転写ローラ25、及びドラムクリーニング装置27を有する。感光ドラム21は、金属製円筒の周面に感光層を形成され、露光により表面の帯電電荷を放電する性質を有する。帯電ローラ22は、帯電電圧を印加されて感光ドラム21を帯電させる。露光装置23は、感光ドラム21を露光する。露光装置23は、感光ドラム21の周面を露光して画像の静電潜像を形成する。露光装置23は、不図示の画像読取装置によって読取られた画像原稿の画像データや外部から送信された画像形成ジョブの画像データに基づいて出力するレーザビームを制御する。
現像装置24は、現像ローラ24aに現像剤を担持して感光ドラム21との対向部へ搬送する。直流電圧に交流電圧を重畳した現像電圧を現像ローラ24aに印加することにより、感光ドラム21の静電潜像が現像剤像に現像される。現像剤像は、感光ドラム21の回転に伴って転写ニップ部N1へ搬送される。
レジストローラ15は、現像剤像にタイミングを合わせて転写ニップ部N1へシートPを給送する。転写ローラ25は、現像剤の帯電極性の反対極性の電圧を印加されて、感光ドラム21の現像剤像を、転写ニップ部N1を通過するシートPに転写する。ドラムクリーニング装置27は、転写ニップ部N1を通過した感光ドラム21に付着した残留トナーを回収する。
図2は、帯電ローラ22に電圧を印加する電源装置200のブロック図である。図2に示すように、帯電ローラ22は、感光ドラム21の周面に当接して従動回転する。制御部500は、CPU501、ROM502及びRAM503を有し、ROM502に記録されたプログラム及びデータをRAM503に保持して、CPU501が必要な演算及び制御を行うことにより装置本体100Aの各ユニットを制御する。
電源装置200は、交流高圧電源300、直流高圧電源400、記憶部600及び制御部500を有する。制御部500は、PWM信号AC_PWM及びクロック信号AC_CLKを交流高圧電源300へ出力し、PWM信号DC_PWM及びクロック信号DC_CLKを直流高圧電源400へ出力する。
交流高圧電源300は、PWM信号AC_PWM及びクロック信号AC_CLKの入力を受け、PWM信号AC_PWM及びクロック信号AC_CLKに応じて、交流電圧である出力電圧Vacを生成し、出力電圧Vacを出力する。直流高圧電源400は、PWM信号DC_PWM及びクロック信号DC_CLKの入力を受け、PWM信号DC_PWM及びクロック信号DC_CLKに応じて、直流電圧である出力電圧Vdcを生成し、出力電圧Vdcを出力する。よって、電源装置200は、出力電圧Vacと出力電圧Vdcとを重畳した出力電圧210を帯電ローラ22に印加する。出力電圧Vdcの目標電圧レベルは、例えば−600[V]である。
制御部500は、PWM信号AC_PWMで交流高圧電源300が出力する出力電圧Vacの電圧レベルを調整し、クロック信号AC_CLKで交流高圧電源300が出力する出力電圧Vacの周波数を調整する。制御部500は、PWM信号DC_PWMで直流高圧電源400が出力する出力電圧Vdcの電圧レベルを調整し、クロック信号DC_CLKで直流高圧電源400の後述する圧電トランスの駆動周波数を調整する。
帯電ローラ22は、出力電圧Vacにより帯電ローラ22と感光ドラム21との間に放電を発生させて、感光ドラム21の周面を出力電圧Vdcに等しい均一な暗部電位VDに帯電させる。暗部電位VDは例えば−600[V]である。
露光装置23は、不図示の半導体レーザ素子で発生させたレーザビーム28を不図示の回転ミラーにより反射して感光ドラム21の周面を走査露光する。レーザビーム28は、画像情報に基づいて画像形成される画像の画素の濃度に応じて二値変調されている。レーザビーム28は、帯電ローラ22により均一な暗部電位VDに帯電された感光ドラム21の周面を露光して露光された部分の電位を明部電位VLに低下させて画像に応じた静電潜像を形成する。例えば、明部電位VL=−100〜−200[V]である。
現像ローラ24aは、負極性に帯電した現像剤を担持して回転する。現像電源700は、現像ローラ24aに交流電圧と直流電圧とを重畳した現像電圧VBを印加して感光ドラム21の周面の静電潜像へ現像剤を移転させる。例えば、直流電圧は−400[V]である。
これにより、−100〜−200[V]であって現像ローラ24aよりも相対的に正極性となっている感光ドラム21の露光領域に現像剤が付着する。−600[V]であって現像ローラ24aよりも相対的に負極性となっている感光ドラム21の未露光領域に現像剤が付着しない。
転写ローラ25は、感光ドラム21に当接して転写ニップ部N1を形成する。転写電源800は、転写ローラ25に正極性の転写電圧Vtを印加して感光ドラム21の静電潜像に付着していた現像剤像を、転写ニップ部N1で挟持搬送されるシートPへ移転させる。
帯電ローラ22の近傍には、環境センサ510が配置されている。本実施形態では、環境センサ510は、温度を検出する温度センサ511及び湿度を検出する湿度センサ512を有する。この環境センサ510により、装置本体100A内の環境(温度及び湿度)が検出され、その環境情報(温度情報及び湿度情報)である検出値が制御部500にて取得される。これにより、制御部500は、装置本体100Aの内部の環境(温度及び湿度)の変化を計測することができる。
図3は、電源装置200の直流高圧電源400のブロック図である。図4は、電源装置200の直流高圧電源400の回路図である。帯電、現像、転写等を含む電子写真方式の画像形成装置では、数百ボルトを超える電圧を生成する高圧の電源装置200が必要となる。感光ドラム21を帯電するため、帯電ローラ22には、高圧の直流電圧(DCバイアス)と交流電圧(ACバイアス)とが印加される。電源装置200に圧電トランス405を使用することで、電力効率が高まり、小型化、高密度実装化、省電力化等のメリットがある。
図3及び図4に示すように、直流高圧電源400は、ローパスフィルタ401、フィードバック手段の一例であるフィードバック部402、駆動手段の一例である駆動部404、圧電トランス405、整流部406、及び検出手段の一例である検出部407を有する。
圧電トランス405は、交流電圧である入力電圧V1を、交流電圧である出力電圧V2に変換して出力する。具体的に説明すると、圧電トランス405は、一次側405aと二次側405bとを有し、一次側405aに入力された入力電圧V1を昇圧して出力電圧V2として二次側405bから出力する。二次側405bには整流部406が接続されており、整流部406は、圧電トランス405が出力した出力電圧V2を整流及び平滑して直流電圧となる出力電圧Vdcを出力する。
ローパスフィルタ401は、制御部500から受けたPWM信号DC_PWMを平滑して、PWM信号DC_PWMのデューティ比に応じたアナログ電圧の制御電圧Vcontを出力する。
フィードバック部402は、分圧抵抗413,414,415と、オペアンプ408とを有する。分圧抵抗413,414,415は、整流部406が出力する出力電圧Vdcを分圧して帰還電圧VFBを生成する。オペアンプ408は、制御電圧Vcontと帰還電圧VFBとを比較してトランス入力信号Vinを生成する。即ちオペアンプ408は、帰還電圧VFBの電圧レベルが制御電圧Vcontの電圧レベルとなるようにトランス入力信号Vinの電圧レベルを変化させる。トランス入力信号Vinの電圧レベルの変化が駆動部404及び圧電トランス405を経由して出力電圧Vdcの電圧レベルに反映され、出力電圧Vdcの電圧レベルが目標電圧レベル(−600[V])に維持される。PWM信号DC_PWMは、目標電圧レベル(−600[V])に対応するデューティ比であり、PWM信号DC_PWMを平滑した制御電圧Vcontの電圧レベルは、目標電圧レベル(−600[V])に対応する電圧レベルである。
以上、フィードバック部402は、直流高圧電源400が出力する出力電圧Vdcと制御電圧Vcontとを比較してトランス入力信号Vinを生成し、生成したトランス入力信号Vinを駆動部404へ出力する。これにより、フィードバック部402は、圧電トランス405により生成される出力電圧V2の電圧レベル、即ち出力電圧Vdcの電圧レベルが、所定レベルである目標電圧レベル(−600[V])となるように、トランス入力信号Vinの電圧レベル、即ち入力電圧V1の電圧レベルを調整する。
駆動部404は、フィードバック部402が出力したトランス入力信号Vinと、制御部500が出力したクロック信号DC_CLKの入力を受ける。駆動部404は、トランス入力信号Vinの電圧レベルに応じた電圧振幅とクロック信号DC_CLKで指令された周波数となる交流電圧である入力電圧V1を生成して、圧電トランス405へ入力電圧V1を入力する。クロック信号DC_CLKは、例えば方形波状のパルス信号である。クロック信号DC_CLK(パルス信号)の繰り返し周波数(周期)が入力電圧V1の周波数となる。よって、駆動部404は、圧電トランス405を、トランス入力信号Vinの電圧レベルに応じた振幅及びクロック信号DC_CLKの繰り返し周波数に応じた駆動周波数fcの入力電圧V1で駆動する。制御部500は、クロック信号DC_CLKの繰り返し周波数(周期)を変更することにより、圧電トランス405の一次側405aに印加される交流電圧の周波数である駆動周波数fcを変更可能である。
駆動部404は、バイポーラ型のトランジスタ419と、LCフィルタ416と、FET403とを有する。トランジスタ419は、入力されたトランス入力信号Vinを電流増幅する。FET403は、クロック信号DC_CLKによりスイッチング動作する。クロック信号DC_CLKによるFET403のスイッチング動作、及びLCフィルタ416により、電流増幅されたトランス入力信号Vinが、正弦波の交流電圧である入力電圧V1に変換され、圧電トランス405の一次側405aへ印加される。
検出部407は、フィードバック部402から出力されるトランス入力信号Vinの電圧レベルを検出し、記憶部600へ出力する。トランス入力信号Vinの電圧レベルは、圧電トランス405の入力電圧V1の電圧レベル(電圧振幅)に相当するので、検出部407は、圧電トランス405の入力電圧V1の電圧レベルを検出していることと同じである。
検出部407の構成について具体的に説明すると、検出部407は、オペアンプで構成されたボルテージフォロア410と、分圧抵抗409とを有する。分圧抵抗409には、オペアンプ408から出力されたトランス入力信号Vinがボルテージフォロア410を介して入力される。分圧抵抗409は、入力されたトランス入力信号Vinを記憶部600に適した電圧に分圧して検出電圧Vdを生成し、検出電圧Vdを記憶部600へ出力する。即ち、検出部407は、入力電圧V1(トランス入力信号Vin)の電圧レベルに応じた検出値の一例である検出電圧Vdの値を、信号として記憶部600に出力する。
記憶部600は、制御部500のCPU501により読み出し可能に各種データを記憶する書き換え可能なストレージであり、CPU501の制御の下、検出電圧Vdの値(データ)を記憶することができる。
図5は、圧電トランス405の周波数特性の説明図である。図6は、直流高圧電源400の負荷の等価回路の説明図である。なお、図5におけるグラフの縦軸は、入力電圧V1の電圧振幅を一定として得られる出力電圧Vdcの絶対値|Vdc|を示している。圧電トランス405は、使用している圧電セラミックの寸法に応じた共振周波数を有する。圧電トランス405は、入力電圧V1の周波数、即ち駆動周波数fcを変化させると入出力の電圧比が変化する。したがって、共振周波数の近傍に駆動周波数fcを設定した場合には、一次側405aから二次側405bへ伝達される電力の効率、即ち電力効率が高くなる。
圧電トランス405の一次側405aに印加する入力電圧V1の振幅を一定にして駆動周波数fcを変化させ、駆動周波数fcが圧電トランス405の共振周波数に一致した場合、二次側405bから出力される出力電圧V2の振幅、即ち出力電圧Vdcの絶対値|Vdc|が最大となる。
図6に示すように、直流高圧電源400は、帯電ローラ22に出力電圧Vdcを印加して感光ドラム21の表面電位をVdcに維持する。このとき、直流高圧電源400の負荷は、電気的な等価回路として、抵抗成分Rdと容量成分Cdの並列回路として一般的に表すことができる。抵抗成分Rdは、帯電ローラ22と感光ドラム21に出力電圧Vdcを印加したときに直流高圧電源400から見た見かけの抵抗値である。
圧電トランス405の周波数特性は、圧電トランス405の製品のばらつきや帯電ローラ22の抵抗変化等に応じて変動する。プリンタ100においては、画像形成ジョブにおける画像形成シーケンスの実行中において、例えば1秒未満の短い時間に対して負荷が変動する「動的な負荷変動」が存在する。感光ドラム21の周面における露光量の違いが、帯電ローラ22を通じて感光ドラム21へ流れ込む電流を変化させて抵抗成分Rdの変動、すなわち負荷変動を引き起こす。
表1は、画像形成シーケンスの実行中の動的な負荷変動の測定値の一例である。表1は、画像形成シーケンスの実行中に、出力電圧Vdcを−600[V]に固定した状態で、露光装置23の出力、すなわちレーザビームの強度(露光量)を最大〜最小の範囲で振ったときの抵抗成分Rdの測定結果である。
Figure 2018207675
表1に示すように、感光ドラム21表面の露光量が異なると、抵抗成分Rdが変化して、直流高圧電源400の負荷が変動し、圧電トランス405の周波数特性が変動する。実験に基づき、ここでは、抵抗成分Rd=20[MΩ]を画像形成シーケンス中の最小負荷値とし、抵抗成分Rd=8[MΩ]を画像形成シーケンス中の最大負荷値としている。最小負荷値は、画像濃度0、面積階調0、すなわち露光装置23がレーザビームを出力しない状態である。
即ち、現像剤を付着させない白地画像の静電潜像が帯電ローラ22を通過するときの抵抗成分Rdが20[MΩ]である。これに対して、露光装置23の出力最大で形成した現像剤を100%付着させる黒地画像(ベタ画像)の静電潜像が帯電ローラ22を通過するときの抵抗成分Rdが8[MΩ]である。これに呼応して、図5に示すように、圧電トランス405の周波数特性は、白地画像の静電潜像が帯電ローラ22を通過するときと、ベタ画像の静電潜像が帯電ローラ22を通過するときとで異なる。
抵抗成分Rdが低下すると、直流高圧電源400へ流れ込む電流が増えて、図5に示すように、圧電トランス405の共振周波数が低周波数側へシフトする。帯電ローラ22と感光ドラム21の抵抗成分Rdが20[MΩ]の時、共振周波数はfa0[Hz]である。帯電ローラ22と感光ドラム21の抵抗成分Rdが8[MΩ]の時、共振周波数はfa0[Hz]よりも低いfb0[Hz]である。
このため、仮に、抵抗成分Rdが20[MΩ]のときの共振周波数fa0に駆動周波数fcを設定して画像形成を行うと、画像形成中の「動的な負荷変動」によって圧電トランス405の出力変動が発生する。圧電トランス405の出力変動は、直ちに直流高圧電源400の出力電圧Vdcの変動となって、副走査方向の画像濃度のばらつき、すなわち出力画像品質の低下を招く。
抵抗成分Rdは、感光ドラム21の帯電ローラ22が接触している領域における露光装置23の露光を受けた面積の大小によって変動する。そして、圧電トランス405を用いた直流高圧電源400の動作において抵抗成分Rdの変動が影響を及ぼす。露光装置23が感光ドラム21を露光すると、感光ドラム21の表面電位が低下する。このため、露光装置23による露光を受けた領域では、露光装置23による露光を受けなかった領域に比較して帯電に必要な電流が増える。露光装置23による露光を受けた領域では、出力電圧Vdcが印加された帯電ローラ22から感光ドラム21へ流れ込む電流が増えて抵抗成分Rdが低下する。
このため、帯電ローラ22が接触している領域が画像の白地部分であれば抵抗成分Rdは高くなる。そして、帯電ローラ22が接触している領域の画像の平均濃度が高いほど出力電圧Vdcが印加された帯電ローラ22から感光ドラム21へ流れ込む電流が増えて、見かけの抵抗成分Rdは低くなる。帯電ローラ22が接触している領域が黒字画像の静電潜像であれば抵抗成分Rdが最も低くなる。画像のハーフトーンを面積階調で表現する二値露光の場合、帯電ローラ22が接触している領域の画像の平均濃度が高いほど露光装置23による露光を受けた面積の割合が高くなって、抵抗成分Rdは高くなる。
共振周波数fa0で圧電トランス405を使用した場合、画像形成シーケンスの実行前は、露光がされないので、抵抗成分Rd=20[MΩ]であり、共振周波数fa0で圧電トランス405を駆動すると、出力電圧Vdc=−600[V]が出力される。画像形成シーケンスの実行中は、画像に応じて露光がされるので、画像の有無及び濃度に応じて抵抗成分Rdは、白地画像の最大20[MΩ]から黒地画像の最小8[MΩ]まで変動する可能性がある。
画像形成シーケンスの実行中の動的な負荷変動に対して、その都度、制御部500がクロック信号DC_CLKの周波数を変更して抵抗成分Rdに応じた共振周波数に合わせ直すことは困難である。画像形成シーケンスの実行中の動的な負荷変動のスピードに対して、帰還電圧VFBを介してオペアンプ408が反応できるスピードには限りがあるため、画像濃度の急変に起因する出力電圧Vdcの変動を抑制することも困難である。
そこで、本実施の形態では、圧電トランス405を駆動する入力電圧V1の周波数(駆動周波数)fcを、図5に示すように、共振周波数fb0よりも低い周波数に設定する。以下、圧電トランス405に印加する入力電圧V1の周波数である駆動周波数fcを設定する設定方法について具体的に説明する。
図7はプリンタの動作制御のフローチャートである。設定手段の一例である制御部500のCPU501は、電源投入から画像形成ジョブ終了までのプリンタ100の動作を制御する。CPU501は、プリンタ100の装置本体100Aにおいて電源が投入されると(S100)、感光ドラム21の回転駆動を開始する(S101)。CPU501は、後述する駆動周波数設定制御のシーケンスを実行して、圧電トランス405の駆動周波数fcを設定する(S102)。CPU501は、設定した駆動周波数fcの条件で前回転シーケンスを行って、帯電電圧、転写電圧、露光強度等のプロセス条件を設定する(S103)。
CPU501は、プロセス条件の設定後、感光ドラム21の回転駆動を停止して(S104)、画像形成ジョブを受信するまで待機(スタンバイ)する(S105)。CPU501は、画像形成ジョブを受信すると(S106のYes)、感光ドラム21の回転駆動を開始する(S107)。
CPU501は、画像形成する動作である画像形成シーケンス(S111)に先立って、駆動周波数fcの変更(再設定)が必要か否かを判断する(S108)。駆動周波数fcの変更が必要な場合とは、温度及び湿度の環境変化が許容範囲を超える場合である。具体的に説明すると、駆動周波数fcの変更が必要な場合とは、以前に駆動周波数fcを設定した時を基準として、環境の変化が許容範囲を超える場合である。環境の変化は、環境センサ510を用いて検出される。本実施の形態では、環境センサ510が温度センサ511及び湿度センサ512を有する。したがって、駆動周波数fcの変更が必要な場合とは、以前に駆動周波数fcを設定した時を基準とする基準温度に対し、温度センサ511により検出された温度の変化が許容範囲を超えた場合、又は以前に駆動周波数fcを設定した時を基準とする基準湿度に対し、湿度センサ512により検出された湿度の変化が許容範囲を超えた場合である。温度に対する許容範囲、及び湿度に対する許容範囲は、予め記憶部600等に記憶(設定)されている。
CPU501は、駆動周波数fcの変更が必要な場合(S108のYes)、後述する駆動周波数設定制御のシーケンスを実行して、圧電トランス405の駆動周波数fcを設定(変更)する(S109)。CPU501は、駆動周波数fcの変更が不必要な場合(S108のNo)、又はステップS109にて駆動周波数fcを設定した後、前回転シーケンスを行って、帯電電圧、転写電圧、露光強度等のプロセス条件を設定する(S110)。
次に、CPU501は、画像形成シーケンスを実行する(S111)。CPU501は、画像形成シーケンスが終了すると、後回転シーケンスを実行して(S112)、感光ドラム21の回転駆動を停止し(S113)、画像形成ジョブを終了する。以上、装置本体100Aの電源投入時、又は画像形成シーケンスに先立って、圧電トランス405を駆動する入力電圧V1の駆動周波数fcを設定(即ち記憶部600に記憶)する。
図8は、制御部500のCPU501による駆動周波数設定制御のシーケンスを示すフローチャートである。図9は、駆動周波数ごとの検出電圧Vdのサンプリングの説明図である。図8に示すフローチャートに従い、制御部500のCPU501は、直流高圧電源400を制御して駆動周波数fcの設定方法の一例である駆動周波数設定制御を実行する。
CPU501は、交流高圧電源300により交流電圧である出力電圧Vacと直流高圧電源400により出力電圧Vdc=−600[V]との出力を開始させ(S201)、続いて転写ローラ25に所定の転写電圧を印加する(S202)。
CPU501は、検出電圧Vdの値が、予め設定された閾値である電圧閾値Vth以下であって、圧電トランス405の共振周波数fb0よりも低い周波数となるように、駆動周波数fcを設定する(S203〜S209)。
具体的に説明すると、CPU501は、露光装置23の出力を所定の露光量、実施の形態1では最大露光量に設定して、露光を開始する(S203)。なお、実際に画像形成する際の露光装置23の出力は、最大濃度階調で定着画像が所定の反射濃度を実現できる程度に、最大出力よりも低い値に調整されるが、発生し得る最大の負荷変動を想定すべく、最大露光量(レーザビームの最大強度)とする。
露光装置23の出力を最大に設定したとき、感光ドラム21の電位低下が最大となり、帯電ローラ22を通じて感光ドラム21へ流れ込む電流が増えて抵抗成分Rdが最小となる。CPU501は、共振周波数fb0よりも低い周波数fから周波数が高くなる方向に周波数を掃引する動作を開始し(S204)、検出電圧Vdの電圧レベルを示す値をサンプリングする(S205:検出工程)。このサンプリングは、所定の周波数間隔で行われ、圧電トランス405に印加する入力電圧V1の周波数をf,f,・・・と順次段階的に高めて行きながら、検出電圧Vdの値をサンプリングする。このとき周波数fに対応するサンプリング値をDとする(i=1,2,・・・)。周波数掃引を開始する周波数fは、予め設定された所定周波数であり、例えば記憶部600に記憶されている。
CPU501は、検出電圧Vdのサンプリング値Dを周波数fと対応付けて記憶部600に記憶させる(S206)。例えばサンプリングを開始した時には、周波数はfであり、記憶部600には、このときにサンプリングされたサンプリング値Dと周波数fとが対応付けて記憶されることになる。なお、クロック信号DC_CLKの繰り返し周波数と、入力電圧V1の周波数は同じであるため、記憶部600にサンプリング値とクロック信号DC_CLKの繰り返し周波数とを対応付けて記憶させるのと同じである。
CPU501は、ステップS205でサンプリングした検出電圧Vdのサンプリング値Dが電圧閾値Vth以下であるか否かを判断する(S207)。
ここで、電圧閾値Vthは、出力電圧Vdc=−600[V]を得るためにトランス入力信号Vinの電圧が飽和しないように余裕を持たせた値であって、負荷が最大値と最小値との間で変動しても、トランス入力信号Vin(検出電圧Vd)、即ち入力電圧V1の変動が許容範囲となる値に設定されている。電圧閾値Vthは、予め記憶部600に記憶させている。オペアンプ408が出力するトランス入力信号Vinは、オペアンプ408を動作させる電源電圧よりも高い電圧とはならないため、飽和することがある。トランス入力信号Vinが飽和するときの検出電圧Vdは、例えば3.0[V]である。したがって、本実施の形態では、電圧閾値Vthを、トランス入力信号Vinが飽和するときの検出電圧Vd(3.0[V])よりも低い2.5[V]としている。そして、サンプリング値が電圧閾値Vthの近傍であれば、負荷が変動しても入力電圧V1の電圧レベルの変動は小さい。
図9の例では、サンプリング値D,D,Dの場合、サンプリング値D,D,Dが電圧閾値Vthを上回るため(S207:No)、次の周波数に切り替えて、ステップS205,S206を再度実行する。このように、サンプリングを開始する周波数fを起点にして周波数をf,f,・・・と段階的に引き上げて、サンプリング値を繰り返し取得する。即ち、周波数の掃引方向は、周波数fから順次高くなる方向である。具体的にはCPU501は、ローパスフィルタ401に出力するPWM信号DC_PWMのデューティ比を、出力電圧Vdcの目標が−600[V]となるように一定とし、FET403に出力するクロック信号DC_CLKの周波数を掃引して、圧電トランス405を周波数f,f,・・・の入力電圧V1で順次駆動する。
CPU501は、ステップS205にて取得した検出電圧Vdのサンプリング値Dが電圧閾値Vthを上回ったと判断した場合(S207:Yes)、入力電圧V1の周波数の掃引を終了して、サンプリングを終了する(S208)。図9の例では、ステップS205で取得したときのサンプリング値Dが電圧閾値Vth以下であるため、次のサンプリングは行わずに、周波数掃引を終了する。そして、CPU501は、電圧閾値Vth以下となったときのサンプリング値Dに対応する周波数fを、駆動周波数fcに設定する(S209:設定工程)。この時点で駆動周波数設定制御のシーケンスを終了させることができるので、駆動周波数fcの設定に要する処理時間を短縮することができる。
以上のステップS204〜S209により、CPU501は、入力電圧V1の周波数を掃引して検出電圧Vdの値をサンプリングし、サンプリングしたサンプリング値D,D,D,Dのうち、電圧閾値Vth以下であって、電圧閾値Vthに最も近いサンプリング値Dに対応する周波数fを、駆動周波数fcに設定する。
なお、周波数の掃引方向は、共振周波数fb0に近い周波数から低くなる方向であってもよい。この場合、電圧閾値Vth以上となった時点で掃引終了し、電圧閾値Vth以下であって、電圧閾値Vthに最も近いサンプリング値に対応する周波数を、駆動周波数fcに設定すればよい。また、本実施の形態では、とり込んだサンプリング値を逐次閾値判定する場合について説明したが、これに限定するものではなく、予め設定した下限の周波数と上限の周波数との間で複数のサンプリング値を取得した後に閾値判定するようにしてもよい。
CPU501は、露光装置23の出力を停止させ(S210)、プリンタ100の全出力(出力電圧Vac、出力電圧Vdc及び転写電圧の出力)を停止させ(S211)、駆動周波数設定制御のシーケンスを終了する。
以上、実施の形態1では、装置本体100Aの電源投入時、又は画像形成ジョブを受信して画像形成シーケンスを実行するに先立ち、周波数掃引を行って、共振周波数fb0よりも低い周波数を駆動周波数fcに設定する。これにより、実際の画像形成シーケンスの実行中に動的な負荷変動が生じても、圧電トランス405における電力効率はほとんど変化せず、出力電圧V2、即ち出力電圧Vdcが安定し、出力電圧Vdcに生じるノイズや電圧変動を低減することができる。これにより、画像品質の低下が目立たないレベルに収まり、画像形成シーケンス中の動的負荷変動に伴う出力画像の品質低下を回避できる。
図10は画像形成中の動的な負荷変動に伴う直流電圧の変動の説明図である。図10中、(a)は負荷変動、(b)は比較例における出力電圧Vdcの変動、(c)は実施の形態1における出力電圧Vdcの変動である。なお、比較例では、駆動周波数fcを共振周波数fa0に設定して圧電トランス405を駆動している。
画像形成シーケンスの実行中に、白地画像と黒地画像の境界が存在して抵抗成分Rdが20[MΩ]から急に8[MΩ]に低下すると、圧電トランス405の共振周波数が低周波側にシフトして、圧電トランス405の出力電圧が急低下し、出力電圧Vdcの絶対値も低下する。このとき、オペアンプ408は、帰還電圧VFBの低下に応答してトランス入力信号Vinの電圧を上昇させることにより出力電圧Vdc=−600[V]を維持しようとする。そして、オペアンプ408の動作によって、定常的には出力電圧Vdc=−600[V]は維持される。しかし、比較例の場合、20[MΩ]から8[MΩ]へ負荷変動した瞬間は、フィードバック部402、駆動部404、圧電トランス405の応答時間による制御の遅れが発生して、図10(b)に示すように出力電圧Vdcの変動が生じ、出力電圧Vdcにピークツウピークで28.5[V]の変動が生じていた。
画像形成シーケンスの実行中に、黒地画像と白地画像の境界が存在して抵抗成分Rdが8[MΩ]から20[MΩ]に上昇すると圧電トランス405の共振周波数が高周波側にシフトして、圧電トランス405の出力電圧が急上昇し、出力電圧Vdcの絶対値も上昇する。このとき、オペアンプ408は、帰還電圧VFBの上昇に応答してトランス入力信号Vinの電圧を低下させることにより出力電圧Vdc=−600[V]を維持しようとする。そして、オペアンプ408の動作によって、定常的には出力電圧Vdc=−600[V]は維持される。しかし、比較例の場合、8[MΩ]から20[MΩ]へ負荷変動した瞬間は、フィードバック部402、駆動部404、圧電トランス405の応答時間による制御の遅れが発生して、図10(b)に示すように出力電圧Vdcの変動が生じ、出力電圧Vdcにピークツウピークで28.5[V]の変動が生じていた。
出力電圧Vdcが閾値、例えば20[V]を超えて変動した場合には、出力画像において主走査方向の画像スジとなって出力画像の品質低下を引き起こすおそれがある。
これに対し、実施の形態1では、画像形成中(画像形成シーケンスの実行中)に「動的な負荷変動」が発生しても、直流高圧電源400の出力電圧Vdcの変動が許容範囲に収まるように、画像形成シーケンスを実行する前に、圧電トランス405を駆動する入力電圧V1の駆動周波数fcを設定する。図5に示すように、周波数特性が低周波側では負荷に寄らず、ほぼ重なっていることに着目し、圧電トランス405の最大負荷値の共振周波数fb0よりも低い周波数に駆動周波数fcを設定している。低周波側にシフトさせた駆動周波数fcを使用することで、負荷変動が生じても、出力電圧Vdcの大幅な増加又は減少は起こらない。図10(c)に示すように、実施の形態1では、抵抗成分Rdが20[MΩ]から8[MΩ]に変動した瞬間、または、8[MΩ]から20[MΩ]に負荷が変動した瞬間、出力電圧Vdcの変動はピークツウピークで2.9[V]に抑制された。
これにより、駆動周波数がfa0の場合の変動幅Vppが28.5[V]に対して、2.9[V]と小さくなり、抵抗成分Rdの変動に対して、出力電圧Vdcの変動を画像不良が発生しない許容レベルまで抑えることができる。このため、出力画像の品質低下が発生するのを防止することができる。
<実施の形態2>
実施の形態1では、露光装置23がレーザビームのデューティ比を画像濃度に応じて変化させる二値変調によりハーフトーン画像を露光した場合について説明した。実施の形態2では、露光装置23がレーザビームの強度を画像濃度に応じて変化させる振幅変調によりハーフトーン画像を露光する場合について説明する。
振幅変調では、露光装置23が出力するレーザビームの出力強度が高いほど、感光ドラム21の表面電位の低下が大きくなって露光領域に付着する現像剤の量が増える。そして、露光装置23が出力するレーザビームの出力強度が高いほど、感光ドラム21の表面電位の低下が大きくなって抵抗成分Rdが小さくなり、帯電ローラ22を通じて感光ドラム21から流れ込む帯電に必要な電流が増える。このため、帯電ローラ22が接触している領域が白地画像であれば抵抗成分Rdは高くなり、帯電ローラ22が接触している領域が黒地画像であれば抵抗成分Rdが低くなる。
そこで、実施の形態2でも、図8に示すフローチャートに従い、抵抗成分Rdが最小時における検出電圧Vdのサンプリングを実行する(S205)。そして、図9に示すように、実施の形態1と同様、サンプリングを開始したサンプリング値Dから閾値判定を行い、サンプリング値Dが電圧閾値Vth以下となったときの周波数fを駆動周波数fcとして設定する。
<実施の形態3>
実施の形態1、2では、帯電ローラ22に印加する出力電圧Vdcの電源装置における実施の形態を説明した。これに対して、実施の形態3では、転写ローラ25に印加する直流電圧である転写電圧Vtの電源装置の実施の形態を説明する。
図2に示すように、電源装置200の転写電源800は、転写ローラ25に直流電圧の転写電圧Vtを印加して感光ドラム21の現像剤像を転写ニップ部N1のシートPに移転させる。
転写電源800が図2に示す圧電トランス405を用いた直流高圧電源400と同様の構成である場合、転写ローラ25が感光ドラム21の回転方向に直交する白地画像と黒地画像の境界を通過する際に転写電源800の負荷変動が発生する。そして、転写電源800の負荷変動は、実施の形態1と同様に、転写電源800の出力電圧の変動を発生する。
そこで、実施の形態3では、転写電源800において、抵抗成分Rdが最小時における検出電圧Vdのサンプリングを実行する(S205)。そして、図9に示すように、実施の形態1と同様、サンプリングを開始したサンプリング値Dから閾値判定を行い、サンプリング値Dが電圧閾値Vth以下となったときの周波数fを駆動周波数fcとして設定する。
<実施の形態4>
実施の形態1、2、3では、直流電圧の電源装置における実施の形態を説明した。これに対して、実施の形態4では、交流電圧の電源装置における実施の形態を説明する。
図2に示すように、電源装置200の交流高圧電源300は、制御部500から入力されるPWM信号AC_PWM及びクロック信号AC_CLKに応じて交流電圧である出力電圧Vacを出力する。
交流高圧電源300は、図3に示す直流高圧電源400において整流部406が省略され、交流電圧を図2に示す帯電ローラ22へそのまま出力する構成である。
この場合、帯電ローラ22が感光ドラム21の回転方向に直交する白地画像と黒地画像の境界を通過する際に交流高圧電源300の負荷変動が発生する。そして、交流高圧電源300の負荷変動は、実施の形態1と同様に、交流高圧電源300の出力電圧の変動を発生する。
そこで、実施の形態4では、交流高圧電源300において、抵抗成分Rdが最小時における検出電圧Vdのサンプリングを実行する(S205)。そして、図9に示すように、実施の形態1と同様、サンプリングを開始したサンプリング値Dから閾値判定を行い、サンプリング値Dが電圧閾値Vth以下となったときの周波数fを駆動周波数fcとして設定する。
<実施の形態5>
実施の形態1、2、3、4では露光装置23を制御して感光ドラム21の周面に抵抗成分Rdが8[MΩ]の負荷を形成した。これに対して、実施の形態5では、転写ローラ25及び転写電源800を用いて感光ドラム21の周面に負荷を形成する。
電源装置の一例である転写電源800は、転写ローラ25に直流電圧の出力電圧Vdcを出力する。転写電源800は、図3、図4に示される直流高圧電源400と同様に構成され、同様に制御される。転写手段の一例である転写ローラ25は、感光ドラム21に形成された現像剤像をシートに転写させる。そして、図6に示すように、転写ローラ25に印加されていた転写電圧の大小は、感光ドラム21の帯電ローラ22が接触している領域において抵抗成分Rdの変動を引き起こす。転写ローラ25に印加されていた転写電圧が大きいほど帯電に伴って帯電ローラ22へ流れ込む電流が増えて直流高圧電源400の負荷は大きくなる。
実施の形態5の設定方法では、転写電源800及び転写ローラ25により感光ドラム21に大きさが異なる8[MΩ]の抵抗成分Rdを形成する。転写電源800は、転写ローラ25に印加する電圧を500[V]とすることにより、感光ドラム21に直流高圧電源400に対する最大の負荷である8[MΩ]の抵抗成分Rdを形成する。
検出工程では、出力電圧Vdcを8[MΩ]の抵抗成分Rdに供給して圧電トランス405に印加する入力電圧の周波数を掃引し、検出電圧Vdをサンプリングする。そして、図9に示すように、実施の形態1と同様、サンプリングを開始したサンプリング値Dから閾値判定を行い、サンプリング値Dが電圧閾値Vth以下となったときの周波数fを駆動周波数fcとして設定する。
実施の形態1では、露光装置23で負荷を形成した場合について説明し、実施の形態5では転写ローラ25及び転写電源800を使用して負荷を形成した場合について説明した。しかし、負荷を形成する手段においては、露光装置23を最大出力とし、かつ転写ローラ25に最大電圧を印加することで、より大きな負荷を感光ドラム21に形成してもよい。
実施の形態5では、転写ローラ25に印加する出力電圧を、ある固定の出力としたが、それに限るものではない。出力電圧の大小は、形成される負荷の大小に影響するので、出力電圧を画像形成で使用する範囲で可変させて良い。例えば、抵抗成分Rdを最小にする場合、露光装置23の出力するレーザビームの強度を最大にすることに加えて、画像形成時に転写ローラ25に印加する電圧の最大出力を印加してもよい。
<その他の実施の形態>
本発明の電源装置は、実施の形態1乃至5で説明した具体的な構成及び制御には限定されない。実施の形態1乃至5における構成及び制御の一部又は全部を等価な構成に置き換えてもよい。
実施の形態1乃至5では、電子写真方式の画像形成装置の一例であるプリンタ100における実施の形態を説明したが、本発明の電源装置を搭載可能な装置は、電子写真方式の画像形成装置には限らない。動的負荷変動を伴う負荷に電力を供給する種々の装置において搭載可能である。
実施の形態1では、制御部500と記憶部600とは個別に構成されているが、それに限らない。制御部500に含まれる記憶部であるRAM503を用いて、図8の制御を行ってもよい。
実施の形態1では、図7のフローチャートのステップS108において、周囲の環境の変化による機内昇温に対して、駆動周波数設定制御のシーケンスを行うかどうかの判断をしたが、これに限定するものではない。環境に対する周波数の変化量が予めわかっていれば、駆動周波数設定制御のシーケンスを行わずに、補正値やテーブル等による駆動周波数の補正を行ってもよい。
実施の形態1では、最小負荷としての抵抗成分Rdの最大値を得る場合に露光装置23の制御を露光無し(レーザ素子を点灯しない)と定義したが、これに限定するものではない。画像形成時のレーザビーム使用範囲において、最小出力がレーザ素子の微弱な点灯である場合、その微弱な点灯レベルを最小値として使用してもよい。
実施の形態1では、帯電ローラ22に印加する出力電圧Vdcを出力する直流高圧電源400における制御を説明したがこれに限定するものではない。現像ローラ24aに印加する直流電圧及び交流電圧、転写ローラ25に印加する直流電圧等においても、圧電トランス405が使用されていれば動的負荷変動に伴うノイズや出力変動が発生する。このため、現像ローラ24aに電圧を供給する電源装置、転写ローラ25に電圧を供給する電源装置においても図7、図8に示す制御を同様に適用できる。
実施の形態1では、画像の静電潜像を形成する露光装置23を用いて感光ドラム21に負荷の急変化を形成した。しかし、露光装置23とは別に、負荷の急変化を形成するための専用の露光装置を設けてもよい。実施の形態5では画像の現像剤像をシートに転写する転写ローラ25及び転写電源800を用いて感光ドラム21に負荷の急変化を形成した。しかし、転写ローラ25及び転写電源800とは別に、負荷の急変化を形成するための専用の電圧印加装置を設けてもよい。
また、実施の形態1では、環境センサ510が温度センサ511と湿度センサ512とを有する場合について説明したが、温度センサ511及び湿度センサ512のうち、いずれか一方のセンサを省略してもよい。
21…感光ドラム(像担持体)、22…帯電ローラ(帯電手段)、23…露光装置(露光手段)、100…プリンタ(画像形成装置)、100A…装置本体、200…電源装置、400…直流高圧電源、402…フィードバック部(フィードバック手段)、405…圧電トランス、407…検出部(検出手段)、500…制御部(設定手段)

Claims (6)

  1. 入力電圧を出力電圧に変換する圧電トランスと、
    前記入力電圧の電圧レベルを検出する検出手段と、
    前記検出手段の検出値が予め設定された閾値以下であって、前記圧電トランスの共振周波数よりも低い周波数となるように、前記入力電圧の駆動周波数を設定する設定手段と、を備える、
    ことを特徴とする電源装置。
  2. 前記設定手段は、前記共振周波数よりも低い周波数から周波数が高くなる方向に前記入力電圧の駆動周波数を掃引し、前記検出値が前記閾値以下となったときの周波数を、前記入力電圧の駆動周波数に設定する、
    ことを特徴とする請求項1に記載の電源装置。
  3. 請求項1または2に記載の電源装置と、
    前記電源装置により電圧が印加される像担持体と、
    形成する画像に応じて前記像担持体を露光することで前記像担持体上に静電潜像を形成する露光手段と、を備え、
    前記露光手段は、前記設定手段の設定に際して前記像担持体を所定の露光量で露光する、
    ことを特徴とする画像形成装置。
  4. 前記設定手段は、装置本体の電源投入時に、前記入力電圧の駆動周波数を設定することを特徴とする請求項3に記載の画像形成装置。
  5. 前記設定手段は、装置本体の内部における環境の変化が予め設定された許容範囲を超えた場合に、前記入力電圧の駆動周波数を設定することを特徴とする請求項3又は4に記載の画像形成装置。
  6. 入力電圧を出力電圧に変換する圧電トランスに印加する前記入力電圧の駆動周波数を設定する設定方法であって、
    前記入力電圧の電圧レベルを検出する検出工程と、
    前記検出工程にて得られた検出値が予め設定された閾値以下であって、前記圧電トランスの共振周波数よりも低い周波数となるように、前記入力電圧の駆動周波数を設定する設定工程と、を備える、
    ことを特徴とする駆動周波数の設定方法。
JP2017110746A 2017-06-05 2017-06-05 電源装置、画像形成装置、及び駆動周波数の設定方法 Pending JP2018207675A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110746A JP2018207675A (ja) 2017-06-05 2017-06-05 電源装置、画像形成装置、及び駆動周波数の設定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110746A JP2018207675A (ja) 2017-06-05 2017-06-05 電源装置、画像形成装置、及び駆動周波数の設定方法

Publications (1)

Publication Number Publication Date
JP2018207675A true JP2018207675A (ja) 2018-12-27

Family

ID=64958422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110746A Pending JP2018207675A (ja) 2017-06-05 2017-06-05 電源装置、画像形成装置、及び駆動周波数の設定方法

Country Status (1)

Country Link
JP (1) JP2018207675A (ja)

Similar Documents

Publication Publication Date Title
JP5247908B2 (ja) 電源、制御回路、画像形成装置の電源
JP5623175B2 (ja) 高電圧発生装置並びに画像形成装置、高電圧発生装置の電圧制御方法
US10564588B2 (en) High-voltage power supply apparatus and image forming apparatus
US7945183B2 (en) Image forming device
JP2007043891A (ja) 電源装置と前記電源装置を用いる画像形成装置
US9417594B2 (en) Voltage generating apparatus and image forming apparatus including the same
JP2018207674A (ja) 電源装置、画像形成装置、及び駆動周波数の設定方法
JP2007072072A (ja) 画像形成装置
JP2018207675A (ja) 電源装置、画像形成装置、及び駆動周波数の設定方法
JP2007034092A (ja) 高圧電源装置およびそれを備えた画像形成装置
JP6151998B2 (ja) 電圧発生装置および画像形成装置
JP6671879B2 (ja) 高圧電源装置及び画像形成装置
JP6151997B2 (ja) 電圧発生装置および画像形成装置
US9042752B2 (en) Image forming apparatus
JP2008099372A (ja) 画像形成装置及び圧電トランス式高圧電源装置
US10516795B2 (en) Power supply apparatus having plurality of piezoelectric transformers
US20200192269A1 (en) Image forming apparatus
JP4981323B2 (ja) 画像形成装置の電源
JP5012846B2 (ja) 画像形成装置および帯電器用電源
JP4363333B2 (ja) 画像形成装置
JP7180437B2 (ja) 画像形成装置及び放電制御方法
JP6188336B2 (ja) 電源装置及び画像形成装置
JP6336180B2 (ja) 電圧発生装置および画像形成装置
JP2018077284A (ja) 画像形成装置、及びその画像形成方法
JP2006201351A (ja) 画像形成装置