JP2018194738A - 位置計測装置、リソグラフィ装置、および物品製造方法 - Google Patents

位置計測装置、リソグラフィ装置、および物品製造方法 Download PDF

Info

Publication number
JP2018194738A
JP2018194738A JP2017100072A JP2017100072A JP2018194738A JP 2018194738 A JP2018194738 A JP 2018194738A JP 2017100072 A JP2017100072 A JP 2017100072A JP 2017100072 A JP2017100072 A JP 2017100072A JP 2018194738 A JP2018194738 A JP 2018194738A
Authority
JP
Japan
Prior art keywords
luminance distribution
diffraction grating
luminance
substrate
bias component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017100072A
Other languages
English (en)
Inventor
深川 容三
Yozo Fukagawa
容三 深川
貴光 古巻
Takamitsu Komaki
貴光 古巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2017100072A priority Critical patent/JP2018194738A/ja
Publication of JP2018194738A publication Critical patent/JP2018194738A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】モアレ干渉縞を用いた位置計測において、背景輝度分布の偏りに対するロバスト性能の点で有利な技術を提供すること。【解決手段】位置計測装置は、第1方向に配列された格子パターンを含む第1回折格子と、該第1回折格子とは異なるピッチで第1方向に配列された格子パターンを含む第2回折格子とが重なることで生じるモアレ縞の輝度分布を取得する取得部と、取得部により取得された輝度分布に基づいて、第1回折格子と第2回折格子との相対位置を求める処理部とを有する。処理部は、取得部により取得された輝度分布から輝度の偏り成分を除去し、偏り成分が除去された輝度分布を表す関数列による周期解析を行い、該周期解析の結果に基づいて、偏り成分が除去された輝度分布の位相を求め、該位相に基づいて相対位置を求める。【選択図】 図1

Description

本発明は、位置計測装置、リソグラフィ装置、および物品製造方法に関する。
半導体露光装置のような精密機械では、高精度のアライメント計測を行う目的で、感度を高められるモアレ干渉縞計測法が利用される。
アライメント計測において、輝度を観測する対象であるマークの背景領域に偏りのある輝度分布が存在すると、離散フーリエ級数解析の結果に誤差を生じ、アライメント計測誤差が大きくなるという問題がある。特許文献1には、マスクに対するウエハ(基板)の傾斜が原因で生じている輝度の偏りを、物理的(光学的)な方法で補正する技術が開示されている。特許文献2では、計測ノイズの影響を低減するよう、ノイズの大きい箇所に応じた重み付け関数を設定して、格子の位相解析を行う技術が開示されている。
特開平01−184918号公報 特開2015−152535号公報
しかし、特許文献1の方法では、背景輝度分布を安定化させる光学要素を備える必要があり、コスト上不利となりうる。また、特許文献2の方法では、モアレ干渉縞のデータ自体を弱めてしまうため、計測感度が低下する問題がある。
本発明は、モアレ干渉縞を用いた位置計測において、背景輝度分布の偏りに対するロバスト性能の点で有利な技術を提供することを例示的目的とする。
本発明の一側面によれば、第1方向に配列された格子パターンを含む第1回折格子と、前記第1回折格子とは異なるピッチで前記第1方向に配列された格子パターンを含む第2回折格子とが重なることで生じるモアレ縞の輝度分布を取得する取得部と、前記取得部により取得された前記輝度分布に基づいて、前記第1回折格子と前記第2回折格子との相対位置を求める処理部とを有し、前記処理部は、前記取得部により取得された前記輝度分布から輝度の偏り成分を除去し、前記偏り成分が除去された前記輝度分布を表す関数列による周期解析を行い、前記周期解析の結果に基づいて、前記偏り成分が除去された前記輝度分布の位相を求め、前記位相に基づいて前記相対位置を求めることを特徴とする位置計測装置が提供される。
本発明によれば、モアレ干渉縞を用いた位置計測において、背景輝度分布の偏りに対するロバスト性能の点で有利な技術を提供することできる。
インプリント装置の構成例を示す図。 計測部の構成の一例を示す図。 モアレ干渉縞計測法を説明する図。 モアレ干渉縞の例を示す図。 モアレ干渉縞の輝度分布の例を示す図。 1周期の三角関数ベクトルと背景輝度が均一な輝度ベクトルの関係を説明する図。 1周期の三角関数ベクトルと背景輝度に偏りのある輝度ベクトルの関係を説明する図。 2周期の三角関数ベクトルと背景輝度が均一な輝度ベクトルの関係を説明する図。 2周期の三角関数ベクトルと背景輝度に偏りのある輝度ベクトルの関係を説明する図。 第1従来例による計測手順を示すフローチャート。 第2従来例による計測手順を示すフローチャート。 実施形態における計測手順を示すフローチャート。 実施形態における計測手順を示すフローチャート。 実施形態における物品製造方法を説明する図。
以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。本発明に係る位置検出装置は、インプリント装置や露光装置などのリソグラフィ装置における原版と基板の位置合わせ装置に適用されうるが、加工装置、検査装置、顕微鏡などの他の装置にも適用可能である。以下では、本発明に係る位置合わせ装置がインプリント装置に適用された例を説明する。
<第1実施形態>
まず、実施形態に係るインプリント装置の構成について説明する。図1は、本実施形態のインプリント装置1の構成例を示す図である。インプリント装置1は、基板上に供給されたインプリント材を型と接触させ、インプリント材に硬化用のエネルギーを与えることにより、型の凹凸パターンが転写された硬化物のパターンを基板上に形成する装置である。
インプリント材としては、硬化用のエネルギーが与えられることにより硬化する硬化性組成物(未硬化状態の樹脂と呼ぶこともある)が用いられる。硬化用のエネルギーとしては、電磁波、熱等が用いられうる。電磁波は、例えば、その波長が10nm以上1mm以下の範囲から選択される光、例えば、赤外線、可視光線、紫外線などでありうる。硬化性組成物は、光の照射により、あるいは、加熱により硬化する組成物でありうる。これらのうち、光の照射により硬化する光硬化性組成物は、少なくとも重合性化合物と光重合開始剤とを含有し、必要に応じて非重合性化合物または溶剤を更に含有してもよい。非重合性化合物は、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種である。インプリント材は、インプリント材供給装置により、液滴状、或いは複数の液滴が繋がってできた島状又は膜状となって基板上に配置されうる。インプリント材の粘度(25℃における粘度)は、例えば、1mPa・s以上100mPa・s以下でありうる。基板の材料としては、例えば、ガラス、セラミックス、金属、半導体、樹脂等が用いられうる。必要に応じて、基板の表面に、基板とは別の材料からなる部材が設けられてもよい。基板は、例えば、シリコン基板、化合物半導体基板、石英ガラスである。
なお、本実施形態のインプリント装置は、光硬化法を採用するものとする。また、図1においては、基板面に平行な面内に互いに直交するX軸およびY軸をとり、X軸とY軸とに垂直な方向にZ軸をとっている。インプリント装置1は、光を照射する硬化部2と、原版である型(モールド)と基板の位置合わせのための計測を行う計測部3と、型を保持する型保持部4と、基板を保持する基板ステージ5と、インプリント材を供給する供給部6と、制御部12とを備える。
硬化部2は、型7と基板8上のインプリント材とを接触させた状態で、型7及びインプリント材に対して紫外線を照射することでインプリント材を硬化させる。硬化部2は、紫外線を出す光源と、該光源から射出される紫外線を型7及びインプリント材に対して所定の形状で均一に照射するための複数の光学素子とを有しうる。例えば、硬化部2による光の照射領域(照射範囲)は、型7のパターン7aの表面積と同程度かわずかに大きい面積とすることができる。これは、照射領域を必要最小限とすることで、照射に伴う熱に起因して型7または基板8が膨張し、インプリント材のパターンに位置ズレや歪みが発生することを抑えるためである。加えて、基板8等で反射された紫外線が供給部6に到達して供給部6内に残留したインプリント材が硬化してしまうことで、供給部による後の動作に異常が生じることを防止するためでもある。光源としては、例えば、高圧水銀ランプ、各種エキシマランプ、エキシマレーザまたは発光ダイオードなどが採用可能である。なお、この光源は、被受光体であるインプリント材の特性に応じて適宜選択されるが、光源の種類、数または波長などにより限定されるものではない。
型7の基板8に対する面には、所定のパターン(例えば、回路パターン等のパターン7a)が3次元状に形成されている。なお、型7の材質は、紫外線を透過させることが可能な石英などである。
型保持部4は、真空吸着力や静電力により型7を引きつけて保持する原版保持部である。この型保持部4は、型7を吸着保持するチャックと、該チャックをZ軸方向に駆動する型駆動機構と、型7をX軸方向およびY軸方向に変形させてインプリント材のパターンの歪みを補正する倍率補正機構とを含みうる。型駆動機構は、基板8上に供給されたインプリント材に型7を接触させるために設けられている。なお、インプリント装置1における型7とインプリント材との接触および分離の各動作は、例えば、基板ステージ5(すなわち基板8)をZ方向に移動させることで実現してもよく、または、その両方を移動させてもよい。
基板ステージ5は、基板8を例えば真空吸着により保持し、かつ、XY平面内を移動可能とする基板保持部である。ここで、基板8は、例えば、単結晶シリコンからなる被処理体であり、この被処理面には、型7により成形されるインプリント材9が供給される。
基板8と型7の相対位置を合わせるための計測を行う計測部3(位置計測装置)は、型7または型保持部4に配置されたマーク10と、基板8または基板ステージ5に配置されたマーク11とを光学的に検出して、マーク間の相対位置を計測する。以下では、マーク10は型7に配置され、マーク11は基板に配置されているものとして説明する。計測部3は、型7又は基板8に配置されたマークの位置に合わせて、X軸方向およびY軸方向に駆動可能なように構成されている。また、計測部3は、マークの位置に焦点を合わせるためにZ軸方向にも駆動可能なように構成されている。
制御部12は、硬化部2、計測部3、型保持部4、基板ステージ5、および、供給部6と電気的に接続され、それぞれに制御指令を送信したり、それぞれから情報を取得したりする。例えば、制御部12は、計測部3で計測されたマーク間の相対位置の情報を取得し、その情報に基づいて基板ステージ5と型保持部4の型倍率補正機構とを含む駆動部の駆動を制御する。計測部3とマーク10および11については後で詳述する。
供給部6は、基板8上にインプリント材9を供給する。インプリント材9は、紫外線の照射により硬化する性質を有する光硬化性のインプリント材であり、半導体デバイスの種類などにより適宜選択されうる。なお、図1ではインプリント装置1の内部に供給部6があるが、供給部6をインプリント装置1の内部に設置せずにインプリント装置1の外部に設けてもよい。供給部6が外部に設けられた場合、供給部6により予めインプリント材が供給された基板8をインプリント装置1の内部に導入する構成となる。この構成によれば、インプリント装置1の内部でインプリント材を基板8上に供給する工程がなくなるため、インプリント装置1での処理の迅速化が可能となる。
次に、インプリント装置1によるインプリント処理について説明する。まず、不図示の基板搬送部により基板8を基板ステージ5上に搬送し、基板8を載置および固定させる。次に、基板ステージ5を供給部6によるインプリント材の供給位置へ移動させ、その後、供給部6は、基板8のインプリント対象であるショット領域にインプリント材9を供給する(供給工程)。次に、基板8のショット領域が型7の直下に位置するように基板ステージ5を移動させる。次に、型駆動機構を駆動させ、基板8上のインプリント材9に型7を接触させる(接触工程)。これによりインプリント材9は、型7に形成された凹凸パターン7aに沿って流動する。その後、型7及び基板8にそれぞれ配置されたマーク10及び11を計測部3によって検出し、基板ステージ5の駆動による型7のパターン面と基板8のショット領域との位置合わせ、及び、倍率補正機構による型7の倍率補正等を実施する。インプリント材9の凹凸パターン7aへの流動と、型7と基板8との位置合わせ及び型の倍率補正等が十分になされた状態とする。その状態で、硬化部2は、型7の背面(上面)から紫外線を照射し、型7を透過した紫外線によりインプリント材9を硬化させる(硬化工程)。このとき、計測部3は紫外線の光路を遮らないように位置に配置される。続いて、型駆動機構を再駆動させ、硬化したインプリント材9から型7を分離させる(分離工程)。以上の工程により、基板8上のインプリント材9に型7の凹凸パターン7aが転写される。
続いて、計測部3と、型7および基板8にそれぞれ配置された位置合わせ用のマーク10および11(アライメントマーク)の詳細を説明する。図2は、本実施形態の計測部3の構成の一例を示す図である。計測部3は、検出光学系21、照明光学系22(照明部)、処理部26、及び、制御部37を有する。照明光学系22は、光源部23からの光を、プリズム24などを用いて検出光学系21と同じ光軸上へ導き、マーク10および11を照明する。光源部23には例えばハロゲンランプやLED、半導体レーザ(LD)、高圧水銀ランプ、メタルハライドランプが用いられ、インプリント材を硬化させる紫外線を含まない可視光線や赤外線を照射するように構成されている。
制御部37は、光源部23の駆動を制御する。検出光学系21と照明光学系22は、それらを構成する光学部材の一部を共有するように構成されており、プリズム24は検出光学系21と照明光学系22の瞳面もしくはその近傍に配置されている。マーク10および11は、後述するように、回折格子を有する。検出光学系21は、照明光学系22によって照明されたマーク10と11からの回折光同士の干渉により発生するモアレ干渉縞(モアレ縞)を撮像素子25(撮像部)上に結像する。撮像素子25にはCCDやCMOSなどが用いられる。
処理部26は、撮像素子25で撮像された画像データ(輝度データ)を取得する取得部としても機能し、取得された画像データを処理する。処理部26は例えばCPUおよびメモリを含むコンピュータ装置でありうる。型7および基板8上のマークの回折光によってモアレ干渉縞が発生するため、型7および基板8の回折効率によって得られるモアレ干渉縞の光量が変わってくる。特に、回折効率は波長に対して周期的に変化するため、効率よくモアレ干渉縞を検出することができる波長とモアレ干渉縞の検出が困難な波長がある。ここで、モアレ干渉縞の検出が困難な波長の光は、撮像素子25で検出される計測信号に対してノイズとなりうる。処理部26は、例えば制御部12の一部であり、撮像素子25で撮像された画像の情報を取得し、その画像に基づいて、マーク10とマーク11の相対位置を計算によって求める。計測部3の制御部12は、求められた相対位置に基づいて位置合わせ部の制御を行い、少なくともマーク10とマーク11を含む領域の相対位置ずれが小さくなるように位置合わせを行う。これにより、基板のパターンと型のパターンとの重ね合わせを高精度に行うことができる。
プリズム24はその貼り合せ面において、照明光学系の瞳面の周辺部分の光を反射するための反射膜24aが構成されている。また、反射膜24aは検出光学系21の瞳の大きさあるいは検出NAを規定する開口絞りとしても働く。ここで、プリズム24は、貼り合せ面に半透膜を有するハーフプリズムや、あるいはプリズムに限らず表面に反射膜を成膜した板状の光学素子などであってもよい。なお、プリズム24の周辺にある反射膜24aの領域を透過部にして、プリズム24の中心部分を反射部とした構成、つまり、光源部23と撮像素子25の位置を入れ替えた構成としてもよい。
本実施形態において、型7に配置されたマーク10は、例えばX方向(第1方向)に配列された格子パターンを含む第1回折格子を有する。また、基板8に配置されたマーク11は、第1回折格子とは異なるピッチ(格子パターンが形成される周期)で第1方向に配列された格子パターンを含む第2回折格子を有する。
処理部26は、第1回折格子と第2回折格子とが重なることで生じるモアレ干渉縞の輝度分布を取得し、モアレ干渉縞計測法を用いて第1回折格子と第2回折格子(すなわち型7と基板8)との相対位置を求める。ここでまず、モアレ干渉縞計測法の問題点を詳しく説明しておく。モアレ干渉縞計測法では、例えば図3に示されるような、同じ太さの線が等間隔に並んだマークが用いられる。図3に示されるように、いま同じ長さの範囲に平行で等間隔に並んだN本、N−1本、N−2本、N−3本、N−4本のライン(格子パターン)でできた5種類のマーク301,302,303,304,305があるとする。このとき、N本のライン(格子パターン)で構成されたマーク301をN−1本のマーク302に重ねる。同様に、マーク301をN−2本のラインで構成されたマーク303に、マーク301をN−3本のラインで構成されたマーク304に、マーク301をN−4本のラインで構成されたマーク305に重ねる。そうすると、図4に示されるようなモアレ干渉縞ができる。このとき、干渉縞に現れる濃淡の繰り返し数は、干渉させた2つのマークの本数の差と等しくなる。そして、干渉縞濃淡の位相変化はマーク相対変位の感度を高める。感度は、モアレ干渉縞306ではN倍、モアレ干渉縞307ではN/2倍、モアレ干渉縞308ではN/3倍、モアレ干渉縞309ではN/4倍になる。
しかし、輝度を観測する領域に偏りのある輝度分布(背景輝度分布)が存在すると、感度の高いマークほど、離散フーリエ級数解析等の周期解析の結果に誤差を生じ、アライメント計測誤差が大きくなるという問題がある。モアレ干渉縞を利用して変位計測を行うときは、撮像素子25により得られた輝度データから輝度分布を得る。例えばモアレ干渉縞306は、図5の輝度分布510として取り込まれる。同様に、モアレ干渉縞307は輝度分布511として、モアレ干渉縞308は輝度分布512として、モアレ干渉縞309は輝度分布513として観測される。変位の計測は、輝度分布のデータを既定周期の三角関数でフィッティングさせ、最も良く一致するときの位相を求め、さらにそれを感度で除して変位を導く。
モアレ干渉縞による従来の変位計測方法では、背景の輝度が変化して全体的に明るくなっても暗くなっても、均一に変化している限り、フーリエ解析の結果に変化がないため、計測誤差を生じることはない。図6は、最も単純な離散フーリエ級数展開を示している。1周期の余弦波ベクトル614と背景輝度が一定の輝度ベクトル615の内積は零であり、1周期の正弦波ベクトル616と背景輝度が一定の輝度ベクトル615の内積も零である。つまり、輝度が均一であれば、明暗の差は計測に影響しない。
一方、図7に示す輝度に偏りのある輝度ベクトル617は、1周期の余弦波ベクトル614との内積は零であるが、1周期の正弦波ベクトル616との内積は零にならない。したがって、このように輝度に偏りがあると、計測誤差が生じてしまう。
このような現象は、2周期分の濃淡変化を持つモアレ干渉縞でも同様に現れる。図8も、最も単純な離散フーリエ級数展開を示しているが、2周期の余弦波ベクトル618と背景輝度が一定の輝度ベクトル615の内積は零であり、2周期の正弦波ベクトル619と背景輝度が一定の輝度ベクトル615の内積も零である。つまり、輝度が均一であれば、明暗の差は計測に影響しない。
一方、図9に示す輝度に偏りのある輝度ベクトル617は、2周期の余弦波ベクトル618との内積は零であるが、2周期の正弦波ベクトル619との内積は零にならない。したがって、このように輝度に偏りがあると、計測誤差が生じてしまう。ただし、計測範囲に現れる濃淡の周期が増えると、輝度の偏りが及ぼす影響は小さくなる。
以上に述べたように、従来のモアレ干渉縞による変位計測方法では、計測対象の位置や姿勢の変化によって背景輝度に偏りが生じると、計測誤差が大きくなるという問題がある。
このような問題に対して第1従来例においては、図10のフローチャートに示すように、予め物理的(光学的)な方法によって背景輝度の均一化を行う(S22)(例えば特開平01−184918号公報)。次に、S23で、モアレ干渉縞の輝度分布の計測を行い、その計測により得られたデータのフーリエ解析を行う(S24)。その後、S25で、輝度分布を占める主な周波数成分の位相の算出を行い、S26で、当該算出された位相に基づきマスクと基板の相対変位の算出を行う。
第2従来例においては、図11のフローチャートに示すように、モアレ干渉縞の輝度分布計測を行う(S23)。その後、重み関数によるデータ処理によって、背景輝度の安定しない特定箇所の輝度データを弱める(S27)(例えば特開2015−152535号公報)。次にS24で、その計測データのフーリエ解析を行う。その後、S25で、輝度分布を占める主な周波数成分の位相の算出を行い、S26で、算出された位相に基づきマスクと基板の相対変位の算出を行う。
しかし、上述したように、第1従来例では背景輝度分布を安定化させる光学要素を備える必要があり、コスト増を招く。また、第2従来例では、モアレ干渉縞のデータ自体を弱めてしまうため、計測感度が低下する問題が生じる。
そこで本実施形態では、計測対象の位置や姿勢の変化によって背景輝度に偏りが生じても、モアレ干渉画像から傾斜成分を除去する新たなモアレ干渉縞による変位計測方法を提案する。
本実施形態における具体的な計測手順を図12のフローチャートに示す。このフローチャートに従う計測手順は処理部26によって実行されうる。まずS23で、処理部26は、撮像素子25で撮像された画像データ(輝度データ)に基づき、モアレ干渉縞の輝度分布の計測または取得を行う。次に、S28で、処理部26は、当該輝度分布から輝度の偏り成分を除去する。次に、S29で、処理部26は、偏り成分が除去された輝度分布を表す関数列による周期解析を行う。例えば、フーリエ級数展開に用いる直交関数列から偏り成分を除去した直交関数列によって、S28で偏り成分が除去されたモアレ干渉縞の輝度分布の離散フーリエ変換を行う。かつ/あるいは、S29では、回帰分析の説明変数に用いる三角関数列から偏り成分を除去した三角関数列によって、S28で偏り成分が除去されたモアレ干渉縞の輝度分布の回帰分析を行ってもよい。その後、S25で、処理部26は、周期解析の結果に基づいて、輝度分布を占める主な周波数成分の位相を求める。そして、S26で、処理部26は、当該算出された位相に基づき、マスクと基板(すなわち第1回折格子と第2回折格子)の相対変位(相対位置)を求める。
以下、上記した各工程の具体例を示す。ここで、モアレ干渉縞の濃淡変化の方向をx方向とし、モアレ干渉縞の輝度データはx=−Lからx=Lまでの範囲で、等間隔にn個存在するとする。ここで、x方向におけるi番の輝度データxは、次式で表される。
Figure 2018194738
次に、図12のS23で、処理部26は、1周期分のモアレ干渉縞の輝度分布を計測または取得する。ここで、数式2の輝度ベクトルyが得られたとする。
Figure 2018194738
次に、図12のS28で、処理部26は、輝度分布からの輝度の偏り成分の除去を行う。具体的には、輝度ベクトルyから、偏り成分である1次関数成分を差し引くことで、処理済み輝度ベクトルy0iを求める。処理済み輝度ベクトルy0iは、次式で表される。
Figure 2018194738
この場合、輝度ベクトルは余弦波なので、数式2を数式3に代入して計算した処理済み輝度ベクトルは、結局のところ、元の輝度ベクトルと等しいままである。
Figure 2018194738
図12のS29では、初めに解析基準の1つである正弦波ベクトルzsiを数式5で定義する。
Figure 2018194738
数式5の正弦波ベクトルzsiから輝度の偏り成分である1次関数成分を差し引くことで、処理済み正弦波ベクトルzs0iを求める。処理済み正弦波ベクトルzs0iは、次式で表される。
Figure 2018194738
数式6に数式5を代入して計算すれば、数式7が得られる。
Figure 2018194738
ただし、数式7の係数aとbは数式8と数式9で定義される。
Figure 2018194738
Figure 2018194738
同様に、もう1つの解析基準である余弦波ベクトルzciを、数式10で定義する。
Figure 2018194738
数式10の余弦波ベクトルzciから偏り成分である1次関数成分を差し引くことで、処理済み余弦波ベクトルzc0iを求める。処理済み余弦波ベクトルzc0iは、次式で表される。
Figure 2018194738
この場合、余弦波ベクトルzciは余弦波なので、数式10を数式11に代入して計算した処理済み余弦波ベクトルzc0iは、結局のところ、元の余弦波ベクトルzciと等しいままである。
Figure 2018194738
次に、数式3に示した処理済み輝度ベクトルy0iを、数式7と数式13を説明変数とした数式14の回帰式で定義する。なお、eは誤差である。
Figure 2018194738
数式14にある処理済み正弦波ベクトルの回帰係数fと処理済み正弦波ベクトルの回帰係数fはそれぞれ、数式15と数式16で得られる。
Figure 2018194738
Figure 2018194738
次に、図12のS25で、処理部26は、偏り成分が除去された輝度分布を表す輝度ベクトルの位相θを求める。具体的には、数式17により位相θを求める。
Figure 2018194738
最後に、図10のS26で、処理部26は、位相θからモアレ干渉縞の変位hを、数式18により導く。
Figure 2018194738
以上により、モアレ干渉縞の変位hを計測できたことが分かる。
<第2実施形態>
モアレ干渉縞の濃淡が2周期分現れる場合も、上記と同様の議論ができる。ここで、図12のS23において、2周期分のモアレ干渉縞の輝度分布を計測し、数式19の輝度ベクトルyが得られたとする。
Figure 2018194738
さらに、図12のS28で、処理部26は、輝度分布からの輝度の偏り成分の除去を行う。具体的には、輝度ベクトルyから、偏り成分である1次関数成分を差し引くことで、処理済み輝度ベクトルy0iを求める。これは数式20で表される。
Figure 2018194738
この場合、輝度ベクトルは余弦波なので、数式19を数式20に代入して計算した処理済み輝度ベクトルは、結局のところ、元の輝度ベクトルと等しいままである。
Figure 2018194738
図12のS29に従い、初めに解析基準の1つである正弦波ベクトルzsiを数式22で定義する。
Figure 2018194738
数式22の正弦波ベクトルzsiから偏り成分である1次関数成分を差し引くことで、処理済み正弦波ベクトルzs0iを求める。これは数式23で表される。
Figure 2018194738
数式23に数式22を代入して計算すれば、数式24が得られる。
Figure 2018194738
ただし、数式7の係数aとbは、数式25と数式26で定義される。
Figure 2018194738
Figure 2018194738
同様に、もう1つの解析基準である余弦波ベクトルzciを数式27で定義する。
Figure 2018194738
数式27の余弦波ベクトルzciから偏り成分である1次関数成分を差し引くことで、処理済み余弦波ベクトルzc0iを求める。これは、数式28で表される。
Figure 2018194738
この場合、余弦波ベクトルzciは余弦波なので、数式27を数式28に代入して計算した処理済み余弦波ベクトルzc0iは、結局のところ、元の余弦波ベクトルzciと等しいままである。
Figure 2018194738
次に、数式20に示した処理済み輝度ベクトルy0iを、数式24と数式28を説明変数とした数式30の回帰式で定義する。なおeは誤差である。
Figure 2018194738
数式30にある処理済み正弦波ベクトルの回帰係数fと処理済み正弦波ベクトルの回帰係数fは、数式31と数式32により得られる。
Figure 2018194738
Figure 2018194738
次に、図12のS25で、処理部26は、輝度ベクトルの位相θを求める。具体的には、数式33により位相θを求める。
Figure 2018194738
最後に、図12のS26で、処理部26は、位相θからモアレ干渉縞の変位hを数式34により導く。
Figure 2018194738
以上により、モアレ干渉縞の変位hを計測できたことが分かる。
<第3実施形態>
第3実施形態による具体的な手順を図13に示す。まずS23で、処理部26は、撮像素子25で撮像された画像データ(輝度データ)に基づき、モアレ干渉縞の輝度分布の計測または取得を行う。次に、S28で、処理部26は、当該輝度分布から偏り成分を除去する。次に、S27で、処理部26は、重み関数によるデータ処理を行う。具体的には例えば、偏り成分に応じた重み関数に従い、S28で偏り成分が除去された輝度分布を表す輝度データの重み付けを行う。これにより、背景輝度の安定しない特定箇所の輝度データを弱める。次に、S29で、処理部26は、フーリエ級数展開に用いる直交関数列から偏り成分を除去した直交関数列によって、S28で偏り成分が除去されたモアレ干渉縞の輝度分布の離散フーリエ変換を行う。かつ/あるいは、S29では、回帰分析の説明変数に用いる三角関数列から偏り成分を除去した三角関数列によって、S28で偏り成分が除去されたモアレ干渉縞の輝度分布の回帰分析を行ってもよい。その後、S25で、処理部26は、周期解析の結果に基づいて、輝度分布を占める主な周波数成分の位相を求める。そして、S26で、処理部26は、当該算出された位相に基づき、マスクと基板(すなわち第1回折格子と第2回折格子)の相対変位(相対位置)を求める。
<物品製造方法の実施形態>
インプリント装置を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に、用いられる。物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用のモールド等が挙げられる。
硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。
次に、物品製造方法について説明する。図14(a)に示すように、絶縁体等の被加工材2zが表面に形成されたシリコン基板等の基板1zを用意し、続いて、インクジェット法等により、被加工材2zの表面にインプリント材3zを付与する。ここでは、複数の液滴状になったインプリント材3zが基板上に付与された様子を示している。
図14(b)に示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図14(c)に示すように、インプリント材3zが付与された基板1zと型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で硬化用のエネルギーとして光を型4zを介して照射すると、インプリント材3zは硬化する。
図14(d)に示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型の凹部が硬化物の凸部に、型の凹部が硬化物の凸部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。
図14(e)に示すように、硬化物のパターンを耐エッチング型としてエッチングを行うと、被加工材2zの表面のうち、硬化物が無いか或いは薄く残存した部分が除去され、溝5zとなる。図14(f)に示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子等に含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。
(他の実施形態)
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
1:インプリント装置、2:硬化部、3:計測部、4:型保持部、5:基板ステージ、6:供給部、12:制御部

Claims (8)

  1. 第1方向に配列された格子パターンを含む第1回折格子と、前記第1回折格子とは異なるピッチで前記第1方向に配列された格子パターンを含む第2回折格子とが重なることで生じるモアレ縞の輝度分布を取得する取得部と、
    前記取得部により取得された前記輝度分布に基づいて、前記第1回折格子と前記第2回折格子との相対位置を求める処理部と、
    を有し、
    前記処理部は、
    前記取得部により取得された前記輝度分布から輝度の偏り成分を除去し、
    前記偏り成分が除去された前記輝度分布を表す関数列による周期解析を行い、
    前記周期解析の結果に基づいて、前記偏り成分が除去された前記輝度分布の位相を求め、
    前記位相に基づいて前記相対位置を求める
    ことを特徴とする位置計測装置。
  2. 前記周期解析は、前記偏り成分が除去された前記輝度分布を表す直交関数列による離散フーリエ変換を含むことを特徴とする請求項1に記載の位置計測装置。
  3. 前記周期解析は、前記偏り成分が除去された前記輝度分布を表す三角関数列による回帰分析を含む請求項1又は2に記載の位置計測装置。
  4. 前記処理部は、前記取得部により取得された前記輝度分布を表す輝度ベクトルから前記偏り成分である1次関数成分を差し引くことにより、該輝度分布から前記偏り成分を除去することを特徴とする請求項1乃至3のいずれか1項に記載の位置計測装置。
  5. 前記処理部は、前記偏り成分に応じた重み関数に従い、前記偏り成分が除去された前記輝度分布の重み付けを行うことを含み、前記重み付けされた前記輝度分布に対して前記周期解析を行うことを特徴とする請求項1乃至4のいずれか1項に記載の位置計測装置。
  6. 第1方向に配列された格子パターンを含む第1回折格子と、前記第1回折格子とは異なるピッチで前記第1方向に配列された格子パターンを含む第2回折格子とが重なることで生じるモアレ縞の輝度分布を取得する工程と、
    前記取得された輝度分布から輝度の偏り成分を除去する工程と、
    前記偏り成分が除去された前記輝度分布を表す関数列による周期解析を行う工程と、
    前記周期解析の結果に基づいて、前記偏り成分が除去された前記輝度分布の位相を求める工程と、
    前記位相に基づいて、前記第1回折格子と前記第2回折格子との相対位置を求める工程と、
    を有することを特徴とする位置計測方法。
  7. 基板にパターンを形成するリソグラフィ装置であって、
    請求項1乃至5のいずれか1項に記載の位置計測装置を備え、
    前記第1回折格子が配置された原版と、前記第2回折格子が配置された基板との相対位置の検出を前記位置計測装置を用いて行うことを特徴とするリソグラフィ装置。
  8. 請求項7に記載のリソグラフィ装置を用いて基板にパターンを転写する工程と、
    前記パターンが転写された前記基板を処理する工程と、
    を含み、前記処理が行われた前記基板から物品を製造することを特徴とする物品製造方法。
JP2017100072A 2017-05-19 2017-05-19 位置計測装置、リソグラフィ装置、および物品製造方法 Pending JP2018194738A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017100072A JP2018194738A (ja) 2017-05-19 2017-05-19 位置計測装置、リソグラフィ装置、および物品製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017100072A JP2018194738A (ja) 2017-05-19 2017-05-19 位置計測装置、リソグラフィ装置、および物品製造方法

Publications (1)

Publication Number Publication Date
JP2018194738A true JP2018194738A (ja) 2018-12-06

Family

ID=64570598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017100072A Pending JP2018194738A (ja) 2017-05-19 2017-05-19 位置計測装置、リソグラフィ装置、および物品製造方法

Country Status (1)

Country Link
JP (1) JP2018194738A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908519B2 (en) 2019-03-19 2021-02-02 Toshiba Memory Corporation Alignment mark, imprinting method, manufacturing method of semiconductor device, and alignment device
JP2021117131A (ja) * 2020-01-28 2021-08-10 キヤノン株式会社 変位計及び物品の製造方法
KR20210149828A (ko) * 2019-04-26 2021-12-09 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 변위 측정 장치, 변위 측정 방법 및 포토리소그래피 장치

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194011A (ja) * 1998-01-05 1999-07-21 Canon Inc 干渉装置
JP2010038614A (ja) * 2008-08-01 2010-02-18 Tokyo Univ Of Agriculture & Technology 接触面積測定装置および接触面積測定方法
JP2011059007A (ja) * 2009-09-11 2011-03-24 Nikon Corp 波形解析装置、波形測定装置、波形解析プログラム、干渉計装置、パターン投影形状測定装置、及び波形解析方法
JP2012079969A (ja) * 2010-10-04 2012-04-19 Canon Inc インプリント方法
JP2013168645A (ja) * 2012-01-19 2013-08-29 Canon Inc インプリント方法、およびインプリント装置
JP2013234852A (ja) * 2012-05-02 2013-11-21 Canon Inc 位置検出エンコーダおよびこれを用いた装置
JP2013254780A (ja) * 2012-06-05 2013-12-19 Canon Inc 位置検出システム、インプリント装置、デバイス製造方法、および位置検出方法
JP2014056854A (ja) * 2012-09-11 2014-03-27 Dainippon Printing Co Ltd インプリント方法およびそれを実施するためのインプリント装置
JP5641746B2 (ja) * 2010-02-12 2014-12-17 株式会社ミツトヨ 光電式エンコーダ
JP2015088708A (ja) * 2013-11-01 2015-05-07 キヤノン株式会社 インプリント装置、及び物品の製造方法
JP2015152535A (ja) * 2014-02-18 2015-08-24 藤垣 元治 重み付けを用いた格子画像の位相解析方法
CN104898376A (zh) * 2014-03-03 2015-09-09 上海微电子装备有限公司 投影光刻机的离轴对准装置及对准调节方法
JP2016111201A (ja) * 2014-12-05 2016-06-20 キヤノン株式会社 インプリント装置、および物品の製造方法
JP2016201485A (ja) * 2015-04-13 2016-12-01 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法
JP6071181B2 (ja) * 2011-10-14 2017-02-01 キヤノン株式会社 エンコーダおよびこれを備えた装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11194011A (ja) * 1998-01-05 1999-07-21 Canon Inc 干渉装置
JP2010038614A (ja) * 2008-08-01 2010-02-18 Tokyo Univ Of Agriculture & Technology 接触面積測定装置および接触面積測定方法
JP2011059007A (ja) * 2009-09-11 2011-03-24 Nikon Corp 波形解析装置、波形測定装置、波形解析プログラム、干渉計装置、パターン投影形状測定装置、及び波形解析方法
JP5641746B2 (ja) * 2010-02-12 2014-12-17 株式会社ミツトヨ 光電式エンコーダ
JP2012079969A (ja) * 2010-10-04 2012-04-19 Canon Inc インプリント方法
JP6071181B2 (ja) * 2011-10-14 2017-02-01 キヤノン株式会社 エンコーダおよびこれを備えた装置
JP2013168645A (ja) * 2012-01-19 2013-08-29 Canon Inc インプリント方法、およびインプリント装置
JP2013234852A (ja) * 2012-05-02 2013-11-21 Canon Inc 位置検出エンコーダおよびこれを用いた装置
JP2013254780A (ja) * 2012-06-05 2013-12-19 Canon Inc 位置検出システム、インプリント装置、デバイス製造方法、および位置検出方法
JP2014056854A (ja) * 2012-09-11 2014-03-27 Dainippon Printing Co Ltd インプリント方法およびそれを実施するためのインプリント装置
JP2015088708A (ja) * 2013-11-01 2015-05-07 キヤノン株式会社 インプリント装置、及び物品の製造方法
JP2015152535A (ja) * 2014-02-18 2015-08-24 藤垣 元治 重み付けを用いた格子画像の位相解析方法
CN104898376A (zh) * 2014-03-03 2015-09-09 上海微电子装备有限公司 投影光刻机的离轴对准装置及对准调节方法
JP2016111201A (ja) * 2014-12-05 2016-06-20 キヤノン株式会社 インプリント装置、および物品の製造方法
JP2016201485A (ja) * 2015-04-13 2016-12-01 キヤノン株式会社 インプリント装置、インプリント方法、および物品の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10908519B2 (en) 2019-03-19 2021-02-02 Toshiba Memory Corporation Alignment mark, imprinting method, manufacturing method of semiconductor device, and alignment device
KR20210149828A (ko) * 2019-04-26 2021-12-09 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 변위 측정 장치, 변위 측정 방법 및 포토리소그래피 장치
KR102671210B1 (ko) 2019-04-26 2024-05-31 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 변위 측정 장치, 변위 측정 방법 및 포토리소그래피 장치
JP2021117131A (ja) * 2020-01-28 2021-08-10 キヤノン株式会社 変位計及び物品の製造方法
JP7408416B2 (ja) 2020-01-28 2024-01-05 キヤノン株式会社 変位計及び物品の製造方法

Similar Documents

Publication Publication Date Title
JP6818859B2 (ja) インプリント装置、インプリント方法および物品の製造方法
JP6180131B2 (ja) インプリント装置、それを用いた物品の製造方法
TWI564678B (zh) 估計圖案化器件之變形及/或其位置之改變
US9823562B2 (en) Imprint apparatus, imprint method, and method of manufacturing article
US10001702B2 (en) Imprinting apparatus, device fabrication method, and imprinting method
US10303069B2 (en) Pattern forming method and method of manufacturing article
US10545416B2 (en) Detection apparatus, lithography apparatus, and method of manufacturing article
TWI438582B (zh) 位置控制系統、微影裝置及控制一可移動物件之位置的方法
JP2021004940A (ja) 計測装置、リソグラフィ装置、および物品の製造方法
JP2018194738A (ja) 位置計測装置、リソグラフィ装置、および物品製造方法
JP6993782B2 (ja) インプリント装置および物品製造方法
JP6921600B2 (ja) インプリント装置、制御データの生成方法、及び物品の製造方法
TW201736948A (zh) 微影裝置及器件製造方法
JP6866106B2 (ja) インプリント装置、インプリント方法、および物品の製造方法
JP2022149848A (ja) 計測装置、リソグラフィ装置、および物品製造方法
JP7030569B2 (ja) 位置検出装置、位置検出方法、インプリント装置及び物品の製造方法
JP7550814B2 (ja) 検出装置、リソグラフィ装置、物品製造方法および検出システム
JP7374666B2 (ja) インプリント方法、前処理装置、インプリント用基板、および基板の製造方法
US12023850B2 (en) Position detection apparatus, imprint apparatus, and article manufacturing method
JP7437928B2 (ja) インプリント装置、インプリント方法および物品製造方法
US20230294351A1 (en) Object alignment method, imprint method, article manufacturing method, detection apparatus, imprint apparatus, mold, and substrate
JP2024030557A (ja) 検出装置、リソグラフィー装置および物品製造方法
JP2017183364A (ja) インプリント方法、インプリント装置、プログラム、および物品の製造方法
JP2016154241A (ja) パターン形成方法、リソグラフィ装置、リソグラフィシステムおよび物品製造方法
JP2023086568A (ja) 計測装置、リソグラフィ装置、および物品製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210103

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220311