KR102648324B1 - Heat exchange coil tube spacer of multi-tube type underground heat exchanger - Google Patents

Heat exchange coil tube spacer of multi-tube type underground heat exchanger Download PDF

Info

Publication number
KR102648324B1
KR102648324B1 KR1020210172247A KR20210172247A KR102648324B1 KR 102648324 B1 KR102648324 B1 KR 102648324B1 KR 1020210172247 A KR1020210172247 A KR 1020210172247A KR 20210172247 A KR20210172247 A KR 20210172247A KR 102648324 B1 KR102648324 B1 KR 102648324B1
Authority
KR
South Korea
Prior art keywords
heat exchange
exchange coil
tube
heat
coil tube
Prior art date
Application number
KR1020210172247A
Other languages
Korean (ko)
Other versions
KR20230083859A (en
Inventor
조희남
안조범
최성욱
전종수
장현호
Original Assignee
주식회사 지앤지테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지앤지테크놀러지 filed Critical 주식회사 지앤지테크놀러지
Priority to KR1020210172247A priority Critical patent/KR102648324B1/en
Publication of KR20230083859A publication Critical patent/KR20230083859A/en
Application granted granted Critical
Publication of KR102648324B1 publication Critical patent/KR102648324B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T2010/50Component parts, details or accessories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

본 발명은 다수가 지열공에 삽입 설치되는 열교환코일관들 상호 간은 물론 지열공의 내벽면과도 일정 간격을 유지할 수 있도록 하는 다관식 지중열교환기의 열교환코일관 스페이서에 관한 것이다.
본 발명의 구성은, 열매체가 순환하도록 서로 연결되는 공급부 및 환수부로 구성되어 지열공 내에 삽입 설치되고 열매체의 열을 지중열교환기에 전달하는 다수의 열교환코일관들에 종방향을 따라 등간격을 이루도록 설치되어 상기 열교환코일관들의 간격을 유지하는 다수의 스페이서로서, 종방향에 대한 일정 길이를 가지며 중앙을 이루는 몸체부; 상기 몸체부로부터 방사상 돌출되는 다수의 날개부; 다수의 상기 날개부들 사이의 간격에 형성되어 상기 열교환코일관의 끼움 장착을 안내하는 가이드부; 및 탄성을 갖는 재질로 이루어져 상기 가이드부와 일체로 구비되는 반원의 호 형상으로 상기 열교환코일관이 탄성적으로 끼움 장착되는 장착부;를 포함한다.
The present invention relates to a heat exchange coil tube spacer for a multi-tube geothermal heat exchanger that allows a plurality of heat exchange coil tubes inserted into a geothermal hole to maintain a certain distance not only between each other but also with the inner wall of the geothermal hole.
The configuration of the present invention consists of a supply part and a water return part that are connected to each other so that the heat medium circulates, are inserted and installed into a geothermal hole, and are installed at equal intervals along the longitudinal direction in a plurality of heat exchange coil tubes that transfer the heat of the heat medium to the ground heat exchanger. A plurality of spacers that maintain the spacing between the heat exchange coil pipes, the body portion having a certain length in the longitudinal direction and forming the center; a plurality of wings protruding radially from the body portion; A guide part formed in the gap between the plurality of wing parts to guide the insertion and installation of the heat exchange coil tube; and a mounting part made of an elastic material and integrally provided with the guide part, in the shape of a semicircular arc, into which the heat exchange coil tube is elastically fitted.

Description

다관식 지중열교환기의 열교환코일관 스페이서{Heat exchange coil tube spacer of multi-tube type underground heat exchanger}Heat exchange coil tube spacer of multi-tube type underground heat exchanger}

본 발명은 다관식 지중열교환기의 열교환코일관 스페이서에 관한 것으로, 구체적으로는 다수가 지열공에 삽입 설치되는 열교환코일관들 상호 간은 물론 지열공의 내벽면과도 일정 간격을 유지할 수 있도록 하는 다관식 지중열교환기의 열교환코일관 스페이서에 관한 것이다.The present invention relates to a heat exchange coil pipe spacer for a shell-and-tube type ground heat exchanger, and specifically, a spacer for heat exchange coil pipes inserted into a geothermal hole to maintain a certain distance not only between each other but also with the inner wall of the geothermal hole. This relates to the heat exchange coil tube spacer of a shell-and-tube underground heat exchanger.

일반적으로 냉난방을 위하여 사용되는 에너지원으로는, 석탄, 석유 또는 천연가스 등과 같은 화석연료나 원자력을 이용하여 생산된 전력 에너지가 사용되고 있으나, 화석연료는 연소과정에서 발생하는 각종 공해물질로 인하여 환경을 오염시키게 됨으로써, 근래에는 이를 대신할 수 있는 대체 에너지의 개발이 활발하게 진행되고 있다.In general, energy sources used for cooling and heating include fossil fuels such as coal, oil, or natural gas, or electric energy produced using nuclear energy. However, fossil fuels pollute the environment due to various pollutants generated during the combustion process. Due to pollution, the development of alternative energy that can replace it has been actively progressing in recent years.

이러한 대체 에너지로서, 무한한 에너지원을 갖는 풍력, 태양열 또는 지열 등을 이용할 수 있는데, 이들 에너지원은 공기오염과 기후변화에 거의 영향을 받지 않으면서 에너지를 얻을 수 있다는 장점이 있는 반면, 에너지 밀도가 현저히 낮은 단점이 있다.As such alternative energy, wind power, solar heat, or geothermal heat, which are infinite energy sources, can be used. These energy sources have the advantage of being able to obtain energy while being almost unaffected by air pollution and climate change, while the energy density is low. It has a significantly low disadvantage.

특히, 풍력과 태양열을 이용하여 에너지를 얻기 위해서는 설치장소의 한계와 함께 넓은 면적이 확보되어야 하며, 단위장치당 에너지 생산용량이 적고 설치 및 유지관리에 많은 비용이 소요되는 단점이 있다.In particular, in order to obtain energy using wind and solar power, there is a limitation in the installation location and a large area must be secured, and there is a disadvantage in that the energy production capacity per unit device is small and installation and maintenance costs a lot of money.

대체에너지의 일원인 지열에너지는 지하 깊은 곳에 고온의 지열을 이용하여 발전 등에 활용되기도 하고, 10~20℃의 지열을 이용하여 냉난방 시스템에 적용되기도 하는데, 지열을 이용하여 건물 등의 냉난방기술에 적용하는 경우, 기존 냉난방장치에 비하여 최대 40% 이상의 에너지를 절감할 수 있으며, 40~70%의 에너지 발생비용을 절감할 수 있는 것으로 알려져 있다.Geothermal energy, a member of alternative energy, is used for power generation by using high-temperature geothermal energy deep underground, and is also applied to cooling and heating systems using geothermal heat of 10~20℃. Geothermal energy is used to apply geothermal heating and cooling technology to buildings, etc. It is known that up to 40% more energy can be saved compared to existing air conditioning and heating devices, and energy generation costs can be reduced by 40 to 70%.

이러한 지열을 이용하여 건물 내의 냉난방을 목적으로 지하수와 같은 천연 열저장소를 이용하는 전기장치인 지열 히트펌프 시스템은, 지중열교환기를 구비하여 하절기에는 지중으로 열을 방출하고, 동절기에는 지중으로부터 열을 흡수하는 방식 등으로 운용될 수 있어, 연중 10~20℃의 일정한 온도를 유지하는 지온에 의해, 냉난방 성능이 저하되지 않아 안정적인 운전이 가능하다.The geothermal heat pump system, which is an electrical device that uses natural heat storage such as groundwater for the purpose of cooling and heating inside a building using geothermal heat, is equipped with a ground heat exchanger to release heat into the ground in the summer and absorb heat from the ground in the winter. It can be operated in various ways, so stable operation is possible as cooling and heating performance does not deteriorate due to the ground temperature maintaining a constant temperature of 10~20℃ throughout the year.

지중열교환기는 일반적으로 지하에 매설되거나 강 또는 호수와 같은 곳에 설치되어, 지열을 건물과 같은 대상물 내외부로 유입 및 유출시키는 것을 반복함으로써, 대상물의 내부를 열교환시키며, 종래의 지열이송용 파이프는 건물측으로 지하열을 유입 및 유출할 수 있도록 U자형 파이프로 구성되고, 파이프의 내부에는 물 또는 부동액 등과 같은 유체가 수용되어 지열을 전가하는 열매체 역할을 한다,A ground heat exchanger is generally buried underground or installed in a place such as a river or lake, and exchanges heat inside the object by repeatedly flowing geothermal heat into and out of the object, such as a building. Conventional geothermal heat transfer pipes are used to transfer heat to the building side. It is composed of a U-shaped pipe to allow underground heat to flow in and out, and the inside of the pipe contains fluid such as water or antifreeze, which serves as a heat medium to transfer geothermal heat.

통상적으로 지열이송용 파이프는 건물내의 폐열을 지하로 이송시킬 수 있는 폐열유입파이프와, 폐열유입파이프를 따라 유입된 폐열을 지하로 순환시켜 건물측으로 유출시키는 지열유출파이프로 이루어지며, 폐열유입파이프와 지열유출파이프는 U자형 재순환파이프로 연결된 구조를 가진다.Typically, geothermal transfer pipes consist of a waste heat inlet pipe that transports waste heat within a building underground, and a geothermal outflow pipe that circulates the waste heat flowing in along the waste heat inlet pipe underground and outflows it to the building. The geothermal outflow pipe has a structure connected to a U-shaped recirculation pipe.

이러한 지열이송용 파이프는 폐열유입파이프와 지열유출파이프가 하나의 지열공 상에 수직방향으로 나란히 설치됨에 따라, 지열공 등에 삽입시 폐열유입파이프와 지열유출파이프가 서로 꼬이게 되면서 지열공 외벽에 걸리거나, 꼬여진 부위 상에서 파이프간의 열간섭으로 인해 열교환 성능이 저하되는 문제점이 발생하였다.In these geothermal transfer pipes, the waste heat inflow pipe and the geothermal outflow pipe are installed vertically side by side in one geothermal hole, so when inserted into the geothermal hole, etc., the waste heat inflow pipe and the geothermal outflow pipe become twisted with each other and get caught on the outer wall of the geothermal hole. , a problem occurred in which heat exchange performance deteriorated due to thermal interference between pipes in the twisted area.

그리고, 지열이송용 파이프의 설치 후, 그라우팅을 위해 트레미 파이프를 지열공에 삽입하는 경우, 폐열유입파이프와 지열유출파이프간의 꼬임과 불규칙한 방향성으로 인해 트레미 파이프가 지열공 하단까지 명확하게 도달되지 못하여 그라우팅 작업이 견고하게 이루어지지 못하는 경우도 빈번히 발생되고 있었다.Also, when inserting the tremie pipe into the geothermal hole for grouting after installing the geothermal transfer pipe, the tremie pipe does not clearly reach the bottom of the geothermal hole due to the twist and irregular direction between the waste heat inflow pipe and the geothermal outflow pipe. As a result, there were frequent cases where grouting work was not carried out firmly.

한편, 종래의 기존 지중열교환기의 경우, 지열공에 공급관과 환수관, 총 2개의 관만이 삽입되어 지열공 내부에 빈 공간이 넓게 형성됨으로써, 열교환 효율이 떨어지는 문제가 있었고, 이로 인해 건축물에 필요한 열용량을 충족시키기 위해서는 많은 지열공의 굴착이 요구되었으며, 이에 따라 시설부지의 면적이 넓게 소요되는 문제가 있었다.Meanwhile, in the case of the conventional ground heat exchanger, only two pipes, a supply pipe and a return pipe, were inserted into the geothermal well, creating a large empty space inside the geothermal well, which led to the problem of low heat exchange efficiency, which led to the problem of low heat exchange efficiency. In order to meet the heat capacity, the excavation of many geothermal wells was required, which led to the problem of requiring a large area of facility site.

이를 해결하기 위해, 3관식이나 4관식 같은 다관식 지중열교환기가 개발된 바 있으며, 열전도시험시 투입열량을 기준으로, 2관식이 대략 50~80W/m인 반면에 4관식의 경우에는 대략 65~105W/m로서 단위 미터당 열교환용량을 크게 향상시킬 수 있음이 확인되었고, 이로 인해 지열공 굴착수향의 감소와 시설부지의 축소 가능성을 높일 수 있었다.To solve this problem, multi-tube underground heat exchangers, such as three-tube or four-tube types, have been developed. Based on the heat input during the heat conduction test, the two-tube type is approximately 50 to 80 W/m, while the four-tube type is approximately 65 to 80 W/m. It was confirmed that the heat exchange capacity per unit meter could be significantly improved at 105W/m, which increased the possibility of reducing the geothermal hole excavation water flow and reducing the facility site.

그런데, 상술한 바와 같은 다관식 지중열교환기의 경우, 앞서 언급한 바 있는 파이프간의 꼬임과 불규칙한 방향성의 문제는 더욱 증가될 수밖에 없었고, 단순히 파이프들을 클립 형식으로 붙잡아주는 형태를 취할 수밖에 없는 한계를 극복하기 위한 기술의 개발이 요구되고 있는 실정이다.However, in the case of the shell-and-tube underground heat exchanger as described above, the problems of twisting and irregular direction between pipes, which were mentioned earlier, were bound to increase further, and the limitation of simply holding the pipes in the form of a clip was overcome. The development of technology to do so is required.

대한민국 공개특허공보 제10-2008-0092726호(2008.10.16. 공개)Republic of Korea Patent Publication No. 10-2008-0092726 (published on October 16, 2008) 대한민국 공개특허공보 제10-2019-0059644호(2019.05.31. 공개)Republic of Korea Patent Publication No. 10-2019-0059644 (published May 31, 2019)

본 발명의 목적은 다수가 지열공에 삽입 설치되는 열교환코일관들 상호 간은 물론 지열공의 내벽면과도 일정 간격을 유지할 수 있도록 하면서도, 장착된 열교환코일관들의 고정이 견고하게 유지될 수 있도록 하여 이탈을 방지함은 물론 지열공 내벽면과의 마찰을 최소화하여 열교환코일관들의 손상을 억제할 수 있도록 하는 다관식 지중열교환기의 열교환코일관 스페이서를 제공함에 있다.The purpose of the present invention is to maintain a certain distance between the heat exchange coil tubes inserted into the geothermal hole and the inner wall of the geothermal hole, and to maintain the fixed heat exchange coil tubes installed firmly. The aim is to provide a heat exchange coil pipe spacer for a multi-tube type ground heat exchanger that not only prevents separation but also minimizes friction with the inner wall of the geothermal hole and prevents damage to the heat exchange coil pipes.

상기 목적을 달성하기 위한 본 발명에 따른 다관식 지중열교환기의 열교환코일관 스페이서는, 열매체가 순환하도록 서로 연결되는 공급부 및 환수부로 구성되어 지열공 내에 삽입 설치되고 열매체의 열을 지중열교환기에 전달하는 다수의 열교환코일관들에 종방향을 따라 등간격을 이루도록 설치되어 상기 열교환코일관들의 간격을 유지하는 다수의 스페이서로서, 종방향에 대한 일정 길이를 가지며 중앙을 이루는 몸체부; 상기 몸체부로부터 방사상 돌출되는 다수의 날개부; 다수의 상기 날개부들 사이의 간격에 형성되어 상기 열교환코일관의 끼움 장착을 안내하는 가이드부; 및 탄성을 갖는 재질로 이루어져 상기 가이드부와 일체로 구비되는 반원의 호 형상으로 상기 열교환코일관이 탄성적으로 끼움 장착되는 장착부;를 포함한다.The heat exchange coil tube spacer of the shell-and-tube ground heat exchanger according to the present invention for achieving the above object is composed of a supply part and a return part connected to each other so that the heat medium circulates, is inserted into the geothermal hole, and transmits the heat of the heat medium to the ground heat exchanger. A plurality of spacers installed at equal intervals along the longitudinal direction of a plurality of heat exchange coil tubes to maintain the spacing between the heat exchange coil tubes, the spacers having a constant length in the longitudinal direction and forming a central body portion; a plurality of wings protruding radially from the body portion; A guide part formed in the gap between the plurality of wing parts to guide the insertion and installation of the heat exchange coil tube; and a mounting part made of an elastic material and integrally provided with the guide part, in the shape of a semicircular arc, into which the heat exchange coil tube is elastically fitted.

다수의 상기 날개부는 상단으로 갈수록 뾰족한 형상을 이룰 수 있다.The plurality of wing portions may have a sharp shape toward the top.

다수의 상기 날개부는 횡방향 끝단부에 접착부재가 삽입되는 접착홈을 종방향을 따라 형성하여 접착부재를 통해 상기 열교환코일관의 외주면과 접착되는 고정을 이룰 수 있다.The plurality of wing parts may be fixed by forming adhesive grooves along the longitudinal direction into which an adhesive member is inserted at the transverse end portions, thereby being adhered to the outer peripheral surface of the heat exchange coil tube through the adhesive member.

다수의 상기 날개부는 상기 장착부에 삽입된 상기 열교환코일관보다 횡방향으로 더 돌출되는 횡방향 길이를 갖는 형상으로 이루어질 수 있다.The plurality of wings may be shaped to have a transverse length that protrudes further in the transverse direction than the heat exchange coil tube inserted in the mounting unit.

상기 장착부는 상기 열교환코일관이 삽입되는 입구측의 간격이 상기 열교환코일관의 직경보다 좁게 이루어져 억지끼움 방식으로 삽입된 상기 열교환코일관의 이탈을 방지할 수 있다.The mounting part has a gap at the inlet where the heat exchange coil tube is inserted being narrower than the diameter of the heat exchange coil tube, thereby preventing the heat exchange coil tube inserted through interference fit from being separated.

상술한 본 발명의 구성에 의하면, 다수가 지열공에 삽입 설치되는 열교환코일관들 상호 간은 물론 지열공의 내벽면과도 일정 간격을 유지할 수 있게 되면서도, 장착된 열교환코일관들의 고정이 견고하게 유지되어 이탈이 방지됨은 물론 지열공 내벽면과의 마찰이 최소화되어 열교환코일관들의 손상이 억제될 수 있는 효과가 있다.According to the configuration of the present invention described above, it is possible to maintain a certain distance not only between each other but also with the inner wall of the geothermal hole between a plurality of heat exchange coil tubes inserted into the geothermal hole, and the fixed heat exchange coil tubes installed are firmly secured. Not only is it maintained and prevented from breaking away, but friction with the inner wall of the geothermal hole is minimized, which has the effect of suppressing damage to the heat exchange coil pipes.

도 1은 본 발명에 따른 다관식 지중열교환기의 열교환코일관 스페이서를 개략적으로 나타낸 사시도이다.
도 2는 본 발명에 따른 다관식 지중열교환기의 열교환코일관 스페이서에 장착되는 열교환코일관을 접착부재로 고정하는 것을 설명하기 위해 개략적으로 나타낸 사시도이다.
도 3은 본 발명에 따른 다관식 지중열교환기의 열교환코일관 스페이서가 적용된 다관식 지중열교환기의 전체 구성을 개략적으로 나타낸 단면도이다.
Figure 1 is a perspective view schematically showing the heat exchange coil tube spacer of the shell-and-tube underground heat exchanger according to the present invention.
Figure 2 is a schematic perspective view to explain fixing the heat exchange coil tube mounted on the heat exchange coil tube spacer of the shell-and-tube underground heat exchanger according to the present invention with an adhesive member.
Figure 3 is a cross-sectional view schematically showing the overall configuration of a shell-and-tube underground heat exchanger to which the heat exchange coil tube spacer of the shell-and-tube underground heat exchanger according to the present invention is applied.

이하, 첨부한 도면을 참조하여 상술한 본 발명의 목적을 구현하기 위한 바람직한 실시 구성과 이들 구성에 따른 작용관계에 대하여 설명하겠으며, 종래와 동일 내지 동일 범주에 있는 기술구성에 대한 상세한 설명은 생략하기로 한다.Hereinafter, with reference to the attached drawings, preferred implementation configurations for realizing the purpose of the present invention described above and the functional relationships according to these configurations will be described, and detailed descriptions of technical configurations that are the same or in the same category as the conventional ones will be omitted. Do this.

본 발명은 다수가 지열공에 삽입 설치되는 열교환코일관들 상호 간은 물론 지열공의 내벽면과도 일정 간격을 유지할 수 있도록 하는 다관식 지중열교환기의 열교환코일관 스페이서에 관한 것이다.The present invention relates to a heat exchange coil tube spacer for a multi-tube geothermal heat exchanger that allows a plurality of heat exchange coil tubes inserted into a geothermal hole to maintain a certain distance not only between each other but also with the inner wall of the geothermal hole.

이를 위한 본 발명에 따른 스페이서(100)는, 도 1 내지 도 3에 도시한 바와 같이, 몸체부(110), 날개부(120), 가이드부(130) 및 장착부(140)를 포함한 구성으로 이루어질 수 있다.For this purpose, the spacer 100 according to the present invention is composed of a body portion 110, a wing portion 120, a guide portion 130, and a mounting portion 140, as shown in FIGS. 1 to 3. You can.

이러한 본 발명의 상세한 설명에 앞서, 다관식 지중열교환기는, 도 3과 같이, 지중에 천공 형성되는 지열공(1), 지열공(1) 안에 삽입 설치되고 열매체의 순환을 이용하여 지열을 회수한 후 공급하는 지중열교환기로서, 그 내부를 따라 열매체를 순환시키는 순환수단(2)과, 순환수단(2)을 통해 지중열교환기에서 공급되는 지열을 열원으로 하여 냉난방열을 생산하여 부하측 열교환기(6)에 공급하는 히트펌프(5, 모든 열교환기를 총칭)와, 지열공(1) 내부에 충진되는 충진재를 포함하며, 지중열교환기는 다관식의 열교환코일관(10)을 기본 구성으로 할 수 있다.Prior to the detailed description of the present invention, the shell-and-tube geothermal heat exchanger is inserted into a geothermal hole (1) formed in the ground, as shown in FIG. 3, and is inserted into the geothermal hole (1) and recovers geothermal heat using the circulation of the heat medium. It is a ground heat exchanger that is supplied afterward, and produces cooling and heating heat by using the geothermal heat supplied from the ground heat exchanger through the circulation means (2) as a heat source and a circulation means (2) that circulates the heat medium along the inside of the heat exchanger (2). It includes a heat pump (5, a general term for all heat exchangers) supplied to 6) and a filler material filled inside the geothermal hole (1), and the basic configuration of the geothermal heat exchanger can be a multi-tube heat exchange coil tube (10). .

여기에서, 지열공(1)은 종래의 굴착장비를 통해 굴착 형성되지만 열교환코일관(10)들과 유기적 결합관계를 맺고 있는 것으로, 본 발명이 적용될 수 있도록 굴착 형성되는 것이다.Here, the geothermal hole 1 is excavated and formed using conventional excavation equipment, but is in an organic bonding relationship with the heat exchange coil pipes 10, and is excavated so that the present invention can be applied.

그리고, 순환수단(2)은 열교환코일관(10)들과 히트펌프(5)를 연결하여 열매체가 열교환코일관(10)들과 히트펌프(5)를 순환하도록 하는 연결관(3)과, 열매체를 강제로 순환시키는 순환펌프(4)를 포함할 수 있다.In addition, the circulation means (2) includes a connection pipe (3) that connects the heat exchange coil pipes (10) and the heat pump (5) to allow the heat medium to circulate between the heat exchange coil pipes (10) and the heat pump (5), It may include a circulation pump (4) that forcibly circulates the heat medium.

이때, 연결관(3)은 열매체를 히트펌프(5)에 공급하는 공급부(3-1) 및 히트펌프(5)를 통과한 열매체를 열교환코일관(10)으로 복귀시키는 환수부(3-2)로 구분될 수 있다.At this time, the connection pipe (3) has a supply part (3-1) that supplies heat medium to the heat pump (5) and a water return part (3-2) that returns the heat medium that has passed through the heat pump (5) to the heat exchange coil pipe (10). ) can be divided into

이러한 공급부(3-1)와 환수부(3-2)는 각각 열교환코일관(10)의 수량과 동일하여 1:1로 연결될 수 있고, 또는 다수의 열교환코일관(10)보다 더 적은 수량(예를 들어, 1개)으로 형성되어 다수의 열교환코일관(10)들이 하나로 모아져 연결되는 형태일 수도 있으며, 이와 같은 구성을 통해 열교환코일관(10)이 작게는 2개 많게는 6개 이상이 하나의 지열공(1)에 삽입 설치될 수 있다.These supply units (3-1) and water return units (3-2) are each the same as the quantity of heat exchange coil pipes 10 and can be connected 1:1, or the quantity is smaller than the plurality of heat exchange coil pipes 10 ( For example, it may be formed as a single heat exchange coil tube (10) and connected as one, and through this configuration, the heat exchange coil tubes (10) can be as small as two or as many as six or more. It can be inserted and installed into the geothermal hole (1).

한편, 본 발명의 스페이서(100)는, 열매체가 순환하도록 서로 연결되는 공급부(3-1) 및 환수부(3-2)로 구성되어 지열공(1) 내에 삽입 설치되고 열매체의 열을 지중열교환기에 전달하는 다수의 열교환코일관(10)들에 종방향을 따라 등간격을 이루도록 설치되어 열교환코일관(10)들의 간격을 유지할 수 있도록 기능한다.Meanwhile, the spacer 100 of the present invention is composed of a supply part 3-1 and a water return part 3-2 that are connected to each other so that the heat medium circulates, is inserted into the geothermal hole 1, and exchanges the heat of the heat medium for ground heat exchange. It is installed at equal intervals along the longitudinal direction on a plurality of heat exchange coil pipes (10) that deliver heat to the machine, and functions to maintain the spacing between the heat exchange coil pipes (10).

예컨대, 스페이서(100)는 하중을 부가하는 목적이 겸해질 경우에는 주물품으로 이루어지되, 외피면이 PVC 또는 PE 코팅되어 HDPE(고밀도 폴리에틸렌) 재질로 이루어진 열교환코일관(10)의 표면이 손상되지 않도록 함이 바람직하고, 단순하게 스페이서(100)로의 기능을 충족시키고자 할 경우에는 합성수지 재질을 이용하여 제작될 수 있다.For example, when the spacer 100 serves the purpose of adding a load, it is made of a cast product, but the outer surface is coated with PVC or PE so that the surface of the heat exchange coil tube 10 made of HDPE (high-density polyethylene) is not damaged. It is desirable to avoid this, and if it is desired to simply fulfill the function of the spacer 100, it can be manufactured using a synthetic resin material.

이러한 스페이서(100)를 이루는 몸체부(110)는, 도 1 및 도 2와 같이, 종방향에 대한 일정 길이에 따른 두께를 가지며 스페이서(100)의 중앙을 이룰 수 있다.The body portion 110 constituting the spacer 100 may have a thickness along a certain length in the longitudinal direction, as shown in FIGS. 1 and 2, and may form the center of the spacer 100.

그리고, 날개부(120)는, 다수가 몸체부(110)의 원주방향을 따라 일정 간격을 두고 방사상 돌출되는 구조를 갖는 것이다.And, the wing portion 120 has a structure in which a plurality of wings protrude radially at regular intervals along the circumferential direction of the body portion 110.

이때, 다수의 날개부(120)는 상단으로 갈수록 뾰족한 형상(예를 들어, 종단면이 삼각형)을 이룸으로써, 지중열교환기의 시공과정에서 분말(그래뉼, Granule) 형태로 충진 및 공급되는 충진재(예를 들어, 벤토나이트제재)가 쌓이지 않도록 하거나 트레미관(Tremie Pipe)의 삽입시 장애가 발생되지 않도록 할 수 있다.At this time, the plurality of wings 120 have a sharp shape (for example, a triangular cross-section) toward the top, so that the filler (e.g. For example, it can prevent bentonite (bentonite) from accumulating or prevent problems from occurring when inserting a Tremie Pipe.

또한, 다수의 날개부(120)는 횡방향 끝단부에 접착부재(A)가 삽입되는 접착홈(121)을 종방향을 따라 형성하여 접착부재(A)를 통해 열교환코일관(10)의 외주면과 접착되는 고정을 이룰 수 있고, 예컨대 접착부재(A)는 통상의 접착테이프를 적용할 수 있다.In addition, the plurality of wings 120 form adhesive grooves 121 along the longitudinal direction into which the adhesive member (A) is inserted at the transverse end portion, so that the outer peripheral surface of the heat exchange coil tube 10 is formed through the adhesive member (A). It is possible to achieve adhesive fixation, and for example, a normal adhesive tape can be applied as the adhesive member (A).

더불어, 다수의 날개부(120)는 후술하는 장착부(140)에 삽입된 열교환코일관(10)보다 횡방향으로 더 돌출되는 횡방향 길이를 갖는 형상으로 이루어짐으로써, 지중열교환기의 시공과정에서 열교환코일관(10)들이 지열공(1)의 내벽면과 충돌하지 못하도록 하여 손상을 예방할 수 있도록 한다.In addition, the plurality of wings 120 are shaped to have a transverse length that protrudes further in the transverse direction than the heat exchange coil tube 10 inserted into the mounting portion 140, which will be described later, thereby facilitating heat exchange during the construction process of the ground heat exchanger. Damage can be prevented by preventing the coil pipes (10) from colliding with the inner wall of the geothermal hole (1).

한편, 본 발명의 스페이서(100)를 이루는 가이드부(130)는, 다수의 날개부(120)들 사이의 간격에 형성되어 열교환코일관(10)의 끼움 장착을 안내할 수 있도록 기능한다.Meanwhile, the guide part 130 forming the spacer 100 of the present invention is formed in the gap between the plurality of wing parts 120 and functions to guide the insertion of the heat exchange coil tube 10.

이렇게 다수의 날개부(120)들 사이에 가이드부(130)를 형성함은, 날개부(120)들 두께를 통해, 후술하는 장착부(140)에 삽입된 열교환코일관(10)들이 서로 붙지 않고 간격을 유지할 수 있도록 하는 것이고, 이때 날개부(120)들은 열교환코일관(10)들이 서로 붙이 않도록 할 수 있는 적정의 두께로 이루어질 수 있다. 즉, 가이드부(130)는 날개부(120)와 장착부(140) 사이에 장착부(140)가 탄력적으로 벌어지는 공간을 제공함으로써 열교환코일관(10)의 끼움 장착을 안내하는 것이다.Forming the guide part 130 between the plurality of wings 120 in this way prevents the heat exchange coil tubes 10 inserted into the mounting part 140, which will be described later, from sticking to each other through the thickness of the wing parts 120. This is to maintain the gap, and at this time, the wings 120 can be made of an appropriate thickness to prevent the heat exchange coil tubes 10 from sticking to each other. That is, the guide part 130 guides the insertion and installation of the heat exchange coil tube 10 by providing a space between the wing part 120 and the mounting part 140 in which the mounting part 140 spreads elastically.

그리고, 장착부(140)는, 탄성을 갖는 재질의 얇은 판막이면서 날개부(120)에서 서로 모아지는 방향의 호 형상으로 돌출되면서 마주하는 단부에 열교환코일관(10)이 옆으로 삽입과 인출되도록 개방부를 형성하여 열교환코일관(10)이 탄성적으로 끼움 장착되도록 한다.In addition, the mounting portion 140 is a thin plate made of an elastic material and protrudes from the wing portion 120 in an arc shape in the direction in which they come together, and is opened at the opposite end so that the heat exchange coil tube 10 can be inserted and extracted laterally. A portion is formed so that the heat exchange coil tube 10 is elastically fitted.

여기에서, 장착부(140)는 열교환코일관(10)이 삽입되는 입구측의 간격이 열교환코일관(10)의 직경보다 좁게 이루어져 억지끼움 방식으로 삽입된 열교환코일관(10)의 이탈을 방지할 수 있도록 기능한다.Here, the mounting part 140 has a gap at the inlet side where the heat exchange coil tube 10 is inserted is narrower than the diameter of the heat exchange coil tube 10, so as to prevent the heat exchange coil tube 10 inserted by interference fit from coming off. It functions so that

이를 통해, 지중열교환기의 시공과정이나 지중열교환기의 사용과정에서 물리적으로 강한 힘이 작용하는 경우를 제외하고는, 견고하게 장착된 열교환코일관(10)이 이탈될 수 없는 구조를 이룰 수 있게 된다.Through this, a structure can be formed in which the solidly mounted heat exchange coil pipe 10 cannot be separated, except when a strong physical force is applied during the construction process of the ground heat exchanger or the use process of the ground heat exchanger. do.

결국, 본 발명에 따른 다관식 지중열교환기의 열교환코일관 스페이서(100)는, 다수가 지열공(1)에 삽입 설치되는 열교환코일관(10)들 상호 간은 물론 지열공(1)의 내벽면과도 일정 간격을 유지할 수 있게 되면서도, 장착된 열교환코일관(10)들의 고정이 견고하게 유지되어 이탈이 방지됨은 물론 지열공(1) 내벽면과의 마찰이 최소화되어 열교환코일관(10)들의 손상이 억제될 수 있는 것이다.In the end, the heat exchange coil tube spacer 100 of the shell-and-tube ground heat exchanger according to the present invention is capable of providing space between the heat exchange coil tubes 10 inserted into the geothermal hole 1 as well as within the geothermal hole 1. While maintaining a certain distance from the wall, the fixed heat exchange coil pipes (10) are firmly maintained to prevent separation, and friction with the inner wall of the geothermal hole (1) is minimized to maintain the heat exchange coil pipe (10). Their damage can be suppressed.

본 발명에서 상기 실시 형태는 하나의 예시로서 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.In the present invention, the above embodiment is an example and the present invention is not limited thereto. Anything that has substantially the same structure and achieves the same effect as the technical idea described in the claims of the present invention is included in the technical scope of the present invention.

1 : 지열공 2 : 순환수단
3 : 연결관 3-1 : 공급부
3-2 : 환수부 4 : 순환펌프
5 : 히트펌프 6 : 부하측 열교환기
10 : 열교환코일관 100 : 스페이서
110 : 몸체부 120 : 날개부
121 : 접착홈 130 : 가이드부
140 : 장착부 A : 접착부재
1: Geothermal hole 2: Circulation means
3: Connector 3-1: Supply section
3-2: Water return unit 4: Circulation pump
5: Heat pump 6: Load side heat exchanger
10: heat exchange coil pipe 100: spacer
110: body part 120: wing part
121: Adhesion groove 130: Guide part
140: Mounting part A: Adhesive member

Claims (5)

종방향에 대한 일정 길이를 가지며 중앙을 이루는 몸체부(110);
상기 몸체부로부터 방사상 돌출되는 다수의 날개부(120);
열교환코일관이 삽입되는 입구측의 간격이 상기 열교환코일관의 직경보다 좁게 이루어져 억지끼움 방식으로 삽입된 상기 열교환코일관의 이탈을 방지하는 장착부를 포함하고,
상기 장착부는 상기 날개부들의 마주하는 면에 상기 날개부로부터 서로 모아지는 방향의 호형상으로 돌출되면서 마주하는 단부에 상기 열교환코일관이 옆으로 삽입과 인출되도록 개방부를 형성하여 상기 열교환코일관의 둘레부를 양쪽에서 탄력적으로 감싸 고정하며,
상기 날개부와 상기 장착부의 사이에 형성되어 상기 장착부가 탄력적으로 벌어지도록 공간을 제공함으로써 상기 열교환코일관이 끼움 장착을 안내하는 가이드부(130)를 포함하는 것을 특징으로 하는 다관식 지중열교환기의 열교환코일관 스페이서.
A body portion 110 having a certain length in the longitudinal direction and forming a center;
A plurality of wings 120 protruding radially from the body portion;
A gap at the inlet side where the heat exchange coil tube is inserted is narrower than the diameter of the heat exchange coil tube, and includes a mounting portion that prevents the heat exchange coil tube inserted in an interference fit manner from being separated,
The mounting unit protrudes from the wings on opposite sides in an arc shape in a direction in which the wings come together, and forms an opening at the opposite end to allow the heat exchange coil tube to be laterally inserted and withdrawn, thereby forming a circumference of the heat exchange coil tube. The part is elastically wrapped and secured on both sides,
A multi-tube underground heat exchanger comprising a guide portion 130 formed between the wing portion and the mounting portion to guide the insertion of the heat exchange coil pipe by providing a space so that the mounting portion can be elastically opened. Heat exchange coil pipe spacer.
제1항에 있어서,
다수의 상기 날개부는 상단으로 갈수록 뾰족한 형상을 이룸을 특징으로 하는 다관식 지중열교환기의 열교환코일관 스페이서.
According to paragraph 1,
A heat exchange coil tube spacer for a shell-and-tube underground heat exchanger, wherein the plurality of wings have a sharp shape toward the top.
제1항에 있어서,
다수의 상기 날개부는 횡방향 끝단부에 접착부재가 삽입되는 접착홈을 종방향을 따라 형성하여 접착부재를 통해 상기 열교환코일관의 외주면과 접착되는 고정을 이룸을 특징으로 하는 다관식 지중열교환기의 열교환코일관 스페이서.
According to paragraph 1,
The plurality of wings are formed along the longitudinal direction with adhesive grooves into which adhesive members are inserted at transverse ends, and are fixed to the outer peripheral surface of the heat exchange coil tube through the adhesive members. Heat exchange coil pipe spacer.
제1항에 있어서,
다수의 상기 날개부는 상기 장착부에 삽입된 상기 열교환코일관보다 횡방향으로 더 돌출되는 횡방향 길이를 갖는 형상으로 이루어짐을 특징으로 하는 다관식 지중열교환기의 열교환코일관 스페이서.


According to paragraph 1,
A heat exchange coil tube spacer for a shell-and-tube underground heat exchanger, characterized in that the plurality of wing parts have a shape having a transverse length that protrudes further in the transverse direction than the heat exchange coil tube inserted into the mounting unit.


삭제delete
KR1020210172247A 2021-12-03 2021-12-03 Heat exchange coil tube spacer of multi-tube type underground heat exchanger KR102648324B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210172247A KR102648324B1 (en) 2021-12-03 2021-12-03 Heat exchange coil tube spacer of multi-tube type underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210172247A KR102648324B1 (en) 2021-12-03 2021-12-03 Heat exchange coil tube spacer of multi-tube type underground heat exchanger

Publications (2)

Publication Number Publication Date
KR20230083859A KR20230083859A (en) 2023-06-12
KR102648324B1 true KR102648324B1 (en) 2024-03-18

Family

ID=86770365

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210172247A KR102648324B1 (en) 2021-12-03 2021-12-03 Heat exchange coil tube spacer of multi-tube type underground heat exchanger

Country Status (1)

Country Link
KR (1) KR102648324B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070697A (en) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd Tube holding spacer
KR101618006B1 (en) * 2015-04-30 2016-05-03 김길수 Ground heat exchange pipe spacer
KR102197104B1 (en) * 2019-06-26 2020-12-30 주식회사 지앤지테크놀러지 Geothermal system with multi-tube vertical seal type underground heat exchanger and a installation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080092726A (en) 2007-04-13 2008-10-16 고려대학교 산학협력단 Geothermal heat exchanger and construction method for the same
KR20190011946A (en) * 2017-07-26 2019-02-08 부산대학교 산학협력단 Spacer for ground heat exchanger and construction method of using the same
KR20190059644A (en) 2017-11-23 2019-05-31 한국과학기술연구원 Borehole heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070697A (en) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd Tube holding spacer
KR101618006B1 (en) * 2015-04-30 2016-05-03 김길수 Ground heat exchange pipe spacer
KR102197104B1 (en) * 2019-06-26 2020-12-30 주식회사 지앤지테크놀러지 Geothermal system with multi-tube vertical seal type underground heat exchanger and a installation method thereof

Also Published As

Publication number Publication date
KR20230083859A (en) 2023-06-12

Similar Documents

Publication Publication Date Title
US20220397308A1 (en) Geothermal system comprising multitube vertically-sealed underground heat-exchanger and method for installing same
CN104514218A (en) Energy pile and system thereof
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
US20110203766A1 (en) Twisted conduit for geothermal heating and cooling systems
US20110203765A1 (en) Multipipe conduit for geothermal heating and cooling systems
CN202204209U (en) Stainless steel extension-type ground heat exchanger system
KR20150057618A (en) Guide, cleaning and protection device of standing column well type geothermal heat exchange circulation pipe
KR102648324B1 (en) Heat exchange coil tube spacer of multi-tube type underground heat exchanger
KR20050122041A (en) Spiral type geothermal exchanger
KR101315395B1 (en) Heat exchanger using the geothermal
KR20140040561A (en) Geothermal exchanger
JP2013148256A (en) Panel-type heat exchanger for underground thermal source heat pump
KR101044737B1 (en) Heat transfer pipe for ground heat exchanger
CN215598176U (en) High-efficient heat transfer device of soil source heat pump
JP2016217688A (en) Underground heat exchanger
KR101189079B1 (en) Geothermal exchanging pile
KR20190011946A (en) Spacer for ground heat exchanger and construction method of using the same
US11181302B2 (en) Multi-channel ground heat exchange unit and geothermal system
US20120193069A1 (en) Multipipe conduit for geothermal heating and cooling systems
KR101274230B1 (en) Geothermal pipe for geothermal heat exchanger and method for manufacturing the same
KR101314334B1 (en) Heat exchanger for high performance ground source heat pump
KR102196024B1 (en) Modular low-depth ground heat exchanging apparatus and installation method thereof
KR20190059644A (en) Borehole heat exchanger
KR101902537B1 (en) Geothermal system using underground heat exchanger with easy formation of turbulent flow
KR101198998B1 (en) Apparatus for manufacturing geothermal pipe of geothermal heat exchanger

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant