JP2018194213A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2018194213A
JP2018194213A JP2017097070A JP2017097070A JP2018194213A JP 2018194213 A JP2018194213 A JP 2018194213A JP 2017097070 A JP2017097070 A JP 2017097070A JP 2017097070 A JP2017097070 A JP 2017097070A JP 2018194213 A JP2018194213 A JP 2018194213A
Authority
JP
Japan
Prior art keywords
heat exchange
pipe
spacer
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017097070A
Other languages
Japanese (ja)
Other versions
JP6938215B2 (en
Inventor
伸二 安江
Shinji Yasue
伸二 安江
大江 基明
Motoaki Oe
基明 大江
和夫 柴田
Kazuo Shibata
和夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHIN TECHNO KK
Inoac Housing and Construction Materials Co Ltd
Original Assignee
NISSHIN TECHNO KK
Inoac Housing and Construction Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHIN TECHNO KK, Inoac Housing and Construction Materials Co Ltd filed Critical NISSHIN TECHNO KK
Priority to JP2017097070A priority Critical patent/JP6938215B2/en
Publication of JP2018194213A publication Critical patent/JP2018194213A/en
Priority to JP2021142457A priority patent/JP7232450B2/en
Application granted granted Critical
Publication of JP6938215B2 publication Critical patent/JP6938215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

To prevent heat conduction between juxtaposed heat exchange pipes.SOLUTION: A heat exchanger 10 comprises: a plurality of heat exchange pipes 12, 14 arranged in parallel; and a spacer 18 arranged between a forward heat exchange pipe 12 and a backward heat exchange pipe 14 out of the heat exchange pipes 12, 14 arranged in parallel, and configured to regulate an interval between the heat exchange pipes 12, 14. The spacer 18 is a cylindrical body having a hollow space 18a closed in a state where gas is encapsulated, and the hollow space 18a is arranged between the heat exchange pipes 12, 14.SELECTED DRAWING: Figure 2

Description

この発明は、地中熱を利用する熱交換器に関するものである。   The present invention relates to a heat exchanger that uses underground heat.

地中の深部は年間を通して、ほぼ一定温度に保たれており、夏は屋外の気温より低く、冬は屋外の気温より高くなっている。その地中の熱を利用するために、地中に埋設する地中熱交換器が知られている。地中熱交換器は、ヒートポンプや冷暖房装置や融雪装置等の負荷装置に接続され、水や不凍液等の熱媒体が循環しており、管路がU字形状のUチューブ型や(例えば、特許文献1参照)、螺旋状に構成されたスパイラル型等が提案されている。Uチューブ型の熱交換器は、往路用熱交換管と、該往路用熱交換管の下端から折り返した還路用熱交換管とが、並行になるように垂直に埋設され、垂直埋設型とも呼ばれることがある。   The deep part of the ground is maintained at a constant temperature throughout the year, with temperatures lower than the outdoor temperature in summer and higher than the outdoor temperature in winter. In order to use the underground heat, underground heat exchangers buried in the underground are known. The underground heat exchanger is connected to a load device such as a heat pump, an air conditioner or a snow melting device, and a heat medium such as water or antifreeze is circulated, and a U-tube type pipe (for example, a patent) Reference 1), a spiral type configured in a spiral shape, and the like have been proposed. The U-tube heat exchanger has a forward heat exchange pipe and a return heat exchange pipe folded back from the lower end of the forward heat exchange pipe so that they are parallel to each other. Sometimes called.

特開2006−234340号公報JP 2006-234340 A

特許文献1の熱交換器は、往路用熱交換管と還路用熱交換管とをガイド部によって連結したり、往路用熱交換管と還路用熱交換管とを繋いで一体的に形成したりして、往路用熱交換管と還路用熱交換管とが離れるようにしてある。特許文献1の熱交換器は、樹脂等からなるガイド部や熱交換管と同じ樹脂からなる繋ぎが土よりも熱伝導率が高いので、ガイド部や繋ぎを伝って往路用熱交換管と還路用熱交換管との間で熱交換してしまうという問題が指摘される。   The heat exchanger of Patent Document 1 is formed integrally by connecting the forward heat exchange pipe and the return heat exchange pipe by a guide portion, or connecting the forward heat exchange pipe and the return heat exchange pipe. In other words, the outward heat exchange pipe and the return heat exchange pipe are separated from each other. In the heat exchanger of Patent Document 1, since the joint made of the same resin as the guide part and the heat exchange pipe made of resin or the like has a higher thermal conductivity than the soil, it is returned to the forward heat exchange pipe through the guide part and the joint. The problem of heat exchange with the road heat exchange pipe is pointed out.

本発明は、従来の技術に係る前記問題に鑑み、これらを好適に解決するべく提案されたものであって、並行する往路用熱交換管と還路用熱交換管との間での熱伝導を防止できる熱交換器を提供することを目的とする。   The present invention has been proposed in view of the above-described problems related to the prior art, and is preferably proposed to solve these problems. The heat conduction between the parallel forward heat exchange pipe and the return heat exchange pipe is performed. It aims at providing the heat exchanger which can prevent.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明の熱交換器は、
地中に埋設される熱交換器であって、
並行するように配置された複数条の熱交換管と、
並行するように配置された前記複数条の熱交換管のうちの往路用熱交換管と還路用熱交換管との間に配置され、当該熱交換管同士の間隔を規定するスペーサとを備え、
前記スペーサは、気体が封入された状態で閉じた中空空間を有する筒状体であり、前記中空空間が前記熱交換管同士の間に配置されていることを要旨とする。
請求項1に係る発明によれば、並行するように配置された往路用熱交換管と還路用熱交換管との間に配置されたスペーサによって、往路用熱交換管と還路用熱交換管との間が所定間隔になるように規定することができる。往路用熱交換管と還路用熱交換管との間に配置されたスペーサは、中空空間を有する筒状体であり、中空空間に封じられた気体が土やスペーサを構成する材料よりも熱伝導率が低いから、スペーサを伝って往路用熱交換管と還路用熱交換管との間で熱が移動することを防止できる。このように、熱交換器は、往路用熱交換管と還路用熱交換管との間の熱伝導を防止してあるので、熱交換効率を向上することができる。
In order to overcome the above-mentioned problems and achieve an intended object, a heat exchanger according to claim 1 of the present application is
A heat exchanger embedded in the ground,
A plurality of heat exchange tubes arranged in parallel;
A spacer that is disposed between the heat exchange pipe for the forward path and the heat exchange pipe for the return path among the plurality of heat exchange pipes arranged in parallel, and that defines a space between the heat exchange pipes; ,
The said spacer is a cylindrical body which has the hollow space closed in the state with which the gas was enclosed, and makes it a summary that the said hollow space is arrange | positioned between the said heat exchange tubes.
According to the first aspect of the present invention, the forward heat exchange pipe and the return heat exchange are performed by the spacer arranged between the forward heat exchange pipe and the return heat exchange pipe arranged in parallel. It can be defined that there is a predetermined distance between the tubes. The spacer disposed between the heat exchange pipe for the outward path and the heat exchange pipe for the return path is a cylindrical body having a hollow space, and the gas sealed in the hollow space is more heated than the soil and the material constituting the spacer. Since the conductivity is low, it is possible to prevent heat from moving between the forward heat exchange pipe and the return heat exchange pipe through the spacer. Thus, the heat exchanger prevents heat conduction between the forward heat exchange pipe and the return heat exchange pipe, so that the heat exchange efficiency can be improved.

請求項2に係る発明では、前記スペーサは、並行するように配置された前記往路用熱交換管と前記還路用熱交換管との間における地表に近い上部に少なくとも配置されていることを要旨とする。
請求項2に係る発明によれば、往路用熱交換管を流通する熱媒体と還路用熱交換管を流通する熱媒体との温度差が大きい熱交換器の上部に、スペーサを少なくとも配置することで、往路用熱交換管と還路用熱交換管との間の熱伝導を適切に防止できる。
The invention according to claim 2 is characterized in that the spacer is disposed at least in an upper part near the ground surface between the forward heat exchange pipe and the return heat exchange pipe arranged in parallel. And
According to the invention which concerns on Claim 2, a spacer is arrange | positioned at least on the upper part of a heat exchanger with a large temperature difference of the heat medium which distribute | circulates the heat exchange pipe | tube for an outward path, and the heat medium which distribute | circulates the heat exchanger pipe for return paths Thus, heat conduction between the forward heat exchange pipe and the return heat exchange pipe can be appropriately prevented.

請求項3に係る発明では、前記スペーサは、並行するように配置された前記往路用熱交換管と前記還路用熱交換管の間に、該熱交換管に沿って延在するように配置されていることを要旨とする。
請求項3に係る発明によれば、スペーサを熱交換管に沿って延在するように配置することで、スペーサが有する高い断熱性によって、往路用熱交換管と還路用熱交換管との間の熱伝導を該熱交換管の延在方向に亘って適切に防止できる。
In the invention which concerns on Claim 3, the said spacer is arrange | positioned so that it may extend along this heat exchange pipe between the said heat exchange pipe for the outward path | routes arrange | positioned so that it may be paralleled, and the said heat exchange pipe for return paths It is a summary.
According to the invention which concerns on Claim 3, it arrange | positions so that a spacer may be extended along a heat exchange pipe, By the high heat insulation which a spacer has, it is the heat exchange pipe for an outward path, and the heat exchange pipe for a return path Heat conduction between them can be appropriately prevented over the extending direction of the heat exchange tube.

請求項4に係る発明では、前記スペーサは、円筒形に形成されていることを要旨とする。
請求項4に係る発明によれば、円弧状の外周面が熱交換管に接するように、スペーサを配置することで、熱交換管とスペーサとの接触面を減らすことができ、熱交換管とスペーサとの間の熱伝導を一層防止できる。
The invention according to claim 4 is characterized in that the spacer is formed in a cylindrical shape.
According to the invention which concerns on Claim 4, by arrange | positioning a spacer so that an arc-shaped outer peripheral surface may contact | connect a heat exchange pipe, the contact surface of a heat exchange pipe and a spacer can be reduced, The heat conduction with the spacer can be further prevented.

請求項5に係る発明では、前記スペーサは、前記熱交換管の延在方向と交差する方向へ曲げ可能な可撓性を有していることを要旨とする。
請求項5に係る発明によれば、スペーサの可撓性によって、スペーサを熱交換管に沿わせて配置することが容易にできる。
The gist of the invention according to claim 5 is that the spacer has flexibility capable of being bent in a direction intersecting with the extending direction of the heat exchange tube.
According to the invention which concerns on Claim 5, a spacer can be easily arrange | positioned along a heat exchange pipe | tube with the flexibility of a spacer.

本発明に係る熱交換器によれば、並行する往路用熱交換管と還路用熱交換管との間での熱伝導を防止できる。   The heat exchanger according to the present invention can prevent heat conduction between the parallel forward heat exchange pipe and the return heat exchange pipe.

本発明の好適な実施例に係る熱交換器の埋設状況を示す説明図である。It is explanatory drawing which shows the embedding condition of the heat exchanger which concerns on the suitable Example of this invention. 実施例の熱交換器の一部を示す概略斜視図である。It is a schematic perspective view which shows a part of heat exchanger of an Example. 実施例の熱交換器を、径方向に切断して示す断面図である。It is sectional drawing which cut | disconnects and shows the heat exchanger of an Example to radial direction. 実施例の熱交換器の設置過程を示す説明図である。It is explanatory drawing which shows the installation process of the heat exchanger of an Example. 変更例の熱交換器の要部を示す説明図である。It is explanatory drawing which shows the principal part of the heat exchanger of the example of a change. 変更例の熱交換器を、径方向に切断して示す断面図である。It is sectional drawing which cut | disconnects and shows the heat exchanger of the example of a change to radial direction.

次に、本発明に係る熱交換器につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。   Next, a preferred embodiment of the heat exchanger according to the present invention will be described below with reference to the accompanying drawings.

図1に示すように、実施例に係る熱交換器10は、複数条(実施例では2条)の熱交換管12,14が互いに並行するように縦向きに埋設される垂直埋設型である。熱交換器10は、土中に縦方向に直線的に延在するように埋設される往路用熱交換管(以下、単に往路管という)12と、往路管12と並行するように配置され、土中に縦方向に延在するように埋設される還路用熱交換管(以下、単に還路管という)14とを備えている。また、熱交換器10は、往路管12の下端と還路管14の下端とを繋ぐ連結部16を備えている。熱交換器10は、往路管12の上端(上流)および還路管14の上端(下流)が、ヒートポンプや冷暖房装置や融雪装置などの図示しない負荷装置に接続されている。熱交換器10は、水や不凍液などの熱媒体が、負荷装置から往路管12に流れて、往路管12の下端から連結部16を介して還路管14の下端に流れ、還路管14から負荷装置に戻るようになっている。そして、熱交換器10は、負荷装置との間で流通する熱媒体が、例えば気温が低い冬期に地中から採熱したり、気温が高い夏期に地中に放熱するように構成される。   As shown in FIG. 1, the heat exchanger 10 according to the embodiment is a vertical buried type in which a plurality of (two in the embodiment) heat exchange tubes 12 and 14 are buried vertically so as to be parallel to each other. . The heat exchanger 10 is disposed so as to be parallel to the forward heat exchange pipe 12 (hereinafter simply referred to as the forward pipe) 12 embedded in the soil so as to extend linearly in the vertical direction, And a return heat exchanger pipe (hereinafter simply referred to as a return pipe) 14 embedded in the soil so as to extend in the vertical direction. Further, the heat exchanger 10 includes a connecting portion 16 that connects the lower end of the forward path pipe 12 and the lower end of the return path pipe 14. In the heat exchanger 10, the upper end (upstream) of the forward path pipe 12 and the upper end (downstream) of the return path pipe 14 are connected to a load device (not shown) such as a heat pump, a cooling / heating device, or a snow melting device. In the heat exchanger 10, a heat medium such as water or antifreeze liquid flows from the load device to the forward pipe 12, and flows from the lower end of the forward pipe 12 to the lower end of the return pipe 14 via the connecting portion 16. To the load device. And the heat exchanger 10 is comprised so that the heat medium which distribute | circulates between load devices may extract heat from underground in the winter when temperature is low, for example, or radiates heat into the ground in summer when temperature is high.

前記熱交換管12,14は、熱媒体が流通可能で、かつ内部を流通する熱媒体と外側の土壌との間で熱交換可能な管材で構成され、例えば、ポリエチレン管、架橋ポリエチレン管、ポリブテン管、または樹脂と金属の複合管など、可撓性を有する管材を用いることができる。この中でも、柔軟性、耐腐食性、強度、熱融着性、地中熱の温度範囲および経済性などの観点からポリエチレン管を用いるとよい。図2および図3に示すように、熱交換管12,14は、長さ方向(埋設時の縦向き)と直交する径方向に切断した断面形状が扁平に形成され、実施例では直線的に延在する長手辺と円弧状に延在する短手辺とからなる略「小判」形の断面形状である。熱交換器10は、往路管12と還路管14とが、互いに長手辺を向かい合わせた状態で並行するように配置されている。熱交換器10は、往路管12と還路管14との中央を通る縦軸を中心とする仮想円(図3の一点鎖線)のうちの最小限のものに、熱媒体の流通に要する流通断面とした往路管12と還路管14との両方が収まるように設定される。これに併せて、熱交換器10は、前記仮想円の中で、往路管12と還路管14との間隔が最大限に開くように設定してある。   The heat exchange pipes 12 and 14 are formed of pipe materials through which a heat medium can flow and heat exchange between the heat medium flowing through the inside and the outside soil, such as polyethylene pipes, cross-linked polyethylene pipes, polybutenes. A flexible tube material such as a tube or a composite tube of resin and metal can be used. Among these, a polyethylene pipe is preferably used from the viewpoints of flexibility, corrosion resistance, strength, heat-fusibility, underground heat temperature range, economy, and the like. As shown in FIGS. 2 and 3, the heat exchange pipes 12 and 14 have a flat cross-sectional shape cut in the radial direction perpendicular to the length direction (vertical direction at the time of embedding). It is a substantially “oval” cross-sectional shape composed of a long side extending and a short side extending in an arc shape. The heat exchanger 10 is arranged so that the forward path pipe 12 and the return path pipe 14 are in parallel with the long sides facing each other. The heat exchanger 10 is a flow required for the flow of the heat medium to the minimum of the virtual circle (the dashed line in FIG. 3) centering on the vertical axis passing through the center of the forward pipe 12 and the return pipe 14. It is set so that both the outgoing path pipe 12 and the return path pipe 14 having a cross section can be accommodated. At the same time, the heat exchanger 10 is set so that the distance between the forward pipe 12 and the return pipe 14 is maximized in the virtual circle.

図1〜図3に示すように、熱交換器10は、並行するように配置された複数条の熱交換管のうちの往路管12と還路管14との間に配置して、往路管12と還路管14との間隔を規定するスペーサ18を備えている。スペーサ18は、気体が封入された状態で閉じた中空空間18aを有する筒状体であり、中空空間18aが往路管12と還路管14との間に介在するように配置される。スペーサ18としては、ポリエチレン管、架橋ポリエチレン管、ポリブテン管、または樹脂と金属の複合管などの円筒形の管材を用いることができ、この中でも、コストを抑えるという観点からポリエチレン管を用いるとよい。また、スペーサ18は、熱交換管12,14の長さ方向(延在方向)と交差する径方向へ曲げ可能な可撓性を有しているとよい。実施例のスペーサ18は、可撓性を有するポリエチレン管であり、両端の開口をキャップやテープなどの封止物で塞いで、円筒体の内側を閉じた中空空間18aとしている。スペーサ18に封入する気体としては、空気、窒素ガス、二酸化炭素ガス、希ガス等を使用することができる。特に、作業性、入手の容易性およびコスト等の観点から、気体としては空気が好ましい。なお、空気よりも熱伝導率の低い気体(例えば、アルゴンガス、クリプトンガス、キセノンガス等)をスペーサ18に封入すれば、断熱性をより高めることができる。   As shown in FIG. 1 to FIG. 3, the heat exchanger 10 is arranged between the forward pipe 12 and the return pipe 14 among the plurality of heat exchange pipes arranged in parallel, and the forward pipe 12 and a spacer 18 that defines the distance between the return pipe 14 and the return pipe 14. The spacer 18 is a cylindrical body having a hollow space 18 a that is closed in a state where gas is sealed, and is arranged so that the hollow space 18 a is interposed between the forward path pipe 12 and the return path pipe 14. As the spacer 18, a cylindrical pipe material such as a polyethylene pipe, a cross-linked polyethylene pipe, a polybutene pipe, or a resin-metal composite pipe can be used, and among these, a polyethylene pipe is preferably used from the viewpoint of cost reduction. Moreover, the spacer 18 is good to have the flexibility which can be bent in the radial direction which cross | intersects the length direction (extending direction) of the heat exchange pipes 12 and 14. FIG. The spacer 18 of the embodiment is a polyethylene pipe having flexibility, and the opening at both ends is closed with a sealing material such as a cap or a tape to form a hollow space 18a in which the inside of the cylindrical body is closed. As the gas sealed in the spacer 18, air, nitrogen gas, carbon dioxide gas, rare gas, or the like can be used. In particular, air is preferable as the gas from the viewpoints of workability, availability, cost, and the like. In addition, if a gas having a lower thermal conductivity than air (for example, argon gas, krypton gas, xenon gas, etc.) is sealed in the spacer 18, the heat insulation can be further improved.

図1および図2に示すように、スペーサ18は、並行するように配置された往路管12と還路管14の間に配置される。実施例のスペーサ18は、往路管12と還路管14の間において、往路管12および還路管14に沿って縦方向へ延在するように連続的に配置されている。熱交換器10は、往路管12および還路管14の長さ方向とスペーサ18の長さ方向とが並び、スペーサ18の円弧状に曲がる外周面が、往路管12および還路管14の直線的な長手辺と長さ方向へ線接触する。スペーサ18は、テープなどの貼着物、結束線や結束バンドなどの結束具等による接合などによって、往路管12および還路管14に対して取り付けられる。実施例の熱交換器10は、長さ方向の適宜箇所に設けたテープや結束バンド等(図示せず)によって、スペーサ18と往路管12および還路管14とが互いに固定されている。   As shown in FIGS. 1 and 2, the spacer 18 is disposed between the forward pipe 12 and the return pipe 14 that are arranged in parallel. The spacer 18 of the embodiment is continuously disposed between the forward pipe 12 and the return pipe 14 so as to extend in the vertical direction along the forward pipe 12 and the return pipe 14. In the heat exchanger 10, the length direction of the forward path pipe 12 and the return path pipe 14 is aligned with the length direction of the spacer 18, and the outer circumferential surface of the spacer 18 bent in an arc shape is a straight line of the forward path pipe 12 and the return path pipe 14. Line contact in the longitudinal direction with the typical longitudinal side. The spacer 18 is attached to the forward path pipe 12 and the return path pipe 14 by bonding with a sticking object such as a tape, or a binding tool such as a binding wire or a binding band. In the heat exchanger 10 of the embodiment, the spacer 18, the outward pipe 12, and the return pipe 14 are fixed to each other by a tape, a binding band, or the like (not shown) provided at an appropriate place in the length direction.

図1に示すように、熱交換器10は、並行するように配置された往路管12と還路管14との間における地表に近い上部に、スペーサ18を少なくとも配置するとよい。実施例の熱交換器10は、埋設した際に、地表に近い上部から、熱交換器10の下端を構成する連結部16までに亘ってスペーサ18が配置されており、熱交換管12,14の埋設部分全長に亘ってスペーサ18によって間隔が規定されている。熱交換器10は、往路管12に流通する熱媒体と還路管14に流通する熱媒体との温度差が大きい部分に対応してスペーサ18を配置すればよく、熱媒体の温度差が小さい連結部16に近い下部でスペーサ18を省略してもよい。熱交換器10は、熱交換管12,14の埋設部分の上部から熱交換管12,14の埋設深さの半分以上に配置することが望ましく、熱交換管12,14の埋設部分の上部から熱交換管12,14の埋設深さの2/3以上に配置することがより望ましい。   As shown in FIG. 1, the heat exchanger 10 is good to arrange | position the spacer 18 at least in the upper part close | similar to the earth surface between the outward path pipe 12 and the return path pipe 14 arrange | positioned so that it may be parallel. When the heat exchanger 10 according to the embodiment is embedded, a spacer 18 is arranged from the upper part close to the ground surface to the connecting part 16 constituting the lower end of the heat exchanger 10, and the heat exchange tubes 12, 14. The spacing is defined by the spacer 18 over the entire length of the buried portion. In the heat exchanger 10, the spacer 18 may be disposed corresponding to a portion where the temperature difference between the heat medium flowing in the forward pipe 12 and the heat medium flowing in the return pipe 14 is large, and the temperature difference of the heat medium is small. The spacer 18 may be omitted at the lower part near the connecting part 16. It is desirable that the heat exchanger 10 is disposed from the upper part of the embedded portion of the heat exchange pipes 12 and 14 to more than half of the embedded depth of the heat exchange pipes 12 and 14, and from the upper part of the embedded part of the heat exchange pipes 12 and 14. It is more desirable to arrange the heat exchanging pipes 12 and 14 at 2/3 or more of the embedding depth.

前記熱交換器10の設置は、例えば以下のように行えばよい。まず、ボーリング等によって地盤に掘削孔20を鉛直方向に形成する(図4(a))。長尺の熱交換管12,14が巻き回された2つのボビン22,22から熱交換管12,14をそれぞれ繰り出す。なお、熱交換管12,14の先端は、連結部16で接続されている(図4(a))。同様に、下端の開口がキャップされた長尺のスペーサ18が巻き掛けられたボビン24から繰り出したスペーサ18を、連結部16により並行配置された熱交換管12,14の間に設置し、テープや結束バンド等でスペーサ18を熱交換管12,14に固定する。そして、ボビン22,22,24から熱交換管12,14およびスペーサ18を繰り出して、掘削孔20に熱交換管12,14およびスペーサ18を所定深さまで挿入する(図4(b))。この際、テープや結束バンド等でスペーサ18を適宜箇所で熱交換管12,14に固定し、スペーサ18の末端をキャップやテープなどで封止することで、スペーサ18に気体としての空気を封じる。そして、熱交換管12,14を所定深さまで挿入した後、掘削孔20を埋め戻すことで、熱交換器10が地中に設置される(図4(c))。   The heat exchanger 10 may be installed as follows, for example. First, the excavation hole 20 is formed in the vertical direction by drilling or the like (FIG. 4A). The heat exchange tubes 12 and 14 are respectively fed out from the two bobbins 22 and 22 around which the long heat exchange tubes 12 and 14 are wound. In addition, the front-end | tip of the heat exchange pipes 12 and 14 is connected by the connection part 16 (FIG. 4 (a)). Similarly, the spacer 18 fed out from the bobbin 24 around which the long spacer 18 whose lower end opening is capped is wound is installed between the heat exchange pipes 12 and 14 arranged in parallel by the connecting portion 16, and the tape The spacer 18 is fixed to the heat exchange tubes 12 and 14 with a binding band or the like. Then, the heat exchange tubes 12, 14 and the spacer 18 are fed out from the bobbins 22, 22, and 24, and the heat exchange tubes 12, 14 and the spacer 18 are inserted into the excavation hole 20 to a predetermined depth (FIG. 4B). At this time, the spacer 18 is fixed to the heat exchange pipes 12 and 14 at an appropriate place with a tape or a binding band, and the end of the spacer 18 is sealed with a cap or tape, thereby sealing the spacer 18 with air as gas. . And after inserting the heat exchange pipe | tubes 12 and 14 to predetermined depth, the heat exchanger 10 is installed in the ground by refilling the excavation hole 20 (FIG.4 (c)).

〔実施例の作用〕
次に、実施例に係る熱交換器10の作用について説明する。熱交換器10は、並行配置された往路管12と還路管14との間に挟んだスペーサ18によって、往路管12と還路管14との間が所定間隔になるように規定することができる。往路管12と還路管14との間に配置するスペーサ18は、中空空間18aを有する筒状体であり、中空空間18aに封じられた気体が土やスペーサ18を構成する樹脂材料よりも熱伝導率が低いから、スペーサ18を伝って往路管12と還路管14との間で熱が移動することを防止できる。このように、熱交換器10は、往路管12と還路管14との間隔が適切に確保されていると共に、土壌よりも熱伝導率が低いスペーサ18によって、往路管12と還路管14との間の熱伝導を防止しているので、採熱および放熱の効率が向上する。
(Effects of Example)
Next, the operation of the heat exchanger 10 according to the embodiment will be described. The heat exchanger 10 may be defined so that the distance between the forward path pipe 12 and the return path pipe 14 is a predetermined interval by the spacer 18 sandwiched between the forward path pipe 12 and the return path pipe 14 arranged in parallel. it can. The spacer 18 disposed between the outgoing pipe 12 and the return pipe 14 is a cylindrical body having a hollow space 18 a, and the gas sealed in the hollow space 18 a is more heated than the soil and the resin material constituting the spacer 18. Since the conductivity is low, heat can be prevented from moving between the forward path pipe 12 and the return path pipe 14 through the spacer 18. As described above, in the heat exchanger 10, the distance between the forward path pipe 12 and the return path pipe 14 is appropriately secured, and the forward path pipe 12 and the return path pipe 14 are provided by the spacer 18 having a lower thermal conductivity than the soil. Therefore, the efficiency of heat collection and heat dissipation is improved.

前記熱交換器10は、往路管12を流通する熱媒体と還路管14を流通する熱媒体とが、熱交換器10の上部ほど、温度差が大きくなる。従って、熱交換器10は、地表に近い上部にスペーサ18を少なくとも配置すれば、温度差が大きい往路管12と還路管14との間の熱伝導を適切に防止できる。また、スペーサ18を熱交換管12,14に沿って延在するように配置することで、スペーサ18が有する高い断熱性によって、往路管12と還路管14との間の熱伝導を該熱交換管12,14の延在方向に亘って適切に防止できる。ここで、実施例の熱交換器10のように、スペーサ18を上部から連結部16の上側までに亘って配置することで、埋設された往路管12および還路管14の全長に亘ってスペーサ18によって熱伝導を防止することができ、熱交換器10の効率をより高めることができる。また、スペーサ18を往路管12および還路管14との間に連続的に配置することで、埋め戻した土などの圧力により、往路管12と還路管14とが近づいたり、接触することを防ぐことができる。このように、スペーサ18によって往路管12と還路管14との間隔を適切に確保することで、熱交換器10の効率をより高めることができる。   In the heat exchanger 10, the temperature difference between the heat medium that flows through the forward pipe 12 and the heat medium that flows through the return pipe 14 increases toward the top of the heat exchanger 10. Therefore, the heat exchanger 10 can appropriately prevent heat conduction between the forward path pipe 12 and the return path pipe 14 having a large temperature difference if the spacer 18 is disposed at least in the upper part near the ground surface. Further, by arranging the spacer 18 so as to extend along the heat exchange pipes 12, 14, the heat conduction between the forward pipe 12 and the return pipe 14 is caused by the high heat insulation property of the spacer 18. It can prevent appropriately over the extension direction of the exchange pipes 12 and 14. FIG. Here, like the heat exchanger 10 of the embodiment, the spacer 18 is arranged from the upper part to the upper side of the connecting portion 16, so that the spacer extends over the entire length of the embedded forward path pipe 12 and return path pipe 14. Heat conduction can be prevented by 18 and the efficiency of the heat exchanger 10 can be further increased. Further, by continuously arranging the spacer 18 between the forward pipe 12 and the return pipe 14, the forward pipe 12 and the return pipe 14 approach or come into contact with each other due to the pressure of the backfilled soil or the like. Can be prevented. Thus, the efficiency of the heat exchanger 10 can be further enhanced by appropriately securing the distance between the forward path pipe 12 and the return path pipe 14 by the spacer 18.

前記スペーサ18は、円筒形に形成し、円弧状の外周面が熱交換管12,14に接するように配置している。従って、熱交換器10は、熱交換管12,14とスペーサ18との接触面を減らすことができ、熱交換管12,14とスペーサ18との間の熱伝導を一層防止できる。また、熱交換器10は、スペーサ18の円弧状の外周面と熱交換管12,14との間にできる隙間が、土で埋められることになるから、熱交換管12,14と土とが接する面積をスペーサ18で塞ぐことを最小限に抑えることができる。従って、熱交換器10は、スペーサ18を熱交換管12,14に接するように配置しても、熱交換管12,14と土との熱交換がスペーサ18によって妨げられず、土と効率よく熱交換し得る。   The spacer 18 is formed in a cylindrical shape and is disposed so that the arc-shaped outer peripheral surface is in contact with the heat exchange tubes 12 and 14. Therefore, the heat exchanger 10 can reduce the contact surface between the heat exchange tubes 12 and 14 and the spacer 18, and can further prevent heat conduction between the heat exchange tubes 12 and 14 and the spacer 18. Further, in the heat exchanger 10, since the gap formed between the arc-shaped outer peripheral surface of the spacer 18 and the heat exchange pipes 12 and 14 is filled with soil, the heat exchange pipes 12 and 14 and the soil are connected to each other. It is possible to minimize the blocking of the contact area with the spacer 18. Therefore, even if the heat exchanger 10 is arranged so that the spacer 18 is in contact with the heat exchange pipes 12 and 14, heat exchange between the heat exchange pipes 12 and 14 and the soil is not hindered by the spacer 18, and the heat exchange 10 is efficiently performed with the soil. Heat exchange is possible.

前記スペーサ18として、径方向へ曲げ可能な可撓性を有しているものを用いることで、スペーサ18の可撓性によって、スペーサ18を熱交換管12,14に沿わせて配置することが容易にできる。前述したように、熱交換管12,14は、ボビン22に巻き掛けた状態で荷造りされており、ボビン22から引き出した熱交換管12,14に巻き癖がある程度残ってしまうので、スペーサ18を熱交換管12,14の間に適切に配置するためには、スペーサ18を曲げる必要がでてくる。また、スペーサ18を熱交換管12,14と同様に、巻いた荷姿で用意することができ、取り扱いが楽になるという利点もある。なお、熱交換管12,14よりも曲がり難いスペーサ18を用いて、熱交換管12,14の巻き癖を矯正してもよい。   By using the spacer 18 having a flexibility that can be bent in the radial direction, the spacer 18 can be arranged along the heat exchange tubes 12 and 14 by the flexibility of the spacer 18. Easy to do. As described above, the heat exchange tubes 12 and 14 are packed in a state of being wound around the bobbin 22, and some curl remains on the heat exchange tubes 12 and 14 drawn from the bobbin 22. In order to properly arrange the heat exchange tubes 12 and 14, the spacer 18 needs to be bent. Further, like the heat exchange tubes 12 and 14, the spacer 18 can be prepared in a wound packing form, and there is an advantage that handling becomes easy. In addition, you may correct the curl of the heat exchange pipes 12 and 14 using the spacer 18 which is harder to bend than the heat exchange pipes 12 and 14.

(変更例)
前述した構成に限定されず、例えば以下のようにも変更することができる。
(Example of change)
The present invention is not limited to the configuration described above, and can be modified as follows, for example.

(1)実施例では、2条の熱交換管からなる熱交換器を挙げたが、これに限らず、往路用熱交換管と還路用熱交換管との組を複数組有する熱交換器であってもよい。例えば、図5および図6に示す変更例の熱交換器30のように、往路管(往路用熱交換管)12と還路管(還路用熱交換管)14との組を2組有するものに、本発明を適用することができる。変更例の熱交換器30は、下端が連結部16で連結された往路管12と還路管14とからなる第1の組と、下端が連結部16で連結された往路管12と還路管14とからなる第2の組を備えている。熱交換器30は、第1の組の熱交換管12,14と第2の組の熱交換管12,14とが、角度を90°変えた状態で配置され、4条の熱交換管12,14,12,14が90°間隔の円形状配列で並んでいる。熱交換器30は、一方の組の往路管12および還路管14の間に、他方の組の連結部16が挟まれて、一方の組と他方の組とが連結部16の位置を縦方向にずらした状態で組み合わせられている。変更例の熱交換器30では、スペーサ18が4条の熱交換管12,14,12,14に挟まれるように配置されて、対向する熱交換管12,14の間隔を規定している。なお、図5および図6に示す変更例の熱交換器30において、実施例と同様の構成には、実施例と同じ符号を付して詳細な説明を省略する。また、変更例の熱交換器30によっても、前述した実施例と同様の作用効果を奏する。 (1) In the embodiment, a heat exchanger composed of two heat exchange pipes has been described. However, the heat exchanger is not limited to this, and the heat exchanger has a plurality of pairs of forward heat exchange pipes and return heat exchange pipes. It may be. For example, like the heat exchanger 30 of the modified example shown in FIG. 5 and FIG. 6, there are two sets of a forward path pipe (forward path heat exchange pipe) 12 and a return path pipe (return path heat exchange pipe) 14. The present invention can be applied to anything. The heat exchanger 30 of the modified example includes a first set of the forward path pipe 12 and the return path pipe 14 whose lower ends are connected by the connection section 16, and the forward path 12 and the return path whose lower ends are connected by the connection section 16. A second set of tubes 14 is provided. The heat exchanger 30 is arranged such that the first set of heat exchange tubes 12 and 14 and the second set of heat exchange tubes 12 and 14 are changed in angle by 90 °, and the four heat exchange tubes 12 are arranged. , 14, 12, and 14 are arranged in a circular array at intervals of 90 °. In the heat exchanger 30, the connecting portion 16 of the other set is sandwiched between the outgoing pipe 12 and the returning pipe 14 of one set, and the position of the connecting portion 16 is set vertically between the one set and the other set. They are combined in a shifted state. In the heat exchanger 30 of the modified example, the spacer 18 is disposed so as to be sandwiched between the four heat exchange tubes 12, 14, 12, and 14, and the interval between the opposed heat exchange tubes 12 and 14 is defined. In addition, in the heat exchanger 30 of the modification shown in FIG. 5 and FIG. 6, the same code | symbol as an Example is attached | subjected to the structure similar to an Example, and detailed description is abbreviate | omitted. Also, the heat exchanger 30 of the modified example has the same effects as the above-described embodiment.

(2)実施例では熱交換管の断面形状を扁平状に形成したが、これに限らず、円形や四角形、その他の形状であってもよい。なお、実施例のように熱交換管を扁平形状とすることで、並行する熱交換管の間隔および熱媒体の流通面積を確保しつつ、熱交換器全体の外形を最小限にできる利点がある。
(3)実施例ではスペーサを円筒状に形成したが、これに限らず、角筒状や多角形筒状など、その他の形状であってもよい。
(4)実施例では、1本のスペーサを連続的に配置するよう構成したが、これに限らず、複数のスペーサを縦方向に直列に並べて配置してもよい。この際、直列に並ぶスペーサ同士の間隔はあけても、スペーサ同士を接するように配置してもよい。
(5)並列する熱交換管の間に配置するスペーサは、1本に限らず、並列する熱交換管の間に2本以上のスペーサを配置してもよい。この場合、同じ形状のスペーサを使用してもよいし、異なる形状のスペーサを組み合わせて使用してもよい。
(6)往路用熱交換管と還路用熱交換管との組を複数組有する場合に、2以上の組の熱交換管を1つの連結部で連結する構成であってもよい。
(7)往路用熱交換管、還路用熱交換管またはスペーサの少なくとも1つの一箇所あるいは複数箇所に、スペーサの位置ずれを防止する突起や窪み等の位置ずれ防止機構を設けてもよい。
(8)実施例では往路用熱交換管と還路用熱交換管の断面形状を同じ扁平状としたが、これに限らず、一方を扁平形状として、他方を円形とするなど、両者が異なる形状であってもよい。
(9)往路用熱交換管と還路用熱交換管との組を複数組有する場合に、仮想円の中で最も効率よく熱交換管を配置できれば、熱交換管の断面形状は特に限定されない。例えば、熱交換管の断面形状を全て扁平状としてもよいし、1箇所のみまたは2箇所を扁平状とし、残りを円形としてもよい。また、2箇所を扁平状とする場合、組となる往路用熱交換管と還路用熱交換管を扁平状としてもよいし、2組の往路用熱交換管を扁平状とし、2組の還路用熱交換管を円形としてもよい。
(10)往路用熱交換管と還路用熱交換管の間は、図3を参照して説明する仮想円の中に収まれば、往路用熱交換管と還路用熱交換管の間に配置する1又は複数本のスペーサによって、径方向に切断した断面における熱交換管の径又は長手辺よりも長くなってもよい。
(11)スペーサと熱交換管との固定は、テープや結束バンド以外の方法で行われてもよい。
(2) In the embodiment, the cross-sectional shape of the heat exchange tube is formed in a flat shape. In addition, there exists an advantage which can minimize the external shape of the whole heat exchanger, ensuring the space | interval of the parallel heat exchange pipe | tube and the distribution area of a heat medium by making a heat exchange pipe flat shape like an Example. .
(3) In the embodiment, the spacer is formed in a cylindrical shape, but the present invention is not limited to this, and may have other shapes such as a rectangular tube shape or a polygonal tube shape.
(4) In the embodiment, one spacer is continuously arranged. However, the present invention is not limited to this, and a plurality of spacers may be arranged in series in the vertical direction. At this time, the spacers arranged in series may be spaced apart or may be arranged so as to contact each other.
(5) The number of spacers disposed between the parallel heat exchange tubes is not limited to one, and two or more spacers may be disposed between the parallel heat exchange tubes. In this case, spacers having the same shape may be used, or spacers having different shapes may be used in combination.
(6) When there are a plurality of sets of the forward path heat exchange pipe and the return path heat exchange pipe, a configuration in which two or more sets of heat exchange pipes are connected by one connecting portion may be employed.
(7) A positional deviation prevention mechanism such as a protrusion or a depression for preventing the positional deviation of the spacer may be provided at one or a plurality of positions of the forward path heat exchange pipe, the return path heat exchange pipe or the spacer.
(8) In the embodiment, the cross-sectional shapes of the outward heat exchange pipe and the return heat exchange pipe are the same flat shape. However, the present invention is not limited to this, and both are different, for example, one is flat and the other is circular. It may be a shape.
(9) The cross-sectional shape of the heat exchange pipe is not particularly limited as long as the heat exchange pipe can be arranged most efficiently in the virtual circle when there are a plurality of sets of the forward path heat exchange pipe and the return path heat exchange pipe. . For example, the cross-sectional shape of the heat exchange tube may be all flat, only one or two may be flat, and the rest may be circular. When two places are flat, the forward heat exchange pipe and the return heat exchange pipe to be paired may be flat, or the two forward heat exchange pipes are flat and two sets of The return path heat exchange tube may be circular.
(10) If the space between the forward heat exchange pipe and the return heat exchange pipe is within the virtual circle described with reference to FIG. By the 1 or several spacer to arrange | position, you may become longer than the diameter or longitudinal side of the heat exchange tube in the cross section cut | disconnected by radial direction.
(11) The spacer and the heat exchange tube may be fixed by a method other than tape or a binding band.

10,30 熱交換器,12 往路管(往路用熱交換管、熱交換管),
14 還路管(還路用熱交換管、熱交換管),18 スペーサ,18a 中空空間
10, 30 heat exchanger, 12 forward pipe (outward heat exchange pipe, heat exchange pipe),
14 Return pipe (return path heat exchange pipe, heat exchange pipe), 18 spacer, 18a hollow space

Claims (5)

地中に埋設される熱交換器であって、
並行するように配置された複数条の熱交換管と、
並行するように配置された前記複数条の熱交換管のうちの往路用熱交換管と還路用熱交換管との間に配置され、当該熱交換管同士の間隔を規定するスペーサとを備え、
前記スペーサは、気体が封入された状態で閉じた中空空間を有する筒状体であり、前記中空空間が前記熱交換管同士の間に配置されている
ことを特徴とする熱交換器。
A heat exchanger embedded in the ground,
A plurality of heat exchange tubes arranged in parallel;
A spacer that is disposed between the heat exchange pipe for the forward path and the heat exchange pipe for the return path among the plurality of heat exchange pipes arranged in parallel, and that defines a space between the heat exchange pipes; ,
The said spacer is a cylindrical body which has the hollow space closed in the state with which the gas was enclosed, The said hollow space is arrange | positioned between the said heat exchange tubes, The heat exchanger characterized by the above-mentioned.
前記スペーサは、並行するように配置された前記往路用熱交換管と前記還路用熱交換管との間における地表に近い上部に少なくとも配置されている請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the spacer is disposed at least at an upper portion close to a ground surface between the forward heat exchange pipe and the return heat exchange pipe arranged in parallel. 前記スペーサは、並行するように配置された前記往路用熱交換管と前記還路用熱交換管の間に、該熱交換管に沿って延在するように配置されている請求項1または2記載の熱交換器。   The said spacer is arrange | positioned so that it may extend along this heat exchange pipe between the said heat exchange pipe for an outward path and the heat exchange pipe for a return path which are arrange | positioned in parallel. The described heat exchanger. 前記スペーサは、円筒形に形成されている請求項1〜3の何れか一項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein the spacer is formed in a cylindrical shape. 前記スペーサは、前記熱交換管の延在方向と交差する方向へ曲げ可能な可撓性を有している請求項1〜4の何れか一項に記載の熱交換器。   The said spacer is a heat exchanger as described in any one of Claims 1-4 which has the flexibility which can be bent in the direction which cross | intersects the extension direction of the said heat exchange pipe | tube.
JP2017097070A 2017-05-16 2017-05-16 Heat exchanger Active JP6938215B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017097070A JP6938215B2 (en) 2017-05-16 2017-05-16 Heat exchanger
JP2021142457A JP7232450B2 (en) 2017-05-16 2021-09-01 Spacer for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097070A JP6938215B2 (en) 2017-05-16 2017-05-16 Heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021142457A Division JP7232450B2 (en) 2017-05-16 2021-09-01 Spacer for heat exchanger

Publications (2)

Publication Number Publication Date
JP2018194213A true JP2018194213A (en) 2018-12-06
JP6938215B2 JP6938215B2 (en) 2021-09-22

Family

ID=64570609

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017097070A Active JP6938215B2 (en) 2017-05-16 2017-05-16 Heat exchanger
JP2021142457A Active JP7232450B2 (en) 2017-05-16 2021-09-01 Spacer for heat exchanger

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021142457A Active JP7232450B2 (en) 2017-05-16 2021-09-01 Spacer for heat exchanger

Country Status (1)

Country Link
JP (2) JP6938215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021183905A (en) * 2017-05-16 2021-12-02 株式会社イノアック住環境 Spacer for heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071439A (en) * 2005-09-06 2007-03-22 Misawa Kankyo Gijutsu Kk Triple u-shaped tube type underground heat exchanger
JP2007527493A (en) * 2003-07-03 2007-09-27 エンリンク ゲオエナジー サービシズ,インク. Geothermal exchanger configuration method
JP2013253743A (en) * 2012-06-07 2013-12-19 Jfe Steel Corp Underground heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561985A (en) * 1995-05-02 1996-10-08 Ecr Technologies, Inc. Heat pump apparatus including earth tap heat exchanger
JP2010261633A (en) * 2009-05-01 2010-11-18 Nemoto Kikaku Kogyo Kk Multiple-tube for heat exchanger and geothermal air conditioning system using the same
KR100958208B1 (en) * 2009-10-21 2010-05-14 가진기업(주) Geothermal heat exchanger
US20110203765A1 (en) * 2010-02-23 2011-08-25 Robert Jensen Multipipe conduit for geothermal heating and cooling systems
JP6594174B2 (en) * 2015-11-19 2019-10-23 キヤノン株式会社 Image forming apparatus
JP6938215B2 (en) * 2017-05-16 2021-09-22 株式会社イノアック住環境 Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527493A (en) * 2003-07-03 2007-09-27 エンリンク ゲオエナジー サービシズ,インク. Geothermal exchanger configuration method
JP2007071439A (en) * 2005-09-06 2007-03-22 Misawa Kankyo Gijutsu Kk Triple u-shaped tube type underground heat exchanger
JP2013253743A (en) * 2012-06-07 2013-12-19 Jfe Steel Corp Underground heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021183905A (en) * 2017-05-16 2021-12-02 株式会社イノアック住環境 Spacer for heat exchanger
JP7232450B2 (en) 2017-05-16 2023-03-03 株式会社イノアック住環境 Spacer for heat exchanger

Also Published As

Publication number Publication date
JP2021183905A (en) 2021-12-02
JP6938215B2 (en) 2021-09-22
JP7232450B2 (en) 2023-03-03

Similar Documents

Publication Publication Date Title
CN101482346B (en) Distributor tube subassembly
BR112017015690B1 (en) tube-in-tube-type assembly and piping and method of assembling a tube-in-tube-type structure
TWI606226B (en) Pipe member equipped with heat insulation core pipeline, auxiliary heat conduction structure and u-shaped annularly-distributed pipeline
JP5962232B2 (en) Manufacturing method of underground heat exchanger and underground heat exchanger
US9109813B2 (en) Twisted conduit for geothermal heating and cooling systems
JP7232450B2 (en) Spacer for heat exchanger
JP2012047407A (en) Heat exchanger, heat exchange system, method of constructing heat exchange system
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
US8640765B2 (en) Twisted conduit for geothermal heating and cooling systems
US20130112368A1 (en) Geothermal well loop
JP2009002631A (en) Heat exchanger and heat exchanging system
JP5867001B2 (en) Underground heat exchanger
JP6549873B2 (en) Geothermal heat collection tube
US10788157B2 (en) Elongated pre-insulated pipe assembly and a local heat distribution system
JP2014020644A (en) Underground heat exchanger, and method of inserting underground heat exchanger
JP6925949B2 (en) Piping protection structure
KR102648324B1 (en) Heat exchange coil tube spacer of multi-tube type underground heat exchanger
US20100192943A1 (en) Solar heat collection system
KR101448200B1 (en) Geothermal energy utilizing apparatus and method using tube sheet
JP2019086142A (en) Pipe holding spacer
EP0550438B1 (en) A method of establishing subterranean pipelines of heat insulated, concentric pipes, such a pipeline and a pipe element therefor
KR101314334B1 (en) Heat exchanger for high performance ground source heat pump
JP2008089073A (en) Heat insulation tube
JP2017101867A (en) Geothermal heat exchanger and heat pump system using the same
JP2016194411A (en) Underground heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150