JP2015055365A - Heat collecting pipe for underground thermal heat pump system - Google Patents

Heat collecting pipe for underground thermal heat pump system Download PDF

Info

Publication number
JP2015055365A
JP2015055365A JP2013187054A JP2013187054A JP2015055365A JP 2015055365 A JP2015055365 A JP 2015055365A JP 2013187054 A JP2013187054 A JP 2013187054A JP 2013187054 A JP2013187054 A JP 2013187054A JP 2015055365 A JP2015055365 A JP 2015055365A
Authority
JP
Japan
Prior art keywords
heat
pipe
tube
heat collecting
pump system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013187054A
Other languages
Japanese (ja)
Inventor
則雄 大坪
Norio Otsubo
則雄 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAZAKI MIKI
OTSUBO MAMI
Original Assignee
MAZAKI MIKI
OTSUBO MAMI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAZAKI MIKI, OTSUBO MAMI filed Critical MAZAKI MIKI
Priority to JP2013187054A priority Critical patent/JP2015055365A/en
Publication of JP2015055365A publication Critical patent/JP2015055365A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat collecting pipe for an underground thermal heat pump system of which construction cost is reduced and heat exchange efficiency is improved.SOLUTION: A heat collecting pipe 3 shows a double pipe structure comprising an outer pipe 11 and an inner pipe 12. The outer pipe 11 is made of metal and the inner pipe 12 is made of resin. There is provided a flow passage where after heat medium flows in the inner pipe 12, the heat medium is returned back through a heat collecting passage 13 between the outer pipe 11 and the inner pipe 12. It is satisfactory that a punched hole diameter of a vertical hole 2 so as to cause the heat collecting pipe 3 to be laid in the ground is slightly larger than an outer circumference of the outer pipe 11, and the punched vertical hole 2 can be utilized effectively, so that a construction cost for punching the vertical hole 2 can be reduced. Since metal with higher coefficient of thermal conductivity as compared with that of resin is used as a material for the outer pipe 11, the underground heat is transmitted efficiently to the heat medium and much amount of underground thermal energy can be collected. In turn, since the inner pipe 12 is made of resin, thermal giving or receiving amount between the heat medium flowing in the inner pipe and the heat medium flowing in the heat collecting passage 13 is quite low, it is possible to keep a high heat exchange efficiency.

Description

本発明は、地中に配設した採熱管によって取り出した熱エネルギーを冷暖房、融雪、床暖房等に利用する地中熱ヒートポンプシステム用の採熱管に関する。   The present invention relates to a heat collecting tube for a geothermal heat pump system that uses thermal energy extracted by a heat collecting tube disposed in the ground for air conditioning, snow melting, floor heating, and the like.

近年、自然エネルギーの利用、COの排出量の抑制、環境保全、省エネルギー等の利点から、地中熱を利用した冷暖房システム、融雪システム、給湯システム、床暖房システムなどが盛んに設置されている。 In recent years, cooling and heating systems, snow melting systems, hot water supply systems, floor heating systems, etc. that use geothermal heat have been actively installed due to advantages such as the use of natural energy, suppression of CO 2 emissions, environmental conservation, and energy saving. .

この地中熱を利用したシステムは、地中部分、例えば10〜100mの熱エネルギー(約15〜18℃)を熱交換器により抽出して様々な用途に活用するものである。   The system using the underground heat extracts a portion of the ground, for example, 10 to 100 m of thermal energy (about 15 to 18 ° C.) by a heat exchanger and uses it for various applications.

従来、前記採熱管としては、例えば下記特許文献1〜3に示されるように、並行に配置した2本の直管の下端を連通させることによって、一方を往路、他方を復路としたU字状管としたものが多く用いられている。前記採熱管の材質としては、耐食性に優れたポリエチレンなどの樹脂製のものが主流である。   Conventionally, as the heat collection tube, for example, as shown in Patent Documents 1 to 3 below, by connecting the lower ends of two straight tubes arranged in parallel, one is a U-shape with the other as a forward path and the other as a return path Many pipes are used. As the material of the heat collecting tube, a resin material such as polyethylene having excellent corrosion resistance is mainly used.

また、例えば下記特許文献2、3などでは、1回の穿孔で大きな対地伝熱面積を得るようにするため、1つの縦孔に対して、2本の往管と2本の復管を設けてU字状の2組の管路を一体化して配設したものが開発されている。これによって、1つの縦孔の穿孔で熱交換面積を多く得ることができるようになっている。   Further, for example, in Patent Documents 2 and 3 below, two forward pipes and two return pipes are provided for one vertical hole in order to obtain a large ground heat transfer area by one drilling. In this way, two U-shaped pipes are integrated and arranged. As a result, a large heat exchange area can be obtained by drilling one vertical hole.

特開昭61−272592号公報JP-A 61-272592 特開平11−182942号公報Japanese Patent Application Laid-Open No. 11-182942 特開2012−127116号公報JP 2012-127116 A

しかしながら、上記特許文献1〜3記載のものでは、採熱管として2本の直管を並行配置し下端を連通させたU字状に形成されているため、縦孔の穿孔径を大きくとる必要があり、縦孔穿孔のための施工コストが嵩む問題があった。例えば、呼び径25Aの配管を用いた場合、下端のU字継手部を含めた製品幅は約84mmとなるため、採熱管嵌入のための余裕をみてこれより若干大きな径で穿孔する必要があった。また、上記特許文献2、3のように2組のU字状管路を一体化して配設した場合には、これより1.2〜1.3倍の径が必要となり、およそ105mm程度の穿孔径が必要となる。   However, in the thing of the said patent documents 1-3, since the two straight pipes are arranged in parallel as a heat collection pipe and it is formed in the U shape which made the lower end communicate, it is necessary to make the drilling diameter of a vertical hole large. There was a problem that the construction cost for drilling the vertical holes increased. For example, when a pipe with a nominal diameter of 25A is used, the product width including the U-shaped joint at the lower end is about 84 mm. Therefore, it is necessary to drill with a diameter slightly larger than this in order to allow room for insertion of the heat collecting pipe. It was. Further, when two sets of U-shaped pipes are integrated and arranged as in Patent Documents 2 and 3, a diameter 1.2 to 1.3 times larger than this is required, which is about 105 mm. A drilling diameter is required.

また、従来の採熱管では、地中に長期間配設したときの耐腐食性などを考慮して、ポリエチレンなどの樹脂製のものが多く用いられていたが、ポリエチレン樹脂の熱伝導率は0.46〜0.50W/mKとかなり小さいものである。そのため、地中との熱交換が効率良く行われず、熱エネルギーの回収効率が悪かった。   In addition, in the conventional heat collecting tube, a resin made of polyethylene or the like is often used in consideration of corrosion resistance when placed in the ground for a long period of time, but the heat conductivity of polyethylene resin is 0. .46-0.50 W / mK and quite small. For this reason, heat exchange with the ground was not performed efficiently, and the recovery efficiency of heat energy was poor.

そこで本発明の主たる課題は、施工コストを低減するとともに、熱交換効率を向上させた地中熱ヒートポンプシステム用の採熱管を提供することにある。   Then, the main subject of this invention is providing the heat-collecting pipe | tube for underground heat pump systems which reduced the construction cost and improved the heat exchange efficiency.

上記課題を解決するために請求項1に係る本発明として、地中熱を利用したヒートポンプシステムに用いられる採熱管であって、
前記採熱管は、外管と内管とからなる二重管構造を成し、前記外管は金属で構成され、前記内管は樹脂で構成されるとともに、熱媒が前記内管の内部を流通した後、前記外管と内管との間の空間を通って戻される流路が形成されていることを特徴とする地中熱ヒートポンプシステム用採熱管が提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, a heat collection tube used in a heat pump system using underground heat,
The heat collection tube has a double tube structure composed of an outer tube and an inner tube, the outer tube is made of metal, the inner tube is made of resin, and a heat medium passes through the inner tube. There is provided a heat collecting pipe for a ground heat pump system, characterized in that a flow path returning through a space between the outer pipe and the inner pipe is formed after distribution.

上記請求項1記載の発明では、地中熱交換器として地中の熱エネルギーを採取する採熱管が外管と内管とからなる二重構造を成し、前記外管が金属で構成され、内管が樹脂で構成されている。この採熱管では、熱媒が前記内管の内部を流通した後、前記外管と内管との間の空間を通って戻されるという流路が形成されているので、供給側(内管)に比べ採熱側(外管)の方が熱媒と接触する表面積が大きくなり、採熱により有利となる。また、前記外管として金属を用いた場合には、金属の熱伝導率(SUS304ステンレス鋼の場合、16.0W/mK)がポリエチレン樹脂の熱伝導率(0.46〜0.50W/mK)に比べてはるかに高い値であるため、地中熱が熱媒に効率良く伝熱し、地中の熱エネルギーをより多く採取することができるようになる。一方、前記内管は樹脂からなるため、内管を流れる熱媒と、内管と外管との間の空間を流れる熱媒との間で熱の授受は極僅かであるので、高い熱交換効率が維持できる。   In the invention of claim 1, the heat collecting pipe for collecting the heat energy in the ground as the underground heat exchanger has a double structure composed of the outer pipe and the inner pipe, and the outer pipe is made of metal. The inner tube is made of resin. In this heat collecting pipe, since a flow path is formed in which the heat medium flows through the inside of the inner pipe and then returned through the space between the outer pipe and the inner pipe, the supply side (inner pipe) Compared with the heat collection side (outer tube), the surface area in contact with the heat medium becomes larger, which is more advantageous for heat collection. Further, when a metal is used as the outer tube, the thermal conductivity of the metal (16.0 W / mK in the case of SUS304 stainless steel) is the thermal conductivity of the polyethylene resin (0.46 to 0.50 W / mK). Since the value is much higher than that of, the underground heat can be efficiently transferred to the heating medium, and more underground heat energy can be collected. On the other hand, since the inner tube is made of resin, heat exchange between the heat medium flowing through the inner tube and the heat medium flowing through the space between the inner tube and the outer tube is negligible. Efficiency can be maintained.

このように、従来のものに比べて採熱効率が高くなるので、全体の採熱管の敷設本数を低減することが可能になる。そのため、採熱管を敷設するための縦孔の施工コストが低減できる。また、本採熱管は、外管と内管とからなる二重管構造を成しているため、穿孔する縦孔の径が外管の外周より若干大きな径でよく、穿孔した縦孔を無駄なく有効活用できるので、縦孔を穿孔するための施工コストを低減することができるようになる。   Thus, since the heat collection efficiency is higher than that of the conventional one, it is possible to reduce the number of the entire heat collection tubes. Therefore, the construction cost of the vertical hole for laying the heat collection tube can be reduced. In addition, since the heat collecting pipe has a double pipe structure consisting of an outer pipe and an inner pipe, the diameter of the vertical hole to be drilled may be slightly larger than the outer circumference of the outer pipe, and the drilled vertical hole is wasted. Therefore, the construction cost for drilling the vertical hole can be reduced.

請求項2に係る本発明として、前記外管は、耐食性を有する金属又は耐食処理が施された金属によって構成されている請求項1記載の地中熱ヒートポンプシステム用採熱管が提供される。   According to a second aspect of the present invention, there is provided the heat collecting pipe for a geothermal heat pump system according to the first aspect, wherein the outer pipe is made of a metal having corrosion resistance or a metal subjected to a corrosion resistance treatment.

上記請求項2記載の発明では、外管として、ステンレスやアモルファス金属などの耐食性を有する金属又は外面に防錆剤の塗布、樹脂コーティング、耐腐食用シース被覆、アモルファス金属被膜など耐食処理を施した金属で構成することによって、耐食性に優れ、長期間の使用に耐え得るようになる。   In the invention according to claim 2, the outer tube is subjected to corrosion resistance treatment such as application of a rust preventive agent, resin coating, corrosion-resistant sheath coating, amorphous metal coating on the outer surface of a metal having corrosion resistance such as stainless steel or amorphous metal. By being made of metal, it has excellent corrosion resistance and can withstand long-term use.

請求項3に係る本発明として、前記外管と内管との間の空間の断面積は、前記内管内部の断面積より大きく形成されている請求項1、2いずれかに記載の地中熱ヒートポンプシステム用採熱管が提供される。   As a third aspect of the present invention according to claim 3, the cross-sectional area of the space between the outer tube and the inner tube is formed larger than the cross-sectional area inside the inner tube. A heat collection tube for a thermal heat pump system is provided.

上記請求項3記載の発明では、前記外管と内管との間の空間の断面積を、前記内管内部の断面積より大きく形成することにより、内管の内部を流通する熱媒の流速より、外管と内管との間の空間を流通する熱媒の流速の方が遅くなるため、地中と熱媒との間の熱交換がより多く行われるようになる。   In the invention according to claim 3, the flow rate of the heat medium flowing through the inside of the inner pipe is formed by making the cross-sectional area of the space between the outer pipe and the inner pipe larger than the cross-sectional area inside the inner pipe. Accordingly, the flow rate of the heat medium flowing through the space between the outer tube and the inner tube becomes slower, so that more heat exchange is performed between the underground and the heat medium.

請求項4に係る本発明として、前記外管はコルゲート管からなる請求項1〜3いずれかに記載の地中熱ヒートポンプシステム用採熱管が提供される。   According to a fourth aspect of the present invention, there is provided a heat collecting pipe for a geothermal heat pump system according to any one of the first to third aspects, wherein the outer pipe is a corrugated pipe.

上記請求項4記載の発明では、前記外管として表面が波状に凹凸するコルゲート管を用いることにより、地中と外管との接触面積を増加させ、熱交換効率を高めているとともに、地殻変動にも対応しやすくしている。   In the invention according to claim 4, by using a corrugated tube whose surface is corrugated as the outer tube, the contact area between the underground and the outer tube is increased, the heat exchange efficiency is increased, and the crustal deformation It is easy to cope with.

以上詳説のとおり本発明によれば、地中熱を利用したヒートポンプシステムに用いられる採熱管において、採熱管の施工コストが低減できるとともに、熱交換効率が向上するようになる。   As described above in detail, according to the present invention, in the heat collecting pipe used in the heat pump system using underground heat, the construction cost of the heat collecting pipe can be reduced and the heat exchange efficiency is improved.

本発明に係る地中熱ヒートポンプシステム1の構成図である。1 is a configuration diagram of a geothermal heat pump system 1 according to the present invention. 採熱管3の縦断面図である。3 is a longitudinal sectional view of a heat collecting tube 3. FIG. 採熱管3の横断面図(図2のIII−III線矢視図)である。It is a cross-sectional view (III-III line arrow view of FIG. 2) of the heat collecting tube 3. 他の形態例にかかる採熱管3を示す一部破断正面図である。It is a partially broken front view which shows the heat collection pipe | tube 3 concerning the other form example.

以下、本発明の実施の形態について図面を参照しながら詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明に係る地中熱ヒートポンプシステム1は、地中熱を熱源に用いたヒートポンプシステムである。かかるヒートポンプシステムでは、地中の温度が外気温に比べて年間を通して変化が小さく安定しているため、夏季は冷熱源、冬季は温熱源として利用でき、空気を熱源とするものよりエネルギー効率が高くなるとともに、外気に熱を排出しないのでヒートアイランド現象の軽減にもつながるものである。   A geothermal heat pump system 1 according to the present invention is a heat pump system using geothermal heat as a heat source. In such a heat pump system, since the temperature of the ground changes and is stable throughout the year compared to the outside air temperature, it can be used as a heat source in the summer and as a heat source in the winter, and it is more energy efficient than air-based heat sources. At the same time, since heat is not discharged to the outside air, the heat island phenomenon can be reduced.

具体的に本地中熱ヒートポンプシステム1の構造は、図1に示されるように、地中に穿孔した縦孔2に敷設され、地中との間で熱交換を行う採熱管3と、前記採熱管3を通過した熱媒との間で熱交換を行う熱交換器4と、圧縮機5と、冷暖房装置や床暖房装置などの室内側負荷8を流通する熱媒との間で熱交換を行う熱交換器6と、膨張弁7とから主に構成されている。   Specifically, as shown in FIG. 1, the structure of the main underground heat pump system 1 is laid in a vertical hole 2 drilled in the ground, and a heat collecting pipe 3 for exchanging heat with the ground, and the above-described sampling. Heat exchange is performed between the heat exchanger 4 that exchanges heat with the heat medium that has passed through the heat pipe 3, the compressor 5, and the heat medium that flows through the indoor load 8 such as an air conditioner or a floor heater. It mainly comprises a heat exchanger 6 to be performed and an expansion valve 7.

前記熱交換器4、圧縮機5、熱交換器6及び膨張弁7は配管で接続され、これらを循環する水や不凍液等の作動流体が封入されている。また、前記採熱管3と熱交換器4とが配管で接続され、これらを循環する水や不凍液等の熱媒が封入されるとともに、その途中に前記熱媒を循環させるためのポンプ9が配設されている。さらに、前記室内側負荷8と熱交換器6とが配管で接続され、これらを循環する水や不凍液等の熱媒が封入されるとともに、その途中に前記熱媒を循環させるためのポンプ10が配設されている。   The heat exchanger 4, the compressor 5, the heat exchanger 6 and the expansion valve 7 are connected by piping, and a working fluid such as water or antifreeze that circulates these is enclosed. In addition, the heat collecting pipe 3 and the heat exchanger 4 are connected by piping, and a heat medium such as water or antifreeze liquid circulating through them is enclosed, and a pump 9 for circulating the heat medium is disposed in the middle of the heat collecting pipe 3 and the heat exchanger 4. It is installed. Furthermore, the indoor load 8 and the heat exchanger 6 are connected by piping, and a heat medium such as water and antifreeze liquid circulating through them is enclosed, and a pump 10 for circulating the heat medium in the middle is provided. It is arranged.

夏季においては、前記採熱管3によって地中の冷熱を取り出し(地中に熱を放出し)、前記熱交換器4が凝縮器として作用するとともに、前記熱交換器6が蒸発器として作用し、ヒートポンプの作動流体を熱交換器4(凝縮器)→膨張弁7→熱交換器6(蒸発器)→圧縮機5の順に循環させ、室内側負荷8にて冷熱を利用する。冬季においては、前記採熱管3によって地中から熱を取り出し、前記熱交換器4が蒸発器として作用するとともに、前記熱交換器6が凝縮器として作用し、ヒートポンプの作動流体を熱交換器4(蒸発器)→圧縮機5→熱交換器6(凝縮器)→膨張弁7の順に循環させ、室内側負荷8にて温熱を利用する。   In summer, the heat collecting pipe 3 takes out the cold in the ground (releases heat into the ground), the heat exchanger 4 acts as a condenser, and the heat exchanger 6 acts as an evaporator, The working fluid of the heat pump is circulated in the order of heat exchanger 4 (condenser) → expansion valve 7 → heat exchanger 6 (evaporator) → compressor 5, and cold energy is utilized at the indoor load 8. In the winter season, heat is extracted from the ground by the heat collecting tube 3, the heat exchanger 4 acts as an evaporator, the heat exchanger 6 acts as a condenser, and the working fluid of the heat pump is used as the heat exchanger 4 (Evaporator) → Compressor 5 → Heat exchanger 6 (Condenser) → Expansion valve 7 are circulated in this order, and the indoor load 8 uses the heat.

前記縦孔2は、ビット先端が回転する回転式又はこれに振動を付加したハイブリッド式のドリル装置によって地表面からほぼ鉛直に穿孔した開孔である。前記ドリル装置としては、掘削深度が50m〜150m程度の仕様のものが用いられ、20m〜100m程度の深さの縦孔2を掘削する。   The vertical hole 2 is a hole which is drilled substantially vertically from the ground surface by a rotary drilling device in which the tip of the bit rotates or a hybrid drilling device to which vibration is added. As the drill device, one having a digging depth of about 50 m to 150 m is used, and the vertical hole 2 having a depth of about 20 m to 100 m is excavated.

前記採熱管3を前記縦孔2に敷設するには、前記縦孔2を穿孔した後、前記採熱管3を挿入し、必要に応じてその周囲を土やグラウト材などの充填材Gで充填する。   In order to lay the heat collecting pipe 3 in the vertical hole 2, after the vertical hole 2 is drilled, the heat collecting pipe 3 is inserted, and if necessary, the periphery thereof is filled with a filler G such as soil or grout material. To do.

前記縦孔2の穿孔径は、前記外管11の直径より若干大きな径で形成すればよく、具体的には2mm〜10mm程度大きな直径で形成する。本採熱管3とほぼ同程度の流路断面積を有する従来のU字型の熱交換パイプと比べて、縦孔の穿孔径をおよそ半分程度に抑えることができるようになり、縦孔2を穿孔するための施工コストを抑えることができるようになる。   The perforation diameter of the vertical hole 2 may be formed with a diameter slightly larger than the diameter of the outer tube 11, and specifically with a diameter of about 2 mm to 10 mm. Compared with a conventional U-shaped heat exchange pipe having a flow path cross-sectional area of approximately the same as the main heat collecting pipe 3, the bore diameter of the vertical hole can be reduced to about half. Construction costs for drilling can be reduced.

前記採熱管3は、図2及び図3に示されるように、外管11と内管12とからなる同軸の二重管構造を成している。前記採熱管3は、ほとんどが前記縦孔2内に埋設され、上端部が地表面から延出して配置される。   As shown in FIGS. 2 and 3, the heat collecting tube 3 has a coaxial double tube structure including an outer tube 11 and an inner tube 12. Most of the heat collecting tubes 3 are embedded in the vertical holes 2 and their upper ends extend from the ground surface.

前記外管11は、金属で構成されている。これによって、樹脂で構成した場合に比べ、金属の熱伝導率がはるかに高い値であるため、地中熱を効率良く採取できるようになる。前記金属としては、耐食性を有する金属又は少なくとも外面に耐食処理が施された金属を用いることが望ましい。前記耐食性を有する金属として、ステンレスやアモルファス金属などが例示できる。ステンレスとしては、SUS304、SUS316、SUS410S系などを用いることができる。ステンレスの熱伝導率は、SUS304の場合、温度300Kにおいて16.0W/mKと、高密度ポリエチレンの熱伝導率(0.46〜0.50W/mK)と比べて約32倍〜35倍の高い値を示す。従って、地中と直接的に接触する外管11をステンレス製とすることによって、地中と内部を流れる熱媒との熱交換効率が高くなる。前記アモルファス金属とは、原子がランダムに配列した非晶質金属のことで、耐食性に特に優れた性質を有するものである。   The outer tube 11 is made of metal. As a result, since the thermal conductivity of the metal is much higher than that of the resin, the underground heat can be collected efficiently. As the metal, it is desirable to use a metal having corrosion resistance or a metal having at least an outer surface subjected to corrosion resistance treatment. Examples of the corrosion-resistant metal include stainless steel and amorphous metal. As the stainless steel, SUS304, SUS316, SUS410S, or the like can be used. In the case of SUS304, the thermal conductivity of stainless steel is 16.0 W / mK at a temperature of 300 K, which is about 32 to 35 times higher than that of high-density polyethylene (0.46 to 0.50 W / mK). Indicates the value. Therefore, by making the outer tube 11 in direct contact with the ground made of stainless steel, the heat exchange efficiency between the ground and the heat medium flowing in the interior is increased. The amorphous metal is an amorphous metal in which atoms are randomly arranged, and has particularly excellent properties in corrosion resistance.

また、前記外管11をステンレスで構成し長期的に地中に配設した場合、外管11の腐食が問題となるため、外管11の外面に耐食処理を施すことが望ましい。この耐食処理としては、防錆剤の塗布、樹脂コーティング、耐腐食用シースの被覆、アモルファス金属の被膜などが挙げられる。   Further, when the outer tube 11 is made of stainless steel and disposed in the ground for a long time, corrosion of the outer tube 11 becomes a problem. Therefore, it is desirable to subject the outer surface of the outer tube 11 to corrosion resistance. Examples of the anticorrosion treatment include application of a rust preventive agent, resin coating, anticorrosion sheath coating, and amorphous metal coating.

また、前記外管11として、図4に示されるように、ステンレス製のコルゲート管を使用することもできる。前記コルゲート管は、表面が波状に凹凸する断面形状を有するため、表面が平坦な直管に比べて地中と外管11との接触面積が増し、熱交換効率を高めることができるようになるとともに、地殻変動などに対しても外管11が変形することによって対応し易くなる。   Further, as the outer tube 11, as shown in FIG. 4, a stainless corrugated tube can be used. Since the corrugated tube has a cross-sectional shape with a corrugated surface, the contact area between the underground and the outer tube 11 is increased compared to a straight tube with a flat surface, and the heat exchange efficiency can be increased. At the same time, it becomes easy to cope with crustal deformation and the like by deforming the outer tube 11.

前記外管11の外径は、32mm〜60.5mm、好ましくは45mm〜50mmのものを用いるのがよい。また、厚みは、0.8mm〜4mm、好ましくは1mm〜1.5mmのものを用いるのがよい。   The outer diameter of the outer tube 11 is 32 mm to 60.5 mm, preferably 45 mm to 50 mm. The thickness is 0.8 mm to 4 mm, preferably 1 mm to 1.5 mm.

前記外管11の下端は、外管11と同じ材質の底板11aによって閉塞されている。一方、上端は、L字形のエルボ部11bが形成され、その上端に前記内管12を挿通するための開孔が設けられている。   The lower end of the outer tube 11 is closed by a bottom plate 11 a made of the same material as the outer tube 11. On the other hand, an L-shaped elbow portion 11b is formed at the upper end, and an opening for inserting the inner tube 12 is provided at the upper end.

前記内管12としては、例えば呼び径20A〜25A(外径27mm〜34mm)程度の高密度ポリエチレンの樹脂管が好適に用いられる。また、架橋ポリエチレン、ポリプロピレン、ポリブデン等の樹脂管を用いることも可能である。   As the inner tube 12, for example, a resin tube of high density polyethylene having a nominal diameter of 20A to 25A (outer diameter of 27 mm to 34 mm) is preferably used. It is also possible to use resin pipes such as cross-linked polyethylene, polypropylene, and polybuden.

前記内管12の外面と外管11の内面との間には、所定の離間幅Sの空間が設けられ、この空間は流通する熱媒と地中との熱交換が行われる採熱路13となっている。   A space having a predetermined separation width S is provided between the outer surface of the inner tube 12 and the inner surface of the outer tube 11, and this space is a heat collecting path 13 in which heat exchange between the circulating heat medium and the ground is performed. It has become.

前記内管12の下端は、支持台12aによって前記外管11の底板11aから所定高さの浮き状態で保持されている。前記支持台12aは、内管12の周端部を支持する中央が開口するリング状の支持部12bと、外管11の底板11aから所定高さで立設される脚部12cとから構成されている。前記支持台12aを配設することによって、内管12の内部を流通した熱媒が内管12の下端で外管11に給水され、外管11と内管12との間の採熱路13に進入できるようになる。内管12下端の底板11aからの高さは、前記採熱路13の離間幅S以上で、内管12の内径より小さいことが好ましい。   The lower end of the inner tube 12 is held in a floating state with a predetermined height from the bottom plate 11a of the outer tube 11 by a support 12a. The support 12a is composed of a ring-shaped support portion 12b that opens at the center that supports the peripheral end portion of the inner tube 12, and a leg portion 12c that is erected at a predetermined height from the bottom plate 11a of the outer tube 11. ing. By disposing the support base 12a, the heat medium flowing through the inner pipe 12 is supplied to the outer pipe 11 at the lower end of the inner pipe 12, and the heat collecting path 13 between the outer pipe 11 and the inner pipe 12 is supplied. You will be able to enter. The height of the lower end of the inner tube 12 from the bottom plate 11a is preferably equal to or larger than the separation width S of the heat collecting passage 13 and smaller than the inner diameter of the inner tube 12.

また、前記内管12が外管11に対してほぼ同軸位置に位置ズレすることなく配設できるように、前記内管12の外周に対し、軸方向に所定のピッチで複数のセンタライザー14、14…を配設することが好ましい。前記センタライザー14は、図3に示されるように、内管12に外嵌されるリング部14aと、その周面に半径方向に突出するとともに、周方向に間隔をあけてほぼ等間隔で配置される3つ以上の、図示例では4つのスペーサー部14b、14b…とから構成されている。軸方向の配設ピッチは、1m〜10m、好ましくは1m〜5mとするのがよい。前記センタライザー14は、少なくとも内管12に対し接着剤等で固定されている。また、スペーサー部14bの先端は外管11に対し接着剤等で固定するのが好ましい。   In addition, a plurality of center risers 14 at a predetermined pitch in the axial direction with respect to the outer periphery of the inner tube 12 so that the inner tube 12 can be disposed without being displaced substantially coaxially with respect to the outer tube 11. 14 are preferably arranged. As shown in FIG. 3, the center riser 14 has a ring portion 14 a that is externally fitted to the inner tube 12, and protrudes in the radial direction on the peripheral surface thereof, and is arranged at substantially equal intervals with a circumferential interval. The three spacer portions 14b, 14b,... The arrangement pitch in the axial direction is 1 m to 10 m, preferably 1 m to 5 m. The center riser 14 is fixed to at least the inner tube 12 with an adhesive or the like. Moreover, it is preferable to fix the front-end | tip of the spacer part 14b with the adhesive agent etc. with respect to the outer tube | pipe 11. FIG.

以上の構成からなる採熱管3では、図1に示されるように、ポンプ9によって熱媒が内管12の上端から前記内管12の内部に供給され、内管12の内部を下端に向けて流通した後、内管12の下端から外管11に供給され、外管11と内管12との間の空間(採熱路13)を通って熱交換器4に戻されるという流路が形成されるので、供給側(内管12)に比べ採熱側(外管11)の方が熱媒と接触する表面積が大きくなり、採熱により有利となる。このとき、外管11として金属を用いているため、例えばSUS304ステンレス鋼の場合には熱伝導率が16.0W/mKとポリエチレン樹脂(0.46〜0.50W/mK)に比べてはるかに高い値であるので、地中熱が外管11を通して採熱路13を流れる熱媒に伝熱しやすくなり、この採熱路13を流れる熱媒によって地中の熱エネルギーがより多く採取されるようになる。一方、前記内管12は樹脂からなるため、内管12の内部を流れる熱媒と、内管12と外管11との間の採熱路13を流れる熱媒との間での熱の授受は極僅かであるので、採熱路13を流れる熱媒の高い熱回収効率が維持できるようになる。   In the heat collecting tube 3 having the above configuration, as shown in FIG. 1, the heat medium is supplied from the upper end of the inner tube 12 to the inside of the inner tube 12 by the pump 9, and the inside of the inner tube 12 faces the lower end. After distribution, a flow path is formed that is supplied from the lower end of the inner pipe 12 to the outer pipe 11 and is returned to the heat exchanger 4 through the space between the outer pipe 11 and the inner pipe 12 (heat collection path 13). Therefore, the heat collection side (outer tube 11) has a larger surface area in contact with the heat medium than the supply side (inner tube 12), which is more advantageous for heat collection. At this time, since a metal is used as the outer tube 11, for example, in the case of SUS304 stainless steel, the thermal conductivity is 16.0 W / mK, which is much higher than that of polyethylene resin (0.46 to 0.50 W / mK). Since it is a high value, it becomes easier for the underground heat to be transferred to the heat medium flowing through the heat collecting path 13 through the outer tube 11, so that more heat energy in the ground is collected by the heat medium flowing through the heat collecting path 13. become. On the other hand, since the inner tube 12 is made of resin, heat is transferred between the heat medium flowing inside the inner tube 12 and the heat medium flowing through the heat collecting path 13 between the inner tube 12 and the outer tube 11. Therefore, the high heat recovery efficiency of the heat medium flowing through the heat collecting path 13 can be maintained.

このように、採熱管3の一本当たりの熱回収量が増加できるので、全体の採熱管3の施工本数を少なくすることができ、縦孔2を穿孔するための施工費用を大幅に低減できるという利点も有する。また、採熱管3が外管11と内管12とからなる二重管構造を成しているため、穿孔する縦孔2の直径が外管11の外径より若干大きな径でよく、穿孔した縦孔2を無駄なく有効活用できるので、縦孔2を穿孔するための施工コストが低減できる。   Thus, since the amount of heat recovered per one heat collection tube 3 can be increased, the number of constructions of the entire heat collection tube 3 can be reduced, and the construction cost for drilling the vertical holes 2 can be greatly reduced. It also has the advantage of. Further, since the heat collecting tube 3 has a double tube structure composed of the outer tube 11 and the inner tube 12, the diameter of the vertical hole 2 to be drilled may be slightly larger than the outer diameter of the outer tube 11, and the hole is drilled. Since the vertical hole 2 can be effectively used without waste, the construction cost for drilling the vertical hole 2 can be reduced.

ところで、前記外管11と内管12との間の空間(採熱路13)の断面積Aは、前記内管12内部の断面積Aより大きく形成することが好ましい(A>A)。これによって、内管12の内部を流通する熱媒の流速より、外管11と内管12との間の採熱路13を流れる熱媒の流速の方が相対的に遅くなるため、地中と熱媒との間でより多くの熱交換が行われるようになる。断面積比A/Aとしては、1.2〜1.5程度が好ましい。 Incidentally, the cross-sectional area A 2 of the space (Tonetsuro 13) between the outer tube 11 and inner tube 12 is preferably larger than the inner tube 12 inside the cross-sectional area A 1 (A 2> A 1 ). As a result, the flow rate of the heat medium flowing through the heat collecting path 13 between the outer tube 11 and the inner tube 12 is relatively slower than the flow rate of the heat medium flowing through the inner tube 12, so And more heat exchange between the heat transfer medium and the heat medium. The cross-sectional area ratio A 2 / A 1 is preferably about 1.2 to 1.5.

また、外気の熱影響を受けやすい地表面付近での地中や外気との熱交換を生じなくするため、前記外管11の地中から突出する部分及び外気の熱影響を受けやすい地表面付近の埋設部分のみをステンレスに代えて樹脂で構成するか、ステンレス製の外管11の外面に断熱材を被覆したり厚めの樹脂コーティングを施すことによって、熱伝導を生じ難くする対策を施すことができる。   In addition, in order to prevent heat exchange with the ground or outside air near the ground surface that is easily affected by the heat of the outside air, the portion of the outer pipe 11 protruding from the ground and the vicinity of the ground surface that is easily affected by the outside air It is possible to take measures to make it difficult for heat conduction to occur by configuring the buried portion of the resin with resin instead of stainless steel, or by coating the outer surface of the stainless steel outer tube 11 with a heat insulating material or applying a thick resin coating. it can.

1…地中熱ヒートポンプシステム、2…縦孔、3…採熱管、4…熱交換器、5…圧縮機、6…熱交換器、7…膨張弁、8…室内側負荷、9・10…ポンプ、11…外管、12…内管、13…採熱路、14…センタライザー   DESCRIPTION OF SYMBOLS 1 ... Geothermal heat pump system, 2 ... Vertical hole, 3 ... Heat collection pipe, 4 ... Heat exchanger, 5 ... Compressor, 6 ... Heat exchanger, 7 ... Expansion valve, 8 ... Indoor load, 9 * 10 ... Pump, 11 ... Outer pipe, 12 ... Inner pipe, 13 ... Heat collection path, 14 ... Center riser

Claims (4)

地中熱を利用したヒートポンプシステムに用いられる採熱管であって、
前記採熱管は、外管と内管とからなる二重管構造を成し、前記外管は金属で構成され、前記内管は樹脂で構成されるとともに、熱媒が前記内管の内部を流通した後、前記外管と内管との間の空間を通って戻される流路が形成されていることを特徴とする地中熱ヒートポンプシステム用採熱管。
A heat collection tube used in a heat pump system using geothermal heat,
The heat collection tube has a double tube structure composed of an outer tube and an inner tube, the outer tube is made of metal, the inner tube is made of resin, and a heat medium passes through the inner tube. A heat collecting pipe for a geothermal heat pump system, wherein a flow path returning through a space between the outer pipe and the inner pipe after being circulated is formed.
前記外管は、耐食性を有する金属又は耐食処理が施された金属によって構成されている請求項1記載の地中熱ヒートポンプシステム用採熱管。   The heat collecting pipe for a geothermal heat pump system according to claim 1, wherein the outer pipe is made of a metal having corrosion resistance or a metal subjected to a corrosion resistance treatment. 前記外管と内管との間の空間の断面積は、前記内管内部の断面積より大きく形成されている請求項1、2いずれかに記載の地中熱ヒートポンプシステム用採熱管。   The heat collecting pipe for a geothermal heat pump system according to any one of claims 1 and 2, wherein a cross-sectional area of a space between the outer pipe and the inner pipe is formed larger than a cross-sectional area inside the inner pipe. 前記外管はコルゲート管からなる請求項1〜3いずれかに記載の地中熱ヒートポンプシステム用採熱管。   The said outer pipe | tube consists of corrugated pipe | tubes, The heat collecting pipe | tube for underground heat pump systems in any one of Claims 1-3.
JP2013187054A 2013-09-10 2013-09-10 Heat collecting pipe for underground thermal heat pump system Pending JP2015055365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013187054A JP2015055365A (en) 2013-09-10 2013-09-10 Heat collecting pipe for underground thermal heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013187054A JP2015055365A (en) 2013-09-10 2013-09-10 Heat collecting pipe for underground thermal heat pump system

Publications (1)

Publication Number Publication Date
JP2015055365A true JP2015055365A (en) 2015-03-23

Family

ID=52819901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013187054A Pending JP2015055365A (en) 2013-09-10 2013-09-10 Heat collecting pipe for underground thermal heat pump system

Country Status (1)

Country Link
JP (1) JP2015055365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651093A (en) * 2016-03-17 2016-06-08 南京英柯森新能源技术有限公司 Underground heat exchange tube for energy exchange system of ground-source deep well
JP6007455B1 (en) * 2015-03-30 2016-10-12 中村物産有限会社 Cold heat supply apparatus and cold heat supply method
CN106403098A (en) * 2016-08-30 2017-02-15 湖南中大经纬地热开发科技有限公司 Geotherm utilization system based on earth surface water source and hot spring tail water
CN108344205A (en) * 2018-02-05 2018-07-31 东南大学 Beach source heat pump system for aquaculture
CN113280655A (en) * 2021-05-08 2021-08-20 东南大学 High-efficiency coaxial double-pipe heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6007455B1 (en) * 2015-03-30 2016-10-12 中村物産有限会社 Cold heat supply apparatus and cold heat supply method
JP2016191480A (en) * 2015-03-30 2016-11-10 中村物産有限会社 Cold heat supply device and cold heat supply method
CN105651093A (en) * 2016-03-17 2016-06-08 南京英柯森新能源技术有限公司 Underground heat exchange tube for energy exchange system of ground-source deep well
CN106403098A (en) * 2016-08-30 2017-02-15 湖南中大经纬地热开发科技有限公司 Geotherm utilization system based on earth surface water source and hot spring tail water
CN106403098B (en) * 2016-08-30 2019-02-12 湖南中大经纬地热开发科技有限公司 Terrestrial heat utilization system based on earth surface water source and hot spring tail water
CN108344205A (en) * 2018-02-05 2018-07-31 东南大学 Beach source heat pump system for aquaculture
CN113280655A (en) * 2021-05-08 2021-08-20 东南大学 High-efficiency coaxial double-pipe heat exchanger

Similar Documents

Publication Publication Date Title
Sarbu et al. General review of ground-source heat pump systems for heating and cooling of buildings
Omer Ground-source heat pumps systems and applications
JP2015055365A (en) Heat collecting pipe for underground thermal heat pump system
JP2011503506A (en) Ground coupled heat exchange for heating and air conditioning applications
CN205090847U (en) Gravity heat pipe and heat transfer device that exploitation geothermol power was used
Agrawal et al. Effect of different design aspects of pipe for earth air tunnel heat exchanger system: A state of art
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2005049016A (en) Geothermal heat pump system
CN202204209U (en) Stainless steel extension-type ground heat exchanger system
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
CN209893671U (en) High-efficient geothermal utilization system based on closed loop heat medium pipe
JP2003262430A (en) Heat pump using underground heat
US20100251710A1 (en) System for utilizing renewable geothermal energy
JP4981516B2 (en) HEAT EXCHANGER, HEAT EXCHANGE SYSTEM, HEAT EXCHANGER MANUFACTURING METHOD, AND HEAT EXCHANGE SYSTEM CONSTRUCTION METHOD
JP2014185822A (en) Geothermal heat utilization heat exchanger and heat pump system using the same
US10883766B2 (en) System of double concentric pipes having different enthalpy
JP4990593B2 (en) Underground heat exchanger buried structure
JP2010281494A (en) Recovery utilization system of geothermal heat
KR102118986B1 (en) Soil Heat Exchanger
CN102538523A (en) Heat pipe type buried pipe heat-exchanging device
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
CN201982891U (en) Ground source heat exchanger for improving heat energy conversion efficiency
KR20130059828A (en) Heating exchange system using the geothermal
CN203163572U (en) Buried heat exchange pipe and buried pipe type heat exchanger
CN215063918U (en) Double pipe heat exchanger utilization system