JP2013108655A - Underground heat exchanger - Google Patents

Underground heat exchanger Download PDF

Info

Publication number
JP2013108655A
JP2013108655A JP2011253097A JP2011253097A JP2013108655A JP 2013108655 A JP2013108655 A JP 2013108655A JP 2011253097 A JP2011253097 A JP 2011253097A JP 2011253097 A JP2011253097 A JP 2011253097A JP 2013108655 A JP2013108655 A JP 2013108655A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
surrounding
underground heat
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011253097A
Other languages
Japanese (ja)
Other versions
JP5867001B2 (en
Inventor
Tadashi Kaneko
正 金子
Yasuyuki Maida
泰之 毎田
Kenji Mikota
憲司 三小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2011253097A priority Critical patent/JP5867001B2/en
Publication of JP2013108655A publication Critical patent/JP2013108655A/en
Application granted granted Critical
Publication of JP5867001B2 publication Critical patent/JP5867001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an underground heat exchanger having three or more tubes for flowing heat medium in an excavation hole in which the efficiency of heat exchange is enhanced by suppressing short circuit between tubes in which flow directions of heat medium are reversed to each other.SOLUTION: An underground heat exchanger is inserted into an excavation hole formed vertically to a ground. The underground heat exchanger has a center tube which is arranged in a center part of a flat face in the excavation hole and in which the direction of a tube axis extends along a vertical direction, a plurality of surrounding tubes which are arranged between a center tube and an inner peripheral face of the excavation hole, in which the outer peripheral surface of the surrounding tubes are arranged opposing to the outer peripheral surface of the center tube, and in which a direction of tube axes extend along a vertical direction, and a branched part arranged below the center tube, branching the flow channel of the heat medium of the center tube and allocating the same to the respective surrounding tubes. The direction of the heat medium flowing through the surrounding tubes is opposite to the direction of the heat medium flowing in the center tube. The surrounding tubes are arranged such that the distance between the surrounding tubes and the inner peripheral face of the excavation hole is smaller than the distance between the surrounding tubes and the center tube.

Description

本発明は、地中熱交換器に関する。   The present invention relates to an underground heat exchanger.

通年の温度変動の小さい地中熱を利用して建物の冷暖房等を行う地中熱利用システムが注目されている。この地中熱利用システムでは、地盤との間で採・放熱を行うべく地中に地中熱交換器が設置される。そして、例えば、夏場には地盤に放熱し、冬場には地盤から採熱する(特許文献1)。   A geothermal heat utilization system that heats and cools buildings using geothermal heat with small year-round temperature fluctuations is attracting attention. In this geothermal heat utilization system, a geothermal heat exchanger is installed in the ground to collect and radiate heat with the ground. For example, heat is radiated to the ground in summer and heat is collected from the ground in winter (Patent Document 1).

特開2008−256329号公報JP 2008-256329 A

図1Aの概略斜視図に示すように、この地中熱交換器130は、地盤Gの掘削孔23内に鉛直に建て込まれた採放熱管としてのポリエチレン等の樹脂製U字管131を有し、U字管131の周囲の隙間P23には、砂やモルタル等の充填材27が充填されている。そして、このU字管131の一方の管を往路管132として同管132内に、水や不凍液等の熱媒体26を流し込むとともに、もう一方の管134を復路管として、同管134から、地盤Gとの間で熱交換後の熱媒体26を取り出して、ヒートポンプ等へ送出して利用する。   As shown in the schematic perspective view of FIG. 1A, the underground heat exchanger 130 has a resin U-shaped tube 131 such as polyethylene as a heat collecting and radiating tube built vertically in the excavation hole 23 of the ground G. The gap P23 around the U-shaped tube 131 is filled with a filler 27 such as sand or mortar. Then, one pipe of the U-shaped pipe 131 is used as an outgoing pipe 132 and a heat medium 26 such as water or antifreeze is poured into the pipe 132 and the other pipe 134 is used as a return pipe from the same pipe 134 to the ground. The heat medium 26 after heat exchange with the G is taken out and sent to a heat pump or the like for use.

かかるU字管131は、通常、掘削孔23内に往路管132及び復路管134を一組として、一組又は二組配されるが、図1Aのように二組が配置される場合には、図1Bのように往路管132と復路管134とが近接せざるを得ない。すると、同図1Bに示すように、地盤Gと熱交換後の熱媒体26が流れる復路管134から熱交換前の熱媒体26が流れる往路管132へと熱移動する所謂ショートサーキットを生じ、結果、地中熱交換器130の熱交換効率が悪くなる虞があった。   Such U-shaped pipes 131 are usually arranged in one or two sets of the forward pipe 132 and the return pipe 134 in the excavation hole 23, but when two sets are arranged as shown in FIG. 1A. As shown in FIG. 1B, the forward pipe 132 and the backward pipe 134 must be close to each other. Then, as shown in FIG. 1B, a so-called short circuit is generated in which heat transfer is performed from the return pipe 134 through which the heat medium 26 after heat exchange with the ground G flows to the forward pipe 132 through which the heat medium 26 before heat exchange flows. The heat exchange efficiency of the underground heat exchanger 130 may be deteriorated.

本発明は、上記のような従来の問題に鑑みなされたものであって、その主な目的は、熱媒体を流すための三本以上の管を掘削孔内に有する地中熱交換器において、熱媒体の流れる方向が互いに逆向きとなる管同士の間のショートサーキットを抑制して熱交換効率を高めることにある。   The present invention has been made in view of the conventional problems as described above, and the main purpose thereof is a ground heat exchanger having three or more pipes for flowing a heat medium in a borehole. An object of the present invention is to increase the heat exchange efficiency by suppressing a short circuit between the tubes in which the flow directions of the heat medium are opposite to each other.

かかる目的を達成するために請求項1に示す発明は、
地盤に鉛直に形成された掘削孔内に挿入される地中熱交換器であって、
前記掘削孔内の平面中心部に配置される、管軸方向が鉛直方向に沿った中央管と、
前記中央管と前記掘削孔の内周面との間に配置される複数の周囲管であって、前記周囲管の外周面を前記中央管の外周面に対向して配置され、管軸方向が鉛直方向に沿った前記複数の周囲管と、
前記中央管の下方に設けられ、前記中央管の熱媒体の流路を分岐して前記周囲管毎に割り当てる分岐部と、を有し、
前記周囲管を熱媒体が流れる方向は、前記中央管を熱媒体が流れる方向と逆向きであり、
前記周囲管と前記掘削孔の前記内周面との間の間隔の方が、前記周囲管と前記中央管との間の間隔よりも小さくなるように前記周囲管は配置されていることを特徴とする。
In order to achieve this object, the invention shown in claim 1
An underground heat exchanger inserted into a drilling hole formed vertically in the ground,
A central pipe disposed in the center of the plane in the excavation hole, the pipe axis direction along the vertical direction;
A plurality of peripheral pipes disposed between the central pipe and the inner peripheral surface of the excavation hole, wherein the outer peripheral surface of the peripheral pipe is disposed to face the outer peripheral surface of the central pipe, and a pipe axis direction is The plurality of surrounding tubes along the vertical direction;
A branch portion provided below the central tube, and branching the flow path of the heat medium of the central tube and assigning to each of the surrounding tubes,
The direction in which the heat medium flows through the surrounding tube is opposite to the direction in which the heat medium flows through the central tube,
The peripheral pipe is arranged so that a distance between the peripheral pipe and the inner peripheral surface of the excavation hole is smaller than a distance between the peripheral pipe and the central pipe. And

上記請求項1に示す発明によれば、中央管は平面中心部に配置され、また、中央管に対して熱媒体の流れる方向が逆向きの周囲管は、中央管よりも掘削孔の内周面の方に接近して配置されている。よって、中央管と周囲管との間に大きな間隔を設けることができて、その結果、中央管を流れる熱媒体と周囲管を流れる熱媒体との間のショートサーキットを抑制して、地中熱交換器の熱交換効率を高めることができる。
また、複数の周囲管は、掘削孔の内周面に接近して配置されるので、地盤との間で熱交換を行うための有効面積の拡大を図れ、このことも地中熱交換器の熱交換効率の向上に寄与する。
According to the first aspect of the present invention, the central pipe is disposed in the center of the plane, and the peripheral pipe whose direction of flow of the heat medium is opposite to the central pipe is the inner circumference of the borehole than the central pipe. It is placed close to the surface. Therefore, a large space can be provided between the central tube and the surrounding tube, and as a result, a short circuit between the heat medium flowing through the central tube and the heat medium flowing through the surrounding tube is suppressed, The heat exchange efficiency of the exchanger can be increased.
In addition, since the plurality of surrounding pipes are arranged close to the inner peripheral surface of the excavation hole, the effective area for heat exchange with the ground can be increased, which is also the case of the underground heat exchanger. Contributes to improved heat exchange efficiency.

請求項2に示す発明は、請求項1に記載の地中熱交換器であって、
前記周囲管は、前記掘削孔の前記内周面に接触するように配置されており、
前記掘削孔内に前記中央管、前記周囲管、及び前記分岐部が配置された状態で、前記掘削孔内には充填材が充填されていることを特徴とする。
The invention shown in claim 2 is the underground heat exchanger according to claim 1,
The surrounding pipe is disposed so as to contact the inner peripheral surface of the excavation hole,
The excavation hole is filled with a filler in a state in which the central pipe, the peripheral pipe, and the branch portion are disposed in the excavation hole.

上記請求項2に示す発明によれば、中央管は平面中心部に配置され、中央管とは熱媒体の流れる方向が逆方向の周囲管は、中央管よりも最も離間した掘削孔の内周面に接触して配置されている。よって、全ての周囲管について、中央管と周囲管との間に最大の間隔を設けることができて、その結果、中央管を流れる熱媒体と周囲管を流れる熱媒体との間のショートサーキットをより効果的に抑制して、地中熱交換器の熱交換効率を更に高めることができる。   According to the second aspect of the present invention, the central pipe is disposed in the center of the plane, and the peripheral pipe whose direction of flow of the heat medium is opposite to the central pipe is the inner circumference of the excavation hole that is farthest away from the central pipe. It is placed in contact with the surface. Therefore, for all the surrounding tubes, the maximum distance can be provided between the central tube and the surrounding tube, and as a result, a short circuit between the heat medium flowing through the central tube and the heat medium flowing through the surrounding tube can be provided. It can suppress more effectively and can further raise the heat exchange efficiency of an underground heat exchanger.

請求項3に示す発明は、請求項1又は2に記載の地中熱交換器であって、
前記中央管の管軸と前記周囲管の管軸との間の距離が、前記複数の周囲管の全てについて互いに等しくなるように前記周囲管は配されていることを特徴とする。
The invention shown in claim 3 is the underground heat exchanger according to claim 1 or 2,
The peripheral pipes are arranged such that a distance between a pipe axis of the central pipe and a pipe axis of the peripheral pipes is equal to each other for all of the plurality of peripheral pipes.

上記請求項3に示す発明によれば、全ての周囲管についてショートサーキットの影響を略均等に揃えることができるので、全ての周囲管について熱交換効率を揃えることができる。   According to the third aspect of the present invention, since the influence of the short circuit can be made substantially uniform for all the surrounding tubes, the heat exchange efficiency can be made uniform for all the surrounding tubes.

請求項4に示す発明は、請求項1乃至3の何れかに記載の地中熱交換器であって、
前記複数の周囲管は、前記掘削孔の周方向に均等ピッチで配置されていることを特徴とする。
Invention of Claim 4 is the underground heat exchanger in any one of Claims 1 thru | or 3, Comprising:
The plurality of surrounding pipes are arranged at an equal pitch in a circumferential direction of the excavation hole.

上記請求項4に示す発明によれば、複数の周囲管は、掘削孔の周方向に均等ピッチで配置されているので、複数の周囲管全体で、掘削孔の側方の全方向から地中熱を有効に受け止めることができて、その結果、熱交換効率の向上を図れる。   According to the fourth aspect of the present invention, since the plurality of surrounding pipes are arranged at an equal pitch in the circumferential direction of the excavation hole, the entire plurality of surrounding pipes are underground from all directions lateral to the excavation hole. Heat can be received effectively, and as a result, the heat exchange efficiency can be improved.

請求項5に示す発明は、請求項1乃至4の何れかに記載の地中熱交換器であって、
前記中央管、前記複数の周囲管、及び前記分岐部は、何れも熱可塑性樹脂製であり、
前記中央管と前記分岐部とは、融着接合されており、
前記複数の周囲管と前記分岐部とは、融着接合されていることを特徴とする。
Invention of Claim 5 is the underground heat exchanger in any one of Claims 1 thru | or 4, Comprising:
The central tube, the plurality of surrounding tubes, and the branch portion are all made of a thermoplastic resin,
The central tube and the branch portion are fusion bonded,
The plurality of surrounding tubes and the branch portion are fusion bonded.

上記請求項5に示す発明によれば、中央管と分岐部とは融着接合されているので、高度な水密状態で接合されており、また、複数の周囲管と分岐部とは融着接合されているので、高度な水密状態で接合されている。よって、地中熱交換器の防漏性を向上することができる。   According to the fifth aspect of the present invention, since the central tube and the branch portion are fusion bonded, they are bonded in a highly watertight state, and the plurality of surrounding tubes and the branch portion are fusion bonded. So it is joined in a highly watertight state. Therefore, the leak-proof property of the underground heat exchanger can be improved.

請求項6に示す発明は、請求項1乃至5の何れかに記載の地中熱交換器であって、
前記分岐部は、上部部材と、該上部部材の下面に融着接合される下部部材とを有し、
前記上部部材は、前記中央管の下側の管端部が差し込み固定される鉛直方向に沿った中央貫通孔と、前記周囲管毎にそれぞれ設けられ、対応する前記周囲管の下側の管端部が差し込み固定される鉛直方向に沿った周囲貫通孔とを有し、
前記下部部材は、前記上部部材の下面と対向する上面に、前記中央貫通孔と前記周囲貫通孔とを連通する凹部を有することを特徴とする。
The invention shown in claim 6 is the underground heat exchanger according to any one of claims 1 to 5,
The branch portion has an upper member and a lower member that is fusion bonded to the lower surface of the upper member,
The upper member includes a central through hole along a vertical direction in which a lower pipe end of the central pipe is inserted and fixed, and a pipe end on a lower side of the corresponding peripheral pipe. A peripheral through hole along the vertical direction in which the part is inserted and fixed,
The lower member has a concave portion communicating the central through hole and the peripheral through hole on an upper surface facing the lower surface of the upper member.

上記請求項6に示す発明によれば、中央貫通孔及び複数の周囲貫通孔が形成された上部部材と、これら中央貫通孔と各周囲貫通孔とを連通する凹部が形成された下部部材という簡単な構造で、分岐部を構成することができる。よって、地中熱交換器を安価に製造可能となる。   According to the sixth aspect of the present invention, a simple upper member in which a central through hole and a plurality of peripheral through holes are formed, and a lower member in which a recess that connects the central through hole and each peripheral through hole is formed. The branch part can be configured with a simple structure. Therefore, the underground heat exchanger can be manufactured at a low cost.

請求項7に示す発明は、請求項1乃至6の何れかに記載の地中熱交換器であって、
前記中央管及び前記複数の周囲管は、何れも管軸が鉛直方向に真っ直ぐな直管であることを特徴とする。
The invention shown in claim 7 is the underground heat exchanger according to any one of claims 1 to 6,
Each of the central tube and the plurality of surrounding tubes is a straight tube whose tube axis is straight in the vertical direction.

上記請求項7に示す発明によれば、鉛直方向の略全長に亘り、中央管と周囲管との間の間隔を略等しくできるので、ショートサーキットを全長に亘って有効に抑制可能となる。   According to the seventh aspect of the invention, since the distance between the central tube and the surrounding tube can be made substantially equal over substantially the entire length in the vertical direction, the short circuit can be effectively suppressed over the entire length.

請求項8に示す発明は、請求項1乃至7の何れかに記載の地中熱交換器であって、
前記複数の周囲管の内径は互いに等しく、
前記周囲管の前記内径の前記複数倍の大きさよりも、前記中央管の内径は大きいことを特徴とする。
The invention shown in claim 8 is the underground heat exchanger according to any one of claims 1 to 7,
The inner diameters of the plurality of surrounding tubes are equal to each other,
The inner diameter of the central tube is larger than the multiple of the inner diameter of the surrounding tube.

上記請求項8に示す発明によれば、周囲管での熱媒体の流速は中央管よりも低下されるので、中央管よりも地盤に近い周囲管は、より効率的に地盤との間で熱交換を行うことができて、その結果、地中熱交換器の熱交換効率の向上を図れる。   According to the eighth aspect of the present invention, since the flow velocity of the heat medium in the surrounding pipe is lower than that of the central pipe, the surrounding pipe closer to the ground than the central pipe is more efficiently heated between the ground and the ground. As a result, the heat exchange efficiency of the underground heat exchanger can be improved.

本発明によれば、熱媒体を流すための三本以上の管を掘削孔内に有する地中熱交換器において、熱媒体の流れる方向が互いに逆向きとなる管同士の間のショートサーキットを抑制して熱交換効率を高めることができる。   According to the present invention, in the underground heat exchanger having three or more pipes for flowing the heat medium in the excavation hole, a short circuit between the pipes in which the heat medium flows in opposite directions is suppressed. Thus, the heat exchange efficiency can be increased.

図1Aは、従来の地中熱交換器130の概略斜視図であり、図1Bは、図1A中のB−B断面図である。FIG. 1A is a schematic perspective view of a conventional underground heat exchanger 130, and FIG. 1B is a cross-sectional view taken along line BB in FIG. 1A. 本実施形態に係る地中熱交換器30を用いた地中熱利用システム11の説明図である。It is explanatory drawing of the underground heat utilization system 11 using the underground heat exchanger 30 which concerns on this embodiment. 図3Aは、地盤Gの竪孔23を透視して見た地中熱交換器30の概略斜視図であり、図3Bは、図3A中のB−B断面図である。3A is a schematic perspective view of the underground heat exchanger 30 seen through the hole 23 of the ground G, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A. 継ぎ手部36の分解斜視図である。4 is an exploded perspective view of a joint portion 36. FIG. 融着接合をするためのソケット型の加熱板50及び平板状の加熱板55を示す概略斜視図である。It is a schematic perspective view which shows the socket-type heating plate 50 and the flat heating plate 55 for melt | fusion joining. 図6A乃至図6Cは、設置予定地に地中熱交換器30を設置する様子を示す概略縦断面図である。6A to 6C are schematic longitudinal sectional views showing a state in which the underground heat exchanger 30 is installed at the planned installation site.

===本実施形態===
<<<地中熱交換器30について>>>
図2は、本実施形態に係る地中熱交換器30を用いた地中熱利用システム11の説明図である。図3Aは、地盤Gの竪孔23を透視して見た地中熱交換器30の概略斜視図である。また、図3Bは、図3A中のB−B断面図である。
=== This Embodiment ===
<<< About the underground heat exchanger 30 >>>
FIG. 2 is an explanatory diagram of the underground heat utilization system 11 using the underground heat exchanger 30 according to the present embodiment. 3A is a schematic perspective view of the underground heat exchanger 30 seen through the hole 23 of the ground G. 3B is a cross-sectional view taken along the line BB in FIG. 3A.

この地中熱利用システム11は、地盤Gとの間で熱交換を行う地中熱交換器30と、地中熱交換器30を含めた所定ルートで循環される水又は不凍液等の液状の熱媒体26からの熱を利用して、建物1の暖房のための温水や冷房のための冷水を生成するヒートポンプ15と、熱媒体26を上記所定ルートで循環するための循環ポンプ17とを有する。なお、ヒートポンプ15の構成は周知なので、その説明は省略する。   This underground heat utilization system 11 includes a ground heat exchanger 30 that exchanges heat with the ground G, and liquid heat such as water or antifreeze circulated through a predetermined route including the ground heat exchanger 30. A heat pump 15 that generates hot water for heating the building 1 and cold water for cooling using the heat from the medium 26 and a circulation pump 17 for circulating the heat medium 26 along the predetermined route are provided. In addition, since the structure of the heat pump 15 is known, the description is abbreviate | omitted.

図3A及び図3Bに示すように、地中熱交換器30は所謂「ボアホール方式」である。つまり、地中熱交換器30は、地盤Gに形成された竪孔23(掘削孔に相当)に挿入される採放熱管31を有し、また、竪孔23と採放熱管31との間の空間SP23には充填材27が充填されている。   As shown in FIGS. 3A and 3B, the underground heat exchanger 30 is a so-called “borehole system”. That is, the underground heat exchanger 30 has a heat collecting / radiating pipe 31 inserted into the hole 23 (corresponding to a drilling hole) formed in the ground G, and between the hole 23 and the heat collecting / radiating pipe 31. The space SP23 is filled with a filler 27.

ここで、採放熱管31は、管軸方向が鉛直方向に沿った三本以上の単管32,34,34,34,34を有し、これらの単管32,34,34…の流路は、各下端部32d,34d,34d,34d,34d(下側の管端部に相当)に連結された継ぎ手部36により互いに連通されている。そして、これら単管32,34…のうちの1本の単管32には、ヒートポンプ15から熱媒体26が送り込まれ、これにより、当該1本の単管32は、熱媒体26を地中へ送る往路管32として機能する。一方、残りの複数の単管34,34,34,34は、地中に送られた熱媒体26を地上へ送ってヒートポンプ15へと送り返す復路管34,34,34,34として機能する。つまり、往路管32では熱媒体26は下方へと流れ、復路管34では熱媒体26は上方へと流れ、これらの流れる方向は互いに逆向きになっている。   Here, the heat collection / radiation tube 31 has three or more single tubes 32, 34, 34, 34, 34 whose tube axis direction is along the vertical direction, and the flow paths of these single tubes 32, 34, 34. Are connected to each other by a joint portion 36 connected to each of the lower end portions 32d, 34d, 34d, 34d, 34d (corresponding to the lower tube end portion). Then, the heat medium 26 is fed from the heat pump 15 to one single pipe 32 of the single pipes 32, 34, so that the one single pipe 32 moves the heat medium 26 into the ground. It functions as the outgoing pipe 32 to be sent. On the other hand, the remaining single pipes 34, 34, 34, 34 function as return pipes 34, 34, 34, 34 that send the heat medium 26 that has been sent underground to the ground and send it back to the heat pump 15. In other words, the heat medium 26 flows downward in the forward pipe 32, and the heat medium 26 flows upward in the return pipe 34, and the flowing directions are opposite to each other.

そして、これにより、ヒートポンプ15から採放熱管31へと送られた熱媒体26は、順次、往路管32、各復路管34の順番で流れ、これら往路管32及び各復路管34を流れている間に、熱媒体26は地盤Gの地中熱により加熱又は冷却される。そして、かかる熱交換後に、循環ポンプ17の圧力によりヒートポンプ15へ向けて送出されて、ヒートポンプ15において温水生成や冷水生成に供される。   As a result, the heat medium 26 sent from the heat pump 15 to the heat collecting and radiating pipe 31 sequentially flows in the order of the forward path pipe 32 and each return path pipe 34, and flows through the forward path pipe 32 and each return path pipe 34. In the meantime, the heat medium 26 is heated or cooled by the underground heat of the ground G. And after this heat exchange, it sends out toward the heat pump 15 with the pressure of the circulation pump 17, and uses for hot water production | generation or cold water production | generation in the heat pump 15. FIG.

以下、かかる地中熱交換器30の構成について詳しく説明する。
竪孔23は、ボーリングマシンやオーガ等の掘削機により地盤Gに鉛直に掘削された平面形状が円形や多角形の孔である。この例では正円形状の孔であり、その直径は100〜200mm、深さは30〜150mである。
Hereinafter, the configuration of the underground heat exchanger 30 will be described in detail.
The borehole 23 is a hole having a circular or polygonal plan shape that is excavated vertically on the ground G by an excavator such as a boring machine or an auger. In this example, the hole has a perfect circular shape, and has a diameter of 100 to 200 mm and a depth of 30 to 150 m.

図3Aに示すように、採放熱管31は、例えば高密度ポリエチレン製の3本以上の一例として5本の単管32,34,34,34,34と、5本の各単管32,34,34…をそれぞれ下端部32d,34d,34d…で連結して熱媒体26の流路の折り返し部をなす高密度ポリエチレン製の上記継ぎ手部36とを有している。そして、継ぎ手部36は、竪孔23の最深部に位置し、5本の単管32,34,34…の各上端部32u,34u,34u…は、それぞれ竪孔23の外に突出している。   As shown in FIG. 3A, the heat-dissipating tube 31 includes, for example, five single tubes 32, 34, 34, 34, 34, and five single tubes 32, 34 as an example of three or more made of high-density polyethylene. , 34... Are connected by lower end portions 32 d, 34 d, 34 d..., And the joint portion 36 made of high-density polyethylene that forms a folded portion of the flow path of the heat medium 26. And the joint part 36 is located in the deepest part of the hole 23, and each upper end part 32u, 34u, 34u ... of the five single pipes 32, 34, 34 ... protrudes out of the hole 23, respectively. .

5本の単管32,34,34…は、例えば互いに同仕様の直管である。つまり、各単管32,34,34…は、外径及び内径につき互いに同径であり、鉛直方向に真っ直ぐな単管である。そして、5本の単管32,34,34…のうちの1本の単管32は、前述の往路管32として竪孔23の平面中心部(例えば図心)に配置され、残りの4本の単管34,34…は、前述の復路管34として往路管32を周囲から囲んで配置される。つまり、復路管34は、自身の外周面を往路管32の外周面に対向させつつ、往路管32と竪孔23の内周面23aとの間の位置に配置されている。また、復路管34の配置位置については、図3Bに示すように、復路管34と竪孔23の内周面23aとの間の間隔D23aの方が、復路管34と往路管32との間の間隔D32よりも小さくなるように配置されており、つまり、復路管34は、往路管32よりも竪孔23の内周面23aの方に接近して配置されている。よって、往路管32と復路管34との間に大きな間隔D32を設けることができて、その結果、往路管32を流れる熱媒体26と復路管34を流れる熱媒体26との間のショートサーキットが抑制されて、地中熱交換器30の熱交換効率が高められる。   The five single tubes 32, 34, 34... Are straight tubes having the same specifications, for example. That is, each single pipe 32, 34, 34... Is the same diameter with respect to the outer diameter and the inner diameter, and is a single pipe straight in the vertical direction. One of the five single tubes 32, 34, 34... Is arranged at the center of the plane of the fistula 23 (for example, the centroid) as the aforementioned forward tube 32, and the remaining four tubes. The single pipes 34, 34... Are arranged so as to surround the forward pipe 32 from the periphery as the above-described backward pipe 34. That is, the return pipe 34 is disposed at a position between the forward pipe 32 and the inner peripheral surface 23 a of the fistula 23 with its outer peripheral surface facing the outer peripheral surface of the forward pipe 32. As for the arrangement position of the return pipe 34, as shown in FIG. 3B, the distance D23a between the return pipe 34 and the inner peripheral surface 23a of the fistula 23 is between the return pipe 34 and the forward pipe 32. That is, the return pipe 34 is arranged closer to the inner peripheral surface 23a of the fistula 23 than the forward pipe 32. Therefore, a large distance D32 can be provided between the forward pipe 32 and the backward pipe 34, and as a result, a short circuit between the heat medium 26 flowing through the forward pipe 32 and the heat medium 26 flowing through the backward pipe 34 is obtained. It is suppressed and the heat exchange efficiency of the underground heat exchanger 30 is improved.

また、上述したように、竪孔23の内周面23aに近接配置された4本の各復路管34,34…の内径は、竪孔23の平面中心部に配置された往路管32の内径と同径になっている。そのため、地盤Gとの間で効率良く熱交換が行われる復路管34での熱媒体26の流速は低く抑えられていて、これにより、地盤Gとの間の熱交換の時間を長く確保することができて、このことも、地中熱交換器30の熱交換効率の向上に有効に寄与する。   Further, as described above, the inner diameters of the four return pipes 34, 34... Arranged close to the inner peripheral surface 23 a of the fistula 23 are the inner diameters of the forward pipe 32 arranged at the center of the plane of the fistula 23. It is the same diameter. Therefore, the flow velocity of the heat medium 26 in the return pipe 34 where heat exchange is efficiently performed with the ground G is suppressed to be low, thereby ensuring a long time for heat exchange with the ground G. This also contributes effectively to the improvement of the heat exchange efficiency of the underground heat exchanger 30.

なお、熱交換効率向上の観点からは、望ましくは、図3Bに示すように復路管34の外周面34aが竪孔23の内周面23aに接触するように復路管34を配置すると良く、このように配置されていれば、往路管32から復路管34を最大限に離すことができて、その結果、往路管32と復路管34との間のショートサーキットを最も抑制可能となり、熱交換効率のより一層の向上を図れる。ちなみに、復路管34の全長(深さ方向の全長)に亘って復路管34が竪孔23の内周面23aに接触しているのが理想的であるが、全長のうちの一部、若しくは複数の部分が間欠的に接触している場合であっても、全体として復路管34は竪孔23の内周面23aに近接配置された状態になっていると考えられるので、その場合にも、ショートサーキットの大きな抑制効果を期待できる。   From the viewpoint of improving the heat exchange efficiency, it is desirable to arrange the return pipe 34 so that the outer peripheral surface 34a of the return pipe 34 contacts the inner peripheral surface 23a of the fistula 23 as shown in FIG. If arranged in this way, the return pipe 34 can be separated from the forward pipe 32 to the maximum, and as a result, the short circuit between the forward pipe 32 and the return pipe 34 can be most suppressed, and the heat exchange efficiency Can be further improved. Incidentally, it is ideal that the return pipe 34 is in contact with the inner peripheral surface 23a of the fistula 23 over the entire length of the return pipe 34 (the total length in the depth direction). Even in the case where a plurality of portions are in intermittent contact, the return pipe 34 as a whole is considered to be in a state of being disposed close to the inner peripheral surface 23a of the fistula 23. , You can expect a great suppression effect of the short circuit.

また、往路管32の管軸と復路管34の管軸との間の距離が、全ての復路管34,34…について互いに等しくなるように各復路管34,34…が配置されていると良く、更には、竪孔23の周方向に均等ピッチで復路管34,34…が配置されていると良い。そして、前者によれば、全ての復路管34,34…についてショートサーキットの影響を略均等に揃えることができて、全ての復路管34,34…の熱交換効率を概ね揃えることができる。他方、後者によれば、4本の復路管34,34…で、竪孔23の側方の全方向から地中熱を有効に受け止めることができるので、これによっても、熱交換効率が向上される。ちなみに、この例では、復路管34,34…の本数が4本なので、図3Bに示すように、復路管34,34…は、往路管32の平面位置を図心とする正方形(二点鎖線を参照)の各頂点に位置するように配置されているが、復路管34,34…の本数が3本の場合には、正三角形、5本の場合には、正五角形の各頂点に復路管34がそれぞれ配置される。   Further, it is preferable that the return pipes 34, 34... Be arranged so that the distance between the pipe axis of the forward pipe 32 and the pipe axis of the return pipe 34 is equal for all the return pipes 34, 34. Furthermore, it is preferable that the return pipes 34, 34... Are arranged at a uniform pitch in the circumferential direction of the hole 23. And according to the former, the influence of a short circuit can be arrange | equalized substantially equally about all the return pipes 34, 34 ..., and the heat exchange efficiency of all the return pipes 34, 34 ... can be made substantially uniform. On the other hand, according to the latter, since the four return pipes 34, 34... Can effectively receive the underground heat from all directions on the side of the fistula 23, this also improves the heat exchange efficiency. The Incidentally, in this example, since the number of the return pipes 34, 34... Is four, as shown in FIG. 3B, the return pipes 34, 34... Are squares (two-dot chain lines) having the plane position of the forward pipe 32 as the centroid. Are arranged at the respective vertices, but when the number of the return pipes 34, 34... Is three, the return path is connected to each vertex of the regular pentagon in the case of five regular triangles. Each tube 34 is arranged.

一方、図4の分解斜視図に示すように、継ぎ手部36は、竪孔23の内径よりも若干小径或いは同径の円柱形状の上部部材37と、上部部材37の下面37dに融着接合される同じ平面形状の円柱状の下部部材38とを有する。上部部材37の上面37uの平面中心部には、往路管32の下端部32dが差し込み固定される鉛直方向に沿った中央貫通孔H32が一つ形成されており、また、当該中央貫通孔H32の周囲を囲むように、4つの周囲貫通孔H34,H34…が鉛直方向に貫通形成されており、これら各周囲貫通孔H34,H34…には、それぞれ、対応する復路管34,34…の下端部34d,34d…が差し込み固定されている。また、下部部材38は、上部部材37の下面37dと対向する上面38uに、中央貫通孔H32と4本の各周囲貫通孔H34,H34…とを連通する平面視十文字形状の凹部38hを有する。そして、下部部材38の上面38uが上部部材37の下面37dに当接固定された状態にあっては、凹部38hの十文字形状の交点位置たる中心部に中央貫通孔H32の開口が対向するとともに、同十文字形状の四つの各端部には、それぞれ各周囲貫通孔H34,H34…の開口が一つずつ対応して対向するようになっている。そして、これにより、凹部38hは、往路管32の熱媒体26の流路を四つに分岐し、各分岐流路を、それぞれ4本の各復路管34,34…に割り当てている。   On the other hand, as shown in the exploded perspective view of FIG. 4, the joint portion 36 is fusion-bonded to a cylindrical upper member 37 having a diameter slightly smaller than or equal to the inner diameter of the hole 23 and a lower surface 37 d of the upper member 37. And a cylindrical lower member 38 having the same planar shape. One central through hole H32 is formed in the center of the upper surface 37u of the upper member 37 along the vertical direction to which the lower end 32d of the forward pipe 32 is inserted and fixed. Four peripheral through holes H34, H34... Are vertically formed so as to surround the periphery, and the lower ends of the corresponding return pipes 34, 34. 34d, 34d, etc. are inserted and fixed. Further, the lower member 38 has, on the upper surface 38u facing the lower surface 37d of the upper member 37, a concave portion 38h having a cross-sectional shape in plan view that connects the central through hole H32 and the four peripheral through holes H34, H34. When the upper surface 38u of the lower member 38 is in contact with and fixed to the lower surface 37d of the upper member 37, the opening of the central through hole H32 is opposed to the central portion of the concave portion 38h at the intersection position, Each of the four end portions of the same cross shape is opposed to each of the openings of the peripheral through holes H34, H34. As a result, the recess 38h branches the flow path of the heat medium 26 of the forward pipe 32 into four, and each branch flow path is assigned to each of the four return pipes 34, 34.

ここで、望ましくは、単管32,34,34…と上部部材37との固定、及び上部部材37と下部部材38との固定に、融着接合を適用すると良い。融着接合とは、接合対象となる部分同士が、互いに溶融状態で当接されることにより、互いに溶け合って固化して一体不可分な状態になる接合のことであり、例えば、前者の固定の場合には、上部部材37の各貫通孔H32,H34,H34…の内周面と、対応する単管32,34,34…の下端部32d,34d,34d…の外周面との両者が、互いに溶融状態で差し込み嵌合されて全周に亘り接合され、これにより、これらの間に形成される融着接合部は、互いに溶け合って固化した一体不可分な状態になる。よって、高い強度と防漏性とを奏し得る。また、この例では、上部部材37も、各単管32,34,34…と同素材の高密度ポリエチレン製である。よって、当該融着接合部は、単管32,34,34…や上部部材37の母材とほぼ同種の成分系で形成されるので、これにより、母材並の高い強度と高い防漏性とを奏することができる。   Here, it is desirable to apply fusion bonding to the fixing of the single tubes 32, 34, 34... And the upper member 37 and the fixing of the upper member 37 and the lower member 38. Fusion bonding refers to bonding in which the parts to be bonded are brought into contact with each other in a molten state, and are melted together and solidified to become an inseparable state. For example, in the case of the former fixation The inner peripheral surface of each through hole H32, H34, H34... Of the upper member 37 and the outer peripheral surface of the lower end portions 32d, 34d, 34d. By being inserted and fitted in a molten state and joined over the entire circumference, the fusion-bonded portion formed between them is in an inseparable state that is melted and solidified. Therefore, high strength and leakage prevention can be achieved. In this example, the upper member 37 is also made of high-density polyethylene, which is the same material as the single tubes 32, 34, 34. Therefore, the fusion bonded portion is formed of almost the same component system as the base material of the single pipes 32, 34, 34... And the upper member 37. Accordingly, the strength and the high leak-proof property are similar to those of the base material. Can be played.

他方、後者の固定の場合には、上部部材37の下面37dと下部部材38の上面38uとの両者が、互いに溶融状態で突き合わされて接合されており、これにより、これらの間に形成される融着接合部も、互いに溶け合って固化した一体不可分な状態になっている。よって、当該融着接合部も、高い強度と高い防漏性とを奏する。また、上部部材37と同様に下部部材38も高密度ポリエチレン製であるので、当該融着接合部も母材並の高い強度と高い防漏性とを奏し得る。   On the other hand, in the case of the latter fixing, both the lower surface 37d of the upper member 37 and the upper surface 38u of the lower member 38 are abutted and joined in a molten state, thereby forming between them. The fusion-bonded portion is also in an inseparable state, which is melted and solidified. Therefore, the fusion bonded portion also has high strength and high leakage resistance. In addition, since the lower member 38 is made of high-density polyethylene as well as the upper member 37, the fusion-bonded portion can exhibit the same high strength and high leakage resistance as the base material.

ところで、上述の実施形態では、竪孔23の平面中心部に位置する1本の単管32を往路管32とし、その周囲に位置する残りの4本の単管34,34…を復路管34としていたが、何等これに限るものではなく、逆にしても良い。すなわち、復路管を竪孔23の平面中心部に位置する1本の単管32に設定し、その周囲に位置する残りの4本の単管34,34…を往路管に設定して、熱媒体26の流れる方向を上述の実施形態の逆にしても良い。   By the way, in the above-described embodiment, one single pipe 32 located at the center of the plane of the fistula 23 is used as the forward pipe 32, and the remaining four single pipes 34, 34. However, the present invention is not limited to this, and may be reversed. That is, the return pipe is set to one single pipe 32 located in the center of the plane of the fistula 23, and the remaining four single pipes 34, 34. The direction in which the medium 26 flows may be reversed from that in the above-described embodiment.

以上、本実施形態の地中熱交換器30について説明してきたが、かかる地中熱交換器30は、例えば次のようにして製造され、設置予定地の地盤Gに設置される。
先ず、工場で地中熱交換器30を製造する。すなわち、図4に示す継ぎ手部36の上部部材37の各貫通孔H32,H34,H34…に5本の単管32,34,34…を融着接合して固定し、また、これと同時並行又は相前後して下部部材38を上部部材37の下面37dに融着接合して固定する。これにより、地中熱交換器30が製造される。
As mentioned above, although the underground heat exchanger 30 of this embodiment was demonstrated, this underground heat exchanger 30 is manufactured as follows, for example, and is installed in the ground G of an installation planned site.
First, the underground heat exchanger 30 is manufactured at a factory. That is, five single pipes 32, 34, 34,... Are fixed to each through hole H32, H34, H34,... Of the upper member 37 of the joint portion 36 shown in FIG. Alternatively, the lower member 38 is fixed to the lower surface 37d of the upper member 37 by fusion bonding. Thereby, the underground heat exchanger 30 is manufactured.

なお、前者の上部部材37と単管32,34,34…との融着接合は、図5に示すようなソケット型の加熱板50を用いて行う。この加熱板50は、上部部材37の貫通孔H32,H34,H34…に嵌合可能な外径寸法の円柱部50aと、単管32,34,34…の下端部32d,34,34…を内周側に嵌合可能な内径寸法の円筒部50bとを互いに同軸に有している。そして、上部部材37の貫通孔H32(H34)の内方に加熱板50の円柱部50aを押し込んで嵌合し、且つ同加熱板50の円筒部50bの内方に単管32(34)の下端部32d(34d)を押し込んで嵌合した状態にする。そうしたら、加熱板50の温度を、上部部材37及び単管32(34)の両者の融点以上に上昇し、両者が融解したら、加熱板50から上部部材37及び単管32(34)を外し、しかる後に、単管32(34)の下端部32d(34d)を貫通孔H32(H34)に差し込んで一定時間冷却する。そして、これを、5つの貫通孔H32,H34,H34…に対してそれぞれ行えば、上部部材37に5本の単管32,34,34…が融着接合される。   The former upper member 37 and the single tubes 32, 34, 34,... Are fused together using a socket-type heating plate 50 as shown in FIG. The heating plate 50 includes a cylindrical portion 50a having an outer diameter dimension that can be fitted into the through holes H32, H34, H34,... Of the upper member 37 and lower end portions 32d, 34, 34,. A cylindrical portion 50b having an inner diameter dimension that can be fitted to the inner peripheral side is coaxially provided. Then, the cylindrical portion 50a of the heating plate 50 is pushed into and fitted into the through hole H32 (H34) of the upper member 37, and the single tube 32 (34) is inserted inward of the cylindrical portion 50b of the heating plate 50. The lower end portion 32d (34d) is pushed in and brought into a fitted state. Then, the temperature of the heating plate 50 rises above the melting point of both the upper member 37 and the single tube 32 (34), and when both melt, the upper member 37 and the single tube 32 (34) are removed from the heating plate 50. Thereafter, the lower end portion 32d (34d) of the single pipe 32 (34) is inserted into the through hole H32 (H34) and cooled for a predetermined time. If this is performed for the five through holes H32, H34, H34..., The five single tubes 32, 34, 34.

一方、後者の上部部材37と下部部材38との融着接合は、両面55a,55aを加熱面とする平板状の加熱板55を用いて行う。すなわち、上部部材37の下面37dと下部部材38の上面38uとをそれぞれ各加熱面55a,55aに当接させる。そして、加熱板55の温度を、上部部材37及び下部部材38の両者の融点以上に上昇し、両者が融解したら、加熱板55から上部部材37及び下部部材38を離して、しかる後に、上部部材37の融解した下面37dと下部部材38の融解した上面38uとを当接して一定時間冷却する。そして、これにより、上部部材37と下部部材38とは融着接合され、以上をもって、工場での地中熱交換器30の製造が完了する。   On the other hand, the fusion bonding between the upper member 37 and the lower member 38 is performed using a flat heating plate 55 having both surfaces 55a and 55a as heating surfaces. That is, the lower surface 37d of the upper member 37 and the upper surface 38u of the lower member 38 are brought into contact with the heating surfaces 55a and 55a, respectively. Then, when the temperature of the heating plate 55 rises to the melting point of both the upper member 37 and the lower member 38 and both are melted, the upper member 37 and the lower member 38 are separated from the heating plate 55, and then the upper member. The melted lower surface 37d of 37 and the melted upper surface 38u of the lower member 38 are brought into contact with each other and cooled for a predetermined time. As a result, the upper member 37 and the lower member 38 are fusion-bonded, and thus the manufacture of the underground heat exchanger 30 at the factory is completed.

次に、この地中熱交換器30に係る5本の単管32,34,34…を一束として、単管32,34,34…の上端部32u,34u,34u…から、当該地中熱交換器30を適宜なリール装置でコイル状に順次巻き取っていき、そして、最後に継ぎ手部36まで巻き取ったら、巻き取り作業を終了する。ちなみに、この巻き取り作業は、前述の継ぎ手部36と単管32,34,34…との融着接合作業の前に行っても良い。そして、その場合には、巻き取り作業の後に、単管32,34,34…の下端部32d,34d,34d…に継ぎ手部36が融着接合されることになるが、その際には、単管32,34,34…の下端部32d,34d,34dのみを繰り出して全体はコイル状を維持しつつ上述の融着接合作業を行えば良い。   Next, the five single pipes 32, 34, 34... Related to the underground heat exchanger 30 are bundled, and from the upper ends 32u, 34u, 34u. The heat exchanger 30 is sequentially wound in a coil shape by an appropriate reel device, and when the winding is finally performed up to the joint portion 36, the winding operation is finished. Incidentally, this winding operation may be performed before the fusion bonding operation of the joint portion 36 and the single tubes 32, 34, 34. In that case, after the winding operation, the joint portion 36 is fused and joined to the lower end portions 32d, 34d, 34d... Of the single tubes 32, 34, 34. Only the lower end portions 32d, 34d, 34d of the single tubes 32, 34, 34,... Are fed out and the above-described fusion bonding operation may be performed while maintaining the entire coil shape.

そうしたら、このコイル状に巻き取られた地中熱交換器30を、図6Aの概略縦断面図に示すように設置予定地まで搬送する。ここで、この設置予定地では、上述の地中熱交換器30の製造と同時並行又は相前後して、竪孔23が掘削形成されている。この竪孔23の掘削は、例えばボーリングマシンやオーガ等の不図示の掘削機によってなされる。ちなみに、このとき、孔壁保護や削孔自体の目的で、竪孔23には、その掘削と同時並行又はその直後に、竪孔23のサイズに合ったケーシング鋼管が挿入されていても良いが、この図6Aの例では、ケーシング鋼管を使用していない。   Then, as shown in the schematic longitudinal cross-sectional view of FIG. 6A, the underground heat exchanger 30 wound up in this coil shape is conveyed to the planned installation site. Here, in this planned installation site, the borehole 23 is excavated and formed simultaneously with or in parallel with the manufacture of the above-described underground heat exchanger 30. The borehole 23 is excavated by an excavator (not shown) such as a boring machine or an auger. Incidentally, at this time, for the purpose of protecting the hole wall or drilling itself, a casing steel pipe suitable for the size of the hole 23 may be inserted into the hole 23 simultaneously with or immediately after the excavation. In the example of FIG. 6A, a casing steel pipe is not used.

そうしたら、現場搬入されたコイル状の地中熱交換器30を、竪孔23の地面上に設置された一台のリール装置60に取り付ける。そして、最後に、図6Bに示すように、当該リール装置60によって、地中熱交換器30を、継ぎ手部36を先頭側として順次繰り出しながら、竪孔23の中に建て込んでいく。そして、図6Cに示すように竪孔23の底部に継ぎ手部36が到達したら、建て込みを終了する。   If it does so, the coil-shaped underground heat exchanger 30 carried in the field will be attached to one reel device 60 installed on the ground of the fistula 23. Finally, as shown in FIG. 6B, the underground heat exchanger 30 is built into the fistula 23 by the reel device 60 while sequentially feeding the joint portion 36 as the leading side. Then, as shown in FIG. 6C, when the joint portion 36 reaches the bottom of the fist hole 23, the erection is finished.

次に、ケーシング鋼管を用いている場合は、竪孔23内に地中熱交換器30を留めつつ、ケーシング鋼管を竪孔23から引き抜く。そして、竪孔23内に充填材27を充填して地中熱交換器30を埋設し、これにより、地中熱交換器30の地盤Gへの設置が完了する。   Next, when the casing steel pipe is used, the casing steel pipe is pulled out from the hole 23 while the underground heat exchanger 30 is retained in the hole 23. And the filling material 27 is filled in the fistula 23, and the underground heat exchanger 30 is embed | buried, Thereby, installation in the ground G of the underground heat exchanger 30 is completed.

そして、以上の説明から明らかなように、このような方法によれば、地中熱交換器30は、工場において、5本の単管32,34,34…と継ぎ手部36とを具備した完成状態にまで仕上げられ、コイル状に巻き取られた状態で工場から設置予定地へと送られる。そして、設置予定地では、単に、一台のリール装置60を用いて地中熱交換器30を繰り出しながら、同予定地の竪孔23に建て込んだ後に、地中熱交換器30の周囲の隙間SP23を充填材27で埋めれば、地中熱交換器30の設置工事が完了する。よって、現場作業は大幅に軽減され、施工現場での工期を大幅に短縮可能となる。   As is clear from the above description, according to such a method, the underground heat exchanger 30 is completed in the factory with the five single tubes 32, 34, 34... And the joint portion 36. It is finished to the state and is sent from the factory to the planned installation site in a state of being wound in a coil shape. Then, in the planned installation site, the ground heat exchanger 30 is simply drawn out using one reel device 60 and is installed in the hole 23 of the planned site. If the gap SP23 is filled with the filler 27, the installation work of the underground heat exchanger 30 is completed. Therefore, the work at the site is greatly reduced, and the construction period at the construction site can be greatly shortened.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、本発明は、かかる実施形態に限定されるものではなく、その要旨を逸脱しない範囲で以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The deformation | transformation as shown below is possible in the range which does not deviate from the summary.

上述の実施形態では、竪孔23の平面中心部に配された中央管としての往路管32の内径と、その周囲に配置された周囲管としての4本の復路管34,34…の内径とを互いに同径にしていた。そして、これにより、地盤Gに近い周囲管34,34…での熱媒体26の流速を低く抑え、地盤Gとの間の熱交換時間を長くして熱交換効率の向上を図っていたが、周囲管34,34…において熱媒体26の流速を低く抑える作用は、上述のように中央管32の内径と周囲管34の内径とを同径にしなくても、次の条件を満足すれば、実現することができる。例えば、全ての周囲管34,34…の内径が互いに等しい場合には、周囲管34の内径の本数倍(上述の実施形態では周囲管34が4本なので4倍)の大きさよりも、中央管32の内径を大きくすれば良い。   In the above-described embodiment, the inner diameter of the forward pipe 32 as the central pipe disposed in the center of the plane of the fistula 23 and the inner diameters of the four return pipes 34, 34. Have the same diameter. And thereby, the flow rate of the heat medium 26 in the surrounding pipes 34, 34... Close to the ground G is suppressed, and the heat exchange time with the ground G is lengthened to improve the heat exchange efficiency. The action of suppressing the flow rate of the heat medium 26 in the surrounding pipes 34, 34... Is low as long as the following conditions are satisfied even if the inner diameter of the central pipe 32 and the inner diameter of the surrounding pipe 34 are not the same as described above. Can be realized. For example, when the inner diameters of all the surrounding tubes 34, 34... Are equal to each other, the center is larger than the size of the inner diameter of the surrounding tube 34 (four times the number of the surrounding tubes 34 in the above embodiment). What is necessary is just to enlarge the internal diameter of the pipe | tube 32. FIG.

上述の実施形態では、周囲管34の本数を、複数の一例として4本にしていたが、何等これに限るものではなく、2本以上であれば何本でも良い。   In the above-described embodiment, the number of the surrounding tubes 34 is four as an example, but the number is not limited to this, and may be any number as long as it is two or more.

上述の実施形態では、往路管32及び復路管34に係る単管32,34,34…や継ぎ手部36は、高密度ポリエチレン製としていたが、その素材は何等これに限らない。例えば、通常密度のポリエチレン等の熱可塑性樹脂でも良い。ちなみに、高密度ポリエチレンとは、広義には、密度が938kg/m以上のポリエチレンであり、狭義には、密度が942kg/m以上のポリエチレンである。 In the above-described embodiment, the single pipes 32, 34, 34... And the joint portion 36 related to the forward pipe 32 and the backward pipe 34 are made of high-density polyethylene, but the material is not limited to this. For example, a thermoplastic resin such as normal density polyethylene may be used. Incidentally, a high-density polyethylene, in a broad sense, a density of 938kg / m 3 or more polyethylene, in a narrow sense, a density of 942kg / m 3 or more polyethylene.

上述の実施形態では、中央管32及び周囲管34に係る単管32,34,34…として、丸パイプ状(断面正円形状)の管を例示したが、その管形状は何等これに限るものではない。例えば、断面形状が楕円等の断面非正円形状の管でも良いし、角パイプ等の断面多角形状の管でも良い。   In the above-described embodiment, as the single pipes 32, 34, 34... Related to the central pipe 32 and the surrounding pipe 34, a round pipe-like (circular cross section) pipe is illustrated, but the pipe shape is not limited to this. is not. For example, a tube having a non-circular cross section such as an ellipse may be used, or a tube having a polygonal cross section such as a square pipe may be used.

1 建物、
11 地中熱交換システム、15 ヒートポンプ、17 循環ポンプ、
23 竪孔(掘削孔)、23a 内周面、
26 熱媒体、27 充填材、
30 地中熱交換器、31 採放熱管、
32 往路管(中央管、単管)、
32d 下端部(下側の管端部)、32u 上端部、
34 復路管(周囲管、単管)、34a 外周面、
34d 下端部(下側の管端部)、34u 上端部、
36 継ぎ手部、37 上部部材、37d 下面、37u 上面、
38 下部部材、38h 凹部、38u 上面、
50 ソケット型の加熱板、50a 円柱部、50b 円筒部、
55 平板状の加熱板、55a 加熱面、
60 リール装置、
G 地盤、H32 中央貫通孔、H34 周囲貫通孔、
SP23 空間(隙間)、
1 building,
11 Ground heat exchange system, 15 Heat pump, 17 Circulation pump,
23 borehole (drilling hole), 23a inner peripheral surface,
26 heating medium, 27 filler,
30 underground heat exchanger, 31 heat extraction pipe,
32 Outward pipe (central pipe, single pipe),
32d lower end (lower tube end), 32u upper end,
34 return pipe (peripheral pipe, single pipe), 34a outer peripheral surface,
34d lower end (lower tube end), 34u upper end,
36 joint portion, 37 upper member, 37d lower surface, 37u upper surface,
38 lower member, 38h recess, 38u upper surface,
50 socket type heating plate, 50a cylindrical part, 50b cylindrical part,
55 flat heating plate, 55a heating surface,
60 reel device,
G ground, H32 central through hole, H34 peripheral through hole,
SP23 space (gap),

Claims (8)

地盤に鉛直に形成された掘削孔内に挿入される地中熱交換器であって、
前記掘削孔内の平面中心部に配置される、管軸方向が鉛直方向に沿った中央管と、
前記中央管と前記掘削孔の内周面との間に配置される複数の周囲管であって、前記周囲管の外周面を前記中央管の外周面に対向して配置され、管軸方向が鉛直方向に沿った前記複数の周囲管と、
前記中央管の下方に設けられ、前記中央管の熱媒体の流路を分岐して前記周囲管毎に割り当てる分岐部と、を有し、
前記周囲管を熱媒体が流れる方向は、前記中央管を熱媒体が流れる方向と逆向きであり、
前記周囲管と前記掘削孔の前記内周面との間の間隔の方が、前記周囲管と前記中央管との間の間隔よりも小さくなるように前記周囲管は配置されていることを特徴とする地中熱交換器。
An underground heat exchanger inserted into a drilling hole formed vertically in the ground,
A central pipe disposed in the center of the plane in the excavation hole, the pipe axis direction along the vertical direction;
A plurality of peripheral pipes disposed between the central pipe and the inner peripheral surface of the excavation hole, wherein the outer peripheral surface of the peripheral pipe is disposed to face the outer peripheral surface of the central pipe, and a pipe axis direction is The plurality of surrounding tubes along the vertical direction;
A branch portion provided below the central tube, and branching the flow path of the heat medium of the central tube and assigning to each of the surrounding tubes,
The direction in which the heat medium flows through the surrounding tube is opposite to the direction in which the heat medium flows through the central tube,
The peripheral pipe is arranged so that a distance between the peripheral pipe and the inner peripheral surface of the excavation hole is smaller than a distance between the peripheral pipe and the central pipe. Underground heat exchanger.
請求項1に記載の地中熱交換器であって、
前記周囲管は、前記掘削孔の前記内周面に接触するように配置されており、
前記掘削孔内に前記中央管、前記周囲管、及び前記分岐部が配置された状態で、前記掘削孔内には充填材が充填されていることを特徴とする地中熱交換器。
The underground heat exchanger according to claim 1,
The surrounding pipe is disposed so as to contact the inner peripheral surface of the excavation hole,
An underground heat exchanger, wherein the excavation hole is filled with a filler in a state where the central pipe, the surrounding pipe, and the branching portion are disposed in the excavation hole.
請求項1又は2に記載の地中熱交換器であって、
前記中央管の管軸と前記周囲管の管軸との間の距離が、前記複数の周囲管の全てについて互いに等しくなるように前記周囲管は配されていることを特徴とする地中熱交換器。
The underground heat exchanger according to claim 1 or 2,
The ground pipe is arranged so that the distance between the pipe axis of the central pipe and the pipe axis of the surrounding pipe is equal to each other for all of the plurality of surrounding pipes. vessel.
請求項1乃至3の何れかに記載の地中熱交換器であって、
前記複数の周囲管は、前記掘削孔の周方向に均等ピッチで配置されていることを特徴とする地中熱交換器。
The underground heat exchanger according to any one of claims 1 to 3,
The plurality of surrounding pipes are arranged at an equal pitch in the circumferential direction of the excavation hole.
請求項1乃至4の何れかに記載の地中熱交換器であって、
前記中央管、前記複数の周囲管、及び前記分岐部は、何れも熱可塑性樹脂製であり、
前記中央管と前記分岐部とは、融着接合されており、
前記複数の周囲管と前記分岐部とは、融着接合されていることを特徴とする地中熱交換器。
The underground heat exchanger according to any one of claims 1 to 4,
The central tube, the plurality of surrounding tubes, and the branch portion are all made of a thermoplastic resin,
The central tube and the branch portion are fusion bonded,
The underground heat exchanger, wherein the plurality of surrounding pipes and the branch portion are fusion bonded.
請求項1乃至5の何れかに記載の地中熱交換器であって、
前記分岐部は、上部部材と、該上部部材の下面に融着接合される下部部材とを有し、
前記上部部材は、前記中央管の下側の管端部が差し込み固定される鉛直方向に沿った中央貫通孔と、前記周囲管毎にそれぞれ設けられ、対応する前記周囲管の下側の管端部が差し込み固定される鉛直方向に沿った周囲貫通孔とを有し、
前記下部部材は、前記上部部材の下面と対向する上面に、前記中央貫通孔と前記周囲貫通孔とを連通する凹部を有することを特徴とする地中熱交換器。
A ground heat exchanger according to any one of claims 1 to 5,
The branch portion has an upper member and a lower member that is fusion bonded to the lower surface of the upper member,
The upper member includes a central through hole along a vertical direction in which a lower pipe end of the central pipe is inserted and fixed, and a pipe end on a lower side of the corresponding peripheral pipe. A peripheral through hole along the vertical direction in which the part is inserted and fixed,
The lower member has a concave portion communicating the central through hole and the peripheral through hole on an upper surface facing the lower surface of the upper member.
請求項1乃至6の何れかに記載の地中熱交換器であって、
前記中央管及び前記複数の周囲管は、何れも管軸が鉛直方向に真っ直ぐな直管であることを特徴とする地中熱交換器。
The underground heat exchanger according to any one of claims 1 to 6,
The center pipe and the plurality of surrounding pipes are straight pipes each having a straight pipe axis straight in the vertical direction.
請求項1乃至7の何れかに記載の地中熱交換器であって、
前記複数の周囲管の内径は互いに等しく、
前記周囲管の前記内径の前記複数倍の大きさよりも、前記中央管の内径は大きいことを特徴とする地中熱交換器。
The underground heat exchanger according to any one of claims 1 to 7,
The inner diameters of the plurality of surrounding tubes are equal to each other,
An underground heat exchanger characterized in that an inner diameter of the central tube is larger than the multiple of the inner diameter of the surrounding tube.
JP2011253097A 2011-11-18 2011-11-18 Underground heat exchanger Active JP5867001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253097A JP5867001B2 (en) 2011-11-18 2011-11-18 Underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253097A JP5867001B2 (en) 2011-11-18 2011-11-18 Underground heat exchanger

Publications (2)

Publication Number Publication Date
JP2013108655A true JP2013108655A (en) 2013-06-06
JP5867001B2 JP5867001B2 (en) 2016-02-24

Family

ID=48705589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253097A Active JP5867001B2 (en) 2011-11-18 2011-11-18 Underground heat exchanger

Country Status (1)

Country Link
JP (1) JP5867001B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223270A (en) * 2015-05-27 2016-12-28 理研興業株式会社 Geothermal heat collection device
KR101928654B1 (en) * 2017-06-05 2018-12-14 지에스건설 주식회사 Size computing method of Vertical Borehole Heat Exchangers in Ground-coupled heat pump systems
US20220341631A1 (en) * 2020-05-13 2022-10-27 Saudi Arabian Oil Company Well completion converting a hydrocarbon production well into a geothermal well

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020644A (en) * 2012-07-17 2014-02-03 Ohbayashi Corp Underground heat exchanger, and method of inserting underground heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715429A (en) * 1985-07-02 1987-12-29 Palne Mogensen Method and means for applying a heat exchanger in a drill hole for the purpose of heat recovery or storage
JPH09217968A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Plate type refrigerant flow divider
JP2003302109A (en) * 2002-04-08 2003-10-24 Ariga Sakusen Kogyo:Kk Geothermal heat exchanger
US20100139886A1 (en) * 2008-09-12 2010-06-10 Alain Desmeules System and method for geothermal conduit loop in-ground installation and soil penetrating head therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715429A (en) * 1985-07-02 1987-12-29 Palne Mogensen Method and means for applying a heat exchanger in a drill hole for the purpose of heat recovery or storage
JPH09217968A (en) * 1996-02-09 1997-08-19 Hitachi Ltd Plate type refrigerant flow divider
JP2003302109A (en) * 2002-04-08 2003-10-24 Ariga Sakusen Kogyo:Kk Geothermal heat exchanger
US20100139886A1 (en) * 2008-09-12 2010-06-10 Alain Desmeules System and method for geothermal conduit loop in-ground installation and soil penetrating head therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223270A (en) * 2015-05-27 2016-12-28 理研興業株式会社 Geothermal heat collection device
KR101928654B1 (en) * 2017-06-05 2018-12-14 지에스건설 주식회사 Size computing method of Vertical Borehole Heat Exchangers in Ground-coupled heat pump systems
US20220341631A1 (en) * 2020-05-13 2022-10-27 Saudi Arabian Oil Company Well completion converting a hydrocarbon production well into a geothermal well
US11674718B2 (en) * 2020-05-13 2023-06-13 Saudi Arabian Oil Company Well completion converting a hydrocarbon production well into a geothermal well

Also Published As

Publication number Publication date
JP5867001B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5867001B2 (en) Underground heat exchanger
JP2006234340A (en) Heat transfer tube for underground heat exchange
JP6166061B2 (en) Construction method of heat exchange device for geothermal heat utilization system and geothermal heat utilization system
JP5857664B2 (en) Double pipe structure underground heat exchanger
JP2012047407A (en) Heat exchanger, heat exchange system, method of constructing heat exchange system
US8640765B2 (en) Twisted conduit for geothermal heating and cooling systems
JP6089472B2 (en) Holding member and underground heat exchanger
CN201628420U (en) Extension-type underground heat exchanger for ground source heat pump
JP6237867B2 (en) Insertion method of underground heat exchanger
CN104807253B (en) Ground buried pipe connecting piece, ground buried pipe heat exchanger and heat exchange system
US20130292937A1 (en) U-bend fitting
JP2014185822A (en) Geothermal heat utilization heat exchanger and heat pump system using the same
JP2015200492A (en) Earth thermal collection pipe
JP2014020644A (en) Underground heat exchanger, and method of inserting underground heat exchanger
JP5857663B2 (en) Manufacturing method of underground heat exchanger with double pipe structure
US11022345B1 (en) Ground source heat pump heat exchanger
JP6785073B2 (en) Geothermal exchanger
JP2012057824A (en) Heat exchange pile and installation method thereof
CN204612249U (en) Underground pipe connector, ground heat exchanger and heat-exchange system
KR101822081B1 (en) Pipe assembly with coupling module for geothermal borehole
JP5659742B2 (en) Underground heat exchanger
JP6982952B2 (en) Geothermal heat exchanger
CN210570198U (en) Well head connecting device for double-pipe heat exchanger
JP6232962B2 (en) How to build pipe members
JP2017026175A (en) Coil type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R150 Certificate of patent or registration of utility model

Ref document number: 5867001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150