JP2017101867A - Geothermal heat exchanger and heat pump system using the same - Google Patents

Geothermal heat exchanger and heat pump system using the same Download PDF

Info

Publication number
JP2017101867A
JP2017101867A JP2015234673A JP2015234673A JP2017101867A JP 2017101867 A JP2017101867 A JP 2017101867A JP 2015234673 A JP2015234673 A JP 2015234673A JP 2015234673 A JP2015234673 A JP 2015234673A JP 2017101867 A JP2017101867 A JP 2017101867A
Authority
JP
Japan
Prior art keywords
fluid
path
heat exchange
heat exchanger
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015234673A
Other languages
Japanese (ja)
Inventor
田中 泰夫
Yasuo Tanaka
泰夫 田中
勝重 横峰
Katsushige Yokomine
勝重 横峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Industrial Products Ltd
Original Assignee
Mitsui Chemicals Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Industrial Products Ltd filed Critical Mitsui Chemicals Industrial Products Ltd
Priority to JP2015234673A priority Critical patent/JP2017101867A/en
Publication of JP2017101867A publication Critical patent/JP2017101867A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger using a vertical buried geothermal heat exchange structure increased in heat exchanging efficiency in comparison with a conventional vertical buried geothermal heat exchange structure and improved in workability, and a heat pump using the same.SOLUTION: A geothermal heat exchanger includes a geothermal heat exchange structure in which a plurality of resin fluid passages having going passages for allowing a circulated fluid to flow from a ground surface side toward the underground, and returning passages for allowing the fluid having passed through the going passage to flow from the underground toward the ground surface side in a heat exchange region formed from the ground surface vertically downward, as a fluid passage for allowing the circulated fluid to exchange heat with the ground, a group of the fluid passages are bundled while substantially kept into contact with the adjacent fluid passages, the other group of the fluid passages are disposed at intervals from the adjacent fluid passages, and one group of the fluid passages and the other group of fluid passages are respectively configure the going passages and the returning passages. A heat pump using the geothermal heat exchanger, is also provided.SELECTED DRAWING: Figure 2

Description

本発明は、垂直埋設式地中熱交換器およびそれを用いたヒートポンプシステムに関する。さらに詳しくは複数の樹脂製流体路から形成されている地中熱交換構造を備えている地中熱交換器およびそれを用いたヒートポンプシステムに関する。   The present invention relates to a vertical buried underground heat exchanger and a heat pump system using the same. More specifically, the present invention relates to an underground heat exchanger having an underground heat exchange structure formed from a plurality of resin fluid paths and a heat pump system using the underground heat exchanger.

地中の温度は、年間を通して10〜15℃とほぼ一定であり、外気温度に比べると、夏は低く、冬は高くなっている。従って、外気との温度差を利用するために地中に熱交換器を埋設して地中熱を採熱し、熱源として利用することが行われており、この地中熱利用システムに関しては種々の提案がなされている。   The underground temperature is almost constant at 10 to 15 ° C. throughout the year, and is lower in summer and higher in winter than the outside air temperature. Therefore, in order to use the temperature difference from the outside air, a heat exchanger is buried in the ground and the ground heat is collected and used as a heat source. Proposals have been made.

この地中熱利用の技術は、地中においてほぼ一定である地中熱を利用して熱交換を行うもので、冬には高温エネルギーとして暖房用熱源または融雪用熱源等のために、地中熱を採熱し利用することができる。また、夏には低温エネルギーとして冷房用熱源等のために、地中熱を利用することができる。地中熱は大気よりも温度が安定しているので効率的な熱源であり、かつ二酸化炭素の発生の少ない熱源であるので、省エネルギーで地球環境に優しいシステムとして地中熱利用システムの普及が期待されている。   This underground heat utilization technology uses ground heat, which is almost constant in the ground, to perform heat exchange. In the winter, it is used as a high-temperature energy source for heating or for melting snow. Heat can be collected and used. In summer, geothermal heat can be used as a heat source for cooling as low-temperature energy. Geothermal heat is an efficient heat source because its temperature is more stable than the atmosphere, and it is a heat source that generates less carbon dioxide. Has been.

このような地中熱利用システムとして、地中に垂直に熱交換チューブを設置した方式が知られている。垂直に設置した地中熱交換チューブ方式は、設置のために占有する地表面積が小さく、また地表面のヒートロスが少ない特徴がある。垂直に設置した地中熱交換チューブ方式として、数十mm径の鋼製U字管やプラスチック製のU字管を垂直な掘削孔に1セットまたは2セット挿入して周りを土質材料(グラウト材)で充填することが知られている。例えば特許文献1では、U字管として平行な直管部分の下端部同士を連通したU字管を用いることが提案されている。   As such a ground heat utilization system, a system in which a heat exchange tube is installed vertically in the ground is known. The underground heat exchange tube system installed vertically has the characteristics that the ground surface area occupied for installation is small and the heat loss of the ground surface is small. As an underground heat exchange tube system installed vertically, one or two sets of steel U-tubes or plastic U-tubes with a diameter of several tens of millimeters are inserted into vertical excavation holes, and the surrounding soil material (grouting material) ). For example, Patent Document 1 proposes to use a U-shaped tube in which the lower ends of parallel straight tube portions communicate with each other as a U-shaped tube.

しかしながら、垂直設置の地中熱交換チューブ方式において、地中熱を効率よく利用するためには、地中深くまで熱交換チューブを埋設する必要があり、埋設のための削孔深度は数十m〜約100mの深さが必要であった。そのために、長尺状垂直埋設式地中熱交換器では、掘削費用が高く設置工事費が高価になるという問題があった。   However, in order to efficiently use the underground heat in the vertically installed underground heat exchange tube system, it is necessary to embed the heat exchange tube deep into the ground, and the drilling depth for embedment is several tens of meters. A depth of ~ 100m was required. Therefore, the long vertical buried underground heat exchanger has a problem that the excavation cost is high and the installation cost is high.

削孔深度をより浅くして掘削費用を低減するという提案もなされている。例えば特許文献2では、垂直に埋設する管の往路管を螺旋状流体路とすることが提案されている。しかしながら、螺旋状流体路をブロー成形等で形成させるためには管の複雑かつ精密な成形が必要となる。一方、直管を螺旋状に加工するには、螺旋形状保持も含めて加工が困難であり、製造コストが高くなる。さらに、流体路を螺旋状にすると埋設時に螺旋形成流体路同士の上下間隔が一部狭くなるところが発生する可能性が高く、地中との熱交換効率が低下する可能性がある。   Proposals have also been made to reduce drilling costs by making the drilling depth shallower. For example, in Patent Document 2, it is proposed that an outward pipe of a pipe buried vertically is a spiral fluid path. However, in order to form the spiral fluid path by blow molding or the like, complicated and precise molding of the pipe is required. On the other hand, in order to process a straight pipe into a spiral shape, it is difficult to perform processing including holding the spiral shape, and the manufacturing cost increases. Furthermore, when the fluid path is spiral, there is a high possibility that a part of the vertical gap between the spiral-formed fluid paths will be narrowed during embedding, and the heat exchange efficiency with the ground may be reduced.

そこで、熱交換効率が改善された地中熱交換構造として、本出願人は複数の往路及び復路を形成する樹脂管を、隣り合う往路もしくは復路となる樹脂管との間に間隔をあけて敷設した地中熱交換構造を提案した(特許文献3)。特許文献3で提案されている地中熱交換構造は、従来の長尺状垂直埋設式地中熱交換器より掘削コストを削減できるものであるが、樹脂管の間に間隔をあけて敷設しなければならないという作業上の要請があった。
本発明は、同特許文献で提案されている地中熱交換構造の熱交換効率をさらに高めるべく研究した結果到達したものである。
Therefore, as an underground heat exchange structure with improved heat exchange efficiency, the present applicant lays resin pipes that form a plurality of forward paths and return paths with a space between resin pipes that are adjacent forward paths or return paths. Proposed a ground heat exchange structure (Patent Document 3). The underground heat exchange structure proposed in Patent Document 3 can reduce the excavation cost compared to the conventional long vertical buried underground heat exchanger, but it is laid with a gap between the resin pipes. There was a work request to have to.
The present invention has been achieved as a result of studies to further increase the heat exchange efficiency of the underground heat exchange structure proposed in the patent document.

特開平11−182943号公報Japanese Patent Laid-Open No. 11-182943 特開2007−315742号公報JP 2007-315742 A 特開2014−185822号公報JP 2014-185822 A

本発明は上記従来の課題を解決するもので、高い熱交換効率を実現し、掘削コストを大幅に削減でき、かつ施工性にすぐれた垂直埋設式地中熱交換構造を用いた熱交換器を提供する。
本発明は、公知の垂直埋設式地中熱交換構造よりも熱交換効率を高め、施工性を改善した垂直埋設式地中熱交換構造を用いた熱交換器を提供するものである。
本発明はさらに、高い熱交換効率を実現できる熱交換器を用いたヒートポンプを提供する。
The present invention solves the above-mentioned conventional problems, and realizes a heat exchanger using a vertical buried underground heat exchange structure that realizes high heat exchange efficiency, can significantly reduce excavation costs, and has excellent workability. provide.
The present invention provides a heat exchanger using a vertical buried underground heat exchange structure with improved heat exchanging efficiency and improved workability as compared with a known vertical buried underground heat exchange structure.
The present invention further provides a heat pump using a heat exchanger that can realize high heat exchange efficiency.

本発明は、地表に垂直方向で下方に形成された熱交換領域において、循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有する樹脂製流体路を複数備えており、一群の流体路が隣り合う流体路とほぼ接し合うように束ねられおり、他の群の流体路が、隣り合う流体路との間に間隔を開けて配置されていて、該一群の流体路と他の群の流体路がそれぞれ往路か復路を形成するものである地中熱交換構造を備えている地中熱交換器を提供する。   In the heat exchange region formed downward in the direction perpendicular to the ground surface, the present invention passes as a fluid path for circulating the circulating fluid from the ground side to the ground as a fluid path for exchanging the circulating fluid to the ground, and through the forward path. A plurality of resin fluid paths having return paths for flowing fluid from the ground to the ground surface side are bundled so that a group of fluid paths are almost in contact with adjacent fluid paths, and the other groups of fluid paths are And a ground heat exchanging structure that is disposed with a gap between adjacent fluid paths, and in which the one group of fluid paths and the other group of fluid paths form an outward path or a return path, respectively. Provide a ground heat exchanger.

前記束ねられている一群の流体路が復路である前記した地中熱交換器は本発明の好ましい態様である。   The above-described underground heat exchanger, in which the bundled bundle of fluid paths is a return path, is a preferred embodiment of the present invention.

前記他の群の流体路が、隣り合う流体路との間に、管中心間の間隔として少なくとも6cmの間隔を保持している前記した地中熱交換器は本発明の好ましい態様である。   The above-mentioned underground heat exchanger in which the other group of fluid paths maintains an interval of at least 6 cm as the distance between the tube centers between the adjacent fluid paths is a preferred embodiment of the present invention.

前記地中熱交換構造を形成する樹脂製流体路の数が、3〜8である前記した地中熱交換器は本発明の好ましい態様である。   The above-mentioned underground heat exchanger in which the number of resin fluid paths forming the underground heat exchange structure is 3 to 8 is a preferred embodiment of the present invention.

前記樹脂製流体路の各往路と復路の接点が、深度がほぼ同じ領域にある前記した地中熱交換器は本発明の好ましい態様である。   The above-described underground heat exchanger in which the contact points of the forward path and the return path of the resin fluid path are in the region where the depth is substantially the same is a preferable aspect of the present invention.

前記樹脂製流体路が、直状樹脂製管からなるU字管からなる前記した地中熱交換器は本発明の好ましい態様である。   The above-mentioned underground heat exchanger in which the resin fluid path is a U-shaped pipe made of a straight resin pipe is a preferred embodiment of the present invention.

流体路の上下方向中間の位置で、前記熱交換領域に平面視で円を描いたとき、束ねられている一群の流体路と、他の群の流体路のそれぞれがその円の近辺に配置されている前記した地中熱交換器は本発明の好ましい態様である。   When a circle is drawn in plan view in the heat exchange region at a position in the middle in the vertical direction of the fluid path, the bundled fluid path and the other group of fluid paths are arranged in the vicinity of the circle. The above-described underground heat exchanger is a preferred embodiment of the present invention.

前記地中熱交換構造が、前記流体路の間隔を所定の間隔に保持する間隔保持部材を備えている前記した地中熱交換器は本発明の好ましい態様である。   The above-described underground heat exchanger, in which the underground heat exchange structure includes an interval holding member that holds the interval of the fluid path at a predetermined interval, is a preferred aspect of the present invention.

本発明はまた、前記した地中熱交換器を熱交換装置として有する地中熱利用ヒートポンプシステムを提供する。   The present invention also provides a geothermal heat pump system having the above-described underground heat exchanger as a heat exchange device.

本発明により、高い熱交換効率を実現しながら、長尺状垂直埋設式地中熱交換器より削孔深度を数分の1程度に短くすることができ、掘削コストを大幅に削減できる垂直埋設式地中熱交換器が提供される。
本発明により、公知の垂直埋設式地中熱交換構造よりも熱交換効率を高め、施工性を改善した垂直埋設式地中熱交換構造が提供される。
ヒートポンプなどの負荷装置の熱交換器として垂直埋設式地中熱交換器を用いる場合、設置費用のかなりの割合が地中熱交換器設置のための掘削費用であるところ、本発明によって削孔深度を短くできるので、設置費用を大幅に削減することが可能となる。
本発明により、高い熱交換効率を実現しながら、掘削コストを大幅に削減でき、かつ施工性が改善された垂直埋設式地中熱交換器を用いたヒートポンプが提供される。
The present invention makes it possible to shorten the drilling depth to a fraction of that of a long vertical buried underground heat exchanger while realizing high heat exchange efficiency, and vertical burying that can greatly reduce excavation costs A ground-type heat exchanger is provided.
According to the present invention, there is provided a vertical buried underground heat exchange structure with improved heat exchanging efficiency and improved workability as compared with a known vertical buried underground heat exchange structure.
When using a vertical buried underground heat exchanger as a heat exchanger for a load device such as a heat pump, a significant percentage of the installation cost is excavation cost for installing the underground heat exchanger. Therefore, the installation cost can be greatly reduced.
According to the present invention, there is provided a heat pump using a vertical buried underground heat exchanger that can greatly reduce excavation cost and improve workability while realizing high heat exchange efficiency.

本発明の垂直埋設式地中熱交換器の構造を示す概略図である。It is the schematic which shows the structure of the vertical burying type underground heat exchanger of this invention. 本発明の流体路の配置例を示す概略を示す写真である。It is a photograph which shows the outline which shows the example of arrangement | positioning of the fluid path of this invention. 本発明の流体路の配置の他の例を示す概略図である。It is the schematic which shows the other example of arrangement | positioning of the fluid path of this invention. 本発明の流体路に間隔保持部材を取り付けた例を示す断面概略図である。It is the cross-sectional schematic which shows the example which attached the space | interval holding member to the fluid path of this invention. 本発明の地中熱交換構造の下端部において流体路が折り返す様子を示す概略図である。It is the schematic which shows a mode that a fluid path turns up in the lower end part of the underground heat exchange structure of this invention. 本発明の流体路に間隔保持部材を取り付けた他の例を示す断面概略図である。It is the cross-sectional schematic which shows the other example which attached the space | interval holding member to the fluid path of this invention. 本発明の流体路の他の配置例を示す概略図である。It is the schematic which shows the other example of arrangement | positioning of the fluid path of this invention. 本発明の垂直埋設式地中熱交換器を用いたヒートポンプを示す概略図であるIt is the schematic which shows the heat pump using the vertical burying type underground heat exchanger of this invention.

本発明は、地表に垂直方向で下方に形成された熱交換領域において、循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有する樹脂製流体路を複数備えており、一群の流体路が隣り合う流体路とほぼ接し合うように束ねられおり、他の群の流体路が、隣り合う流体路との間に間隔を開けて配置されていて、該一群の流体路と他の群の流体路がそれぞれ往路か復路を形成するものである地中熱交換構造を備えている地中熱交換器を提供するものである。   In the heat exchange region formed downward in the direction perpendicular to the ground surface, the present invention passes as a fluid path for circulating the circulating fluid from the ground side to the ground as a fluid path for exchanging the circulating fluid to the ground, and through the forward path. A plurality of resin fluid paths having return paths for flowing fluid from the ground to the ground surface side are bundled so that a group of fluid paths are almost in contact with adjacent fluid paths, and the other groups of fluid paths are And a ground heat exchanging structure that is disposed with a gap between adjacent fluid paths, and in which the one group of fluid paths and the other group of fluid paths form an outward path or a return path, respectively. A ground heat exchanger is provided.

本発明の熱交換領域は、地表から下方に向かって掘削した削孔に、土質材料等の充填材で埋め戻した領域である。掘削孔は、地中にボーリングによる削孔、スクリューオーガを用いた削孔等従来公知の方法で形成させた削孔に、地中熱交換構造を設置した後、充填材で埋め戻した地中熱交換が行われる領域である。   The heat exchanging region of the present invention is a region in which a hole excavated downward from the ground surface is backfilled with a filler such as a soil material. The excavation hole is an underground hole that has been backfilled with filler after an underground heat exchange structure is installed in a hole formed by a conventionally known method such as drilling by boring or drilling using a screw auger. This is a region where heat exchange is performed.

充填材としては、材料熱伝導率の良いものを用いることが好ましく、例えば掘削土、砂質土、礫質土、有機質土、砂利及び砕石から選ばれた少なくとも1種を含む材料で構成されている土質材料が好ましく用いられる。熱交換領域では、雨水や大地内を流動する地下水が掘削部に充填された充填材の粒子間に浸透し、地下水によって地中熱交換器と大地との熱交換が促進される   As the filler, it is preferable to use a material having good material thermal conductivity. For example, the filler is composed of a material containing at least one selected from excavated soil, sandy soil, gravelly soil, organic soil, gravel and crushed stone. Soil materials are preferably used. In the heat exchange area, rainwater and groundwater flowing in the ground permeate between the filler particles filled in the excavation part, and the groundwater promotes heat exchange between the underground heat exchanger and the ground.

樹脂製流体路は、不凍液(ブライン)、水などの循環流体を流すことができて、地中熱と熱交換できるもので、循環流体を対地熱交換させる流体路である。本発明の樹脂製流体路は、循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有するもので、管状体であることが好ましい。   The resin-made fluid path is a fluid path that allows a circulating fluid such as antifreeze (brine) and water to flow and exchange heat with underground heat, and exchanges the circulating fluid with ground heat. The resin-made fluid path of the present invention is a fluid path for exchanging the circulating fluid with respect to the ground, an outward path for flowing the circulating fluid from the ground side toward the ground, and a fluid passing through the forward path from the ground toward the ground side. It has a return path to flow, and is preferably a tubular body.

樹脂製流体路を構成する樹脂としては、ポリエチレン、ポリプロピレン、ポリブテンなどのポリオレフィン、ポリ塩化ビニル、ポリアミド等を挙げることができる。中でもポリオレフィン製管、とくにはエチレン製管が特に好ましい。
樹脂製流体路の往路と復路の接点は下端部にあって、往路と復路を形成する流体路が下端部で連通している。下端部では流体路が屈曲して折り返す形状となっている。屈曲部はエルボを介していてもよいが、一本の管が湾曲して折り返す構造が好ましい。管の融着または接着部分があるとそこから循環流体が漏れ出す原因になり易いからである。このような流体路としてはU字状管が好ましい。
Examples of the resin constituting the resin fluid path include polyolefins such as polyethylene, polypropylene, and polybutene, polyvinyl chloride, and polyamide. Of these, polyolefin pipes, particularly ethylene pipes are particularly preferred.
The contact point between the forward path and the return path of the resin fluid path is at the lower end, and the fluid paths that form the forward path and the return path communicate with each other at the lower end. The fluid path is bent and folded at the lower end. The bent portion may be via an elbow, but a structure in which a single tube is bent and folded is preferable. This is because if there is a fused or bonded portion of the tube, the circulating fluid is likely to leak from there. Such a fluid path is preferably a U-shaped tube.

本発明の地中熱交換構造は、樹脂製流体路を少なくとも3個、好ましくは3〜8個、より好ましくは3または4個、とくには4個用いて形成されていることが望ましい。   The underground heat exchange structure of the present invention is desirably formed by using at least 3, preferably 3-8, more preferably 3 or 4, and especially 4 resin fluid paths.

本発明においては、地表に垂直方向で下方に形成された熱交換領域において、循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有する樹脂製流体路を複数備えている。   In the present invention, in a heat exchange region formed vertically below the ground surface, as a fluid path for exchanging the circulating fluid to the ground, an outward path for flowing the circulating fluid from the surface side toward the ground, and passing through the outbound path A plurality of resin fluid paths having return paths through which the fluid flows from the ground toward the ground surface side are provided.

流体路のうち、一群の流体路が隣り合う流体路とほぼ接し合うように束ねられおり、他の群の流体路が、隣り合う流体路との間に間隔を開けて配置されていて、該一群の流体路と他の群の流体路がそれぞれ往路か復路を形成するものである。一群の流体路を構成する流体路と、他の群の流体路を構成する流体路はそれぞれ連通していて、流体路に送入される循環流体は一群の流体路を構成する流体路と、他の群の流体路の双方を通過して地表に戻ることになる。一群の流体路と他の群の流体路のいずれかの群が往路もしくは復路の働きをするが、いずれの群も往路および復路を担当することができる。特には、束ねられている一群の流体路が復路であることが好ましい。   Among the fluid paths, a group of fluid paths are bundled so as to be in close contact with an adjacent fluid path, and another group of fluid paths is arranged with an interval between adjacent fluid paths, One group of fluid paths and the other group of fluid paths form an outward path or a return path, respectively. A fluid path that constitutes a group of fluid paths and a fluid path that constitutes another group of fluid paths are in communication with each other, and the circulating fluid fed into the fluid path is a fluid path that constitutes a group of fluid paths; It passes through both other groups of fluid paths and returns to the surface. Any group of one group of fluid paths and another group of fluid paths can act as forward or return paths, but any group can be responsible for forward and return paths. In particular, it is preferable that the group of bundled fluid paths is a return path.

束ねられた一群の流体路が復路であるとき、束ねることによって熱交換領域と接触する流体路の外表面積が小さくなる結果、地中熱を利用して熱交換された循環流体の熱が奪われる量を減らすことができるので、熱交換された循環流体の熱量を保持することができる。   When the bundle of bundled fluid paths is a return path, the outer surface area of the fluid path that comes into contact with the heat exchange region is reduced by bundling. As a result, the heat of the circulating fluid that is heat-exchanged using underground heat is deprived. Since the amount can be reduced, the amount of heat of the circulating fluid subjected to heat exchange can be maintained.

束ねられた一群の流体路は、隣に位置する流体路とほぼ接するように配置されていることが好ましい。その配置形態は、横並びに配置していいし、一つの流体路が複数の流体路とほぼ接するように、例えば一群の流体路が3個ある場合には3角形状に、4個ある場合には四角形状に配置されていてもよい。
ほぼ接するとは、間隔が開きすぎない位置関係をいい、通常その間隔が1cm以内、好ましくは5mm以内の関係をいう。
It is preferable that the bundled group of fluid paths are arranged so as to be substantially in contact with the adjacent fluid paths. The arrangement form may be arranged side by side, and, for example, when there are three groups of fluid paths, a single fluid path is almost in contact with a plurality of fluid paths. May be arranged in a square shape.
“Substantially contact” refers to a positional relationship in which the interval is not too wide, and usually refers to a relationship in which the interval is within 1 cm, preferably within 5 mm.

本発明における他の群の流体路は、隣り合う流体路との間に間隔を開けて配置されている。他の群の流体路が往路であることが好ましい。他の群の流体路同士の間隔が短すぎると、熱交換対象となる熱交換領域の充填材量が相対的に少なくなることになり、熱交換効率が低下する恐れがある。   The other groups of fluid paths in the present invention are arranged with an interval between adjacent fluid paths. The other group of fluid paths is preferably the outbound path. If the distance between the fluid paths of the other groups is too short, the amount of filler in the heat exchange region that is the heat exchange target is relatively reduced, and the heat exchange efficiency may be reduced.

特許文献2では、その図4に示されているように、その敷設領域で2個の流体路を敷設することが提案されているが、同特許文献におけるような螺旋状流路では、螺旋流体路同士の間隔が短くなるために、流体路の総延長距離を伸ばしたところで、トータルの熱交換効率を向上させることは難しいし、他の流路部分が螺旋状流路の領域内に敷設されているので、熱交換が済んだ流路の流体から熱が奪われるので、高い熱交換効率を得ることは難しい。   In Patent Document 2, as shown in FIG. 4, it has been proposed to lay two fluid paths in the laying area. Since the distance between the channels is shortened, it is difficult to improve the total heat exchange efficiency when the total extension distance of the fluid channel is increased, and the other channel part is laid in the area of the spiral channel. Therefore, heat is taken away from the fluid in the flow path after heat exchange, and it is difficult to obtain high heat exchange efficiency.

復路の近くを往路が通る場合、往路の周辺の熱交換領域の充填材量が往路の循環流体との熱交換によって温度が上昇したり降下したりするので、その影響で熱交換が済んだ復路の循環流体から熱が奪われるし、また地表から深さ5m程度までの部分では季節によって温度変化が大きいからその部分でも熱交換が済んだ復路の循環流体から熱が奪われるという危険性があるが、復路を束ねて配置することによって循環流体から奪われる熱量を減少させることができる   When the outbound path passes near the return path, the amount of filler in the heat exchange area around the outbound path rises or falls due to heat exchange with the circulating fluid in the outbound path. There is a danger that heat will be taken from the circulating fluid of the return path where heat is removed from the circulating fluid, and the temperature change is large depending on the season in the part up to about 5 m deep from the ground surface. However, it is possible to reduce the amount of heat taken from the circulating fluid by bundling the return path.

本発明では、樹脂製流体路を複数個用いることによって、流体路の総延長距離を伸ばし、高いトータル熱交換効率を獲得することができる。このような、地中熱交換構造によって、削孔深度を数分の1程度に短くしても高い熱交換効率を実現できるので、従来公知の長尺状垂直埋設式地中熱交換器より掘削コストを大幅に削減した垂直埋設式地中熱交換器の提供が可能となる。   In the present invention, by using a plurality of resin fluid paths, the total extension distance of the fluid paths can be extended, and high total heat exchange efficiency can be obtained. This kind of underground heat exchange structure can realize high heat exchange efficiency even if the drilling depth is shortened to a fraction of a few, so it is excavated from a conventionally known long vertical buried underground heat exchanger. It is possible to provide a vertical buried underground heat exchanger that greatly reduces costs.

本発明において、他の群の流体路同士の間隔としては、隣り合う樹脂製流体路との間隔を、管中心間の間隔として6cm以上、好ましくは7cm以上、より好ましくは9cm、さらに好ましくは11cm以上程度の間隔で設置されていることが好ましい。   In the present invention, as the distance between the fluid paths of other groups, the distance between adjacent resin fluid paths is 6 cm or more, preferably 7 cm or more, more preferably 9 cm, more preferably 11 cm as the distance between the tube centers. It is preferable that they are installed at intervals of about the above.

本発明では、樹脂製流体路を設置する際に、一群の流体路が束ねられているので、一群の流体路の位置を固定することによって他の流体路を所定の間隔を開けて配置することが容易となり、すぐれた作業性が得られる。本発明は、樹脂製流体路の設置において優れた施工性を発揮するものである。   In the present invention, when installing the resin-made fluid paths, the group of fluid paths are bundled, and therefore, by fixing the position of the group of fluid paths, the other fluid paths are arranged at a predetermined interval. Is easy and excellent workability is obtained. The present invention exhibits excellent workability in installing a resin fluid path.

樹脂製流体路を所定の間隔で設置するために、間隔保持部材を使用することができる。間隔保持部材の形状には特に制限はなく、所定の目的を達成できる形状であればよい。たとえば、樹脂製流体路を取り巻くような円形基材から伸びる保持具を有しており、保持具に束ねて配置される一群の流体路を取り囲む形状のものと、他の群の流体路のそれぞれを取り囲む形状のもので形成されているような保持具を採用してもよい。   In order to install the resin-made fluid paths at a predetermined interval, an interval holding member can be used. There is no restriction | limiting in particular in the shape of a space | interval holding member, What is necessary is just a shape which can achieve a predetermined objective. For example, it has a holder extending from a circular base material surrounding a resin fluid path, and has a shape surrounding a group of fluid paths arranged in a bundle with the holder, and each of the other groups of fluid paths You may employ | adopt the holder which is formed in the thing of the shape which surrounds.

本発明の複数の流体路は、樹脂製流体路の各往路と復路の接点が、深度がほぼ同じ領域にあるのが、地中熱交換構造の取扱いおよび埋設作業上都合がよい。このような、位置関係にある樹脂製流体路に、所定の位置で間隔保持部材を設置した地中熱交換構造は、作業性に優れると共に安定した地中熱交換効率を得ることができるものとなる。   In the plurality of fluid paths of the present invention, it is convenient for handling and burying work of the underground heat exchange structure that the contact points of the forward path and the return path of the resin fluid path are in the same depth region. Such an underground heat exchange structure in which a spacing member is installed at a predetermined position in a resin fluid passage in a positional relationship is excellent in workability and can obtain stable underground heat exchange efficiency. Become.

本発明の樹脂製流体路で地中熱交換構造を形成するにあたって、流体路が前記した関係を満たすものであれば任意の位置関係で構成させてもよいが、流体路の上下方向中間の位置で、前記熱交換領域に平面視で仮想の円を描いたとき、束ねられている一群の流体路と他の群の流体路がその円に沿った地域で円の近辺に配置されていることは好ましいで態様である。   When the underground heat exchange structure is formed with the resin fluid passage of the present invention, the fluid passage may be configured in an arbitrary positional relationship as long as the fluid passage satisfies the above-described relationship. Then, when a virtual circle is drawn in plan view in the heat exchange region, the bundled fluid path and the other group of fluid paths are arranged in the vicinity of the circle in the region along the circle. Is a preferred embodiment.

本発明の樹脂製流体路からなる地中熱交換構造は、間隔保持部材を使用して予め流体路を所定の位置に配置した構造体を作製しておき、これを削孔に挿入する方法によって形成させてもよい。   The underground heat exchanging structure comprising the resin-made fluid passage of the present invention is a method in which a structure in which the fluid passage is arranged in a predetermined position using a spacing member is prepared in advance and inserted into a hole. It may be formed.

本発明の複数の樹脂製流体路からなる地中熱交換構造を用いる地中熱交換器は、地表占有面積については、直径25〜30cm程度の削孔が必要になると思われる。本発明の地中熱交換構造を用いると。複数の流体路を用いて熱交換効率を高めると共に、復路の交換熱の損失を減ずることができるので、全体として熱交換効率の高い熱交換構造が実現される。   The underground heat exchanger using the underground heat exchange structure composed of a plurality of resin fluid paths according to the present invention is considered to require drilling with a diameter of about 25 to 30 cm with respect to the ground occupation area. When the underground heat exchange structure of the present invention is used. Since heat exchange efficiency can be increased by using a plurality of fluid paths and loss of exchange heat in the return path can be reduced, a heat exchange structure with high heat exchange efficiency as a whole is realized.

本発明の地中熱交換器では、循環流体は、往路を通って地中の深部に向かい復路から地表に取り出されるが、往路や復路の地表から深さ5m程度までの部分を断熱構造にするのが好ましい。地表から深さ5m程度までの大地は季節によって温度変化が大きいからである。特に、復路のその部分を断熱構造にするのが好ましい。断熱構造にすることによって大地との熱交換を終えた熱媒の熱損失を防ぐことができる。
断熱構造にする方法としては、管の周囲に断熱材を敷設する方法や、管の外側にさや管を設けて中空部に断熱材を充填する方法が挙げられる。
In the underground heat exchanger according to the present invention, the circulating fluid passes through the forward path toward the deep part of the ground and is taken out from the return path to the ground surface. Is preferred. This is because the temperature of the earth from the surface to a depth of about 5 m varies greatly depending on the season. In particular, it is preferable that the part of the return path has a heat insulating structure. Heat insulation of the heat medium that has finished heat exchange with the ground can be prevented by using a heat insulating structure.
Examples of a method for forming a heat insulating structure include a method of laying a heat insulating material around the pipe, and a method of providing a sheath pipe outside the pipe and filling the hollow portion with the heat insulating material.

本発明の樹脂製流体路の循環流体は、流体路の入口から入り往路および復路を経て出口から出るが、夏期には、地中温度は、地上の外気温度に比べ恒温状態で温度が低いので、循環流体は地中熱交換領域で冷やされて略15℃の循環流体となり、冬期には地中熱熱交換領域で地中温度に温められた循環流体となる。   The circulating fluid in the resin fluid path of the present invention enters from the inlet of the fluid path and exits from the outlet through the return path, but in the summer, the underground temperature is constant and lower than the outside air temperature on the ground. The circulating fluid is cooled in the underground heat exchange region to become a circulating fluid of approximately 15 ° C., and becomes a circulating fluid warmed to the underground temperature in the underground heat exchange region in winter.

本発明の地中熱交換構造では、使用する樹脂製流体路の数に応じた流体路における循環流体の入口および出口となる流体路端部がある。それぞれの入口流体路端部および出口流体路端部は、それぞれ独立した複数の流体循環系を形成していてもよいし、連通して一つの流体循環系を形成していてもよい。連通して一つの流体循環系を形成する場合には、複数の入口流体路端部及び出口流体路端部をそれぞれ、T字管、結合管、ヘッダーなどの部材を用いて一つの管に繋ぐことができる。   In the underground heat exchange structure of the present invention, there are fluid path end portions serving as inlets and outlets of the circulating fluid in the fluid paths according to the number of resin fluid paths used. Each inlet fluid path end and outlet fluid path end may form a plurality of independent fluid circulation systems, or may communicate with each other to form a single fluid circulation system. When communicating to form one fluid circulation system, a plurality of inlet fluid path ends and outlet fluid path ends are connected to a single pipe using members such as a T-shaped pipe, a coupling pipe, and a header. be able to.

以下に本発明について、図を用いて具体例に説明する。以下に説明する具体例は、4個の樹脂製流体路で地中熱交換構造を形成する場合である。   Hereinafter, the present invention will be described with reference to the drawings. The specific example described below is a case where the underground heat exchange structure is formed by four resin fluid paths.

図1には、本発明の垂直埋設式地中熱交換器1の例が示されている。図1では、地表10から下方に掘削された削孔に、循環流体の往路と復路を形成する直状樹脂製管からなるU字管を流体路3として、流体路4個からなる地中熱交換構造2を設置し充填材11で埋め戻した状態が示されている。4個の直状樹脂製管3からなるU字管は、削孔の下端附近で各樹脂製管が平面視で交差するように設置されている。図1の地中熱交換構造2には、所定の位置に間隔保持部材5が備えられている。   FIG. 1 shows an example of a vertical buried underground heat exchanger 1 according to the present invention. In FIG. 1, a geothermal heat consisting of four fluid paths is formed in a borehole drilled downward from the ground surface 10 with a U-shaped pipe made of a straight resin pipe forming a forward path and a return path of the circulating fluid as a fluid path 3. The state where the exchange structure 2 is installed and backfilled with the filler 11 is shown. The U-shaped pipe composed of four straight resin pipes 3 is installed so that the resin pipes intersect each other in plan view near the lower end of the drilling hole. In the underground heat exchanging structure 2 in FIG. 1, a spacing member 5 is provided at a predetermined position.

図1の削孔は30mの深さに掘削されており、樹脂製管として外形17mmで、内径が12.2mmのポリエチレン製管からなるU字管4個によって地中熱交換構造2が形成されているので、地中熱交換構造2の循環流体路の全長は240mである。   The drilling hole in FIG. 1 is excavated to a depth of 30 m, and the underground heat exchange structure 2 is formed by four U-shaped pipes made of polyethylene pipe having an outer diameter of 17 mm as a resin pipe and an inner diameter of 12.2 mm. Therefore, the total length of the circulating fluid path of the underground heat exchange structure 2 is 240 m.

図1の地中熱交換構造2では、4個の直状樹脂製管のU字管からなる流体路3の往路それぞれが、ヘッダー4によって連通している。また、流体路の復路もそれぞれがヘッダー4‘によって、連通している。図1の地中熱交換構造2はヘッダーによって連通して一つの流体循環系を形成している。   In the underground heat exchange structure 2 of FIG. 1, each of the forward paths of the fluid path 3 composed of four U-shaped straight resin pipe pipes communicates with each other through a header 4. Further, the return path of the fluid path is also communicated with each other by the header 4 '. The underground heat exchange structure 2 in FIG. 1 is communicated by a header to form one fluid circulation system.

図2は、本発明の流体路の配置例を示す概略図である。図2では一群の流体路31が束ねられて隣り合う流体路とほぼ接する位置で配置されている。図2では4個の流体路が4角形となる位置で配置されており、他の群の流体路32はそれぞれ隣り合う流体路と間隔を開けて配置されている。   FIG. 2 is a schematic diagram showing an example of the arrangement of the fluid path of the present invention. In FIG. 2, a group of fluid paths 31 are bundled and arranged at a position almost in contact with adjacent fluid paths. In FIG. 2, four fluid paths are arranged at positions that form a quadrangular shape, and the fluid paths 32 of the other groups are arranged at intervals from adjacent fluid paths.

図2に破線で描かれている円は熱交換領域に平面視で仮想の円を描いたものであって、本発明の地中熱交換構造を構成するものではない。束ねられた一群の流体路31、および他の群の流体路32のそれぞれがその円の近辺に配置されている。図4では、一群の流体路31の最外縁、および他の群の流体路32のそれぞれの外縁がその円に接して配置されている。このような配置は好ましい配置の例であるが、本発明はこれに限定されるものではない。   The circle drawn with a broken line in FIG. 2 is a virtual circle drawn in plan view in the heat exchange region, and does not constitute the underground heat exchange structure of the present invention. Each of the bundled group of fluid paths 31 and the other group of fluid paths 32 is arranged in the vicinity of the circle. In FIG. 4, the outermost edge of the group of fluid paths 31 and the outer edges of the other groups of fluid paths 32 are arranged in contact with the circle. Such an arrangement is an example of a preferred arrangement, but the present invention is not limited to this.

図3は、本発明の流体路配置の他の例を示す概略図である。図3では一群の流体路31が横並びに隣り合う流体路とほぼ接する位置で配置されている。他の群の流体路はそれぞれ隣り合う流体路と間隔を開けて配置されている。図3の流体路配置においても、それぞれの流体路が、仮想の熱交換領域に平面視で描いた円の近辺に配置されている。図3においても一群の流体路31の最外縁、および他の群を流体路32のそれぞれの外縁がその円に接して配置されている。   FIG. 3 is a schematic view showing another example of the fluid path arrangement of the present invention. In FIG. 3, the group of fluid paths 31 are arranged at positions that are substantially in contact with the adjacent fluid paths. The other groups of fluid paths are spaced apart from adjacent fluid paths. Also in the fluid path arrangement of FIG. 3, each fluid path is arranged in the vicinity of a circle drawn in plan view in the virtual heat exchange region. In FIG. 3 as well, the outermost edge of the group of fluid paths 31 and the other group of the outer edges of the fluid paths 32 are arranged in contact with the circle.

図4には、本発明の流体路に間隔保持部材を取り付けた様子を示す断面概略図を示している。図4中、管と間隔保持材の区別を容易にするために管の部分を灰色に塗り潰して表示した。図4では、間隔保持部材5の円形枠6に設置された管保持部8によって、地中熱交換構造2を形成する流体路が保持されている。同図から束ねられた一群の流体路31が一つの管保持部8によって保持されており、他の群の流体路を構成している管32もそれぞれ管保持部8によって保持されている様子がわかる。   In FIG. 4, the cross-sectional schematic which shows a mode that the space | interval holding member was attached to the fluid path of this invention is shown. In FIG. 4, in order to easily distinguish between the tube and the spacing member, the tube portion is displayed in gray. In FIG. 4, the fluid path that forms the underground heat exchange structure 2 is held by the tube holding portion 8 installed in the circular frame 6 of the interval holding member 5. A group of fluid paths 31 bundled from the same figure is held by one pipe holding part 8, and the pipes 32 constituting the other group of fluid paths are also held by the pipe holding part 8. Recognize.

間隔保持部材5の形状は、図4に示されているものに限定されるものではないが、間隔保持部材によって、地中熱交換構造を構成する流体路を所定の位置に容易に保持することができる。図4のように、一群の流体路を構成する流体路31は、他の群のそれぞれの流体路とは十分な間隔を保って保持されるので、一群の流体路が復路となるとき、熱交換が済んだ循環流体から熱量が奪われる危険性が低くなり、本発明の地中熱交換構造の熱交換効率を高めるのに役立つ。   Although the shape of the space | interval holding member 5 is not limited to what is shown by FIG. 4, the fluid path which comprises an underground heat exchange structure is easily hold | maintained in a predetermined position with a space | interval holding member. Can do. As shown in FIG. 4, the fluid paths 31 constituting the group of fluid paths are held at a sufficient distance from the fluid paths of the other groups, so that when the group of fluid paths becomes the return path, The risk of heat being deprived from the circulating fluid that has been exchanged is reduced, which helps to increase the heat exchange efficiency of the underground heat exchange structure of the present invention.

図5は、図4に示された状態で配置された流体路を有する地中熱交換構造の下端部における流体路の様子を示している。第5図の流体路はほぼ同じ深さ領域において折り返している。図5から、束ねた一群の流体路を構成する管が、他の群の流体路を構成する管と連通していてそれぞれの管が循環流体の往路と復路を形成している様子がわかる。   FIG. 5 shows the state of the fluid path at the lower end portion of the underground heat exchange structure having the fluid path arranged in the state shown in FIG. The fluid path in FIG. 5 is folded back in substantially the same depth region. From FIG. 5, it can be seen that the pipes constituting the bundled group of fluid paths communicate with the pipes constituting the other group of fluid paths, and each pipe forms a forward path and a return path of the circulating fluid.

図6は、流体路を保持する間隔保持部材5の他の形状を示す断面概略図である。図6の間隔保持部材5は、流体路の内側から樹脂製管を保持する形状のものである。図6の間隔保持部材5は、枠6に設けられたアーム7の先端に管保持部8が取り付けられている。図6においても、管と間隔保持材の区別を容易にするために管の部分を灰色に塗り潰して表示した。   FIG. 6 is a schematic cross-sectional view showing another shape of the spacing member 5 that holds the fluid path. The spacing member 5 in FIG. 6 has a shape that holds the resin pipe from the inside of the fluid path. In the interval holding member 5 of FIG. 6, a tube holding portion 8 is attached to the tip of an arm 7 provided on the frame 6. Also in FIG. 6, the tube portion is displayed in gray to facilitate the distinction between the tube and the spacing member.

図7は、本発明の流体路の他の配置例を示す概略図である。図7では8個の流体路で構成された一群の流体路31が束ねられて隣り合う流体路とほぼ接する位置で配置されている。図7では8個の流体路が配置されており、他の群の流体路32はそれぞれ隣り合う流体路と間隔を開けて配置されている。   FIG. 7 is a schematic view showing another arrangement example of the fluid path of the present invention. In FIG. 7, a group of fluid passages 31 constituted by eight fluid passages are bundled and arranged at a position almost in contact with adjacent fluid passages. In FIG. 7, eight fluid paths are arranged, and the other groups of fluid paths 32 are spaced from adjacent fluid paths.

図7においても破線で描かれている仮想円付近に、束ねられた一群の流体路31、および流体路32のそれぞれが配置されている。図7でも、一群の流体路31の最外縁、および他の群の流体路32のそれぞれの外縁がその円にほぼ接する位置で配置されている。   Also in FIG. 7, a group of fluid paths 31 and a fluid path 32 that are bundled are arranged in the vicinity of a virtual circle drawn by a broken line. Also in FIG. 7, the outermost edge of the group of fluid paths 31 and the outer edges of the other groups of fluid paths 32 are arranged at positions almost in contact with the circle.

図8は、本発明の垂直埋設式地中熱交換器を地中熱交換装置として有する地中熱利用ヒートポンプシステムの概略図である。図8は、冬期における地中熱利用ヒートポンプシステムの稼動状況を示している。地中熱交換構造の流体路には、不凍液(ブライン)、水等の循環流体が循環している。   FIG. 8 is a schematic view of a heat pump system using geothermal heat having the vertical buried underground heat exchanger of the present invention as a geothermal heat exchange device. FIG. 8 shows the operation status of the ground heat heat pump system in winter. Circulating fluids such as antifreeze (brine) and water circulate in the fluid path of the underground heat exchange structure.

冬期には、地中熱熱交換領域12で地中温度に温められた循環流体がピートポンプ9内の熱交換器A(蒸発部)93に導かれ、熱媒体との熱交換によって熱を奪われて温度が低下し、熱媒体は吸熱によって蒸発する。ヒートポンプ9に導かれて温度が低下した循環流体は、再び地中熱熱交換領域2に戻る。このとき地中温度は、地上の外気温度に比べ恒温状態で温度が高くなっているので、循環流体は地上側から地中に送り込まれると、地中熱交換領域で採熱し、温められて循環流体循環系91を通ってピートポンプ内の熱交換器A93に循環することになる。   In the winter season, the circulating fluid heated to the ground temperature in the ground heat heat exchange region 12 is guided to the heat exchanger A (evaporating part) 93 in the peat pump 9, and heat is taken away by heat exchange with the heat medium. As a result, the temperature drops and the heat medium evaporates due to endotherm. The circulating fluid that has been led to the heat pump 9 and whose temperature has dropped returns to the underground heat exchange region 2 again. At this time, since the underground temperature is higher in the constant temperature state than the outside air temperature on the ground, when the circulating fluid is fed into the ground from the ground side, it is collected and heated in the underground heat exchange area and circulated. It will circulate through the fluid circulation system 91 to the heat exchanger A93 in the peat pump.

ピートポンプの熱交換器Aにおいて蒸発した熱媒体は圧縮機95を通って熱交換器B(凝縮部)94に入る。熱交換器Bには、放熱系を循環する2次蓄熱媒体が導かれており、熱交換によって熱媒体から熱が放出されて2次蓄熱媒体の温度が上昇する。放熱して温度が低下した熱媒体は再度熱交換器A93に循環して、循環流体と熱交換が行われる。
温度が上昇した2次蓄熱媒体は2次蓄熱媒体循環系92を通って放熱系97に到達し、所望の暖房機能が得られる。放熱系の例としては、床暖房、ファンコイルユニット、融雪用パネル、融雪用放熱管等がある。放熱系も循環ループとなっており、放熱系で熱を放出した2次蓄熱媒体は、再び2次蓄熱媒体循環系92によって熱交換器B(冷媒凝縮部)94に導かれて加熱されて、再度放熱系に供給される。
各循環系には、流体循環のためにポンプが設置されているが、図8ではポンプの表示を省略した。
The heat medium evaporated in the heat exchanger A of the peat pump enters the heat exchanger B (condensing unit) 94 through the compressor 95. A secondary heat storage medium that circulates in the heat dissipation system is guided to the heat exchanger B, and heat is released from the heat medium by heat exchange, so that the temperature of the secondary heat storage medium rises. The heat medium whose temperature has decreased due to heat dissipation circulates again to the heat exchanger A93 to exchange heat with the circulating fluid.
The secondary heat storage medium whose temperature has increased reaches the heat dissipation system 97 through the secondary heat storage medium circulation system 92, and a desired heating function is obtained. Examples of the heat dissipation system include floor heating, a fan coil unit, a snow melting panel, a snow melting heat radiation pipe, and the like. The heat dissipation system is also a circulation loop, and the secondary heat storage medium that has released heat in the heat dissipation system is again led to the heat exchanger B (refrigerant condensing unit) 94 by the secondary heat storage medium circulation system 92 and heated, It is supplied again to the heat dissipation system.
Each circulation system is provided with a pump for fluid circulation, but the display of the pump is omitted in FIG.

夏期には、略15℃の循環流体がピートポンプ内の熱交換器において、熱媒体との熱交換によって熱を奪うことで循環流体の温度が上昇する。このヒートポンプに導かれて温度が上昇した循環流体は、再び地中熱熱交換領域に戻る。このとき地中温度は、地上の外気温度に比べ恒温状態で温度が低いので、循環流体は地上側から地中に送り込まれると、地中熱交換領域で冷やされて再び熱交換器に循環することになる。   In the summer, the temperature of the circulating fluid rises as the circulating fluid of approximately 15 ° C. takes heat away from the heat exchanger in the heat exchanger in the peat pump. The circulating fluid whose temperature has been increased by being guided to the heat pump returns to the underground heat heat exchange region again. At this time, since the underground temperature is constant and lower than the outside air temperature on the ground, when the circulating fluid is fed from the ground side into the ground, it is cooled in the underground heat exchange region and circulated again to the heat exchanger. It will be.

ピートポンプにおいて循環流体によって冷却された熱媒体は、膨張弁を通って熱交換器に入り、2次蓄熱媒体から熱を奪う。温度が上昇した熱媒体は再度熱交換器に循環して、循環流体から熱を奪うことにより、地中熱との熱交換が行われる。冷却された熱媒体は配管を通って放熱系に到達し、所望の冷房機能が得られる。放熱系も循環ループとなっており、放熱系で温度が上昇した2次蓄熱媒体は、再び熱交換器B(冷媒凝縮部)に導かれ、冷却されて再度放熱系に供給される。   The heat medium cooled by the circulating fluid in the peat pump enters the heat exchanger through the expansion valve and takes heat from the secondary heat storage medium. The heat medium whose temperature has risen is circulated again to the heat exchanger, and heat is taken from the circulating fluid to exchange heat with the underground heat. The cooled heat medium reaches the heat dissipation system through the pipe, and a desired cooling function is obtained. The heat dissipation system is also a circulation loop, and the secondary heat storage medium whose temperature has increased in the heat dissipation system is again guided to the heat exchanger B (refrigerant condensing unit), cooled, and supplied to the heat dissipation system again.

本発明により、高い熱交換効率を達成し、優れた施工性を実現しながら、長尺状垂直埋設式地中熱交換器に比して掘削コストを大幅に削減できる垂直埋設式地中熱交換器が提供される。
ヒートポンプなどの負荷装置の熱交換器として垂直埋設式地中熱交換器を用いる場合、設置費用のかなりの割合が地中熱交換器設置のための掘削費用であるところ、本発明によって削孔深度を短くできるので、設置費用を大幅に削減することが可能となる。
本発明により提供される熱交換器は、従来公知の垂直埋設式地中熱交換器より高い熱交換効率と優れた施工性を達成するものである。
本発明により、高い熱交換効率を実現し、優れた施工性を発揮し、掘削コストを大幅に削減できる垂直埋設式地中熱交換器を用いたヒートポンプが提供される。
Vertical buried underground heat exchange that achieves high heat exchange efficiency and achieves excellent workability by the present invention, and can significantly reduce the excavation cost compared to long vertical buried underground heat exchanger A vessel is provided.
When using a vertical buried underground heat exchanger as a heat exchanger for a load device such as a heat pump, a significant percentage of the installation cost is excavation cost for installing the underground heat exchanger. Therefore, the installation cost can be greatly reduced.
The heat exchanger provided by the present invention achieves higher heat exchange efficiency and superior workability than conventionally known vertical buried underground heat exchangers.
The present invention provides a heat pump using a vertical buried underground heat exchanger that realizes high heat exchange efficiency, exhibits excellent workability, and can significantly reduce excavation costs.

1.垂直埋設式地中熱交換器
2.地中熱交換構造
3.樹脂製流体路
31.束ねられた一群の流体路
32.他の群の流体路を構成する流体路
4.ヘッダー
4’.他のヘッダー
5.間隔保持部材
6.枠
7.アーム部
8.管保持部
9.ヒートポンプ
91.循環流体循環系
92.2次蓄熱媒体循環系
93.熱交換器A
94.熱交換器B
95.圧縮機
96.膨張弁
97.放熱系
10.地表
11.充填材
12.地中熱交換
a.循環流体入口
b.循環流体出口
1. 1. Vertical buried underground heat exchanger 2. Underground heat exchange structure Resin fluid passage 31. A bundle of bundled fluid paths 32. 3. Fluid paths constituting another group of fluid paths Header 4 '. 4. Other headers 5. Spacing member Frame 7. Arm part 8. 8. Tube holding part Heat pump 91. Circulating fluid circulation system 92.2 Secondary heat storage medium circulation system 93. Heat exchanger A
94. Heat exchanger B
95. Compressor 96. Expansion valve 97. Heat dissipation system 10. Surface 11. Filler 12. Underground heat exchange a. Circulating fluid inlet b. Circulating fluid outlet

Claims (9)

地表に垂直方向で下方に形成された熱交換領域において、循環流体を対地熱交換させる流体路として、循環流体を地表側から地中へ向けて流す往路と、その往路を通過した流体を地中から地表側へ向けて流す復路を有する樹脂製流体路を複数備えており、一群の流体路が隣り合う流体路とほぼ接し合うように束ねられおり、他の群の流体路が、隣り合う流体路との間に間隔を開けて配置されていて、該一群の流体路と他の群の流体路がそれぞれ往路か復路を形成するものである地中熱交換構造を備えている地中熱交換器。   In the heat exchange area formed vertically below the ground surface, as a fluid path for exchanging the circulating fluid to the ground, the forward path for flowing the circulating fluid from the ground side toward the ground and the fluid that has passed through the forward path are A plurality of resin fluid paths having return paths that flow from the surface toward the ground surface, a group of fluid paths are bundled so as to be in close contact with adjacent fluid paths, and the other groups of fluid paths are adjacent to each other. Ground heat exchange provided with a ground heat exchange structure that is arranged with a gap between the path and the group of fluid paths and the other group of fluid paths form an outward path or a return path, respectively. vessel. 前記束ねられている一群の流体路が復路である請求項1に記載の地中熱交換器。   The underground heat exchanger according to claim 1, wherein the bundled fluid path is a return path. 前記他の群の流体路が、隣り合う流体路との間に、管中心間の間隔として少なくとも6cmの間隔を保持していることを特徴とする請求項1または2に記載の地中熱交換器。   3. The underground heat exchange according to claim 1, wherein the other group of fluid paths maintain an interval of at least 6 cm as an interval between pipe centers between adjacent fluid paths. vessel. 前記地中熱交換構造を形成する樹脂製流体路の数が、3〜8であることを特徴とする請求項1〜3のいずれかに記載の地中熱交換器。   The number of the resin-made fluid paths which form the said underground heat exchange structure is 3-8, The underground heat exchanger in any one of Claims 1-3 characterized by the above-mentioned. 前記樹脂製流体路の各往路と復路の接点が、深度がほぼ同じ領域にあることを特徴とする請求項1〜4のいずれかに記載の地中熱交換器。   The underground heat exchanger according to any one of claims 1 to 4, wherein a contact point between each forward path and the return path of the resin-made fluid path is in a region having substantially the same depth. 前記樹脂製流体路が、直状樹脂製管からなるU字管からなることを特徴とする請求項1〜5のいずれかに記載の地中熱交換器。   The underground heat exchanger according to any one of claims 1 to 5, wherein the resin fluid path is a U-shaped pipe made of a straight resin pipe. 流体路の上下方向中間の位置で、前記熱交換領域に平面視で円を描いたとき、束ねられている一群の流体路と他の群の流体路がその円の近辺に配置されていることを特徴とする請求項1〜6のいずれかに記載の地中熱交換器。   When a circle is drawn in plan view in the heat exchange region at a position in the middle in the vertical direction of the fluid path, the bundled fluid path and the other group of fluid paths are arranged in the vicinity of the circle. The underground heat exchanger according to any one of claims 1 to 6. 前記地中熱交換構造が、前記流体路の間隔を所定の間隔に保持する間隔保持部材を備えていることを特徴とする請求項1〜7のいずれかに記載の地中熱交換器。   The underground heat exchanger according to any one of claims 1 to 7, wherein the underground heat exchange structure includes an interval holding member that holds an interval between the fluid paths at a predetermined interval. 請求項1〜8のいずれかに記載の地中熱交換器を熱交換装置として有する地中熱利用ヒートポンプシステム。   A ground heat utilization heat pump system having the underground heat exchanger according to any one of claims 1 to 8 as a heat exchange device.
JP2015234673A 2015-12-01 2015-12-01 Geothermal heat exchanger and heat pump system using the same Pending JP2017101867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015234673A JP2017101867A (en) 2015-12-01 2015-12-01 Geothermal heat exchanger and heat pump system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015234673A JP2017101867A (en) 2015-12-01 2015-12-01 Geothermal heat exchanger and heat pump system using the same

Publications (1)

Publication Number Publication Date
JP2017101867A true JP2017101867A (en) 2017-06-08

Family

ID=59016618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015234673A Pending JP2017101867A (en) 2015-12-01 2015-12-01 Geothermal heat exchanger and heat pump system using the same

Country Status (1)

Country Link
JP (1) JP2017101867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004713A (en) * 2019-06-27 2021-01-14 株式会社Ihi建材工業 Geothermal heat exchanging segment and geothermal heat exchanging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004713A (en) * 2019-06-27 2021-01-14 株式会社Ihi建材工業 Geothermal heat exchanging segment and geothermal heat exchanging device

Similar Documents

Publication Publication Date Title
JP4642579B2 (en) Geothermal heat collection system
RU2394191C2 (en) Heating and cooling method and device
US20090025902A1 (en) Probe For Collecting Thermal Energy From The Ground For A Heat Pump, And A Collection Network Equipped With Such Probes
RU2429428C2 (en) System and distributing tank for low-temperature energy network
US4566532A (en) Geothermal heat transfer
JP2014185822A (en) Geothermal heat utilization heat exchanger and heat pump system using the same
KR101591017B1 (en) Thermal energy storage system using depth defference of aquifer
KR101011130B1 (en) Ground-coupled Heat Exchanger
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP2017101867A (en) Geothermal heat exchanger and heat pump system using the same
US20100251710A1 (en) System for utilizing renewable geothermal energy
KR101088440B1 (en) Earth heat exchange pipe, earth heat exchange system and manufacturing method of the same
JP2015055365A (en) Heat collecting pipe for underground thermal heat pump system
JP2014020645A (en) Holding member
JP5859731B2 (en) Horizontally buried underground heat exchanger equipment for heat pump system using geothermal heat
JP6237867B2 (en) Insertion method of underground heat exchanger
KR20190063698A (en) Energy System having Underground Storage
JP2007017138A (en) Method of forming heat exchange well, and underground thermal system
JP2013148255A (en) Heat exchanger and heat exchanger module
KR101189079B1 (en) Geothermal exchanging pile
US11181302B2 (en) Multi-channel ground heat exchange unit and geothermal system
CA1166242A (en) Geothermal heat transfer
JP2014115025A (en) Geothermal utilization heat exchange structure and heat pump system using the same
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure