JP2012047407A - Heat exchanger, heat exchange system, method of constructing heat exchange system - Google Patents

Heat exchanger, heat exchange system, method of constructing heat exchange system Download PDF

Info

Publication number
JP2012047407A
JP2012047407A JP2010190316A JP2010190316A JP2012047407A JP 2012047407 A JP2012047407 A JP 2012047407A JP 2010190316 A JP2010190316 A JP 2010190316A JP 2010190316 A JP2010190316 A JP 2010190316A JP 2012047407 A JP2012047407 A JP 2012047407A
Authority
JP
Japan
Prior art keywords
fluid
pipe
flow path
flows
fluid pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010190316A
Other languages
Japanese (ja)
Inventor
Hidekuni Iida
英邦 飯田
Satoshi Ozawa
聡 小澤
Yoshinori Matsunaga
善則 松永
Tamotsu Hideshima
有 秀島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2010190316A priority Critical patent/JP2012047407A/en
Publication of JP2012047407A publication Critical patent/JP2012047407A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger of high efficiency and the like capable of being easily manufactured, and easily constructed in installation, without fear of causing misalignment of pitches of pipes of the heat exchanger.SOLUTION: A double pipe 3 is provided with an inner pipe 3a inside thereof, and an outer pipe 3b is integrally formed at its outside. An inner peripheral face of a trough section 13 of the outer pipe 3b is fused to an outer peripheral face of the inner pipe 3a. A space surrounded by an outer peripheral face of the inner pipe 3a and an inner peripheral face of a peak section 11 is applied as a flow channel in which a fluid flows. Both ends of the double pipe 3 are respectively provided with fluid pipe connecting sections 5a, 5b. The fluid flowing into the flow channel spirally flows in the flow channel between the inner pipe 3a and the outer pipe 3b of the double pipe 3, to the other end side. The fluid reaching the end section flows inside of the inner pipe 3a, and flows in the end direction at a fluid pipe connecting section 5a side. When the fluid reaches an axial end section of the double pipe 3, the fluid inside of the flow channel flows out to a fluid pipe 7b through a joint 9b.

Description

本発明は、地中熱や送電線の発熱と高効率で熱交換を行うことが可能であり、施工が簡単であり、低コストである熱交換器等に関するものである。   The present invention relates to a heat exchanger or the like that can perform heat exchange with high efficiency with underground heat or heat generation of a transmission line, is simple in construction, and is low in cost.

地球温暖化などの環境問題が注目されている中、クリーンかつ安全な熱エネルギーとして地中熱等の利用が進められている。たとえば、地中熱は、一年にわたり約15〜16℃程度で一定であるため、夏の冷房や、冬の暖房の熱源として活用されている。   While environmental problems such as global warming are attracting attention, the use of geothermal heat and the like is being promoted as clean and safe thermal energy. For example, geothermal heat is constant at about 15 to 16 ° C. throughout the year, and is therefore used as a heat source for summer cooling and winter heating.

地熱を利用した熱交換システムとしては、(1)地中に水平方向にパイプを屈曲させて埋設し、パイプ内を循環する流体と地熱との熱交換を行う水平ループ式や、(2)構造物の建設時において、基礎杭の施工と同時に先端をU字に曲げたパイプを埋設し、パイプ内を循環する流体と地熱との熱交換を行う方法がある。   As a heat exchange system using geothermal heat, (1) a horizontal loop type in which a pipe is bent horizontally and buried in the ground, and heat is exchanged between the fluid circulating in the pipe and the geothermal heat, and (2) the structure When constructing an object, there is a method in which a pipe whose tip is bent into a U-shape is buried at the same time as construction of a foundation pile, and heat exchange between the fluid circulating in the pipe and the geothermal heat is performed.

また、(3)地中に螺旋状にコイルを埋設し、地熱との熱交換を行う熱交換器(特許文献1)や、(4)鋼管杭に熱交換用パイプを螺旋状に巻きつけて、地熱との熱交換を行う地熱利用鋼管杭(特許文献2)がある。   In addition, (3) a heat exchanger (Patent Document 1) that embeds a coil in the ground spirally and exchanges heat with geothermal heat, and (4) a heat exchange pipe is wound spirally around the steel pipe pile. There is a geothermal steel pipe pile (Patent Document 2) that performs heat exchange with geothermal heat.

特開2007−10275号公報JP 2007-10275 A 特開2005−188866号公報JP 2005-188866 A

しかし、水平方向にパイプを埋設する(1)の方法では、広範囲にわたってパイプ埋設用の穴を掘削しなければならないため、コスト及び工数を要し、また、埋設するための範囲が広くなるという問題がある。また、基礎杭の施工時に先端をU字に曲げたパイプを埋設する(2)の方法では、パイプと地面との接触面積を大きく取ることができず効率が悪いという問題がある。更に、パイプの設置が困難で、専用の部品を使用しなければならないという問題がある。   However, in the method (1) of burying a pipe in the horizontal direction, since a hole for burying the pipe has to be excavated over a wide range, cost and man-hours are required, and the range for burying is widened. There is. Further, in the method (2) of embedding a pipe whose tip is bent into a U-shape during construction of the foundation pile, there is a problem that the contact area between the pipe and the ground cannot be made large and the efficiency is poor. Furthermore, it is difficult to install the pipe, and there is a problem that a dedicated part must be used.

また、(3)の特許文献1による熱交換器は、パイプを螺旋状にしたため、埋設エリアは比較的狭くでき、また、パイプと地面との接触面積も比較的広く取れるため設計上の熱交換効率は良いが、パイプを螺旋状の形状に加工することが困難であるという問題がある。また、埋設時にも形状を維持するためには、金属パイプ等のある程度の強度を有する材料を選択しなければならずコストが高いという問題がある。   Further, in the heat exchanger according to Patent Document 1 of (3), since the pipe is formed in a spiral shape, the buried area can be made relatively small, and the contact area between the pipe and the ground can be made relatively large, so that the heat exchange in the design can be performed. Although the efficiency is good, there is a problem that it is difficult to process the pipe into a spiral shape. In addition, in order to maintain the shape even when buried, there is a problem that a material having a certain degree of strength, such as a metal pipe, must be selected and the cost is high.

更に、加工、設置、埋設各工程において、螺旋状パイプのピッチが変形等により変化し、設計通りの熱交換効率を得ることができないという問題がある。特に、螺旋形状のピッチが変形等で変わりパイプ同士の接触による熱交換効率の低下を防ぐため、パイプ間のピッチを詰めることができないため、単位長さあたりの熱交換効率が低いという問題がある。   Furthermore, in each process, installation, and embedding process, there is a problem that the pitch of the spiral pipe changes due to deformation or the like, and the heat exchange efficiency as designed cannot be obtained. In particular, since the pitch of the spiral shape changes due to deformation or the like, the heat exchange efficiency per unit length is low because the pitch between the pipes cannot be reduced in order to prevent a decrease in heat exchange efficiency due to contact between the pipes. .

また、(4)の特許文献2による熱交換用パイプを螺旋状に巻きつけた地熱利用鋼管杭は、パイプを螺旋状に巻いた状態で鋼管杭を地面にねじ込むものであるが、特許文献1による熱交換器と同様に、設置時に螺旋状パイプのピッチが変形等により変化し、設計通りの熱交換効率を得ることができず、パイプ同士の接触の恐れがあるため、パイプのピッチを詰めることができず、単位長さ辺りの熱交換効率が低いという問題がある。   Moreover, although the geothermal utilization steel pipe pile which wound the pipe for heat exchange by (4) of the patent document spirally is a thing which screws a steel pipe pile into the ground in the state which wound the pipe spirally, patent document 1 As with heat exchangers, the pitch of the spiral pipe changes due to deformation, etc. during installation, and heat exchange efficiency as designed cannot be obtained, and there is a risk of contact between pipes, so the pipe pitch is reduced There is a problem that the heat exchange efficiency per unit length is low.

本発明は、このような問題に鑑みてなされたもので、熱交換器のパイプのピッチずれなどが生じる恐れが無く、製造が容易であり、更に設置時の施工も容易で高効率な熱交換器等を提供することを目的とする。   The present invention has been made in view of such a problem, and there is no risk of occurrence of a pitch shift of the pipe of the heat exchanger, the manufacture is easy, and the installation at the time of installation is also easy and highly efficient. The purpose is to provide vessels.

前述した目的を達するために第1の発明は、螺旋状の波付き部を有する外管と、前記外管の内部に設けられる内管とからなり、前記外管の波付き部の谷部の内面と前記内管の外周面との接触部が融着しており、前記外管の山部の内面と前記内管の外周面との間が流体の流路となる、一体で成形された樹脂製の二重管と、前記二重管の外周に被せられる一対の流体管接続部と、前記流体管接続部に接続される複数の流体管と、を具備し、前記流路と連通する一方の前記流体管から流体を導入すると、流体が前記流路を流れて、他方の前記流体管から排出されることを特徴とする熱交換器である。   In order to achieve the above-mentioned object, the first invention comprises an outer tube having a spiral corrugated portion and an inner tube provided inside the outer tube, and a trough portion of the corrugated portion of the outer tube. The contact portion between the inner surface and the outer peripheral surface of the inner tube is fused, and the space between the inner surface of the crest portion of the outer tube and the outer peripheral surface of the inner tube becomes a fluid flow path, and is integrally formed A resin-made double pipe, a pair of fluid pipe connecting portions covering the outer circumference of the double pipe, and a plurality of fluid pipes connected to the fluid pipe connecting portion, and communicating with the flow path When the fluid is introduced from one of the fluid pipes, the fluid flows through the flow path and is discharged from the other fluid pipe.

前記流体管接続部の内面は前記山部の外周面に接触しており、前記流体管接続部が被せられた部位においては、前記外管の一部に孔が形成され、前記流体管接続部の内面と前記谷部の外周面との間に形成される空間と、前記流路とが連通することで、前記流体管と前記流路とが前記空間および前記孔を介して連通し、前記流体管から導入される流体が、前記流路の一方の方向に流れるように、前記孔の両側の前記空間を封止し、かつ、前記孔から一方の側の前記流路を封止する封止材が設けられることが望ましい。   An inner surface of the fluid pipe connecting portion is in contact with an outer peripheral surface of the peak portion, and a hole is formed in a part of the outer pipe at a portion covered with the fluid pipe connecting portion, and the fluid pipe connecting portion The space formed between the inner surface of the valley and the outer peripheral surface of the valley portion and the flow path communicate with each other, whereby the fluid pipe and the flow path communicate with each other through the space and the hole, A seal that seals the space on both sides of the hole and seals the flow path on one side from the hole so that the fluid introduced from the fluid pipe flows in one direction of the flow path. It is desirable to provide a stop material.

前記流体管接続部は、前記二重管の外周に被せられるリング状部材であり、前記リング状部材の内面は前記山部の外周面に接触し、前記リング状部材の外周面には、前記流体管が接続されており、一対の前記リング状部材は、前記二重管の外周に所定の間隔をあけて被せられ、一方の前記リング状部材に設けられる前記流体管から導入される流体は、前記孔を介して前記流路に流入し、他方の前記リング状部材の方向に前記流路内を流れ、前記孔を介して他方の前記リング状部材に接続された前記流体管から排出され、前記内管内部と流体とが熱交換可能であってもよい。尚、前記リング状部材の外周面に接続される前記流体管はリング状部材の外周面の円断面の中心に設けられると良い。   The fluid pipe connecting portion is a ring-shaped member that covers the outer periphery of the double pipe, the inner surface of the ring-shaped member is in contact with the outer peripheral surface of the peak portion, and the outer peripheral surface of the ring-shaped member is A fluid pipe is connected, and the pair of ring-shaped members are placed on the outer periphery of the double pipe at a predetermined interval, and the fluid introduced from the fluid pipe provided in one of the ring-shaped members is , Flows into the channel through the hole, flows in the channel in the direction of the other ring-shaped member, and is discharged from the fluid pipe connected to the other ring-shaped member through the hole. The inside of the inner tube and the fluid may be heat exchangeable. The fluid pipe connected to the outer peripheral surface of the ring-shaped member may be provided at the center of the circular cross section of the outer peripheral surface of the ring-shaped member.

前記流体管接続部は、前記二重管の両端部にそれぞれ被せられる蓋状部材であり、前記蓋状部材の内面は前記山部の外周面に接触するとともに、前記二重管の端部を塞ぎ、前記流体管は、一方の前記蓋状部材の外周面および端面にそれぞれ形成される第1の流体管および第2の流体管であり、前記第1の流体管から導入される流体は、前記孔を介して前記流路に流入し、他方の前記蓋状部材の方向に前記流路を流れ、他方の前記蓋状部材を介して前記二重管内部に流入し、前記二重管内部を流れて前記第2の流体管から排出され、前記外管外部と流体とが熱交換可能であってもよい。   The fluid pipe connecting portion is a lid-like member that covers both ends of the double pipe, and the inner surface of the lid-like member is in contact with the outer peripheral surface of the mountain portion, and the end of the double pipe is The fluid pipe is a first fluid pipe and a second fluid pipe respectively formed on an outer peripheral surface and an end surface of one of the lid-like members, and the fluid introduced from the first fluid pipe is: Flows into the flow path through the hole, flows through the flow path in the direction of the other lid-shaped member, flows into the double pipe through the other lid-shaped member, And the fluid is discharged from the second fluid pipe, and heat exchange is possible between the outside of the outer pipe and the fluid.

第1の発明によれば、内管と外管とが互いに融着して一体で構成されるため、構造が簡易であり、製造が容易である。また、外管と内管とで囲まれた螺旋波付き部が流路となり、外管と内管とが融着しているため、確実に流体が流路に沿って流れ、流体の流行路長を確保でき、熱交換の効率に優れる。また、流路のピッチが変わることもない。   According to the first invention, since the inner tube and the outer tube are integrally formed by fusing with each other, the structure is simple and the manufacture is easy. In addition, the portion with a spiral wave surrounded by the outer tube and the inner tube becomes the flow channel, and the outer tube and the inner tube are fused, so that the fluid surely flows along the flow channel, and the fluid epidemic path Long length can be secured and heat exchange efficiency is excellent. Further, the pitch of the flow path does not change.

特に、流体管接続部が外管の山部外周面に接触するように被せられ、流体管接続部が被せられた部位の外管(山部)の一部に孔が形成されるため、流体管から流入する流体が確実に流路に流れ、また、流体が他の部位に流れないように、封止材が設けられるため、確実に流体を所望の方向の流路内に流すことができる。   In particular, the fluid pipe connection portion is covered so as to contact the outer peripheral surface of the crest portion of the outer tube, and a hole is formed in a part of the outer pipe (crest portion) at the portion where the fluid pipe connection portion is covered. Since the sealing material is provided so that the fluid flowing in from the pipe surely flows into the flow path and does not flow to other parts, the fluid can surely flow into the flow path in a desired direction. .

また、流体管接続部が、二重管の外周に所定の間隔をあけて被せられるリング状部材であって、一方のリング状部材に設けられる流体管から導入される流体が、孔を介して流路に流入し、他方のリング状部材の方向に流路内を流れ、孔を介して他方のリング状部材に接続された流体管から排出されれば、当該流体が流れる範囲において、流体は、内管内部との熱交換を行うことができ、例えば内管内部に挿通される電線の発熱と熱交換を行うことも可能である。   In addition, the fluid pipe connecting portion is a ring-shaped member that covers the outer periphery of the double pipe at a predetermined interval, and the fluid introduced from the fluid pipe provided on one ring-shaped member passes through the hole. If it flows into the flow path, flows in the flow path in the direction of the other ring-shaped member, and is discharged from the fluid pipe connected to the other ring-shaped member through the hole, the fluid flows in the range in which the fluid flows. The heat exchange with the inside of the inner tube can be performed. For example, the heat generation and heat exchange of the electric wire inserted into the inside of the inner tube can be performed.

また、流体管接続部が、二重管の両端部にそれぞれ被せられる蓋状部材であって、一方の蓋状部材の外周面および端面にそれぞれ第1の流体管および第2の流体管が接続され、第1の流体管から導入される流体が、孔を介して流路に流入し、他方の蓋状部材の方向に流路を流れ、他方の蓋状部材を介して二重管内部に流入し、二重管内部を流れて第2の流体管から排出されれば、流体は効率良く外管外部と熱交換を行うことができ、たとえば、地中に設置することで、地熱と熱交換を行うこともできる。   Further, the fluid pipe connecting portion is a lid-like member that covers both ends of the double pipe, and the first fluid pipe and the second fluid pipe are connected to the outer peripheral surface and the end face of the one lid-like member, respectively. The fluid introduced from the first fluid pipe flows into the flow path through the hole, flows through the flow path in the direction of the other lid-shaped member, and enters the double pipe through the other lid-shaped member. If it flows in, flows through the inside of the double pipe and is discharged from the second fluid pipe, the fluid can efficiently exchange heat with the outside of the outer pipe. Exchanges can also be made.

第2の発明は、前述した熱交換器を用い、ポンプによって前記流体管に流体を循環させ、前記二重管内部には電線が挿通されており、前記流体管を流れる流体が、前記電線の発熱に伴う熱と熱交換を行うことを特徴とする熱交換システムである。   The second invention uses the heat exchanger described above, circulates fluid through the fluid pipe by a pump, and an electric wire is inserted into the double pipe, and the fluid flowing through the fluid pipe A heat exchanging system characterized by exchanging heat with heat.

第2の発明によれば、電線が設置された任意の場所、任意の範囲において流体を流すことができ、効率良く熱交換を行うことができる。   According to the second invention, the fluid can be flowed in an arbitrary place and an arbitrary range where the electric wires are installed, and heat exchange can be performed efficiently.

第3の発明は、前述した熱交換器を用い、ポンプによって前記流体管に流体を循環させ、前記熱交換器が地中に埋設され、前記流体管を流れる流体が、地熱と熱交換を行うことを特徴とする熱交換システムである。   A third invention uses the heat exchanger described above, circulates fluid in the fluid pipe by a pump, the heat exchanger is buried in the ground, and the fluid flowing through the fluid pipe exchanges heat with geothermal heat. It is the heat exchange system characterized by this.

第3の発明によれば、熱交換器を地中に埋設することで、効率良く地熱と熱交換を行うことができる。   According to the third invention, the heat exchanger can be efficiently exchanged with the geothermal heat by burying the heat exchanger in the ground.

第4の発明は、螺旋状の波付き部を有する外管と、前記外管の内部に設けられる内管とからなり、前記外管の波付き部の谷部の内面と前記内管の外周面との接触部が融着し、前記外管の山部の内面と前記内管の外周面との間が流体の流路となる、一体で成形された樹脂製の二重管に電線を挿通し、前記二重管の外管に、所定の間隔をあけて一対の孔を形成し、前記流路を介して前記孔同士を連通させ、それぞれの前記孔を囲むように前記谷部の外面に封止材を設けるとともに、互いの前記孔同士が連通する方向とは逆方向の前記流路の内部に、前記孔から封止材を設け、前記二重管の外周の前記孔が形成されたそれぞれの部位には、流体管が接続されるリング状部材がそれぞれ設けられることを特徴とする熱交換システムの施工方法である。   4th invention consists of the outer tube | pipe which has a spiral corrugated part, and the inner tube provided in the inside of the said outer tube, The inner surface of the trough part of the corrugated part of the said outer tube, and the outer periphery of the said inner tube | pipe The contact portion with the surface is fused, and the electric wire is connected to the integrally formed resin double tube in which the fluid passage is between the inner surface of the crest portion of the outer tube and the outer peripheral surface of the inner tube. A pair of holes are formed in the outer pipe of the double pipe at a predetermined interval, the holes are communicated with each other via the flow path, and the valleys are formed so as to surround the holes. A sealing material is provided on the outer surface, and a sealing material is provided from the hole in the flow path in a direction opposite to the direction in which the holes communicate with each other, and the hole on the outer periphery of the double pipe is formed. A ring-shaped member to which a fluid pipe is connected is provided at each of the sites. The heat exchanging system construction method is characterized in that:

第4の発明によれば、既設の電線配管に対しても、容易に熱交換器を設置することができ、また、任意の場所および範囲に対して、熱交換器を形成することができる。   According to 4th invention, a heat exchanger can be easily installed also about existing electric wire piping, and a heat exchanger can be formed with respect to arbitrary places and ranges.

本発明によれば、熱交換器のパイプのピッチずれなどが生じる恐れが無く、製造が容易であり、更に設置時の施工も容易で高効率な熱交換器等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, there is no possibility that the pitch shift of the pipe of a heat exchanger etc. may arise, manufacture is easy, and also the construction at the time of installation is easy, and a highly efficient heat exchanger etc. can be provided.

熱交換器1を示す正面図。The front view which shows the heat exchanger 1. FIG. 熱交換器1を示す軸方向断面図。FIG. 3 is an axial sectional view showing the heat exchanger 1. 流体管接続部5a近傍を示す図(図2のA部拡大図)で、(a)は流体管接続部5aを透視した図、(b)は、さらに山部の一部を透視した図。It is the figure which shows the fluid pipe connection part 5a vicinity (the A section enlarged view of FIG. 2), (a) is the figure which saw through the fluid pipe connection part 5a, (b) is the figure which saw through a part of peak part further. 熱交換器1の流体の流れを示す図。The figure which shows the flow of the fluid of the heat exchanger. 熱交換器1の設置工程を示す図。The figure which shows the installation process of the heat exchanger 1. FIG. 熱交換システム26を示す図。The figure which shows the heat exchange system 26. FIG. 熱交換器30を示す正面図。The front view which shows the heat exchanger 30. FIG. 熱交換器30を示す軸方向断面図。FIG. 3 is an axial sectional view showing the heat exchanger 30. 流体管接続部5c近傍を示す図(図7のI部拡大図)で、(a)は流体管接続部5cを透視した図、(b)は、さらに山部の一部を透視した図。It is the figure which shows the fluid pipe connection part 5c vicinity (I part enlarged view of FIG. 7), (a) is the figure which saw through the fluid pipe connection part 5c, (b) is the figure which saw through a part of peak part further. 熱交換器30の流体の流れを示す図。The figure which shows the flow of the fluid of the heat exchanger. 熱交換システム41を示す図。The figure which shows the heat exchange system 41. FIG. 熱交換器1aを示す軸方向断面図。An axial direction sectional view showing heat exchanger 1a. 流体管接続部5a近傍を示す図(図13のA1部拡大図)で、(a)は流体管接続部5aを透視した図、(b)は、さらに山部の一部を透視した図。It is the figure which shows the fluid pipe connection part 5a vicinity (A1 part enlarged view of FIG. 13), (a) is the figure which saw through the fluid pipe connection part 5a, (b) is the figure which saw through a part of peak part further. 二重管50を示す図。The figure which shows the double tube 50. FIG.

以下、図面を参照しながら、本発明の実施形態について説明する。図1は、熱交換器1を示す正面図であり、図2は、熱交換器1を示す軸方向断面図である。熱交換器1は、主に、二重管3、流体管接続部5a、5b、流体管7a、7b等から構成される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a front view showing the heat exchanger 1, and FIG. 2 is an axial sectional view showing the heat exchanger 1. The heat exchanger 1 mainly includes a double pipe 3, fluid pipe connection portions 5a and 5b, fluid pipes 7a and 7b, and the like.

二重管3は、内部に内管3aが設けられ、外部に外管3bが一体で形成されたものである。内管3aは、筒状体であり、内面は略滑らかである。外管3bは螺旋状の波付き状管体であり、山部11と谷部13とが螺旋状に形成される。すなわち、二重管3は、内部が略直管の内管3aで構成され、内管3aの外周に、螺旋溝付き管である外管3bが一体で接合されたものである。   The double tube 3 has an inner tube 3a provided therein and an outer tube 3b formed integrally therewith. The inner tube 3a is a cylindrical body, and the inner surface is substantially smooth. The outer tube 3b is a spiral corrugated tube, and the peak portion 11 and the valley portion 13 are formed in a spiral shape. That is, the double pipe 3 is constituted by an inner pipe 3a having a substantially straight pipe, and an outer pipe 3b which is a spiral grooved pipe is integrally joined to the outer periphery of the inner pipe 3a.

図2に示すように、外管3bの谷部13の内周面が内管3aの外周面と融着する。したがって、内管3aの外周面と山部11の内周面とで囲まれた空間は、内管3aの外周に螺旋状に形成される。内管3aの外周面と山部11の内周面とで囲まれた空間が後述する流体が流れる流路となる(以下単に「流路」と称する)。二重管3としては、例えば樹脂製で良く、好ましくはポリエチレン製である。例えば、二重管は、内管外周に押し出された樹脂を金型内で吸引することで、押出成形機により一体で連続成形することができる。   As shown in FIG. 2, the inner peripheral surface of the valley portion 13 of the outer tube 3b is fused to the outer peripheral surface of the inner tube 3a. Therefore, a space surrounded by the outer peripheral surface of the inner tube 3a and the inner peripheral surface of the peak portion 11 is formed in a spiral shape on the outer periphery of the inner tube 3a. A space surrounded by the outer peripheral surface of the inner tube 3a and the inner peripheral surface of the mountain portion 11 becomes a flow path through which a fluid described later flows (hereinafter simply referred to as “flow path”). The double pipe 3 may be made of, for example, resin, and preferably made of polyethylene. For example, the double pipe can be integrally and continuously formed by an extruder by sucking the resin extruded to the outer periphery of the inner pipe in a mold.

二重管3の両端には、それぞれ流体管接続部5a、5bが設けられる。流体管接続部5a、5bは、蓋状部材であり、二重管3の両端に被せられる。流体管接続部5a、5bの内面は二重管3の外周面(山部11頂部)と接触する。なお、流体管接続部5a、5bの内面と二重管3の外周面とは、水密が保たれる必要があり、必要に応じて、流体管接続部5a、5bの内面と二重管3の外周面とが接着等により接合される。なお、流体管接続部5a、5bとしては、樹脂製、金属製等種々の材料を選択できる。   At both ends of the double pipe 3, fluid pipe connecting portions 5a and 5b are provided, respectively. The fluid pipe connecting portions 5 a and 5 b are lid-like members and are put on both ends of the double pipe 3. The inner surfaces of the fluid pipe connection portions 5a and 5b are in contact with the outer peripheral surface (the top portion of the peak portion 11) of the double pipe 3. The inner surfaces of the fluid pipe connection portions 5a and 5b and the outer peripheral surface of the double pipe 3 need to be kept watertight. If necessary, the inner faces of the fluid pipe connection portions 5a and 5b and the double pipe 3 can be maintained. Are joined to each other by adhesion or the like. Various materials such as resin and metal can be selected for the fluid pipe connecting portions 5a and 5b.

一方の流体管接続部5aの側面(二重管の径方向の外周面)には、継手9aが設けられ、継手9aには流体管7aが接続される。すなわち、流体管7aは、流体管接続部5a内部と連通する。同様に、流体管接続部5aの端面(二重管の軸方向端面)には、継手9bが設けられ、継手9bには流体管7bが接続される。継手9a、9b、流体管7a、7bは、樹脂製、金属製等種々の材料を選択できる。   A joint 9a is provided on the side surface (the outer peripheral surface in the radial direction of the double pipe) of one fluid pipe connection portion 5a, and the fluid pipe 7a is connected to the joint 9a. That is, the fluid pipe 7a communicates with the inside of the fluid pipe connecting portion 5a. Similarly, a joint 9b is provided on the end face of the fluid pipe connecting portion 5a (the end face in the axial direction of the double pipe), and the fluid pipe 7b is connected to the joint 9b. The joints 9a and 9b and the fluid pipes 7a and 7b can be selected from various materials such as resin and metal.

他方の流体管接続部5bは、二重管3の端部に被せられ、この際、図2に示すように、流体管接続部5bの端面(内面)と二重管3の軸方向端部との間にはクリアランスが形成される。したがって、前述した流路は、流体管接続部5bとのクリアランスを介して内管3aの内部と連通する。   The other fluid pipe connecting portion 5b is put on the end of the double pipe 3, and at this time, as shown in FIG. 2, the end face (inner surface) of the fluid pipe connecting portion 5b and the end of the double pipe 3 in the axial direction are provided. A clearance is formed between the two. Therefore, the flow path described above communicates with the inside of the inner pipe 3a through the clearance with the fluid pipe connecting portion 5b.

図3は、図2のA部拡大図であり、B方向矢視図である。なお、図3(a)は、流体管接続部5aを透視した図であり、図3(b)は、さらに外管3bの一部(山部11頂部近傍)を切除した(透視した)状態を示す図である。図3(a)に示すように、継手9a位置(図中点線円)は、二重管軸方向に隣り合う山部11の頂部同士の略中間に位置する。   FIG. 3 is an enlarged view of a portion A in FIG. FIG. 3A is a perspective view of the fluid pipe connecting portion 5a, and FIG. 3B is a state in which a part of the outer pipe 3b (near the top of the mountain portion 11) is further excised (see through). FIG. As shown to Fig.3 (a), the joint 9a position (dotted line circle in a figure) is located in the approximate middle of the peak parts of the peak part 11 adjacent in a double pipe axial direction.

図3(b)に示すように、流体管接続部5aの内周面と山部11頂部は接触して水密が保たれる。したがって、流体管接続部5aの内周面と外管3b(谷部13)とで囲まれる部位が螺旋状の空間18となる。したがって、単に流体管接続部5aを被せたのみでは、継手9aから流体管接続部5a内に流体を流入させると、空間18に沿って流体が流れる。   As shown in FIG. 3 (b), the inner peripheral surface of the fluid pipe connecting portion 5a and the top of the mountain portion 11 come into contact with each other and watertightness is maintained. Therefore, a portion surrounded by the inner peripheral surface of the fluid pipe connecting portion 5a and the outer pipe 3b (the valley portion 13) is a spiral space 18. Therefore, simply by covering the fluid pipe connection portion 5 a, the fluid flows along the space 18 when the fluid flows into the fluid pipe connection portion 5 a from the joint 9 a.

これに対し、本発明では、空間の一部を塞ぐように、封止材15aが設けられる。封止材15aにより、外管3b外周面および流体管接続部5a内面との間が水密に保たれる。封止材15aは、継手9aとの連通部を挟むように空間18にそれぞれ形成される。すなわち、継手9a位置から見て両側の空間18に対して封止材15aが設けられる。   On the other hand, in this invention, the sealing material 15a is provided so that a part of space may be plugged up. The space between the outer peripheral surface of the outer tube 3b and the inner surface of the fluid pipe connecting portion 5a is kept watertight by the sealing material 15a. The sealing material 15a is formed in each space 18 so as to sandwich the communicating portion with the joint 9a. That is, the sealing material 15a is provided in the space 18 on both sides when viewed from the position of the joint 9a.

封止材15aによって囲まれた空間18の範囲において、外管3b(山部11側面)の一部に孔17が形成される。すなわち、継手9aから流体管接続部5a内に流体を流入させると、流体は、流体管接続部5a内面、封止材15aおよび外管3bとで囲まれる空間18から孔17を通り、流路である外管3bと内管3aとの間に流入する。この際、封止材15aにより、流体が外管3b外面を流れ、他へ流出することがない。なお、流体管接続部5aにより水密に保つためには、流体管接続部5aの長さは、空間18を完全に覆う必要がある。   In the range of the space 18 surrounded by the sealing material 15a, a hole 17 is formed in a part of the outer tube 3b (side surface of the mountain portion 11). That is, when a fluid is caused to flow into the fluid pipe connecting portion 5a from the joint 9a, the fluid passes through the hole 17 from the space 18 surrounded by the inner surface of the fluid pipe connecting portion 5a, the sealing material 15a, and the outer pipe 3b, and the flow path. Between the outer tube 3b and the inner tube 3a. At this time, the sealing material 15a prevents the fluid from flowing on the outer surface of the outer tube 3b and outflowing to the other. In addition, in order to keep watertight by the fluid pipe connection part 5a, the length of the fluid pipe connection part 5a needs to cover the space 18 completely.

また、図3(b)に示すように、流路の内部にも封止材15bが設けられる。前述の通り、継手9aから流体管接続部5a内部に流入する流体はすべて流路に流れるが、流体を一方の方向に流すため、他方側の流路を封止材15bで封止するものである。すなわち、封止材15bにより、他方側の流路が水密に保たれる。なお、封止材15bが設けられる位置は、孔17に対して、流体を流す方向とは逆側であるため、図1等で示されるように、他方側の流体管接続部5bと連通する方向とは逆側の流路内に設ければよい。なお、封止材15bは、孔17から挿入すれば良い。   Further, as shown in FIG. 3B, a sealing material 15b is also provided inside the flow path. As described above, all of the fluid flowing into the fluid pipe connecting portion 5a from the joint 9a flows into the flow path, but in order to flow the fluid in one direction, the other flow path is sealed with the sealing material 15b. is there. That is, the flow path on the other side is kept watertight by the sealing material 15b. In addition, since the position where the sealing material 15b is provided is opposite to the direction in which the fluid flows with respect to the hole 17, as shown in FIG. 1 and the like, it communicates with the fluid pipe connecting portion 5b on the other side. What is necessary is just to provide in the flow path on the opposite side to a direction. The sealing material 15b may be inserted from the hole 17.

以上のような構成とすることで、流体管7aを流れ、継手9aを介して流体管接続部5a内部に流入した流体は、孔17から全て流路内に流入し、流路内を一方の方向に(他方の流体管接続部5b側に)流れる(図3(b)中矢印D方向)。なお、封止材15a、15bとしては、樹脂製等のシール部材やパテあるいは水膨張性部材等を単独あるいは適宜組み合わせて用いればよい。   With the configuration as described above, the fluid flowing through the fluid pipe 7a and flowing into the fluid pipe connecting portion 5a through the joint 9a flows into the flow path from the hole 17, and one of the fluid flows in the flow path. It flows in the direction (to the other fluid pipe connecting part 5b side) (in the direction of arrow D in FIG. 3B). As the sealing materials 15a and 15b, a sealing member such as a resin, a putty, a water-expandable member, or the like may be used alone or in combination.

次に、熱交換器1内の流体の流れについて説明する。図4は、熱交換器1の軸方向断面において、流体の流れを示す図である。流体管7aを熱交換器1方向に流れる流体は(図中矢印C方向)、前述の通り、継手9aを介して流体管接続部5a内部に流れ、孔17を介して流路内に全て流れる(図中矢印D方向)。   Next, the flow of fluid in the heat exchanger 1 will be described. FIG. 4 is a diagram illustrating the flow of fluid in the axial cross section of the heat exchanger 1. The fluid flowing in the direction of the heat exchanger 1 through the fluid pipe 7a (in the direction of arrow C in the figure) flows into the fluid pipe connection portion 5a through the joint 9a as described above, and all flows into the flow path through the holes 17. (Arrow D direction in the figure).

流路内に流入した流体は、二重管3の内管3a、外管3bの間の流路を螺旋状に流れ、他端側(流体管接続部5b側)まで流れる(図中矢印E方向)。二重管3の軸方向端部まで達すると、流路内の流体は流路から流出し、流体管接続部5bと二重管3端部とのクリアランスを通って二重管3内部(内管3a内部)に流入する(図中矢印F方向)。なお、流体が全て内管3a内部に流入するように、流体管接続部5b内面と二重管3(外管3b)の間の空間は封止材や螺旋パッキン等で塞がれる。   The fluid that has flowed into the flow path spirally flows through the flow path between the inner pipe 3a and the outer pipe 3b of the double pipe 3 and flows to the other end side (the fluid pipe connecting portion 5b side) (arrow E in the figure). direction). When reaching the end of the double pipe 3 in the axial direction, the fluid in the flow path flows out of the flow path, passes through the clearance between the fluid pipe connecting portion 5b and the end of the double pipe 3, and the inside of the double pipe 3 (inside (In the direction of arrow F in the figure). The space between the inner surface of the fluid pipe connecting portion 5b and the double pipe 3 (outer pipe 3b) is closed with a sealing material, a spiral packing, or the like so that all the fluid flows into the inner pipe 3a.

内管3a内部に流入した流体は、流体管接続部5a側の端部方向に流れ(図中矢印H方向)、継手9bを介して流体管7bへ流出する。なお、内管3a内部からの流体が、全て継手9bから流体管7bへ流れるように、流体管接続部5a、5bの内面は、二重管3の軸方向に少なくとも2山以上の山部と接し、かつ、前述した封止材15a等により、流体が二重管3外部に流出しないように封止される。   The fluid that has flowed into the inner pipe 3a flows in the direction toward the end on the fluid pipe connecting portion 5a side (in the direction of arrow H in the figure), and flows out to the fluid pipe 7b through the joint 9b. The inner surfaces of the fluid pipe connection portions 5a and 5b are at least two peaks in the axial direction of the double pipe 3 so that all the fluid from the inside of the inner pipe 3a flows from the joint 9b to the fluid pipe 7b. The fluid is sealed so as not to flow out of the double pipe 3 by the sealing material 15a and the like mentioned above.

流体が流路を流れる際に、熱交換器1の外部(外管3b外部)の熱と流体とが熱交換を行うことができる。なお、流体としては、合成樹脂管の特性の劣化をともなわないものであればいかなるものでも使用できるが、例えば水や不凍液を加えた水、アルコール等の有機溶媒を希釈したものが使用できる。   When the fluid flows through the flow path, heat outside the heat exchanger 1 (outside the outer tube 3b) and the fluid can exchange heat. As the fluid, any fluid can be used as long as it does not cause deterioration of the characteristics of the synthetic resin tube. For example, water diluted with water or antifreeze, or a solution diluted with an organic solvent such as alcohol can be used.

次に、本発明にかかる熱交換器1の設置施工方法について説明する。図5は、熱交換器1を設置する工程を示した図である。まず、図5(a)に示すように、設置場所の地面21に、所定深さの掘削孔23を掘削する。掘削孔23の深さは地熱を利用するためには例えば3m以上が望ましい。   Next, the installation construction method of the heat exchanger 1 concerning this invention is demonstrated. FIG. 5 is a diagram illustrating a process of installing the heat exchanger 1. First, as shown in FIG. 5A, an excavation hole 23 having a predetermined depth is excavated in the ground 21 at the installation location. The depth of the excavation hole 23 is preferably 3 m or more in order to use geothermal heat.

次に、図5(b)に示すように、掘削孔23に熱交換器1を挿入する。この際、熱交換器1は、筒体25に挿入されてもよい。筒体25に熱交換器1を挿入する場合には、熱交換器1外面と筒体25内面との熱伝導を良くするため、熱交換器1外面と筒体25との隙間に、粉状・粒状の熱伝導材を充填することが望ましい。   Next, as shown in FIG. 5B, the heat exchanger 1 is inserted into the excavation hole 23. At this time, the heat exchanger 1 may be inserted into the cylindrical body 25. When the heat exchanger 1 is inserted into the cylindrical body 25, in order to improve heat conduction between the outer surface of the heat exchanger 1 and the inner surface of the cylindrical body 25, a powdery state is formed in the gap between the outer surface of the heat exchanger 1 and the cylindrical body 25.・ It is desirable to fill with granular heat conduction material.

次に、図5(c)に示すように、熱交換器1を埋め戻して熱交換システム27の施工が終了する。熱交換器1に流体を循環させることで周囲の地熱と熱交換を行うことができる。なお、熱交換器1は、予め工場等で製造することができるため、現地での加工や調整等の作業は不要である。   Next, as shown in FIG.5 (c), the heat exchanger 1 is backfilled and construction of the heat exchange system 27 is complete | finished. By circulating the fluid through the heat exchanger 1, heat exchange with surrounding geothermal heat can be performed. In addition, since the heat exchanger 1 can be manufactured in advance in a factory or the like, operations such as on-site processing and adjustment are unnecessary.

図6は、熱交換器1を用いた熱交換システムの一例である、熱交換システム26を示す図である。地熱は、1年を通じてほぼ同一の温度で推移し、夏は外気温に対して冷たく、冬は外気温に対して暖かい。このため、循環ポンプ27により熱交換器1および床29下に配置されたパイプ28に流体を循環させることで、地熱を利用した床冷暖房を行うことができる。なお、熱交換器1は、1個設けることも可能であるが、複数個を連結して設けることもできる。   FIG. 6 is a diagram illustrating a heat exchange system 26 which is an example of a heat exchange system using the heat exchanger 1. Geothermal heat stays at almost the same temperature throughout the year. In summer, it is cold relative to the outside temperature, and in winter it is warm relative to the outside temperature. For this reason, by circulating the fluid through the heat exchanger 1 and the pipe 28 disposed under the floor 29 by the circulation pump 27, floor cooling and heating using geothermal heat can be performed. Note that one heat exchanger 1 can be provided, but a plurality of the heat exchangers 1 can be connected.

以上説明したように、第1の実施の形態にかかる熱交換器1によれば、簡易に高効率の熱交換を行うことができる。熱交換器1は、一体で形成される二重管3を用いるため、低コストであり、長寿命の熱交換器を得ることができる。また、熱交換器1のメンテナンスや交換を行う際にも、新しい二重管に孔および封止材を設け、流体管接続部を接続するのみであるため、メンテナンス性や交換作業性に優れる熱交換器を得ることができる。   As described above, according to the heat exchanger 1 according to the first embodiment, highly efficient heat exchange can be easily performed. Since the heat exchanger 1 uses the double pipe 3 formed integrally, a low-cost and long-life heat exchanger can be obtained. In addition, when performing maintenance or replacement of the heat exchanger 1, a new double pipe is provided with a hole and a sealing material, and only the fluid pipe connection portion is connected. An exchanger can be obtained.

また、施工時等に流路のピッチが変化することがない。また、二重管3の内管3aと外管3bとが融着するため、流体が流路を確実に流れ、ショートカットなどすることがない。   Further, the pitch of the flow path does not change during construction or the like. Further, since the inner tube 3a and the outer tube 3b of the double tube 3 are fused, the fluid surely flows through the flow path and does not cause a shortcut.

また、熱交換器1の埋設には、あらかじめ工場等で加工した熱交換器1を埋設するための十分な大きさの穴を掘削すればよいため、それ以上の大きさの穴を掘削する必要がなく、必要以上に深い穴を掘削する必要もなく、挿入が容易で、熱交換器の埋設工数が削減できる。   Moreover, in order to embed the heat exchanger 1, it is only necessary to excavate a sufficiently large hole for embedding the heat exchanger 1 processed in advance in a factory or the like. There is no need to drill a hole deeper than necessary, easy insertion, and the heat exchanger embedding can be reduced.

次に、第2の実施形態について説明する。図7は熱交換器30を示す正面図であり、図8は、熱交換器30を示す軸方向断面図である。なお、以下の実施形態において、熱交換器1と同様の機能を奏する構成は、図1等と同一の符号を付し、重複する説明を省略する。熱交換器30は、熱交換器1と略同様の構成であるが、流体管接続部の構造が異なる。   Next, a second embodiment will be described. FIG. 7 is a front view showing the heat exchanger 30, and FIG. 8 is an axial sectional view showing the heat exchanger 30. In the following embodiments, the same functions as those of the heat exchanger 1 are denoted by the same reference numerals as those in FIG. The heat exchanger 30 has substantially the same configuration as the heat exchanger 1, but the structure of the fluid pipe connecting portion is different.

リング状部材である流体管接続部5cは、二重管3の外周に所定の間隔をあけて一対設けられる。流体管接続部5cとしては、例えば2分割した部材を接合してリング状部材としてもよい。流体管接続部5cの外周面には継手9a、9bがそれぞれ接合され、継手9a、9bには流体管7a、7bがそれぞれ接続される。   A pair of fluid pipe connection portions 5c, which are ring-shaped members, are provided on the outer periphery of the double pipe 3 with a predetermined interval. As the fluid pipe connecting portion 5c, for example, a member divided into two may be joined to form a ring-shaped member. Joints 9a and 9b are joined to the outer peripheral surface of the fluid pipe connecting portion 5c, and fluid pipes 7a and 7b are connected to the joints 9a and 9b, respectively.

なお、二重管3としては、電線ケーブルの保護管を適用することができる。すなわち、図8等に示すように、二重管3(内管3a)の内部には、電線31が挿通される。   In addition, as the double tube 3, a protective tube for an electric cable can be applied. That is, as shown in FIG. 8 and the like, the electric wire 31 is inserted into the double pipe 3 (inner pipe 3a).

図9は、図2のI部拡大図であり、J方向矢視図である。なお、図9(a)は、流体管接続部5cを透視した図であり、図9(b)は、さらに外管3bの一部(山部11頂部近傍)を切除した(透視した)状態を示す図である。図9(a)に示すように、継手9a位置(図中点線円)は、軸方向に隣り合う山部11の頂部同士の略中間に位置する。   FIG. 9 is an enlarged view of a portion I in FIG. FIG. 9A is a perspective view of the fluid pipe connecting portion 5c, and FIG. 9B is a state in which a part of the outer pipe 3b (near the top of the mountain portion 11) is further excised (see through). FIG. As shown to Fig.9 (a), the joint 9a position (dotted line circle in a figure) is located in the approximate middle of the peak parts of the peak part 11 adjacent to an axial direction.

一方の側の流体管接続部5cの内周面と山部11頂部は接触(または接着)して水密が保たれる。なお、流体管接続部5cの内面は、二重管3の軸方向に少なくとも2山以上の山部と接触させる。流体管接続部5cの内周面と外管3b(谷部13)とで囲まれる部位が螺旋状の空間18となる。空間18には、熱交換器1の場合と同様に、空間18の一部を塞ぐように、封止材15aが設けられる。封止材15aにより、外管3b外周面および流体管接続部5a内面との間が水密に保たれる。封止材15aは、継手9aとの連通部を挟むように、継手9aの両側の空間18にそれぞれ形成される。   The inner peripheral surface of the fluid pipe connection part 5c on one side and the top part of the peak part 11 are brought into contact (or bonded) to maintain watertightness. The inner surface of the fluid pipe connecting portion 5c is brought into contact with at least two peaks in the axial direction of the double pipe 3. A portion surrounded by the inner peripheral surface of the fluid pipe connecting portion 5 c and the outer pipe 3 b (the valley portion 13) is a spiral space 18. As in the case of the heat exchanger 1, a sealing material 15 a is provided in the space 18 so as to block a part of the space 18. The space between the outer peripheral surface of the outer tube 3b and the inner surface of the fluid pipe connecting portion 5a is kept watertight by the sealing material 15a. The sealing material 15a is formed in the space 18 on both sides of the joint 9a so as to sandwich the communicating portion with the joint 9a.

封止材15aによって囲まれた空間18の範囲において、外管3b(山部11側面)の一部に孔17が形成される。すなわち、継手9aから流体管接続部5a内に流体を流入させると、流体は、流体管接続部5a内面、封止材15aおよび外管3bとで囲まれる空間から孔17を通り、流路である外管3bと内管3aとの間に流入する。この際、封止材15aにより、流体が外管3b外面を流れ、他へ流出することがない。   In the range of the space 18 surrounded by the sealing material 15a, a hole 17 is formed in a part of the outer tube 3b (side surface of the mountain portion 11). That is, when a fluid is caused to flow into the fluid pipe connecting portion 5a from the joint 9a, the fluid passes through the hole 17 from the space surrounded by the inner surface of the fluid pipe connecting portion 5a, the sealing material 15a, and the outer pipe 3b, and flows in the flow path. It flows between an outer tube 3b and an inner tube 3a. At this time, the sealing material 15a prevents the fluid from flowing on the outer surface of the outer tube 3b and outflowing to the other.

また、図9(b)に示すように、流路の内部にも封止材15bが設けられる。封止材15bが設けられる位置は、孔17に対して、流体を流す方向とは逆側であるため、図7等で示されるように、他方側の流体管接続部5cと連通する方向とは逆側の流路内に設ければよい。   Further, as shown in FIG. 9B, a sealing material 15b is also provided inside the flow path. Since the position where the sealing material 15b is provided is opposite to the direction in which the fluid flows with respect to the hole 17, as shown in FIG. 7 and the like, the direction communicating with the fluid pipe connecting portion 5c on the other side May be provided in the flow path on the opposite side.

以上のような構成とすることで、流体管7aを流れ、継手9aを介して流体管接続部5c内部に流入した流体は、孔17から全て流路内に流入し、流路内を一方の方向に(他方の流体管接続部5c側に)流れる(図9(b)中矢印L方向)。なお、他方の流体管接続部5c側も、上述した一方の側の流体管接続部5cと対称に同様の構成が形成される。すなわち、他方の流体管接続部5c側にも、孔17および封止材15a、15bが同様に形成される。   With the configuration as described above, the fluid flowing through the fluid pipe 7a and flowing into the fluid pipe connecting portion 5c through the joint 9a flows all into the flow path from the hole 17, and one of the flow paths flows through the flow path. Flows in the direction (to the other fluid pipe connecting portion 5c side) (in the direction of arrow L in FIG. 9B). The same configuration is formed on the other fluid pipe connecting portion 5c side symmetrically with the above-described one side fluid pipe connecting portion 5c. That is, the hole 17 and the sealing materials 15a and 15b are similarly formed on the other fluid pipe connection portion 5c side.

次に、熱交換器30内の流体の流れについて説明する。図10は、熱交換器30の軸方向断面において、流体の流れを示す図である。流体管7aを熱交換器30方向に流れる流体は(図中矢印K方向)、前述の通り、継手9aを介して一方の側の流体管接続部5c内部に流れ、孔17を介して流路内に全て流れる(図中矢印L方向)。   Next, the flow of fluid in the heat exchanger 30 will be described. FIG. 10 is a diagram illustrating a fluid flow in the axial cross section of the heat exchanger 30. The fluid flowing in the direction of the heat exchanger 30 through the fluid pipe 7a (in the direction of arrow K in the figure) flows into the fluid pipe connection portion 5c on one side via the joint 9a as described above, and flows through the hole 17 as a flow path. It flows all in (in the direction of arrow L in the figure).

流路内に流入した流体は、二重管3の内管3a、外管3bの間の流路を螺旋状に流れ、他端側(他方の流体管接続部5c側)まで流れる(図中矢印M方向)。二重管3の軸方向端部まで達すると、流路内の流体は外管3bに形成された孔から流出する(図中矢印N方向)。流出した流体はすべて継手9bに流出し、流体管7bへ流出する。   The fluid that has flowed into the flow path spirally flows through the flow path between the inner pipe 3a and the outer pipe 3b of the double pipe 3 and flows to the other end side (the other fluid pipe connecting portion 5c side) (in the drawing). Arrow M direction). When reaching the end of the double tube 3 in the axial direction, the fluid in the flow channel flows out from the hole formed in the outer tube 3b (in the direction of arrow N in the figure). All of the fluid that has flowed out flows out into the joint 9b and out into the fluid pipe 7b.

流体が流路を流れる際に、熱交換器1の内部(内管3a内部)の電線からの発熱と流体との熱交換を行わせることができる。   When the fluid flows through the flow path, heat generation from the electric wire inside the heat exchanger 1 (inside the inner tube 3a) and heat exchange with the fluid can be performed.

なお、熱交換器30は、あらかじめ工場等で製造することもできるが、内部に電線が挿通された既設の二重管に対しても設置することもできる。施工方法は熱交換器1と同様であるが、二重管3が長尺であってもよく、長尺の二重管の長手方向に任意の範囲で設置することができる。   In addition, although the heat exchanger 30 can also be manufactured in a factory etc. previously, it can also be installed also with respect to the existing double tube by which the electric wire was penetrated inside. Although the construction method is the same as that of the heat exchanger 1, the double pipe 3 may be long and can be installed in an arbitrary range in the longitudinal direction of the long double pipe.

次に、熱交換器30を用いた熱交換システム41について説明する。図11は、熱交換器30を利用した、床下冷暖房を目的とした熱交換システム41の概略図である。熱交換器30は例えば地面35に埋設される。地面35下に埋設された電線31が貫通する二重管には、流体管接続部5c等が接続され、熱交換器30が設けられる。   Next, the heat exchange system 41 using the heat exchanger 30 will be described. FIG. 11 is a schematic diagram of a heat exchange system 41 that uses the heat exchanger 30 for the purpose of underfloor cooling and heating. The heat exchanger 30 is embedded in the ground 35, for example. The fluid pipe connecting portion 5c and the like are connected to the double pipe through which the electric wire 31 embedded under the ground 35 passes, and the heat exchanger 30 is provided.

熱交換器30は循環ポンプ33と接続され、さらにパイプ37と接続される。循環ポンプ33は、熱交換器30およびパイプ37内に流体を循環する。熱交換器30を流れる流体は電線31による発熱との熱交換を行う。熱交換を終えた流体は床下に配置されたパイプ37に流され、床暖房を行うことができる。なお、熱交換システム41においては、複数の熱交換器30を設けた例を示したが、流体管接続部5cの間隔を広げれば、一つの熱交換器30により、大きな熱交換を行うこともできる。   The heat exchanger 30 is connected to the circulation pump 33 and further connected to the pipe 37. The circulation pump 33 circulates the fluid in the heat exchanger 30 and the pipe 37. The fluid flowing through the heat exchanger 30 exchanges heat with the heat generated by the electric wires 31. The fluid after the heat exchange is flowed to the pipe 37 arranged under the floor, and floor heating can be performed. In the heat exchange system 41, an example in which a plurality of heat exchangers 30 are provided has been shown. However, if the interval between the fluid pipe connection portions 5c is widened, a large heat exchange may be performed by one heat exchanger 30. it can.

第2の実施の形態によれば、第1の実施の形態と同様の効果を得ることができる。また、電線の発熱を有効に利用することができる。また、既設の電線管に設置することもでき、設置位置や設置範囲を任意に決めることができる。このため、施工性に優れた熱交換システムを得ることができる。   According to the second embodiment, an effect similar to that of the first embodiment can be obtained. Further, the heat generated by the electric wire can be used effectively. Moreover, it can also install in an existing conduit, and an installation position and an installation range can be determined arbitrarily. For this reason, the heat exchange system excellent in workability can be obtained.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

例えば、それぞれの熱交換器を用いた熱交換システムとしては、上述した例に限られず、他の構造体や道路、温室、プールなど様々な場面に適用することができる。   For example, the heat exchange system using each heat exchanger is not limited to the above-described example, and can be applied to various structures such as other structures, roads, greenhouses, and pools.

また、以上の実施形態においては、螺旋状の波付き部を有する外管は、山部(谷部)が1本の連続した螺旋形状である例を示したが、複数本の螺旋状の波形状(山部、谷部)を、それぞれの波が並行するように設けることもできる。すなわち、隣り合う螺旋状の山部(谷部)同士は、互いに平行に形成され、それぞれが独立した流路を形成する。この場合でも、前述の熱交換器1と同様に構成することができる。   Moreover, in the above embodiment, although the outer tube | pipe which has a spiral corrugated part showed the example whose peak part (valley part) is one continuous spiral shape, a plurality of spiral waves were shown. Shapes (mountains, valleys) can also be provided so that the respective waves are parallel. That is, adjacent spiral peaks (valleys) are formed in parallel to each other, and each forms an independent flow path. Even in this case, it can be configured in the same manner as the heat exchanger 1 described above.

図12は、複数の螺旋溝が併設された外管を有する二重管4を用いた熱交換器1aを示す図である。二重管4は、螺旋状の波付き管であって、二重管3と略同様の構成であるが、螺旋波形状が異なる。二重管4は、二重管3と異なり、螺旋形状が1本の連続した形態ではなく、2本の螺旋形状が平行に併設されたものである。なお、二重管4としては、螺旋形状が2本の例を示すが、3本以上あってもよい。   FIG. 12 is a view showing a heat exchanger 1a using a double pipe 4 having an outer pipe provided with a plurality of spiral grooves. The double tube 4 is a spiral corrugated tube, and has substantially the same configuration as the double tube 3, but the spiral wave shape is different. Unlike the double tube 3, the double tube 4 is not a continuous form of one spiral, but two spiral shapes are provided in parallel. In addition, as the double tube 4, an example of two spiral shapes is shown, but there may be three or more.

二重管4の外管には、互いに独立した2本の螺旋形状(谷部、山部)が形成される。したがって、流路が2本形成される。このため、熱交換器1aは、それぞれの流路に流体を供給するための流体管7aが一対設けられる。すなわち、流路の数に対応した本数の流体管7aが流体管接続部5aに設けられる。   Two independent spiral shapes (valleys and peaks) are formed on the outer tube of the double tube 4. Therefore, two flow paths are formed. For this reason, the heat exchanger 1a is provided with a pair of fluid pipes 7a for supplying fluid to the respective flow paths. That is, the number of fluid pipes 7a corresponding to the number of flow paths is provided in the fluid pipe connection portion 5a.

図13は、図12のA1部拡大図であり、熱交換器1aに対して、図3と同様に示す図である。図13(a)に示す通り、熱交換器1aでは隣り合う谷部13それぞれの略中央にそれぞれ継手9a(図中点線円)が設けられる。すなわち、継手9aは、隣り合う谷部13(山部11の頂部同士の略中間)のそれぞれに位置する。なお、継手9aは、それぞれの谷部13に連通すれば良く、周方向の異なる位置に形成されてもよい。   FIG. 13 is an enlarged view of a portion A1 in FIG. 12, and shows the heat exchanger 1a in the same manner as in FIG. As shown to Fig.13 (a), in the heat exchanger 1a, the joint 9a (dotted line circle in a figure) is each provided in the approximate center of each trough part 13 adjacent. That is, the joint 9a is located in each of the adjacent valley portions 13 (substantially intermediate between the top portions of the mountain portions 11). In addition, the joint 9a should just be connected to each trough part 13, and may be formed in the position where the circumferential direction differs.

図13(b)に示すように、流体管接続部5aの内周面と山部11頂部は接触して水密が保たれ、流体管接続部5aの内周面と外管3b(谷部13)とで囲まれる部位が螺旋状の空間18となる。空間18には、継手9aとの連通部を挟むように、封止材15aが設けられる。すなわち、隣り合うそれぞれの谷部13が、それぞれ封止材15aによって封止されて、それぞれ独立した空間18が形成される。なお、外管3b外周面および流体管接続部5a内面との間が水密に保たれる。すなわち、継手9a位置から見て両側の空間18に対して封止材15aが設けられる。   As shown in FIG. 13 (b), the inner peripheral surface of the fluid pipe connecting portion 5a and the top of the mountain portion 11 are brought into contact with each other to maintain watertightness, and the inner peripheral surface of the fluid pipe connecting portion 5a and the outer pipe 3b (the valley portion 13). ) Is a spiral space 18. In the space 18, a sealing material 15 a is provided so as to sandwich a communication portion with the joint 9 a. That is, the adjacent valley portions 13 are sealed by the sealing material 15a, and independent spaces 18 are formed. The space between the outer peripheral surface of the outer pipe 3b and the inner surface of the fluid pipe connecting portion 5a is kept watertight. That is, the sealing material 15a is provided in the space 18 on both sides when viewed from the position of the joint 9a.

それぞれの空間18の範囲において、外管3b(山部11側面)の一部にそれぞれ孔17が形成される。すなわち、それぞれの継手9aから流体管接続部5a内に流体を流入させると、流体は、流体管接続部5a内面、封止材15aおよび外管3bとで囲まれるそれぞれの空間18から孔17を通り、それぞれの流路に流入する。この際、それぞれの流路内部にも封止材15bが設けられる。したがって、継手9aから流体管接続部5a内部に流入する流体はすべて一方の方向(流体管接続部5b側)に流すことができる。以上により、それぞれ独立した流路に対して流体をそれぞれ流すことができる。   In the range of each space 18, a hole 17 is formed in a part of the outer tube 3 b (side surface of the mountain portion 11). That is, when a fluid is caused to flow into the fluid pipe connecting portion 5a from each joint 9a, the fluid passes through the holes 17 from the respective spaces 18 surrounded by the inner surface of the fluid pipe connecting portion 5a, the sealing material 15a, and the outer pipe 3b. And flows into the respective flow paths. At this time, the sealing material 15b is also provided inside each flow path. Accordingly, all of the fluid flowing from the joint 9a into the fluid pipe connection portion 5a can flow in one direction (the fluid pipe connection portion 5b side). As described above, fluids can be made to flow through the independent flow paths.

なお、流体管接続部5aは、それぞれの流路に対して流される流体を水密に保つ必要があるため、それぞれの流路に対する空間18をすべて覆う必要がある。したがって、2本の流路の場合には、流路(山部または谷部)は、二重管の外周を一周する際に4本の山部(谷部)に渡って形成される。したがって、流体管接続部5aとしては、少なくとも流路の本数の2倍の波ピッチ(隣り合う山部間ピッチ)分を覆うだけの長さが必要であり、望ましくはこれに1〜2ピッチ分ほど長くすることが望ましい。   In addition, since the fluid pipe connection part 5a needs to keep the fluid flowing with respect to each flow path watertight, it is necessary to cover all the space 18 with respect to each flow path. Therefore, in the case of two flow paths, the flow paths (peaks or troughs) are formed across the four peaks (valleys) when going around the outer periphery of the double pipe. Therefore, the fluid pipe connecting portion 5a needs to have a length that covers at least the wave pitch (pitch between adjacent ridges) twice as many as the number of the flow paths, and preferably 1 to 2 pitches. It is desirable to make it longer.

また、流体管接続部5b側においては、それぞれの流路が流体管接続部5bに連通していれば、熱交換器1と同様に、それぞれの流路を流れた流体は、流体管接続部5bで合流して、二重管4(内管3a)内部を流れて熱交換器1aから流出する。   On the fluid pipe connection portion 5b side, as long as each flow path communicates with the fluid pipe connection portion 5b, the fluid that has flowed through each flow path is the same as that of the heat exchanger 1, as shown in FIG. 5b joins, flows through the double pipe 4 (inner pipe 3a), and flows out of the heat exchanger 1a.

また、一方の流路の流体管接続部5b側が、流体管接続部5b内部に連通しない場合には、流路の入り側と同様に、流路の側面に孔を設けて、流体を二重管4の外部に導出し、流体管接続部5b内部に流入させればよい。この場合、流体の流入側と同様に、流路の封止には封止材15b等を形成することで、流体を孔から全て外部に導出でき、また、谷部の一方の側に封止材15aを設けることで、流体をすべて端部側(流体管接続部5bの端部側)に流すことができ、流体が流体管接続部5bから漏れることがない。   In addition, when the fluid pipe connection part 5b side of one flow path does not communicate with the inside of the fluid pipe connection part 5b, a hole is provided on the side surface of the flow path to double the fluid, similarly to the entrance side of the flow path. What is necessary is just to derive | lead-out to the exterior of the pipe | tube 4 and to flow in into the fluid pipe | tube connection part 5b. In this case, as with the fluid inflow side, the sealing material 15b or the like is formed for sealing the flow path, so that the fluid can be entirely led out from the hole and sealed on one side of the valley. By providing the material 15a, all the fluid can flow to the end side (the end side of the fluid pipe connecting portion 5b), and the fluid does not leak from the fluid pipe connecting portion 5b.

このように、波状部と内管の間に形成される流路を複数本とすることにより、流路中の流体断面積が流路の本数分だけ大きくすることができるので、流路中の流体の流速を上げないで済むことから、外管と内管の融着部の強度に余裕を与えることができる。   In this way, by using a plurality of flow paths formed between the undulating portion and the inner tube, the fluid cross-sectional area in the flow path can be increased by the number of the flow paths. Since it is not necessary to increase the flow velocity of the fluid, a margin can be given to the strength of the fusion part between the outer tube and the inner tube.

また、同一の熱交換器長さであれば、流路を複数とすることで、それぞれの流路の長さが短くなるため、流体抵抗を小さくすることができる。なお、上述したような流路を複数とする構成を、前述した各実施形態に適用可能であることは言うまでもない。たとえば、熱交換器30に適用する場合には、流体管7a、7bともに、流路の本数分だけ形成すれば良い。   In addition, if the length of the heat exchanger is the same, the flow resistance can be reduced because the length of each flow path is shortened by using a plurality of flow paths. Needless to say, a configuration having a plurality of flow paths as described above can be applied to each of the above-described embodiments. For example, when applied to the heat exchanger 30, it is sufficient to form the fluid pipes 7a and 7b as many as the number of flow paths.

また、以上の説明では、流路の形状がなだらかな波形状である二重管3、4を用いる例を示したが、二重管3、4に代えて、図14に示すような二重管50を用いてもよい。図14は、二重管50の断面を示す図である。二重管50は、山部11と谷部13が略直線状で、さらに山部11と谷部13をほぼ直線状に結ぶ略台形状(略矩形)の波形状を有するものでも良い。このような波形状とすることにより、外管と内管の接着部長として、谷部全体が寄与するため、外管と内管の接着強度を向上させることができる。   In the above description, the example in which the double pipes 3 and 4 having a gentle wave shape is used has been shown. However, instead of the double pipes 3 and 4, a double pipe as shown in FIG. A tube 50 may be used. FIG. 14 is a view showing a cross section of the double tube 50. The double tube 50 may have a substantially trapezoidal (substantially rectangular) corrugated shape in which the crests 11 and the troughs 13 are substantially straight, and the crests 11 and the troughs 13 are joined in a substantially straight line. By setting it as such a wave shape, since the whole trough part contributes as an adhesion part length of an outer pipe and an inner pipe, the adhesive strength of an outer pipe and an inner pipe can be improved.

また、流体管接続部5a、5b、5cの内面が、二重管の山部頂部と水密に保つ方法としては接着の例を示したが、流体管接続部5a、5b、5cの外周に、バンド等を設けて締め付けてもよく、接着等と組み合わせてもよい。さらに、水密を保つためのパッキン等を用いてもよい。   Moreover, although the example of adhesion | attachment was shown as a method of keeping the inner surface of fluid pipe connection part 5a, 5b, 5c watertight with the crest part of a double pipe, on the outer periphery of fluid pipe connection parts 5a, 5b, 5c, A band or the like may be provided and tightened, or may be combined with adhesion or the like. Further, packing for keeping water tightness may be used.

1、1a、30………熱交換器
3、4、50………二重管
3a………内管
3b………外管
5a、5b、5c………流体管接続部
7a、7b………流体管
9a、9b………継手
11………山部
13………谷部
15a、15b………封止材
17………孔
18………空間
21………地面
23………掘削孔
25………筒体
26………熱交換システム
27………循環ポンプ
28………パイプ
29………床
31………電線
33………循環ポンプ
35………地面
37………パイプ
39………構造体
41………熱交換システム
43………被覆ケーブル
1, 1a, 30 ... Heat exchangers 3, 4, 50 ... Double pipe 3a ... Inner pipe 3b ... Outer pipes 5a, 5b, 5c ... Fluid pipe connections 7a, 7b ... ...... Fluid pipes 9a, 9b ......... Joint 11 ......... Mountain 13 ......... Valley 15a, 15b ......... Sealing material 17 ......... Hole 18 ......... Space 21 ......... Ground 23 ... ... excavation hole 25 ... ... cylinder 26 ... ... heat exchange system 27 ... ... circulation pump 28 ... ... pipe 29 ... ... floor 31 ... ... electric wire 33 ... ... circulation pump 35 ... ... ground 37 ... ...... Pipe 39 ......... Structure 41 ......... Heat exchange system 43 ......... Coated cable

Claims (7)

螺旋状の波付き部を有する外管と、前記外管の内部に設けられる内管とからなり、前記外管の波付き部の谷部の内面と前記内管の外周面との接触部が融着しており、前記外管の山部の内面と前記内管の外周面との間が流体の流路となる、一体で成形された樹脂製の二重管と、
前記二重管の外周に被せられる一対の流体管接続部と、
前記流体管接続部に接続される複数の流体管と、を具備し、
前記流路と連通する一方の前記流体管から流体を導入すると、流体が前記流路を流れて、他方の前記流体管から排出されることを特徴とする熱交換器。
An outer tube having a spiral corrugated portion and an inner tube provided inside the outer tube, and a contact portion between the inner surface of the valley portion of the corrugated portion of the outer tube and the outer peripheral surface of the inner tube A resin-made double pipe formed integrally, which is fused and has a fluid flow path between the inner surface of the crest of the outer pipe and the outer peripheral face of the inner pipe;
A pair of fluid pipe connecting portions covering the outer circumference of the double pipe;
A plurality of fluid pipes connected to the fluid pipe connecting portion,
When a fluid is introduced from one of the fluid pipes communicating with the flow path, the fluid flows through the flow path and is discharged from the other fluid pipe.
前記流体管接続部の内面は前記山部の外周面に接触しており、
前記流体管接続部が被せられた部位においては、前記外管の一部に孔が形成され、前記流体管接続部の内面と前記谷部の外周面との間に形成される空間と、前記流路とが連通することで、前記流体管と前記流路とが前記空間および前記孔を介して連通し、
前記流体管から導入される流体が、前記流路の一方の方向に流れるように、前記孔の両側の前記空間を封止し、かつ、前記孔から一方の側の前記流路を封止する封止材が設けられることを特徴とする請求項1記載の熱交換器。
The inner surface of the fluid pipe connecting portion is in contact with the outer peripheral surface of the mountain portion,
In the portion covered with the fluid pipe connection part, a hole is formed in a part of the outer pipe, and a space formed between the inner surface of the fluid pipe connection part and the outer peripheral surface of the valley part, By communicating with the flow path, the fluid pipe and the flow path communicate with each other through the space and the hole,
The space on both sides of the hole is sealed so that the fluid introduced from the fluid pipe flows in one direction of the flow path, and the flow path on one side from the hole is sealed. The heat exchanger according to claim 1, wherein a sealing material is provided.
前記流体管接続部は、前記二重管の外周に被せられるリング状部材であり、前記リング状部材の内面は前記山部の外周面に接触し、前記リング状部材の外周面には、前記流体管が接続されており、
一対の前記リング状部材は、前記二重管の外周に所定の間隔をあけて被せられ、一方の前記リング状部材に設けられる前記流体管から導入される流体は、前記孔を介して前記流路に流入し、他方の前記リング状部材の方向に前記流路内を流れ、前記孔を介して他方の前記リング状部材に接続された前記流体管から排出され、前記内管内部と流体とが熱交換可能であることを特徴とする請求項2記載の熱交換器。
The fluid pipe connecting portion is a ring-shaped member that covers the outer periphery of the double pipe, the inner surface of the ring-shaped member is in contact with the outer peripheral surface of the peak portion, and the outer peripheral surface of the ring-shaped member is Fluid pipe is connected,
The pair of ring-shaped members are placed on the outer periphery of the double pipe with a predetermined interval, and the fluid introduced from the fluid pipe provided in one of the ring-shaped members is allowed to flow through the holes. Flows into the passage, flows in the flow path in the direction of the other ring-shaped member, is discharged from the fluid pipe connected to the other ring-shaped member through the hole, The heat exchanger according to claim 2, wherein heat exchange is possible.
前記流体管接続部は、前記二重管の両端部にそれぞれ被せられる蓋状部材であり、前記蓋状部材の内面は前記山部の外周面に接触するとともに、前記二重管の端部を塞ぎ、
前記流体管は、一方の前記蓋状部材の外周面および端面にそれぞれ形成される第1の流体管および第2の流体管であり、
前記第1の流体管から導入される流体は、前記孔を介して前記流路に流入し、他方の前記蓋状部材の方向に前記流路を流れ、他方の前記蓋状部材を介して前記二重管内部に流入し、前記二重管内部を流れて前記第2の流体管から排出され、前記外管外部と流体とが熱交換可能であることを特徴とする請求項2記載の熱交換器。
The fluid pipe connecting portion is a lid-like member that covers both ends of the double pipe, and the inner surface of the lid-like member is in contact with the outer peripheral surface of the mountain portion, and the end of the double pipe is Plug,
The fluid pipes are a first fluid pipe and a second fluid pipe respectively formed on an outer peripheral surface and an end surface of one of the lid-like members,
The fluid introduced from the first fluid pipe flows into the flow path through the hole, flows through the flow path in the direction of the other lid-like member, and passes through the other lid-like member. The heat according to claim 2, wherein the heat flows into the double pipe, flows through the double pipe and is discharged from the second fluid pipe, and heat exchange is possible between the outside of the outer pipe and the fluid. Exchanger.
請求項3記載の熱交換器を用い、
ポンプによって前記流体管に流体を循環させ、
前記二重管内部には電線が挿通されており、前記流体管を流れる流体が、前記電線の発熱に伴う熱と熱交換を行うことを特徴とする熱交換システム。
Using the heat exchanger according to claim 3,
Circulating a fluid through the fluid pipe by a pump;
An electric wire is inserted into the double pipe, and a fluid flowing through the fluid pipe exchanges heat with heat generated by the electric wire.
請求項4記載の熱交換器を用い、
ポンプによって前記流体管に流体を循環させ、
前記熱交換器が地中に埋設され、前記流体管を流れる流体が、地熱と熱交換を行うことを特徴とする熱交換システム。
Using the heat exchanger according to claim 4,
Circulating a fluid through the fluid pipe by a pump;
The heat exchanger is embedded in the ground, and the fluid flowing through the fluid pipe exchanges heat with geothermal heat.
螺旋状の波付き部を有する外管と、前記外管の内部に設けられる内管とからなり、前記外管の波付き部の谷部の内面と前記内管の外周面との接触部が融着し、前記外管の山部の内面と前記内管の外周面との間が流体の流路となる、一体で成形された樹脂製の二重管に電線を挿通し、
前記二重管の外管に、所定の間隔をあけて一対の孔を形成し、前記流路を介して前記孔同士を連通させ、
それぞれの前記孔を囲むように前記谷部の外面に封止材を設けるとともに、互いの前記孔同士が連通する方向とは逆方向の前記流路の内部に、前記孔から封止材を設け、
前記二重管の外周の前記孔が形成されたそれぞれの部位には、流体管が接続されるリング状部材がそれぞれ設けられることを特徴とする熱交換システムの施工方法。
An outer tube having a spiral corrugated portion and an inner tube provided inside the outer tube, and a contact portion between the inner surface of the valley portion of the corrugated portion of the outer tube and the outer peripheral surface of the inner tube Fusing and inserting a wire through a resin-made double tube formed integrally, the fluid passage between the inner surface of the crest of the outer tube and the outer peripheral surface of the inner tube,
A pair of holes are formed at a predetermined interval in the outer pipe of the double pipe, and the holes are communicated with each other via the flow path.
A sealing material is provided on the outer surface of the trough so as to surround each hole, and a sealing material is provided from the hole in the flow path in a direction opposite to the direction in which the holes communicate with each other. ,
A method for constructing a heat exchange system, wherein a ring-like member to which a fluid pipe is connected is provided at each portion where the hole on the outer periphery of the double pipe is formed.
JP2010190316A 2010-08-27 2010-08-27 Heat exchanger, heat exchange system, method of constructing heat exchange system Pending JP2012047407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190316A JP2012047407A (en) 2010-08-27 2010-08-27 Heat exchanger, heat exchange system, method of constructing heat exchange system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010190316A JP2012047407A (en) 2010-08-27 2010-08-27 Heat exchanger, heat exchange system, method of constructing heat exchange system

Publications (1)

Publication Number Publication Date
JP2012047407A true JP2012047407A (en) 2012-03-08

Family

ID=45902494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010190316A Pending JP2012047407A (en) 2010-08-27 2010-08-27 Heat exchanger, heat exchange system, method of constructing heat exchange system

Country Status (1)

Country Link
JP (1) JP2012047407A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098276A1 (en) * 2013-12-27 2015-07-02 ホシザキ電機株式会社 Washer
JP2015123349A (en) * 2013-12-27 2015-07-06 ホシザキ電機株式会社 Washer
JP2015142705A (en) * 2013-12-27 2015-08-06 ホシザキ電機株式会社 Discharge water heat recovery device
CN105115193A (en) * 2015-10-10 2015-12-02 常州精励汽车科技有限公司 Air conditioner heat regenerator for automobile
JP2016102643A (en) * 2014-11-18 2016-06-02 株式会社アタゴ製作所 Heat exchanger
CN105916427A (en) * 2013-12-27 2016-08-31 星崎电机株式会社 Washer
JP2020180715A (en) * 2019-04-23 2020-11-05 株式会社Ihi建材工業 Geothermal heat exchange segment, geothermal heat exchanger and its assembling method
CN113847831A (en) * 2021-11-02 2021-12-28 安徽普瑞普勒传热技术有限公司 Assembly of heat exchanger and heat exchanger with same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098276A1 (en) * 2013-12-27 2015-07-02 ホシザキ電機株式会社 Washer
JP2015123349A (en) * 2013-12-27 2015-07-06 ホシザキ電機株式会社 Washer
JP2015142705A (en) * 2013-12-27 2015-08-06 ホシザキ電機株式会社 Discharge water heat recovery device
CN105916427A (en) * 2013-12-27 2016-08-31 星崎电机株式会社 Washer
EP3087897A4 (en) * 2013-12-27 2017-09-13 Hoshizaki Corporation Washer
US10264943B2 (en) 2013-12-27 2019-04-23 Hoshizaki Corporation Washer
JP2016102643A (en) * 2014-11-18 2016-06-02 株式会社アタゴ製作所 Heat exchanger
CN105115193A (en) * 2015-10-10 2015-12-02 常州精励汽车科技有限公司 Air conditioner heat regenerator for automobile
JP2020180715A (en) * 2019-04-23 2020-11-05 株式会社Ihi建材工業 Geothermal heat exchange segment, geothermal heat exchanger and its assembling method
CN113847831A (en) * 2021-11-02 2021-12-28 安徽普瑞普勒传热技术有限公司 Assembly of heat exchanger and heat exchanger with same
CN113847831B (en) * 2021-11-02 2023-08-11 安徽普瑞普勒传热技术有限公司 Assembly of heat exchanger and heat exchanger with same

Similar Documents

Publication Publication Date Title
JP2012047407A (en) Heat exchanger, heat exchange system, method of constructing heat exchange system
JP4535981B2 (en) Tunnel heat exchange panel and tunnel heat utilization heat exchange system
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
JP2011117171A (en) Tunnel construction method and heat exchange passage fixing implement therefor
CA2790531A1 (en) Twisted conduit for geothermal heating and cooling systems
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
US8640765B2 (en) Twisted conduit for geothermal heating and cooling systems
JP5914084B2 (en) Heat collection system for sewage heat and its construction method
JP5255236B2 (en) Heat exchanger and heat exchange system
KR100915630B1 (en) Insulation cover for piping and method for constructing the same
JP5895306B2 (en) Ready-made concrete piles and geothermal heat utilization system for geothermal heat utilization
JP4981516B2 (en) HEAT EXCHANGER, HEAT EXCHANGE SYSTEM, HEAT EXCHANGER MANUFACTURING METHOD, AND HEAT EXCHANGE SYSTEM CONSTRUCTION METHOD
JP2009052293A (en) Method and apparatus for uniforming temperature by water supply system
JP5921891B2 (en) Panel heat exchanger for underground heat source heat pump
JP4981517B2 (en) HEAT EXCHANGER, HEAT EXCHANGE SYSTEM AND HEAT EXCHANGER MANUFACTURING METHOD
JP2013139957A (en) Heat exchanger consisting of cylindrical structure
JP2013108655A (en) Underground heat exchanger
US11022345B1 (en) Ground source heat pump heat exchanger
WO2014061313A1 (en) Air-conditioning device and air-conditioning method
JP5836452B2 (en) Air conditioner
CN104653879A (en) Sealing structure of wall well wall
CN217927569U (en) Steel-plastic composite waterproof sleeve
US20100192943A1 (en) Solar heat collection system
JP2013015283A (en) Geothermal heat utilization system
CN216768564U (en) Direct-buried hot water pipe network fixing device