JP5857664B2 - Double pipe structure underground heat exchanger - Google Patents

Double pipe structure underground heat exchanger Download PDF

Info

Publication number
JP5857664B2
JP5857664B2 JP2011253100A JP2011253100A JP5857664B2 JP 5857664 B2 JP5857664 B2 JP 5857664B2 JP 2011253100 A JP2011253100 A JP 2011253100A JP 2011253100 A JP2011253100 A JP 2011253100A JP 5857664 B2 JP5857664 B2 JP 5857664B2
Authority
JP
Japan
Prior art keywords
pipe
tube
lid member
base material
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011253100A
Other languages
Japanese (ja)
Other versions
JP2013108658A (en
Inventor
金子 正
正 金子
泰之 毎田
泰之 毎田
憲司 三小田
憲司 三小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2011253100A priority Critical patent/JP5857664B2/en
Publication of JP2013108658A publication Critical patent/JP2013108658A/en
Application granted granted Critical
Publication of JP5857664B2 publication Critical patent/JP5857664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/08Tubular elements crimped or corrugated in longitudinal section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、地盤との間で熱交換を行う地中熱交換器であって、地盤に埋設される外管内に内管が挿入されてなる二重管構造の地中熱交換器に関する。   The present invention relates to a ground heat exchanger that exchanges heat with the ground, and relates to a ground heat exchanger having a double tube structure in which an inner pipe is inserted into an outer pipe embedded in the ground.

通年の温度変動の小さい地中熱を利用して建物の冷暖房等を行う地中熱利用システムが注目されている。この地中熱利用システムでは、地盤との間で採・放熱を行うべく地中に地中熱交換器が設置される。そして、地中熱交換器は、例えば、夏場には地盤に放熱し、冬場には地盤から採熱する。   A geothermal heat utilization system that heats and cools buildings using geothermal heat with small year-round temperature fluctuations is attracting attention. In this geothermal heat utilization system, a geothermal heat exchanger is installed in the ground to collect and radiate heat with the ground. The underground heat exchanger, for example, radiates heat to the ground in summer and collects heat from the ground in winter.

その一例として、特許文献1には二重管構造の地中熱交換器が示されている。すなわち、図1Aの概略縦断面図に示すように、この地中熱交換器121は、地盤Gに鉛直に埋設される鋼製の外管131と、外管131内に配置された内管141と、を有している。そして、外管131の上端部に設けられた吐出口131aから外管131内に吐出された熱媒体26を、内管141の下端部の排出口141aから取り出すことにより、地盤Gとの間で熱交換後の熱媒体26をヒートポンプ等へ送出するようになっている。   As an example, Patent Document 1 discloses a double-pipe underground heat exchanger. That is, as shown in the schematic longitudinal sectional view of FIG. 1A, the underground heat exchanger 121 includes a steel outer pipe 131 that is vertically embedded in the ground G, and an inner pipe 141 disposed in the outer pipe 131. And have. The heat medium 26 discharged from the discharge port 131a provided at the upper end portion of the outer tube 131 into the outer tube 131 is taken out from the discharge port 141a at the lower end portion of the inner tube 141, so The heat medium 26 after heat exchange is sent to a heat pump or the like.

特開2002−13828号公報Japanese Patent Laid-Open No. 2002-13828

ここで、図1Bの概略縦断面図に示すように、施工性向上の観点から外管30に樹脂管を用いることが考えられ、そうすれば、その軽量且つ可撓性から現場搬入や掘削孔23への建て込みを行い易くなる。   Here, as shown in the schematic longitudinal cross-sectional view of FIG. 1B, it is conceivable to use a resin pipe for the outer pipe 30 from the viewpoint of improving workability. It becomes easier to build in 23.

一方、かかる外管30の上下の管端部30eu,31edの開口を封止する封止構造の一例としては、外管30の各管端部31eu,31edに、EVA(エチレン−酢酸ビニル共重合)樹脂等のホットメルト系樹脂を密実に充填封止して、これを封止栓133u,133dとすることが挙げられる。ここで、上側の封止栓133uには、一対の貫通孔H133u1,H133u2が設けられ、これら一対の貫通孔H133u1,H133u2のうちの一方の貫通孔H133u2は、熱媒体26の外管30内への吐出口131aとして用いられ(右上の拡大図を参照)、他方の貫通孔H133u1には内管141が通されて、これにより、当該内管141の下端の管端が排出口141aとして使用される(左上の拡大図を参照)。   On the other hand, as an example of a sealing structure for sealing the openings of the upper and lower tube end portions 30eu and 31ed of the outer tube 30, EVA (ethylene-vinyl acetate copolymer) is provided on each tube end portion 31eu and 31ed of the outer tube 30. ) Filling and sealing hot-melt resin such as resin densely and sealing them are used as sealing plugs 133u and 133d. Here, the upper sealing plug 133u is provided with a pair of through holes H133u1 and H133u2, and one of the pair of through holes H133u1 and H133u2 is inserted into the outer tube 30 of the heat medium 26. The inner pipe 141 is passed through the other through hole H133u1, and thereby the lower end of the inner pipe 141 is used as the outlet 141a. (See the enlarged image on the upper left).

ここで、かかる地中熱交換器の運転中には、熱交換後の熱媒体26をヒートポンプへ圧送等する関係上、外管30内の熱媒体26の圧力は、例えば0.3〜0.7MPaの高圧になる。そのため、運転中の外管30には、この圧力が作用して、管径方向に膨張などの弾性拡径変形をする。   Here, during the operation of the underground heat exchanger, the pressure of the heat medium 26 in the outer tube 30 is, for example, 0.3 to 0.00 because of the pressure-feeding of the heat medium 26 after heat exchange to the heat pump. The pressure becomes 7 MPa. Therefore, this pressure acts on the outer tube 30 in operation, and elastic expansion expansion deformation such as expansion occurs in the tube diameter direction.

しかしながら、この弾性拡径変形に、硬化した上記EVA樹脂製の封止栓133u,133dが追随できずに、外管30の内周面30nと封止栓133u,133dの外周面133ug,133dgとの間で互いの密着が外れて隙間Sa,Sbを生じ、そこから熱媒体26が漏出する危険があった(図1B中の右の拡大図を参照)。また、内管141と封止栓133uとは別体であるので、内管141と貫通孔H133u1の内周面との間からも熱媒体26が漏出する虞があった(図1B中の左上の拡大図を参照)。   However, the cured EVA sealing plugs 133u and 133d cannot follow the elastic expansion deformation, and the inner peripheral surface 30n of the outer tube 30 and the outer peripheral surfaces 133ug and 133dg of the sealing plugs 133u and 133d There was a risk that the mutual contact between the two would be lost and gaps Sa and Sb would be formed, and heat medium 26 would leak from there (see the enlarged view on the right in FIG. 1B). Further, since the inner tube 141 and the sealing plug 133u are separate bodies, the heat medium 26 may leak from between the inner tube 141 and the inner peripheral surface of the through hole H133u1 (upper left in FIG. 1B). (See enlarged view of).

本発明は、上記のような従来の問題に鑑みなされたものであって、その主な目的は、二重管構造の地中熱交換器の熱媒体の防漏性を向上することにある。   The present invention has been made in view of the conventional problems as described above, and its main object is to improve the leakage resistance of the heat medium of the underground heat exchanger having a double-pipe structure.

かかる目的を達成するために請求項1に示す発明は、
地盤に埋設される外管内に内管が挿入されて、前記外管内及び前記内管内に熱媒体が流されてなる二重管構造の地中熱交換器であって、
前記地盤の掘削孔内に配される可撓性の熱可塑性樹脂製の前記外管と、
前記外管の一方の管端部に設けられ、前記管端部を水密に封止する熱可塑性樹脂製のキャップ部材と、
前記外管の他方の管端部に設けられ、前記管端部を水密に封止する熱可塑性樹脂製の蓋部材と、
前記外管内に挿入された可撓性の熱可塑性樹脂製の前記内管と、を有し、
前記外管の一方の管端部の母材と、前記キャップ部材の母材とは、互いに溶け合って固化した状態になっており、
前記外管の他方の管端部の母材と、前記蓋部材の母材とは、互いに溶け合って固化した状態になっており、
前記内管の管端部は、前記蓋部材に穿孔形成された前記熱媒体の流路をなす貫通孔に差し込まれた状態であり、水密に前記蓋部材に接合されており、
前記内管の管端部の母材と、前記蓋部材の母材とは、互いに溶け合って固化した状態になっていることを特徴とする。
In order to achieve this object, the invention shown in claim 1
An underground heat exchanger having a double tube structure in which an inner tube is inserted into an outer tube embedded in the ground, and a heat medium is flowed into the outer tube and the inner tube,
The outer tube made of a flexible thermoplastic resin disposed in the excavation hole of the ground;
A cap member made of a thermoplastic resin that is provided at one end of the outer tube and seals the end of the tube in a water-tight manner;
A lid member made of a thermoplastic resin that is provided at the other pipe end of the outer pipe and seals the pipe end in a water-tight manner;
The inner tube made of a flexible thermoplastic resin inserted into the outer tube,
The base material of one tube end of the outer tube and the base material of the cap member are in a state of being melted and solidified with each other,
The base material of the other tube end of the outer tube and the base material of the lid member are in a state of being melted and solidified with each other,
The tube end of the inner tube is in a state inserted into a through-hole that forms a flow path of the heat medium perforated in the lid member, and is joined to the lid member in a watertight manner .
The base material of the pipe end portion of the inner pipe and the base material of the lid member are melted and solidified .

上記請求項1に示す発明によれば、外管の各管端部には、それぞれキャップ部材及び蓋部材が融着接合されて、これにより、これら各管端部は封止される。ここで、融着接合とは、互いに接合されるべき部分同士が溶融状態で当接されて接合されることであり、つまり、上述の場合には、外管の母材と、キャップ部材の母材或いは蓋部材の母材とが互いに溶け合って固化し、その結果、一体不可分の状態になっている。よって、高い接合強度を有し得て、これにより、外管の一方の管端部とキャップ部材との融着接合部、及び外管の他方の管端部と蓋部材との融着接合部は、それぞれ、地中熱交換器の運転時に作用し得る熱媒体の圧力に破断無く耐えることができて、熱媒体の漏出を確実に防ぐことができる。
また、内管の管端部についても、蓋部材の貫通孔に差し込まれた状態で蓋部材に融着接合されている。つまり、内管の母材と、蓋部材の母材とは互いに溶け合って固化し、一体不可分の状態になっている。よって、高い接合強度を有し得て、その結果、内管と貫通孔との間からの熱媒体の漏出も確実に防止される。
そして、以上から、二重管構造の地中熱交換器の熱媒体の防漏性が向上される。
According to the first aspect of the present invention, the cap member and the lid member are fusion-bonded to the respective tube end portions of the outer tube, whereby the respective tube end portions are sealed. Here, the fusion-bonding means that the portions to be bonded to each other are brought into contact with each other in a molten state, that is, in the above-described case, the outer tube base material and the cap member base material are joined. The material or the base material of the lid member melts and solidifies, and as a result, it is in an inseparable state. Therefore, it is possible to have a high bonding strength, and thereby, a fusion bonding portion between one tube end portion of the outer tube and the cap member, and a fusion bonding portion between the other tube end portion of the outer tube and the lid member. Each can withstand the pressure of the heat medium that can act during operation of the underground heat exchanger without breakage, and can reliably prevent leakage of the heat medium.
Further, the pipe end portion of the inner pipe is also fusion-bonded to the lid member while being inserted into the through hole of the lid member. That is, the base material of the inner tube and the base material of the lid member are melted and solidified to be inseparable. Therefore, it can have high joint strength, and as a result, leakage of the heat medium from between the inner tube and the through hole is reliably prevented.
And from the above, the leak-proof property of the heat medium of the underground heat exchanger of a double pipe structure is improved.

請求項2に示す発明は、請求項1に記載の二重管構造の地中熱交換器であって、
前記外管は、その管軸を鉛直方向に沿わせつつ前記掘削孔内に配され、
前記外管は、その本体としてのコルゲート管と、該コルゲート管の上端部に同軸且つ水密に接合された熱可塑性樹脂製の管状頭部と、を有し、
前記コルゲート管の母材と、前記管状頭部の母材とは、互いに溶け合って固化した状態になっており、
前記管状頭部の上端の管端部に前記蓋部材が接合されて、前記管状頭部の前記管端部が前記蓋部材によって水密に封止されており、
前記管状頭部の上端の管端部の母材と、前記蓋部材の母材とは、互いに溶け合って固化した状態になっており、
前記管状頭部は、前記地盤の表層部に位置しており、
前記管状頭部の管壁の厚さは、前記コルゲート管の管壁の厚さよりも厚いことを特徴とする二重管構造の地中熱交換器。
Invention of Claim 2 is the underground heat exchanger of the double pipe structure of Claim 1,
The outer pipe is arranged in the excavation hole with its pipe axis along the vertical direction,
The outer tube has a corrugated tube as a main body thereof, and a tubular head portion made of a thermoplastic resin that is coaxially and watertightly joined to an upper end portion of the corrugated tube,
The base material of the corrugated tube and the base material of the tubular head are in a state of being melted together and solidified,
The lid member is joined to the tube end of the upper end of the tubular head, and the tube end of the tubular head is sealed watertight by the lid member,
The base material of the tube end at the upper end of the tubular head and the base material of the lid member are in a state of being melted together and solidified,
The tubular head is located in a surface layer of the ground;
The double walled underground heat exchanger is characterized in that the thickness of the tube wall of the tubular head is thicker than the thickness of the tube wall of the corrugated tube.

上記請求項2に示す発明によれば、地中熱交換器の運転中には熱媒体の圧力によって外管は拡径変形されるが、地盤の深部では土圧が高いために、当該土圧により拡径変形は効果的に抑制され、その結果、深部での外管の破損は未然に防止される。   According to the second aspect of the present invention, the outer pipe is expanded and deformed by the pressure of the heat medium during operation of the underground heat exchanger, but the earth pressure is high because the earth pressure is high in the deep part of the ground. Thus, the diameter expansion deformation is effectively suppressed, and as a result, the outer tube is prevented from being damaged in the deep part.

一方、土圧が低い表層部には、外管の管状頭部が位置しているが、管状頭部の管壁の厚さは、深部に位置する外管の部分たるコルゲート管の管壁よりも厚くされており、つまり、管状頭部は補強されている。よって、土圧が低くても、自身の耐力に基づいて拡径変形は抑えられ、その結果、外管の全長に亘って当該外管の拡径破損は防止される。   On the other hand, the tubular head portion of the outer tube is located in the surface layer portion where the earth pressure is low, but the thickness of the tube wall of the tubular head portion is larger than that of the corrugated tube which is the portion of the outer tube located in the deep part. Is also thickened, i.e. the tubular head is reinforced. Therefore, even if the earth pressure is low, the diameter expansion deformation is suppressed based on its own proof stress. As a result, the diameter expansion failure of the outer pipe is prevented over the entire length of the outer pipe.

請求項3に示す発明は、請求項1又は2に記載の二重管構造の地中熱交換器であって、
前記外管は、その管軸を鉛直方向に沿わせつつ前記掘削孔内に配され、
前記外管の上部が埋設されている前記地盤の表層部には、前記外管の拡径変形を拘束する拘束部材が前記外管の外周面を覆って設けられていることを特徴とする。
Invention of Claim 3 is the underground heat exchanger of the double pipe structure of Claim 1 or 2,
The outer pipe is arranged in the excavation hole with its pipe axis along the vertical direction,
The surface layer portion of the ground in which the upper portion of the outer pipe is buried is provided with a restraining member that restrains the outer pipe from expanding in diameter so as to cover the outer peripheral surface of the outer pipe.

上記請求項3に示す発明によれば、表層部には、外管の拡径変形を拘束する拘束部材が、外管の外周面を覆って設けられており、これにより外管は補強されている。よって、土圧が低くても、当該拘束部材によって外管の拡径変形は抑制され、その結果、外管の全長に亘って当該外管の拡径破損は確実に防止される。   According to the third aspect of the present invention, the surface layer portion is provided with the restraining member that restrains the outer pipe in diameter expansion deformation so as to cover the outer peripheral surface of the outer pipe, whereby the outer pipe is reinforced. Yes. Therefore, even if the earth pressure is low, the constraining member suppresses the diameter expansion deformation of the outer tube, and as a result, the diameter expansion failure of the outer tube is reliably prevented over the entire length of the outer tube.

請求項4に示す発明は、請求項1乃至3の何れかに記載の二重管構造の地中熱交換器であって、
前記蓋部材の前記貫通孔に対して、前記外管の外方から熱可塑性樹脂製の第1管部材の管端部を差し込んだ状態で、前記蓋部材と前記第1管部材の前記管端部とは水密に接合されており、
前記蓋部材の母材と、前記第1管部材の前記管端部の母材とは、互いに溶け合って固化した状態になっており、
前記蓋部材は、前記貫通孔に加えて、前記熱媒体の流路をなす第2貫通孔を有し、
前記第2貫通孔に対して、前記外管の外方から熱可塑性樹脂製の第2管部材の管端部を差し込んだ状態で、前記蓋部材と前記第2管部材の前記管端部とは水密に接合されており、
前記蓋部材の母材と、前記第2管部材の前記管端部の母材とは、互いに溶け合って固化した状態になっており、
前記第1管部材及び前記第2管部材のうちのどちらか一方の管部材が、外部から前記熱媒体を前記外管内へ供給し、他方の管部材が、前記外管内から前記外部へと前記熱媒体を排出することを特徴とする。
Invention of Claim 4 is the underground heat exchanger of the double pipe structure in any one of Claim 1 thru | or 3, Comprising:
The tube end of the lid member and the first tube member with the tube end portion of the first tube member made of thermoplastic resin inserted from the outside of the outer tube into the through hole of the lid member. The part is watertightly joined ,
The base material of the lid member and the base material of the pipe end portion of the first pipe member are in a state of being melted and solidified,
The lid member has, in addition to the through hole, a second through hole that forms a flow path of the heat medium,
With the tube end of the second tube member made of thermoplastic resin inserted from the outside of the outer tube into the second through hole, the lid member and the tube end of the second tube member Are watertightly joined
The base material of the lid member and the base material of the pipe end portion of the second pipe member are in a state of being melted together and solidified,
Either one of the first tube member and the second tube member supplies the heat medium from the outside into the outer tube, and the other tube member moves from the outer tube to the outside. The heat medium is discharged.

上記請求項4に示す発明によれば、蓋部材の貫通孔には、外管の外方から第1管部材の管端部が差し込まれて、これらは融着接合され、また、蓋部材の第2貫通孔には、外管の外方から第2管部材の管端部が差し込まれて、これらは融着接合されている。つまり、蓋部材の母材と、第1管部材の母材とは互いに溶け合って固化し、一体不可分の状態になっており、また、蓋部材の部材と、第2管部材の母材とは互いに溶け合って固化し、一体不可分の状態になっている。よって、これらはどちらも高い接合強度を有し得て、これにより、蓋部材の貫通孔と第1管部材との間、及び、蓋部材の第2貫通孔と第2管部材との間からの熱媒体の漏出は確実に防止される。その結果、当該地中熱交換器に係る概ね全ての接合部が水密構造となる。   According to the fourth aspect of the present invention, the tube end portion of the first tube member is inserted into the through hole of the lid member from the outside of the outer tube, and these are fused and joined. The pipe end of the second pipe member is inserted into the second through hole from the outside of the outer pipe, and these are fusion bonded. In other words, the base material of the lid member and the base material of the first tube member are melted and solidified, and are in an inseparable state, and the member of the lid member and the base material of the second tube member are They melt together and solidify, becoming inseparable. Therefore, both of these can have high bonding strength, and thereby, between the through hole of the lid member and the first tube member, and between the second through hole of the lid member and the second tube member. The leakage of the heat medium is reliably prevented. As a result, almost all joints related to the underground heat exchanger have a watertight structure.

請求項5に示す発明は、請求項4に記載の二重管構造の地中熱交換器であって、
前記外管、前記キャップ部材、前記蓋部材、前記内管、前記第1管部材、及び前記第2管部材の何れも高密度ポリエチレン製であることを特徴とする。
Invention of Claim 5 is the underground heat exchanger of the double pipe structure of Claim 4, Comprising:
The outer tube, the cap member, the lid member, the inner tube, the first tube member, and the second tube member are all made of high-density polyethylene.

上記請求項5に示す発明によれば、外管、キャップ部材、蓋部材、内管、第1管部材、及び第2管部材の何れも高密度ポリエチレン製で同素材であることから、互いに接合されるべき部分同士が融着接合されてなる融着接合部は、母材と完全に同じ成分系となり、これにより、母材並の高い強度を有する。よって、防漏性に優れた地中熱交換器を提供可能となる。   According to the fifth aspect of the present invention, all of the outer tube, the cap member, the lid member, the inner tube, the first tube member, and the second tube member are made of high-density polyethylene and are made of the same material. The fusion-bonded portion formed by fusion-bonding the portions to be formed has the same component system as that of the base material, and thus has the same high strength as that of the base material. Therefore, it becomes possible to provide an underground heat exchanger excellent in leakage prevention.

本発明によれば、二重管構造の地中熱交換器の熱媒体の防漏性の向上を図れる。   ADVANTAGE OF THE INVENTION According to this invention, the leak-proof property of the heat medium of a double pipe structure underground heat exchanger can be aimed at.

従来の二重管構造の地中熱交換器121の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the underground heat exchanger 121 of the conventional double pipe structure. 参考例の地中熱交換器の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the underground heat exchanger of a reference example. 本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。It is explanatory drawing of the underground heat utilization system 11 using the underground heat exchanger 21 which concerns on this embodiment. 一部を破断して示す本実施形態に係る地中熱交換器21の概略側面図である。It is a schematic side view of the underground heat exchanger 21 which concerns on this embodiment shown partially broken. 図4A及び図4Bは、それぞれ、冬場及び夏場での運転例を示す地中熱交換器21の概略図である。4A and 4B are schematic views of the underground heat exchanger 21 showing examples of operation in winter and summer, respectively. 蓋部材70の拡大縦断面図である。4 is an enlarged vertical sectional view of a lid member 70. FIG. 図6Aは、内パイプ挿入工程を説明するための概略平面図であり、図6Bは、コルゲート管巻き取り工程を説明するための概略斜視図である。FIG. 6A is a schematic plan view for explaining the inner pipe inserting step, and FIG. 6B is a schematic perspective view for explaining the corrugated tube winding step. 地中熱交換器21の製造方法に係る各処理を説明するための地中熱交換器21の一部破断概略側面図である。It is a partial broken schematic side view of the underground heat exchanger 21 for demonstrating each process which concerns on the manufacturing method of the underground heat exchanger 21. FIG. 図8A乃至図8Dは、キャップ部材融着接合処理を説明するための概略中心縦断面図である。8A to 8D are schematic center longitudinal sectional views for explaining the cap member fusion bonding process. 図9A乃至図9Eは、直管部融着接合処理を説明するための概略斜視図である。9A to 9E are schematic perspective views for explaining the straight pipe part fusion bonding process. 図10A乃至図10Dは、外パイプ融着接合処理を説明するための概略斜視図である。10A to 10D are schematic perspective views for explaining the outer pipe fusion bonding process. 図11A乃至図11Dは、内パイプ融着接合処理を説明するための概略斜視図である。11A to 11D are schematic perspective views for explaining the inner pipe fusion bonding process. 図12A乃至図12Eは、蓋部材融着接合処理を説明するための概略斜視図である。12A to 12E are schematic perspective views for explaining the lid member fusion bonding process. その他の実施形態を説明するための一部破断概略側面図である。It is a partially broken schematic side view for demonstrating other embodiment.

===本実施形態===
<<<地中熱交換器21について>>>
図2は、本実施形態に係る地中熱交換器21を用いた地中熱利用システム11の説明図である。図3は、一部を破断して示す地中熱交換器21の概略側面図である。また、図4A及び図4Bは、それぞれ、冬場及び夏場での運転例を示す地中熱交換器21の模式図である。
=== This Embodiment ===
<<< About the underground heat exchanger 21 >>>
FIG. 2 is an explanatory diagram of the underground heat utilization system 11 using the underground heat exchanger 21 according to the present embodiment. FIG. 3 is a schematic side view of the underground heat exchanger 21 partially cut away. 4A and 4B are schematic views of the underground heat exchanger 21 showing an example of operation in winter and summer, respectively.

図2に示すように、この地中熱利用システム11は、地盤Gとの間で熱交換を行う地中熱交換器21と、地中熱交換器21の熱媒体26からの熱を利用して建物1の暖房のための温水や冷房のための冷水を生成するヒートポンプ15と、を有する。なお、ヒートポンプ15の構成は周知なので、その説明については省略する。   As shown in FIG. 2, the geothermal heat utilization system 11 utilizes the heat from the underground heat exchanger 21 that performs heat exchange with the ground G and the heat medium 26 of the underground heat exchanger 21. And a heat pump 15 that generates hot water for heating the building 1 and cold water for cooling. In addition, since the structure of the heat pump 15 is known, it abbreviate | omits about the description.

図3に示すように、この地中熱交換器21は、ボアホール方式の二重管型である。すなわち、(1)地盤Gに鉛直に形成された掘削孔としての竪孔23内に鉛直方向に沿って挿入された外管30と、(2)外管30内に配された内管41としての内パイプ41を有し熱媒体26の流路を形成する第1流路形成部材40と、(3)外管30の外に設けられて当該外管30内に連通した熱媒体26の流路を形成する第2流路形成部材50と、を有している。なお、竪孔23と外管30との間の空間SP23には、川砂や山砂、珪砂等の充填材27が充填されている。   As shown in FIG. 3, the underground heat exchanger 21 is a borehole type double pipe type. That is, (1) an outer pipe 30 inserted along a vertical direction in a borehole 23 as a drilling hole formed vertically in the ground G, and (2) an inner pipe 41 arranged in the outer pipe 30 A first flow path forming member 40 having an inner pipe 41 and forming a flow path of the heat medium 26; and (3) a flow of the heat medium 26 provided outside the outer pipe 30 and communicating with the outer pipe 30. And a second flow path forming member 50 that forms a path. The space SP23 between the hole 23 and the outer pipe 30 is filled with a filler 27 such as river sand, mountain sand, or quartz sand.

そして、例えば、冬場には、図4Aに示すように、ヒートポンプ15から第1流路形成部材40を経由して、水又は不凍液等の液状の熱媒体26が送られて、当該熱媒体26は、外管30内の下端部30aに位置する同第1流路形成部材40の管端開口40edから、外管30内に吐出される。すると、当該熱媒体26は、外管30内を上方へと移動する間に、地盤Gの地中熱により暖められて、しかる後に、外管30内の上端部30b近傍に位置する第2流路形成部材50の管端開口50edから、該第2流路形成部材50内へと吸い込まれ、地上循環ポンプ17(図2)の圧力により、ヒートポンプ15へ向けて送出される。そして、ヒートポンプ15にて温水生成に供される。   In winter, for example, as shown in FIG. 4A, a liquid heat medium 26 such as water or antifreeze is sent from the heat pump 15 via the first flow path forming member 40, and the heat medium 26 is The liquid is discharged into the outer tube 30 from the tube end opening 40ed of the first flow path forming member 40 located at the lower end 30a in the outer tube 30. Then, the heat medium 26 is warmed by the underground heat of the ground G while moving upward in the outer tube 30, and then the second flow located in the vicinity of the upper end portion 30 b in the outer tube 30. From the pipe end opening 50ed of the path forming member 50, it is sucked into the second flow path forming member 50, and is sent toward the heat pump 15 by the pressure of the ground circulation pump 17 (FIG. 2). Then, the heat pump 15 is used to generate hot water.

他方、夏場の熱媒体26の流れ方向は、上述の逆となる。すなわち、図4Bに示すように、ヒートポンプ15から第2流路形成部材50を経由して送られてきた熱媒体26は、外管30内の上端部30b近傍に位置する同第2流路形成部材50の管端開口50edから外管30内に吐出される。すると、当該熱媒体26は、同外管30内を下方へと移動する間に、地盤Gの地中熱により冷やされて、しかる後に、外管30内の下端部30aに位置する第1流路形成部材40の管端開口40edから、第1流路形成部材40内へと吸い込まれ、地上循環ポンプ17の圧力により、ヒートポンプ15へ向けて送出される。そして、ヒートポンプ15にて冷水生成に供される。   On the other hand, the flow direction of the heat medium 26 in the summer is reversed as described above. That is, as shown in FIG. 4B, the heat medium 26 sent from the heat pump 15 via the second flow path forming member 50 forms the second flow path located in the vicinity of the upper end 30b in the outer tube 30. It is discharged into the outer tube 30 from the tube end opening 50ed of the member 50. Then, the heat medium 26 is cooled by the underground heat of the ground G while moving downward in the outer pipe 30, and then the first flow located at the lower end 30 a in the outer pipe 30. From the pipe end opening 40 ed of the path forming member 40, the air is sucked into the first flow path forming member 40 and is sent out toward the heat pump 15 by the pressure of the ground circulation pump 17. Then, the heat pump 15 is used for cold water generation.

以下、地中熱交換器21に係る各構成要素23,30,40,50等について詳細に説明する。
(1)竪孔23
図3に示すように、竪孔23は、ボーリングマシンやオーガ等の掘削機により地面にほぼ垂直に掘削された孔であり、その直径は100〜200mm、深さは30〜150mである。
Hereinafter, each component 23, 30, 40, 50, etc. which concern on the underground heat exchanger 21 is demonstrated in detail.
(1) Fist hole 23
As shown in FIG. 3, the hole 23 is a hole excavated almost perpendicularly to the ground by an excavator such as a boring machine or an auger, and has a diameter of 100 to 200 mm and a depth of 30 to 150 m.

(2)外管30
外管30は、その全長が竪孔23と略同長の管部材である。そして、外管30は、熱可塑性樹脂の一例としての高密度ポリエチレン製のコルゲート管31(corrugated pipe:波形管)を本体とする。コルゲート管31は、その管壁が図3に示すような波形形状の管部材である。そして、この波形形状は、コルゲート管31の管軸C31を中心軸とする螺旋形であり、また、管壁の厚みは全長に亘りほぼ一定厚みである。よって、コルゲート管31の外周面及び内周面のどちらの面も、山部と谷部とを有する略同形の螺旋波形形状になっている。そして、このような螺旋波形形状により、管壁の外周面及び内周面の表面積は拡大されているので、地盤Gとコルゲート管31内の熱媒体26との間の熱交換効率は格段に高められている。
(2) Outer tube 30
The outer tube 30 is a tube member whose overall length is substantially the same as that of the fist hole 23. The outer tube 30 has a corrugated pipe 31 (corrugated pipe) made of high-density polyethylene as an example of a thermoplastic resin as a main body. The corrugated tube 31 is a tube member having a corrugated shape as shown in FIG. This corrugated shape is a spiral shape with the tube axis C31 of the corrugated tube 31 as the central axis, and the thickness of the tube wall is substantially constant over the entire length. Therefore, both the outer peripheral surface and the inner peripheral surface of the corrugated pipe 31 have substantially the same spiral waveform shape having a peak portion and a valley portion. And since the surface area of the outer peripheral surface and inner peripheral surface of a pipe wall is expanded by such a spiral waveform shape, the heat exchange efficiency between the ground G and the heat medium 26 in the corrugated pipe 31 is remarkably enhanced. It has been.

コルゲート管31の下端部31a(「外管の一方の管端部」に相当)には、この下端部31aの管端開口を水密に封止するキャップ部材60が、融着接合部J60を介して一体に固定されている。これにより、コルゲート管31内の熱媒体26の下端部31aの管端開口から地盤Gへの漏出が防止される。   At the lower end 31a of the corrugated pipe 31 (corresponding to "one end of the outer pipe"), a cap member 60 that seals the pipe end opening of the lower end 31a in a watertight manner is provided via the fusion bonded portion J60. Are fixed together. Thereby, the leakage from the pipe end opening of the lower end part 31a of the heat medium 26 in the corrugated pipe 31 to the ground G is prevented.

詳しくは、キャップ部材60は、熱可塑性樹脂の一例としての高密度ポリエチレン製の一体成型部材であり、例えば、円筒部61と、円筒部61から同軸且つ一体に管軸方向C60の下方に延出した円柱部62と、その更に下方に一体に延出した円錐台部63とを有した閉鎖形状部材である。そして、円筒部61の上端縁部61euが、コルゲート管31の下端部31aにおける縁部31edに、互いの管軸C31,C60を略同軸に揃えつつ突き合わされて、上述の融着接合部J60を介して接合されている。   Specifically, the cap member 60 is an integrally molded member made of high-density polyethylene as an example of a thermoplastic resin. For example, the cap member 60 and the cylindrical portion 61 are coaxially and integrally extended below the tube axis direction C60. This is a closed-shaped member having a cylindrical portion 62 and a truncated cone portion 63 that extends integrally therebelow. The upper end edge 61eu of the cylindrical portion 61 is abutted against the edge portion 31ed of the lower end portion 31a of the corrugated tube 31 while aligning the tube axes C31 and C60 substantially coaxially, and the above-described fusion bonded portion J60 is formed. Are joined through.

この融着接合部J60は、コルゲート管31の下端部31aの縁部31edと、キャップ部材60の上端縁部61euとの両者が、互いに溶融状態で突き合わされて全周に亘り接合されたものである。すなわち、当該融着接合部J60は、コルゲート管31の母材たる高密度ポリエチレンと、キャップ部材60の母材たる高密度ポリエチレンとが互いに溶け合って固化したものであり、母材とほぼ同種の成分系で一体不可分な状態になっている。よって、かかる融着接合部J60は、コルゲート管31の母材部分たる定常部やキャップ部材60の母材部分たる定常部とほぼ同等の強度を有する。   The fusion bonded portion J60 is obtained by joining the edge 31ed of the lower end portion 31a of the corrugated pipe 31 and the upper end edge 61eu of the cap member 60 in a molten state and joining all around. is there. That is, the fusion-bonded portion J60 is obtained by melting and solidifying high-density polyethylene, which is the base material of the corrugated pipe 31, and high-density polyethylene, which is the base material of the cap member 60, and has almost the same components as the base material. The system is in an inseparable state. Accordingly, the fusion bonded portion J60 has substantially the same strength as the steady portion that is the base material portion of the corrugated tube 31 and the steady portion that is the base material portion of the cap member 60.

また、当該融着接合部J60は、コルゲート管31の定常部やキャップ部材60の定常部との両者に対して一体に連続しているので、コルゲート管31内の熱媒体26の圧力の作用によってコルゲート管31が膨張などの拡径変形をしても、当該融着接合部J60を通じて上記膨張に係る力が、その近傍のキャップ部材60の部分に伝達されて、当該部分も追随して速やかに変形する。よって、コルゲート管31とキャップ部材60との変形差は抑えられて、融着接合部J60に作用し得る変形差起因の応力の軽減を図れ、当該融着接合部J60での破断は有効に防止される。その結果、コルゲート管31の下端部31aからの熱媒体26の漏出は確実に防止される。   In addition, the fusion bonded portion J60 is integrally continuous with both the steady portion of the corrugated tube 31 and the steady portion of the cap member 60, and therefore, due to the action of the pressure of the heat medium 26 in the corrugated tube 31. Even if the corrugated tube 31 undergoes a diameter expansion deformation such as expansion, the force related to the expansion is transmitted to the portion of the cap member 60 in the vicinity thereof through the fusion-bonding portion J60, so that the portion also follows quickly. Deform. Therefore, the deformation difference between the corrugated pipe 31 and the cap member 60 is suppressed, the stress due to the deformation difference that can act on the fusion bonded portion J60 can be reduced, and the fracture at the fusion bonded portion J60 is effectively prevented. Is done. As a result, leakage of the heat medium 26 from the lower end 31a of the corrugated pipe 31 is reliably prevented.

一方、コルゲート管31の上端部31bには、融着接合部J35を介して長さ約1mの円筒状の直管部35(管状頭部に相当)が同軸に接合されており、更に、直管部35の上端の管端部35eu(「外管の他方の管端部」に相当)には、融着接合部J70を介して円柱状の蓋部材70が接合されており、これにより外管30の上端部30euの管端開口は水密に封止されている。そして、蓋部材70には、上下方向に沿って二つの貫通孔H71,H72が形成されており、各貫通孔H71,H72には、それぞれ前述の第1流路形成部材40及び第2流路形成部材50のどちらかが対応付けられて固定されている。これについては後述する。   On the other hand, a cylindrical straight pipe portion 35 (corresponding to a tubular head portion) having a length of about 1 m is coaxially joined to the upper end portion 31b of the corrugated pipe 31 via a fusion joint portion J35. A cylindrical lid member 70 is joined to a pipe end portion 35eu (corresponding to "the other pipe end portion of the outer pipe") of the pipe portion 35 via a fusion splicing portion J70. The tube end opening of the upper end 30eu of the tube 30 is sealed in a watertight manner. The cover member 70 is formed with two through holes H71 and H72 in the vertical direction. The first flow path forming member 40 and the second flow path are respectively formed in the through holes H71 and H72. One of the forming members 50 is associated and fixed. This will be described later.

直管部35の管壁の厚さは、コルゲート管31の管壁の厚さよりも厚くなっており、例えば、10mm〜20mmに設定されている。このように外管30の上部30uとして厚肉の直管部35を設けている理由については後述する。   The thickness of the pipe wall of the straight pipe portion 35 is thicker than the thickness of the pipe wall of the corrugated pipe 31, and is set to, for example, 10 mm to 20 mm. The reason why the thick straight pipe portion 35 is provided as the upper portion 30u of the outer tube 30 will be described later.

上述の各融着接合部J35,J70も、前述したキャップ部材60の融着接合部J60と同種のものである。すなわち、融着接合部J35は、コルゲート管31の上端部31bの縁部31euと直管部の35の下端縁部35edとの両者が互いに溶融状態で全周に亘り突き合わされて形成されており、また、その上方の融着接合部J70は、直管部35の上端縁部35euと蓋部材70の下面の周縁部70edとの両者が互いに溶融状態で全周に亘り突き合わされて形成されている。そして、この例では、直管部35及び蓋部材70のどちらも、コルゲート管31と同素材の高密度ポリエチレン製である。よって、各融着接合部J35,J70は、それぞれ、母材とほぼ同種の成分系で一体不可分な状態になっており、そしてコルゲート管31の母材部分とほぼ同等の強度を有する。その結果、これら融着接合部J35,J70も、地中熱交換器21の運転時に作用し得る熱媒体26の圧力に破断無く耐えることができる。   Each of the above-described fusion bonded portions J35 and J70 is also the same type as the fusion bonded portion J60 of the cap member 60 described above. That is, the fusion bonded portion J35 is formed by abutting the entire edge of the edge 31eu of the upper end portion 31b of the corrugated pipe 31 and the lower end edge 35ed of the straight pipe portion 35 in a molten state. In addition, the fusion-bonding portion J70 above the upper end edge portion 35eu of the straight pipe portion 35 and the peripheral edge portion 70ed of the lower surface of the lid member 70 are abutted over each other in a molten state. Yes. In this example, both the straight pipe portion 35 and the lid member 70 are made of the same material as the corrugated pipe 31 and made of high-density polyethylene. Therefore, each fusion-bonding part J35, J70 is in an inseparable state with almost the same kind of component system as the base material, and has substantially the same strength as the base material part of the corrugated pipe 31. As a result, these fusion bonded portions J35 and J70 can also withstand the pressure of the heat medium 26 that can act during operation of the underground heat exchanger 21 without breaking.

また、融着接合部J35にあっては、上述のように母材並の強度を有しつつ、コルゲート管31の定常部や直管部35の定常部との両者に対して一体に連続しているので、コルゲート管31内の熱媒体26の圧力の作用によってコルゲート管31が膨張などの拡径変形をしても、当該融着接合部J35を通じて上記膨張に係る力が、その近傍の直管部35の部分に伝達されて、当該部分も追随して変形する。よって、コルゲート管31と直管部35との変形差は抑えられて、結果、融着接合部J35に作用し得る変形差起因の応力の軽減を図れ、当該融着接合部J35での破断は有効に防止される。   In addition, the fusion bonded portion J35 has a strength comparable to that of the base material as described above, and is integrally continuous with both the steady portion of the corrugated pipe 31 and the steady portion of the straight pipe portion 35. Therefore, even if the corrugated pipe 31 undergoes an expansion deformation such as expansion by the action of the pressure of the heat medium 26 in the corrugated pipe 31, the force relating to the expansion is directly applied to the vicinity of the corrugated pipe 31 through the fusion-bonded portion J35. It is transmitted to the part of the pipe part 35 and the part also follows and deforms. Therefore, the deformation difference between the corrugated pipe 31 and the straight pipe portion 35 is suppressed, and as a result, the stress due to the deformation difference that can act on the fusion bonded portion J35 can be reduced, and the fracture at the fusion bonded portion J35 is prevented. Effectively prevented.

(3)第1流路形成部材40及び第2流路形成部材50
図3に示すように、第1流路形成部材40及び第2流路形成部材50のどちらも、熱可塑性樹脂の一例としての高密度ポリエチレン製のパイプ41,43,50である。そして、前述したように、ヒートポンプ15と外管30との間の熱媒体26の移動に供される。
(3) First flow path forming member 40 and second flow path forming member 50
As shown in FIG. 3, both the first flow path forming member 40 and the second flow path forming member 50 are pipes 41, 43, and 50 made of high density polyethylene as an example of a thermoplastic resin. As described above, the heat medium 26 is moved between the heat pump 15 and the outer tube 30.

第1流路形成部材40は、外管30内に配置される内管41としての内パイプ41と、外管30外に配置される外パイプ43(第1管部材に相当)と、を有する。そして、内パイプ41の上端部41uは、蓋部材70の貫通孔H71に外管30の内方から差し込まれて蓋部材70に融着接合され、同下端部41dは、外管30内の下端部30aに位置している。一方、外パイプ43の下端部43dは、外管30の外方から蓋部材70の貫通孔H71に差し込まれて蓋部材70に融着接合されており、これにより、外パイプ43と内パイプ41とは互いの流路が連通状態となっている。   The first flow path forming member 40 includes an inner pipe 41 as an inner pipe 41 arranged in the outer pipe 30 and an outer pipe 43 (corresponding to the first pipe member) arranged outside the outer pipe 30. . The upper end portion 41u of the inner pipe 41 is inserted into the through hole H71 of the lid member 70 from the inside of the outer tube 30 and is fusion-bonded to the lid member 70. The lower end portion 41d is the lower end of the outer tube 30. It is located in the part 30a. On the other hand, the lower end portion 43d of the outer pipe 43 is inserted into the through hole H71 of the lid member 70 from the outside of the outer tube 30 and is fusion-bonded to the lid member 70, whereby the outer pipe 43 and the inner pipe 41 are joined. The mutual flow paths are in a communication state.

図5に蓋部材70の拡大縦断面図を示す。この蓋部材70の貫通孔H71は、上下方向の中央部に、その両側部分の孔径よりも小さい小径孔部H71Sを有しており、そして、その両側の各大径孔部H71L,H71Lに内パイプ41と外パイプ43とが差し込まれている。よって、この差し込まれた状態においては、内パイプ41の上端面41eua及び外パイプ43の下端面43edaは、それぞれ、大径孔部H71L,H71Lと小径孔部H71Sとの間の段差面A71,A71に突き合わされており、これにより、各パイプ41,43は、それぞれ外周面だけでなく、端面41eua,43edaでも蓋部材70に融着接合されることになる。その結果、接合強度の向上を図れるとともに、貫通孔H71の内周面と内パイプ41との間での熱媒体26の漏出、及び貫通孔H71の内周面と外パイプ43との間での熱媒体26の漏出を確実に防ぐことができる。   FIG. 5 shows an enlarged longitudinal sectional view of the lid member 70. The through-hole H71 of the lid member 70 has a small-diameter hole H71S smaller than the hole diameters on both side portions at the center in the vertical direction, and the large-diameter hole portions H71L and H71L on both sides are internally provided. The pipe 41 and the outer pipe 43 are inserted. Therefore, in this inserted state, the upper end surface 41eua of the inner pipe 41 and the lower end surface 43eda of the outer pipe 43 are stepped surfaces A71, A71 between the large diameter hole portions H71L, H71L and the small diameter hole portion H71S, respectively. As a result, the pipes 41 and 43 are fusion bonded to the lid member 70 not only on the outer peripheral surface but also on the end surfaces 41 eua and 43 eda. As a result, the bonding strength can be improved, the heat medium 26 leaks between the inner peripheral surface of the through hole H71 and the inner pipe 41, and the inner peripheral surface of the through hole H71 and the outer pipe 43. Leakage of the heat medium 26 can be reliably prevented.

なお、かかる蓋部材70と内パイプ41との間に介在する融着接合部J41、及び蓋部材70と外パイプ43との間に介在する融着接合部J43が、それぞれ母材並みの強度を有することは、前述と同様であるので、その説明については省略する。   In addition, the fusion-bonding part J41 interposed between the lid member 70 and the inner pipe 41 and the fusion-bonding part J43 interposed between the lid member 70 and the outer pipe 43 have the same strength as the base material. Since it is the same as described above, description thereof is omitted.

一方、第2流路形成部材50は、外管30の外に配置される外パイプ50(第2管部材に相当)を有する。そして、この外パイプ50の下端部50dが、蓋部材70に別途形成された貫通孔H72(第2貫通孔に相当)に、外管30の外方から差し込まれて融着接合されている。ここで、この貫通孔H72は、上部に大径孔部H72Lを有し下部に小径孔部H72Sを有し、そして、外パイプ50の下端部50dは大径孔部H72Lに差し込まれている。よって、この差し込まれた状態においては、大径孔部H72Lと小径孔部H72Sとの間の段差面A72に外パイプ50の下端面50edaが突き合わされるので、外パイプ50の外周面だけでなく端面50edaにおいても蓋部材70と融着接合されることとなり、その結果、接合強度の向上を図れるとともに、貫通孔H72と外パイプ50との間での熱媒体26の漏出を確実に防止することができる。
なお、この外パイプ50にあっても蓋部材70と同素材のため、外パイプ50と蓋部材70との間に介在する融着接合部J50が、それぞれ母材並みの強度を有することは言うまでもなく、よって、その説明については省略する。
On the other hand, the second flow path forming member 50 includes an outer pipe 50 (corresponding to a second pipe member) disposed outside the outer tube 30. The lower end 50d of the outer pipe 50 is inserted from the outside of the outer tube 30 into a through hole H72 (corresponding to a second through hole) separately formed in the lid member 70 and is fusion bonded. Here, the through-hole H72 has a large-diameter hole H72L in the upper part and a small-diameter hole H72S in the lower part, and the lower end part 50d of the outer pipe 50 is inserted into the large-diameter hole H72L. Therefore, in this inserted state, the lower end surface 50eda of the outer pipe 50 is abutted against the step surface A72 between the large diameter hole H72L and the small diameter hole H72S. The end face 50eda is also fusion bonded to the lid member 70. As a result, the bonding strength can be improved and the leakage of the heat medium 26 between the through hole H72 and the outer pipe 50 can be reliably prevented. Can do.
Needless to say, since the outer pipe 50 is made of the same material as the lid member 70, the fusion-bonding portions J50 interposed between the outer pipe 50 and the lid member 70 have the same strength as the base material. Therefore, the description thereof is omitted.

ところで、本実施形態では、図3に示すように、外管30の上部30uとして厚肉の直管部35を設けていたが、ここでこの理由について説明する。外管30は、内部の熱媒体26の圧力によって拡径変形し、場合によっては拡径破損の虞がある。この点につき、地盤Gの深部では、側方から外管30に作用する土圧が高いため、この土圧が拡径変形を抑制して、これにより拡径破損の虞は無い。ところが、表層部では土圧が低いので、当該土圧に対して、外管30の拡径変形の抑制作用を期待することはできない。そのため、表層部に配置される外管30の上部30uに対しては厚肉の直管部35を設け、これにより、自身の耐力によって拡径変形を抑制するようにしている。   By the way, in this embodiment, as shown in FIG. 3, the thick straight pipe part 35 was provided as the upper part 30u of the outer pipe | tube 30, However, This reason is demonstrated here. The outer tube 30 is expanded in diameter by the pressure of the internal heat medium 26, and in some cases, there is a risk of expansion failure. In this respect, since the earth pressure acting on the outer pipe 30 from the side is high in the deep part of the ground G, this earth pressure suppresses the diameter expansion deformation, and there is no possibility of the diameter expansion damage. However, since the earth pressure is low in the surface layer portion, it is not possible to expect an effect of suppressing the diameter expansion deformation of the outer tube 30 against the earth pressure. Therefore, a thick straight pipe portion 35 is provided on the upper portion 30u of the outer tube 30 arranged in the surface layer portion, thereby suppressing the diameter expansion deformation by its own strength.

<<<地中熱交換器21の製造方法について>>>
このような地中熱交換器21は、適宜な工場で製造される。そして、同工場において上述のような全構成要素30(31,35),40(41,43),50,60,70を具備した略完成状態にまで仕上げられ(図7)、コイル状に巻き取られた状態で工場から設置予定地へと送られる。そして、このような略完成状態で設置予定地へと送られるので、当該設置予定地では、適宜なリール装置を用いて地中熱交換器21を繰り出しながら、同予定地の掘削孔23に順次地中熱交換器21を建て込み、建て込んだ後には、地中熱交換器21の周囲の隙間SP23に充填材27を充填して埋めれば、地中熱交換器21の設置工事が完了する。よって、現場作業は大幅に軽減され、施工現場での工期を大幅に短縮可能となる。
<<< About the manufacturing method of the underground heat exchanger 21 >>>
Such an underground heat exchanger 21 is manufactured in an appropriate factory. Then, in the same factory, all the components 30 (31, 35), 40 (41, 43), 50, 60, 70 as described above are finished to a substantially completed state (FIG. 7) and wound in a coil shape. It is sent from the factory to the planned installation site. Then, since it is sent to the planned installation site in such a substantially completed state, the underground heat exchanger 21 is fed out using an appropriate reel device at the planned installation site, and sequentially into the excavation hole 23 of the planned installation site. If the underground heat exchanger 21 is installed, and after the installation, if the gap SP23 around the underground heat exchanger 21 is filled and filled with the filler 27, the installation work of the underground heat exchanger 21 is completed. . Therefore, the work at the site is greatly reduced, and the construction period at the construction site can be greatly shortened.

以下、地中熱交換器21の製造手順について説明する。
先ず、図6Aの概略平面図に示すように、外管30の本体としてのコルゲート管31内に、内管41としての内パイプ41を、コルゲート管31の略全長に亘って挿入する(内パイプ挿入工程)。詳しくは、コルゲート管31の上端部31bに相当する管端部31bから同コルゲート管31内に内パイプ41を挿入し、この挿入を、同内パイプ41の一端部41dが、コルゲート管31の下端部31aに相当する管端部31aに到達するまで続ける。そして、これにより、最終的に、内パイプ41の一端部41dが、コルゲート管31の一方の管端部31aに達し、且つ、同内パイプ41の他端部41uが、コルゲート管31の他方の管端部31bから外に突出した状態にされる。なお、この挿入作業については、コルゲート管31の曲率半径を大きくして行えば、短時間で終えることができる。
Hereinafter, the manufacturing procedure of the underground heat exchanger 21 will be described.
First, as shown in the schematic plan view of FIG. 6A, the inner pipe 41 as the inner pipe 41 is inserted over the substantially entire length of the corrugated pipe 31 into the corrugated pipe 31 as the main body of the outer pipe 30 (the inner pipe). Insertion process). Specifically, the inner pipe 41 is inserted into the corrugated pipe 31 from the pipe end 31 b corresponding to the upper end 31 b of the corrugated pipe 31, and this insertion is performed by the end 41 d of the inner pipe 41 being the lower end of the corrugated pipe 31. Continue until the tube end 31a corresponding to the portion 31a is reached. As a result, one end portion 41d of the inner pipe 41 finally reaches one tube end portion 31a of the corrugated tube 31, and the other end portion 41u of the inner pipe 41 extends to the other end of the corrugated tube 31. It is made the state which protruded outside from the pipe end part 31b. This insertion operation can be completed in a short time if the radius of curvature of the corrugated tube 31 is increased.

次に、内側に内パイプ41が挿入された状態のままコルゲート管31を適宜なリール装置等を用いて図6Bのようにコイル状に巻き取り(コルゲート管巻き取り工程)、そのコイル状のコルゲート管31を、融着接合装置80が配備された工場へ搬送する。   Next, the corrugated tube 31 is wound into a coil shape as shown in FIG. 6B using an appropriate reel device or the like with the inner pipe 41 inserted inside (corrugated tube winding step), and the coiled corrugated tube The pipe 31 is transported to the factory where the fusion bonding apparatus 80 is provided.

すると、この工場では、コルゲート管31のほぼ全長をコイル状の巻き取り状態に維持しつつ、両方の管端部31a,31bのみを繰り出した状態にし、そして、当該管端部31a,31bのみ繰り出し状態のコルゲート管31に対して、キャップ部材60や蓋部材70等の各種構成要素を順次融着接合して組み付けていき、これにより、最終的に、図7の一部破断概略側面図の如き略完成状態にする。なお、図7中の丸印の番号は、それぞれ融着接合を行う順番を示している。また、図8A乃至図12Eは、それぞれ個別の融着接合処理の説明図である。   Then, in this factory, while maintaining almost the entire length of the corrugated pipe 31 in the coiled state, only the pipe end portions 31a and 31b are drawn out, and only the pipe end portions 31a and 31b are drawn out. Various components such as the cap member 60 and the lid member 70 are sequentially welded and assembled to the corrugated pipe 31 in the state, and finally, as shown in the partially broken schematic side view of FIG. Make it almost completed. In addition, the number of the circle mark in FIG. 7 has shown the order which each performs fusion splicing. 8A to 12E are explanatory diagrams of individual fusion bonding processes.

(1)キャップ部材融着接合処理
最初に、図7に示すようにコルゲート管31の下端部31aに相当する管端部31aにキャップ部材60を融着接合する(キャップ部材融着接合工程)。この融着接合は、工場が備える融着接合装置80によって行われる。図8Aに示すように、融着接合装置80は、コルゲート管31の管端部31aを把持等して保持する第1保持部81と、キャップ部材60を把持等して保持する第2保持部83と、を有する。そして、第1保持部81と第2保持部83とは、コルゲート管31及びキャップ部材60のうちの各々対応する部材31,60を保持した状態において、コルゲート管31の管軸C31とキャップ部材60の管軸C60とが互いに同軸に揃うような位置関係で配置されており、更には、第1保持部81及び第2保持部83のどちらも、適宜なガイドレール85によって管軸方向C31,C60に往復移動可能に案内されている。
(1) Cap member fusion bonding process First, as shown in FIG. 7, the cap member 60 is fusion-bonded to the tube end portion 31a corresponding to the lower end portion 31a of the corrugated tube 31 (cap member fusion bonding step). This fusion bonding is performed by a fusion bonding apparatus 80 provided in the factory. As shown in FIG. 8A, the fusion bonding apparatus 80 includes a first holding portion 81 that holds and holds the pipe end portion 31a of the corrugated pipe 31, and a second holding portion that holds and holds the cap member 60. 83. And the 1st holding | maintenance part 81 and the 2nd holding | maintenance part 83 are the axis | shaft C31 and the cap member 60 of the corrugated pipe | tube 31 in the state which hold | maintained the corresponding members 31 and 60 among the corrugated pipe | tube 31 and the cap member 60, respectively. And the tube axis C60 are arranged so as to be coaxially aligned with each other. Furthermore, both the first holding portion 81 and the second holding portion 83 are arranged in the tube axis directions C31, C60 by appropriate guide rails 85. It is guided so that it can reciprocate.

また、図8Aに示すような準備状態、つまりコルゲート管31の融着接合対象部たる管端面(縁部)31edと、キャップ部材60の融着接合対象部たる管端面(上端縁部)61euとの両者が、互いの間に間隔Dをもって対向した準備状態において、当該間隔Dの内側に挿抜可能な位置に、加熱板87が設置されている。そして、この加熱板87の両側の板面87a,87aが加熱面であるが、これら加熱面87a,87aの法線方向が上記管軸方向C31,C60を向くように当該加熱板87は配されている。   8A, a tube end surface (edge portion) 31ed that is a fusion bonding target portion of the corrugated pipe 31, and a tube end surface (upper edge portion) 61eu that is a fusion bonding target portion of the cap member 60. The heating plate 87 is installed in the position which can be inserted / removed inside the space | interval D in the preparatory state which both faced with the space | interval D between each other. The plate surfaces 87a and 87a on both sides of the heating plate 87 are heating surfaces, and the heating plate 87 is arranged so that the normal direction of the heating surfaces 87a and 87a faces the tube axis directions C31 and C60. ing.

よって、かかる構成の融着接合装置80によれば、次のようにしてコルゲート管31とキャップ部材60との両者を、互いの管端面31ed,61eu同士を突き合わされた状態で融着接合することができる。   Therefore, according to the fusion bonding apparatus 80 having such a configuration, both the corrugated pipe 31 and the cap member 60 are fusion-bonded in a state where the pipe end faces 31ed and 61eu are abutted with each other. Can do.

先ず、図8Aに二点鎖線で示すように、上述の間隔Dに加熱板87を挿入する。そして、図8Bに示すように、加熱板87の対応する加熱面87a,87aへ向けて、コルゲート管31及びキャップ部材60の両者をそれぞれ管軸方向C31,C60に沿って移動し、加熱対象の管端面31ed,61euを加熱板87の各加熱面87a,87aに面接触状態で当接させて加熱する。   First, as indicated by a two-dot chain line in FIG. Then, as shown in FIG. 8B, the corrugated pipe 31 and the cap member 60 are moved along the tube axial directions C31 and C60 toward the corresponding heating surfaces 87a and 87a of the heating plate 87, respectively. The tube end surfaces 31ed and 61eu are brought into contact with the heating surfaces 87a and 87a of the heating plate 87 in a surface contact state and heated.

ここで、加熱面87aの設定温度は、加熱対象のコルゲート管31の融点及びキャップ部材60の融点うちで高い方の融点よりも高い温度に設定されている。これにより、コルゲート管31及びキャップ部材60の両者を確実に融解(溶融)させることができる。この例では、コルゲート管31及びキャップ部材60の両者とも、高密度ポリエチレンを素材としているので、加熱面87aの設定温度は、高密度ポリエチレンの融点たる131℃よりも高い温度の例えば280℃に設定されている。   Here, the set temperature of the heating surface 87a is set to a temperature higher than the higher melting point of the melting point of the corrugated pipe 31 to be heated and the melting point of the cap member 60. Thereby, both the corrugated pipe | tube 31 and the cap member 60 can be fuse | melted (melt | melted) reliably. In this example, since both the corrugated pipe 31 and the cap member 60 are made of high-density polyethylene, the set temperature of the heating surface 87a is set to, for example, 280 ° C., which is higher than 131 ° C., which is the melting point of the high-density polyethylene. Has been.

そして、所定時間経過後に、コルゲート管31及びキャップ部材60の管端面31ed,61euが融解したら、図8Cに示すように、第1保持部81及び第2保持部83を管軸方向C31,C60に沿って加熱板87から後退させ、これにより、当該加熱板87の加熱面87a,87aからコルゲート管31及びキャップ部材60を離す。そして、加熱板87を上記間隔Dから抜く。   When the corrugated pipe 31 and the pipe end surfaces 31ed and 61eu of the cap member 60 are melted after a predetermined time has elapsed, as shown in FIG. 8C, the first holding part 81 and the second holding part 83 are moved in the pipe axis directions C31 and C60. Accordingly, the corrugated pipe 31 and the cap member 60 are separated from the heating surfaces 87a and 87a of the heating plate 87. Then, the heating plate 87 is removed from the interval D.

そうしたら、図8Dに示すように、各保持部81,83の移動によって、コルゲート管31及びキャップ部材60の融解状態の管端面31ed,61eu同士を突き合わせて当接させ、そして、管軸方向C31,C60に所定の押圧力で互いの管端面31ed,61eu同士を押圧する。そして、この押圧状態のまま一定時間冷却する。すると、コルゲート管31とキャップ部材60との間には融着接合部J60が形成されて、つまり、コルゲート管31とキャップ部材60とは融着接合される。   Then, as shown in FIG. 8D, by moving the holding portions 81, 83, the corrugated pipe 31 and the cap end face 31ed, 61eu of the cap member 60 are brought into contact with each other and brought into contact with each other, and the pipe axis direction C31 , C60 are pressed against each other with a predetermined pressing force between the pipe end faces 31ed and 61eu. And it cools for a fixed time with this press state. Then, a fusion bonded portion J60 is formed between the corrugated pipe 31 and the cap member 60, that is, the corrugated pipe 31 and the cap member 60 are fusion bonded.

(2)直管部融着接合処理
次に、図7に示すようにコルゲート管31の上端部31bに相当する管端部31bに直管部35を融着接合する(直管部融着接合工程)。この場合も、上述の融着接合装置80を用いる。すなわち、図9Aに示すように、第1保持部81にコルゲート管31の管端部31bを保持させ、第2保持部83に直管部35を保持させる。そして、第2保持部83を第1保持部81の方に移動して、コルゲート管31の融着接合対象部たる管端面(縁部)31euと、直管部35の融着接合対象部たる管端面(縁部)35edとの両者が、互いの間に間隔Dをもって対向した状態にする。但し、この移動の前には、コルゲート管31の管端部31bからは内パイプ41が飛び出している。そのため、この移動の際には、この内パイプ41を直管部35の内周側に挿通しながら、第2保持部83を第1保持部81の方へ移動する。そして、これにより、図9Aに示す状態となる。
(2) Straight Pipe Portion Fusion Processing Next, as shown in FIG. 7, the straight pipe portion 35 is fusion bonded to the pipe end portion 31 b corresponding to the upper end portion 31 b of the corrugated pipe 31 (straight pipe portion fusion bonding). Process). Also in this case, the above-described fusion bonding apparatus 80 is used. That is, as shown in FIG. 9A, the first holding part 81 holds the pipe end part 31b of the corrugated pipe 31, and the second holding part 83 holds the straight pipe part 35. And the 2nd holding | maintenance part 83 moves toward the 1st holding | maintenance part 81, and is a pipe | tube end surface (edge part) 31eu which is a fusion splicing object part of the corrugated pipe 31, and a fusion splicing target part of the straight pipe part 35. Both the tube end surface (edge portion) 35ed and the tube end surface (edge) 35ed face each other with a distance D therebetween. However, before this movement, the inner pipe 41 protrudes from the tube end portion 31 b of the corrugated tube 31. Therefore, during this movement, the second holding part 83 is moved toward the first holding part 81 while the inner pipe 41 is inserted through the inner peripheral side of the straight pipe part 35. As a result, the state shown in FIG. 9A is obtained.

そうしたら、上述の加熱板87に代えて、内パイプ41を通すための円孔H91を中央部に有した半割構造の加熱板91を間隔Dに挿入する(図9B)。すなわち、この加熱板91は、図9Aに示すように、二分割されてなる一対の半円環形状の半割部91a,91aがヒンジ部92により連結されてなり、当該ヒンジ部92を支点に一対の半割部91a,91aが開閉可能に構成されている。そして、全開状態では、一対の半割部91a,91a同士の間に、内パイプ41の外径よりも大きい隙間Kが形成される一方、全閉状態では、一対の半割部91a,91a同士が当接して図9Bのような円環形状の加熱板91となる。よって、図9Aのような一対の半割部91a,91aが全開状態で、隙間Kに内パイプ41を通しながら、上述の間隔Dに一対の半割部91a,91aを挿入していき、一対の半割部91a,91aの円孔H91の内方に内パイプ41が位置したら、挿入動作を停止する。そして、一対の半割部91a,91aを閉じて図9Bのような隙間Kが閉じた全閉状態にし、これにより、円環形状の加熱板91の円孔H91に内パイプ41が通った状態となる。   Then, it replaces with the above-mentioned heating plate 87, and inserts the heating plate 91 of the half structure which has the circular hole H91 for letting the inner pipe 41 pass in the center part in the space | interval D (FIG. 9B). That is, as shown in FIG. 9A, the heating plate 91 is formed by connecting a pair of half-ring-shaped halves 91a and 91a by a hinge 92, and using the hinge 92 as a fulcrum. The pair of halves 91a and 91a are configured to be openable and closable. In the fully opened state, a gap K larger than the outer diameter of the inner pipe 41 is formed between the pair of halved portions 91a and 91a. On the other hand, in the fully closed state, the pair of halved portions 91a and 91a Abut to form an annular heating plate 91 as shown in FIG. 9B. Therefore, with the pair of halves 91a and 91a as shown in FIG. 9A fully opened, the pair of halves 91a and 91a are inserted into the gap D while passing the inner pipe 41 through the gap K. When the inner pipe 41 is positioned inward of the circular hole H91 of the halves 91a and 91a, the insertion operation is stopped. Then, the pair of halves 91a, 91a are closed to a fully closed state in which the gap K is closed as shown in FIG. 9B, whereby the inner pipe 41 passes through the circular hole H91 of the annular heating plate 91. It becomes.

そうしたら、図9Cに示すように、加熱板91の対応する加熱面91as,91asへ向けて、コルゲート管31及び直管部35の両者をそれぞれ管軸方向C31,C35に沿って移動し、加熱対象の管端面31eu,35edを加熱板91の各加熱面91as,91asに面接触状態で当接させて設定温度の280℃まで加熱する。そして、所定時間経過後に、コルゲート管31及び直管部35の管端面31eu,35edが融解したら、図9Dに示すように第1保持部81及び第2保持部83を移動して、加熱板91の加熱面91as,91asからコルゲート管31及び直管部35を離す。そして、加熱板91を再度全開状態にして一対の半割部91a,91a同士の間に隙間Kを形成し、しかる後に、当該隙間Kに内パイプ41を通しながら、コルゲート管31と直管部35との間の間隔Dから一対の半割部91a,91aを引き出す。   Then, as shown in FIG. 9C, both the corrugated pipe 31 and the straight pipe part 35 are moved along the pipe axis directions C31 and C35 toward the corresponding heating surfaces 91as and 91as of the heating plate 91, respectively. The target tube end surfaces 31eu and 35ed are brought into contact with the respective heating surfaces 91as and 91as of the heating plate 91 in a surface contact state and heated to a set temperature of 280 ° C. Then, when the corrugated pipe 31 and the pipe end faces 31eu and 35ed of the straight pipe part 35 are melted after a predetermined time has passed, the first holding part 81 and the second holding part 83 are moved as shown in FIG. The corrugated pipe 31 and the straight pipe portion 35 are separated from the heating surfaces 91as, 91as. Then, the heating plate 91 is again fully opened to form a gap K between the pair of halves 91a, 91a, and then the corrugated pipe 31 and the straight pipe part while passing the inner pipe 41 through the gap K. A pair of halves 91a and 91a are pulled out from the distance D between the two.

そうしたら、図9Eに示すように、各保持部81,83の移動により、コルゲート管31及び直管部35の融解状態の各管端面31eu,35ed同士を突き合わせて所定の押圧力で押圧する。そして、この押圧状態のまま一定時間冷却する。これにより、コルゲート管31と直管部35との間には融着接合部J35が形成されて、つまり、コルゲート管31と直管部35とは融着接合される。   If it does so, as shown to FIG. 9E, by the movement of each holding | maintenance part 81 and 83, each pipe | tube end surface 31eu and 35ed of the corrugated pipe | tube 31 and the straight pipe | tube part 35 will be faced | matched and pressed by predetermined | prescribed pressing force. And it cools for a fixed time with this press state. Thereby, a fusion bonded portion J35 is formed between the corrugated tube 31 and the straight tube portion 35, that is, the corrugated tube 31 and the straight tube portion 35 are fusion bonded.

(3)外パイプ融着接合処理
次に、図7に示すように蓋部材70の各貫通孔H71,H72の大径孔部H71L,H72Lに各外パイプ43,50を融着接合する(外パイプ融着接合工程)。この融着接合には、図10Aに示すソケット型加熱板95を用いる。すなわち、この加熱板95は、蓋部材70の大径孔部H71Lの内周側に嵌合可能な外径寸法の円柱部95aと、外パイプ43の端部43dを内周側に嵌合可能な内径寸法の円筒部95bとを互いに同軸に有している。そして、蓋部材70の大径孔部H71Lの内方にソケット型加熱板95の円柱部95aを押し込んで嵌合し、且つ同加熱板95の円筒部95bの内方に外パイプ43の端部43dを押し込んで嵌合した状態にする(図10B)。なお、このとき、図10Bの縦断面図に示すように、蓋部材70の大径孔部H71Lの段差面A71に加熱板95の円柱部95aが当接するまで円柱部95aを押し込み、また、同加熱板95の円筒部95bの底面95bsに、外パイプ43の端面43edaが当接するまで外パイプ43を押し込む。そして、加熱板95の温度を設定温度の280℃まで上昇し、これにより、蓋部材70の大径孔部H71Lの内周面及び段差面A71を融解(溶融)するのと同時に、外パイプ43の外周面及び端面43edaを融解(溶融)する。そして、融解したら、図10Cに示すように加熱板95から蓋部材70及び外パイプ43を外し、しかる後に、図10Dに示すように、外パイプ43の融解状態の端部43dを貫通孔H71の大径孔部H71Lに差し込んで押圧し、この押圧状態のまま一定時間冷却する。これにより、図10Dの縦断面図に示すように蓋部材70の大径孔部H71Lの内周面と外パイプ43の外周面との間には融着接合部J43が形成されて、つまり、これら内周面と外周面とは融着接合され、また、大径孔部H71Lの段差面A71と外パイプ43の端面43edaとの間にも融着接合部J43が形成されて、つまり、段差面A71と端面43edaとは融着接合される。
(3) Outer pipe fusion bonding process Next, as shown in FIG. 7, the outer pipes 43 and 50 are fusion bonded to the large diameter holes H71L and H72L of the through holes H71 and H72 of the lid member 70 (outside Pipe fusion bonding process). For this fusion bonding, a socket-type heating plate 95 shown in FIG. 10A is used. That is, the heating plate 95 can fit the cylindrical portion 95a having an outer diameter that can be fitted to the inner peripheral side of the large-diameter hole H71L of the lid member 70 and the end portion 43d of the outer pipe 43 to the inner peripheral side. A cylindrical portion 95b having an inner diameter dimension is coaxial with each other. Then, the cylindrical portion 95a of the socket-type heating plate 95 is pushed into and fitted into the inside of the large-diameter hole H71L of the lid member 70, and the end portion of the outer pipe 43 is inward of the cylindrical portion 95b of the heating plate 95. 43d is pushed into a fitted state (FIG. 10B). At this time, as shown in the longitudinal sectional view of FIG. 10B, the cylindrical portion 95a is pushed in until the cylindrical portion 95a of the heating plate 95 comes into contact with the step surface A71 of the large-diameter hole H71L of the lid member 70. The outer pipe 43 is pushed in until the end face 43eda of the outer pipe 43 comes into contact with the bottom surface 95bs of the cylindrical portion 95b of the heating plate 95. Then, the temperature of the heating plate 95 is increased to the set temperature of 280 ° C., thereby melting (melting) the inner peripheral surface and the step surface A71 of the large-diameter hole H71L of the lid member 70, and at the same time, the outer pipe 43 The outer peripheral surface and the end surface 43eda are melted (melted). Then, after melting, the lid member 70 and the outer pipe 43 are removed from the heating plate 95 as shown in FIG. 10C, and then, as shown in FIG. 10D, the end 43d in the molten state of the outer pipe 43 is inserted into the through hole H71. The large diameter hole H71L is inserted and pressed, and cooled in this pressed state for a certain time. As a result, as shown in the longitudinal sectional view of FIG. 10D, a fusion bonded portion J43 is formed between the inner peripheral surface of the large-diameter hole H71L of the lid member 70 and the outer peripheral surface of the outer pipe 43, that is, These inner peripheral surface and outer peripheral surface are fusion bonded, and a fusion bonded portion J43 is also formed between the step surface A71 of the large-diameter hole portion H71L and the end surface 43eda of the outer pipe 43, that is, a step. The surface A71 and the end surface 43eda are fusion bonded.

そして、これと同じ処理を、もう一方の貫通孔H72の大径孔部H72L及び外パイプ50に対しても行えば、図7に示すような二つの外パイプ43,50が融着接合された蓋部材70が形成される。   Then, if the same process is performed on the large-diameter hole H72L of the other through-hole H72 and the outer pipe 50, the two outer pipes 43 and 50 as shown in FIG. 7 are fusion bonded. A lid member 70 is formed.

(4)内パイプ融着接合処理
そうしたら、同様の手順で、図7に示すように、蓋部材70の貫通孔H72の大径孔部H71Lに対して、外管30の内方に相当する方向から内パイプ41を融着接合する(内パイプ融着接合工程)。すなわち、図11A及び図11Bに示すように蓋部材70の大径孔部H71Lの内方にソケット型加熱板95の円柱部95aを押し込んで嵌合し、且つ同加熱板95の円筒部95bの内方に内パイプ41の端部41uを押し込んで嵌合した状態にする。なお、このとき、図11Bの縦断面図に示すように、蓋部材70の大径孔部H71Lの段差面A71に加熱板95の円柱部95aが当接するまで円柱部95aを押し込み、また、加熱板95の円筒部95bの底面95bsに、内パイプ41の端面41euaが当接するまで内パイプ41を押し込む。そして、加熱板95の温度を設定温度の280℃まで上昇し、これにより、蓋部材70の大径孔部H71Lの内周面及び段差面A71を融解(溶融)すると同時に、内パイプ41の外周面及び端面41euaを融解(溶融)する。そして、融解したら、図11Cに示すように加熱板95から蓋部材70及び内パイプ41を外し、しかる後に、図11Dに示すように内パイプ41の融解状態の端部41uを貫通孔H71の大径孔部H71Lに差し込んで押圧し、この押圧状態のまま一定時間冷却する。これにより、図11Dの縦断面図に示すように蓋部材70の大径孔部H71Lの内周面と内パイプ41の外周面との間には融着接合部J41が形成されて、つまり、これら内周面と外周面とは融着接合され、また、大径孔部H71Lの段差面A71と外パイプ41の端面41euaとの間にも融着接合部J41が形成されて、つまり、段差面A71と端面41euaとは融着接合される。これにより蓋部材70に内パイプ41が融着接合される。
(4) Inner pipe fusion bonding process Then, in the same procedure, as shown in FIG. 7, it corresponds to the inner side of the outer pipe 30 with respect to the large-diameter hole H71L of the through hole H72 of the lid member 70. The inner pipe 41 is fusion bonded from the direction (inner pipe fusion bonding step). That is, as shown in FIGS. 11A and 11B, the cylindrical portion 95a of the socket-type heating plate 95 is pushed into and fitted into the large-diameter hole H71L of the lid member 70, and the cylindrical portion 95b of the heating plate 95 is fitted. The end 41u of the inner pipe 41 is pushed inward to be in a fitted state. At this time, as shown in the longitudinal cross-sectional view of FIG. 11B, the cylindrical portion 95a is pushed in until the cylindrical portion 95a of the heating plate 95 comes into contact with the stepped surface A71 of the large-diameter hole H71L of the lid member 70. The inner pipe 41 is pushed in until the end face 41eua of the inner pipe 41 comes into contact with the bottom surface 95bs of the cylindrical portion 95b of the plate 95. Then, the temperature of the heating plate 95 is raised to the set temperature of 280 ° C., thereby melting (melting) the inner peripheral surface and the step surface A71 of the large-diameter hole H71L of the lid member 70 and at the same time the outer periphery of the inner pipe 41 The face and end face 41 eua are melted (melted). After melting, the lid member 70 and the inner pipe 41 are removed from the heating plate 95 as shown in FIG. 11C, and then the end 41u of the inner pipe 41 in the molten state is inserted into the large through hole H71 as shown in FIG. 11D. It inserts and presses into the diameter hole part H71L, and it cools for a fixed time with this press state. As a result, as shown in the longitudinal sectional view of FIG. 11D, a fusion bonded portion J41 is formed between the inner peripheral surface of the large-diameter hole H71L of the lid member 70 and the outer peripheral surface of the inner pipe 41, that is, These inner peripheral surface and outer peripheral surface are fusion bonded, and a fusion bonded portion J41 is also formed between the step surface A71 of the large-diameter hole H71L and the end surface 41eua of the outer pipe 41. The surface A71 and the end surface 41eua are fusion bonded. As a result, the inner pipe 41 is fusion bonded to the lid member 70.

(5)蓋部材融着接合処理
最後に、図7に示すように、直管部35と蓋部材70とを融着接合する(蓋部材融着接合工程)。この場合も、前述の融着接合装置80を用いる。すなわち、図12Aに示すように第1保持部81に直管部35を保持させ、第2保持部83に蓋部材70を保持させる。そして、第2保持部83を第1保持部81の方に移動して、蓋部材70の融着接合対象部たる下面の周縁部70edと、直管部35の融着接合対象部たる管端面(縁部)35euとの両者が、互いの間に間隔Dをもって対向した状態にする。
(5) Lid Member Fusion Joining Process Finally, as shown in FIG. 7, the straight pipe part 35 and the lid member 70 are fused and joined (lid member fusion joining process). Also in this case, the above-described fusion bonding apparatus 80 is used. That is, as shown in FIG. 12A, the straight pipe part 35 is held by the first holding part 81 and the lid member 70 is held by the second holding part 83. And the 2nd holding | maintenance part 83 is moved toward the 1st holding | maintenance part 81, the peripheral edge part 70ed of the lower surface which is a fusion | bonding joining object part of the cover member 70, and the pipe end surface which is a fusion | fusion joining object part of the straight pipe part 35 Both (edge) 35 eu are opposed to each other with a distance D therebetween.

そうしたら、図12Bに示すように、前述の半割構造の加熱板91を間隔Dに挿入する。すなわち、図12Aに示すように一対の半割部91a,91aを全開状態にすることにより、一対の半割部91a,91a同士の間に隙間Kを形成し、そして、当該隙間Kに内パイプ41を通しながら、当該一対の半割部91a,91aを上述の間隔Dへと挿入していき、一対の半割部91a,91aの円孔H91の内方に内パイプ41が位置したら、挿入動作を停止する。そして、一対の半割部91a,91aを閉じることにより図12Bのような隙間Kが閉じた全閉状態にし、これにより、円環形状の加熱板91の円孔H91に内パイプ41が通った状態となる。   Then, as shown in FIG. 12B, the heating plate 91 having the half structure described above is inserted into the interval D. That is, as shown in FIG. 12A, the pair of halves 91a and 91a are fully opened, so that a gap K is formed between the pair of halves 91a and 91a. 41, the pair of halves 91a, 91a are inserted into the above-mentioned distance D, and when the inner pipe 41 is positioned inside the circular hole H91 of the pair of halves 91a, 91a, Stop operation. Then, by closing the pair of halves 91a and 91a, the gap K as shown in FIG. 12B is closed, and the inner pipe 41 passes through the circular hole H91 of the annular heating plate 91. It becomes a state.

そうしたら、図12Cに示すように加熱板91の対応する加熱面91as,91asへ向けて、蓋部材70及び直管部35の両者をそれぞれ蓋部材70の円柱軸方向C70及び管軸方向C35に沿って移動し、加熱対象の周縁部70ed及び管端面35euを加熱板91の各加熱面91as,91asに面接触状態で当接させて設定温度の280℃まで加熱する。そして、所定時間経過後に、蓋部材70の周縁部70ed及び直管部35の管端面35euが融解したら、図12Dに示すように第1保持部81及び第2保持部83を移動して、加熱板91の加熱面91as,91asから蓋部材70及び直管部35を離す。そして、加熱板91を再度全開状態にして一対の半割部91a,91a同士の間に隙間Kを形成し、しかる後に、当該隙間Kに内パイプ41を通しながら、直管部35と蓋部材70との間の間隔Dから一対の半割部91a,91aを引き出す。   Then, as shown in FIG. 12C, both the lid member 70 and the straight pipe portion 35 are moved toward the corresponding heating surfaces 91as and 91as of the heating plate 91 in the cylindrical axis direction C70 and the pipe axis direction C35 of the lid member 70, respectively. Then, the peripheral edge portion 70ed and the pipe end surface 35eu to be heated are brought into contact with the respective heating surfaces 91as and 91as of the heating plate 91 in a surface contact state and heated to a set temperature of 280 ° C. Then, after the predetermined time has elapsed, when the peripheral edge portion 70ed of the lid member 70 and the pipe end surface 35eu of the straight pipe portion 35 are melted, the first holding portion 81 and the second holding portion 83 are moved as shown in FIG. The lid member 70 and the straight pipe portion 35 are separated from the heating surfaces 91as, 91as of the plate 91. Then, the heating plate 91 is again fully opened to form a gap K between the pair of halves 91a and 91a, and then the straight pipe 35 and the lid member are passed through the inner pipe 41 through the gap K. The pair of halves 91a and 91a are pulled out from the distance D between the two.

そうしたら、図12Eに示すように、各保持部81,83の移動により、蓋部材70の融解状態の周縁部70edと直管部35の融解状態の管端面35euとを突き合わせて所定の押圧力で押圧する。そして、この押圧状態のまま一定時間冷却する。これにより、蓋部材70と直管部35との間には融着接合部J70が形成されて、つまり、蓋部材70と直管部35とは融着接合される。   Then, as shown in FIG. 12E, by moving the holding portions 81 and 83, the melted peripheral edge portion 70ed of the lid member 70 and the melted tube end surface 35eu of the straight pipe portion 35 are brought into contact with each other with a predetermined pressing force. Press. And it cools for a fixed time with this press state. Thereby, a fusion bonded portion J70 is formed between the lid member 70 and the straight pipe portion 35, that is, the lid member 70 and the straight pipe portion 35 are fusion bonded.

そして、以上をもって、図7に示すような全構成要素30(31,35),40(41,43),50,60,70を具備した地中熱交換器21が完成する。   With the above, the underground heat exchanger 21 having all the components 30 (31, 35), 40 (41, 43), 50, 60, 70 as shown in FIG. 7 is completed.

===その他の実施の形態===
以上、本発明の実施形態について説明したが、上記の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。また、本発明は、その趣旨を逸脱することなく、変更や改良され得ると共に、本発明にはその等価物が含まれるのはいうまでもない。例えば、以下に示すような変形が可能である。
=== Other Embodiments ===
As mentioned above, although embodiment of this invention was described, said embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention. Further, the present invention can be changed or improved without departing from the gist thereof, and needless to say, the present invention includes equivalents thereof. For example, the following modifications are possible.

上述の実施形態では、コルゲート管31、直管部35、キャップ部材60、蓋部材70、内パイプ41、外パイプ43、及び外パイプ50の全構成の素材として高密度ポリエチレン(例えば、密度が938kg/m以上のポリエチレン、より狭義には、密度が942kg/m以上のポリエチレン)を例示した。そして、これにより、地中熱交換器21を構成する全構成要素31,35,60,70,41,43,50を同素材に揃えていたが、何等これに限るものではない。すなわち、加熱により軟化・溶融し冷却により固化等して融着接合可能な熱可塑性樹脂であれば、互いに同素材でなくても良い。但し、何れも同素材に揃っている方が、融着接合部J35,J60,J70,J41,J43,J50の成分系が母材とほぼ同一になって、その強度も母材並となるので、同素材に揃える方が望ましい。 In the above-described embodiment, high-density polyethylene (for example, a density of 938 kg) is used as the material of the entire configuration of the corrugated pipe 31, the straight pipe portion 35, the cap member 60, the lid member 70, the inner pipe 41, the outer pipe 43, and the outer pipe 50. / M 3 or higher polyethylene, and more narrowly, polyethylene having a density of 942 kg / m 3 or higher). As a result, all the constituent elements 31, 35, 60, 70, 41, 43, and 50 constituting the underground heat exchanger 21 are arranged in the same material, but the present invention is not limited to this. That is, as long as the thermoplastic resins are softened / melted by heating and solidified by cooling, etc., and can be fusion bonded, they need not be the same material. However, if all of them are made of the same material, the component system of the fusion bonded portions J35, J60, J70, J41, J43, and J50 is almost the same as that of the base material, and the strength thereof is comparable to that of the base material. It is better to use the same material.

上述の実施形態では、図3に示すように、外管30の本体としてのコルゲート管31の上方に直管部35を備えていたが、何等これに限るものではなく、直管部35は無くても良い。その場合には、図13に示すように、コルゲート管31の上端部31bに直接蓋部材70が融着接合されることに伴って直管部融着接合工程が省略されて、製造工程の簡素化を図れる。但し、地盤Gの表層部に埋設されるべき外管30の上部30uが、直管部35と比較して薄肉のコルゲート管31に変わることから、当該外管30の上部30u(31b)の拡径変形を抑制する処置が別途必要になる。この処置の一例としては、同図13に示すような処置が挙げられる。すなわち、地面の掘削孔23に地中熱交換器21を建て込み後に、外管30と掘削孔23との間の空間SP23に川砂等の充填材を充填する際に、外管30の上部30uに対応する空間SP23uにだけ上述の充填材27に代えて、ソイルセメントやコンクリート等のセメント系材料29(拘束部材に相当)を打設する。そして、当該セメント系材料29で外管30の上部30uを外周面から覆って固めることにより、外管30の上部30uを拡径変形不能に拘束すれば良い。   In the above-described embodiment, as shown in FIG. 3, the straight pipe portion 35 is provided above the corrugated pipe 31 as the main body of the outer pipe 30. However, the present invention is not limited to this, and there is no straight pipe portion 35. May be. In that case, as shown in FIG. 13, the straight pipe part fusion joining step is omitted as the lid member 70 is fused and joined directly to the upper end portion 31 b of the corrugated pipe 31, thereby simplifying the manufacturing process. Can be realized. However, since the upper portion 30u of the outer tube 30 to be embedded in the surface layer portion of the ground G is changed to a thin corrugated tube 31 as compared with the straight tube portion 35, the upper portion 30u (31b) of the outer tube 30 is expanded. A separate measure for suppressing radial deformation is required. An example of this treatment is a treatment as shown in FIG. That is, when the underground heat exchanger 21 is installed in the ground excavation hole 23 and the space SP23 between the outer pipe 30 and the excavation hole 23 is filled with a filler such as river sand, the upper portion 30u of the outer pipe 30. Instead of the filler 27 described above, a cement-based material 29 (corresponding to a restraining member) such as soil cement or concrete is placed only in the space SP23u corresponding to. Then, the upper portion 30u of the outer tube 30 is covered with the cement material 29 from the outer peripheral surface and hardened, so that the upper portion 30u of the outer tube 30 may be constrained so as not to be expanded.

上述の実施形態では、蓋部材70と二本の外パイプ43,50とを互いに別体として成型し、蓋部材70にこれら外パイプ43,50を融着接合して一体化していたが、何等これに限るものではない。すなわち、原料たる熱可塑性樹脂のチップを溶融して蓋部材70を成型する際に、蓋部材70と一体に外パイプ43,50も成型できるのであれば、そのようにしても良い。なお、その場合には、当然ながら、前述した地中熱交換器21の製造工程では、外パイプ43,50を蓋部材70に融着接合する外パイプ融着接合処理が無くなることになるが、内パイプを41蓋部材70に融着接合する内パイプ融着接合処理は無くならない。   In the above-described embodiment, the lid member 70 and the two outer pipes 43 and 50 are molded separately from each other, and the outer pipes 43 and 50 are fused and joined to the lid member 70. This is not a limitation. That is, if the outer pipes 43 and 50 can be molded integrally with the lid member 70 when the lid member 70 is molded by melting a thermoplastic resin chip as a raw material, it may be so. In this case, as a matter of course, in the manufacturing process of the underground heat exchanger 21 described above, the outer pipe fusion bonding process for fusion bonding the outer pipes 43 and 50 to the lid member 70 is eliminated. The inner pipe fusion bonding process for fusion bonding the inner pipe to the 41 lid member 70 is not lost.

上述の実施形態では、キャップ部材60の一例として、円筒部61と円柱部62と円錐台部63とを一体に有した部材を示したが、閉鎖形状の部材であれば何等これに限るものではなく、単なる円筒部材であっても良い。   In the above-described embodiment, as an example of the cap member 60, the member having the cylindrical portion 61, the columnar portion 62, and the truncated cone portion 63 is shown as an example. However, the cap member 60 is not limited to this as long as it is a closed shape member. Instead, it may be a simple cylindrical member.

上述の実施形態では、コルゲート管31内の熱媒体26の流れ方向を鉛直方向にした垂直方式の地中熱交換器21を例示したが、何等これに限るものではなく、水平方式でも良い。すなわち、水平方向に広い掘削孔内に、コルゲート管31の管軸方向C31を水平にしながら収容し、これにより、コルゲート管31内の熱媒体26の流れ方向を水平方向にしても良い。なお、掘削孔に収容後は、充填材27により埋め戻されるのは言うまでもない。   In the above-described embodiment, the vertical type underground heat exchanger 21 in which the flow direction of the heat medium 26 in the corrugated pipe 31 is set to the vertical direction is illustrated, but the invention is not limited to this, and a horizontal method may be used. That is, the corrugated pipe 31 may be accommodated in a horizontal excavation hole while the pipe axis direction C31 of the corrugated pipe 31 is horizontal, and thereby the flow direction of the heat medium 26 in the corrugated pipe 31 may be horizontal. Needless to say, the material is backfilled with the filler 27 after being accommodated in the excavation hole.

上述の実施形態では、地中熱交換器21の製造方法の一例として、内パイプ挿入工程、コルゲート管巻き取り工程、キャップ部材融着接合工程、直管部融着接合工程、外パイプ融着接合工程、内パイプ融着接合工程、及び蓋部材融着接合工程を有し、且つ、この順番で各工程を行っていたが、順番は何等これに限るものではない。
例えば、外パイプ融着接合工程は、蓋部材融着接合工程と同タイミングにしなければ、任意のタイミングで行うことができる。すなわち、直管部融着接合工程以前に行っても良いし、内パイプ融着接合工程と蓋部材融着接合工程との間や、蓋部材融着接合工程よりも後に行っても良い。また、キャップ部材融着接合工程も、何等上述のタイミングで行う必要はなく、任意のタイミングで行うことができる。更に、直管部融着接合工程は、蓋部材融着接合工程の後に行っても良い。
In the above-mentioned embodiment, as an example of the manufacturing method of the underground heat exchanger 21, an inner pipe insertion step, a corrugated tube winding step, a cap member fusion bonding step, a straight pipe portion fusion bonding step, an outer pipe fusion bonding Although the process, the inner pipe fusion bonding process, and the lid member fusion bonding process are included and each process is performed in this order, the order is not limited to this.
For example, the outer pipe fusion bonding step can be performed at an arbitrary timing unless the same timing as the lid member fusion bonding step. That is, it may be performed before the straight pipe portion fusion bonding step, or may be performed between the inner pipe fusion bonding step and the lid member fusion bonding step or after the lid member fusion bonding step. Further, the cap member fusion bonding step need not be performed at any timing described above, and can be performed at an arbitrary timing. Further, the straight pipe part fusion bonding step may be performed after the lid member fusion bonding step.

上述の実施形態では、外管30の本体としてコルゲート管31を例示したが、外管30はコルゲート管31に限るものではない。例えば、管壁形状が凸凹の無い平滑形状の所謂ストレート管でも良い。   In the above-described embodiment, the corrugated pipe 31 is exemplified as the main body of the outer pipe 30, but the outer pipe 30 is not limited to the corrugated pipe 31. For example, the tube wall may be a so-called straight tube having a smooth shape with no irregularities.

1 建物、11 地中熱利用システム、15 ヒートポンプ、
17 地上循環ポンプ、21 地中熱交換器、
23 竪孔(掘削孔)、26 熱媒体、27 充填材、
29 セメント系材料(拘束部材)、
30 外管、30a 外管内の下端部、30b 外管内の上端部、
30eu 上端部、30u 上部、
31 コルゲート管、31a 下端部(管端部)、31b 上端部(管端部)、
31ed 縁部(管端面)、31eu 縁部(管端面)、
35 直管部(管状頭部)、35ed 下端縁部(管端面)、
35eu 上端縁部(管端面、管端部)、
40 第1流路形成部材、40ed 管端開口、
41 内パイプ(内管)、41d 下端部、41eua 上端面、1u 上端部、
43 外パイプ(第1管部材)、43d 下端部、43eda 下端面、
50 第2流路形成部材(第2管部材、外パイプ)、50d 下端部、
50ed 管端開口、50eda 下端面、
60 キャップ部材、61 円筒部、61eu 上端縁部、
62 円柱部、63 円錐台部、
70 蓋部材、70ed 周縁部、
80 融着接合装置、81第1保持部、83 第2保持部、
85 ガイドレール、
87 加熱板、87a 加熱面(板面)、
91 加熱板、91a 半割部、91as 加熱面、92 ヒンジ部、
95 ソケット型加熱板、95a 円柱部、95b 円筒部、95bs 底面、
A71 段差面、A72 段差面、
H71 貫通孔、H71L 大径孔部、H71S 小径孔部、
H72 貫通孔(第2貫通孔)、H72L 大径孔部、H72S 小径孔部、
H91 円孔、
J35 融着接合部、J41 融着接合部、J43 融着接合部、
J50 融着接合部、J60 融着接合部、J70 融着接合部、
SP23 空間、SP23u 空間、G 地盤、
1 building, 11 geothermal heat utilization system, 15 heat pump,
17 Ground circulation pump, 21 Ground heat exchanger,
23 hole (drilling hole), 26 heating medium, 27 filler,
29 Cement-based material (restraint member),
30 outer pipe, 30a lower end in the outer pipe, 30b upper end in the outer pipe,
30eu upper end, 30u upper part,
31 Corrugated tube, 31a Lower end (pipe end), 31b Upper end (pipe end),
31ed edge (tube end face), 31eu edge (tube end face),
35 straight pipe part (tubular head), 35ed lower end edge (pipe end face),
35eu upper edge (tube end surface, tube end),
40 first flow path forming member, 40ed pipe end opening,
41 inner pipe (inner pipe), 41d lower end, 41 eua upper end surface, 1u upper end,
43 outer pipe (first pipe member), 43d lower end, 43eda lower end surface,
50 second flow path forming member (second pipe member, outer pipe), 50d lower end,
50ed pipe end opening, 50eda lower end surface,
60 cap member, 61 cylindrical portion, 61eu upper edge,
62 cylindrical part, 63 frustum part,
70 lid member, 70ed peripheral edge,
80 fusion bonding apparatus, 81 first holding part, 83 second holding part,
85 guide rails,
87 heating plate, 87a heating surface (plate surface),
91 heating plate, 91a half part, 91as heating surface, 92 hinge part,
95 socket type heating plate, 95a cylindrical part, 95b cylindrical part, 95bs bottom face,
A71 step surface, A72 step surface,
H71 through hole, H71L large diameter hole, H71S small diameter hole,
H72 through hole (second through hole), H72L large diameter hole, H72S small diameter hole,
H91 hole,
J35 fusion joint, J41 fusion joint, J43 fusion joint,
J50 fusion joint, J60 fusion joint, J70 fusion joint,
SP23 space, SP23u space, G ground,

Claims (5)

地盤に埋設される外管内に内管が挿入されて、前記外管内及び前記内管内に熱媒体が流されてなる二重管構造の地中熱交換器であって、
前記地盤の掘削孔内に配される可撓性の熱可塑性樹脂製の前記外管と、
前記外管の一方の管端部に設けられ、前記管端部を水密に封止する熱可塑性樹脂製のキャップ部材と、
前記外管の他方の管端部に設けられ、前記管端部を水密に封止する熱可塑性樹脂製の蓋部材と、
前記外管内に挿入された可撓性の熱可塑性樹脂製の前記内管と、を有し、
前記外管の一方の管端部の母材と、前記キャップ部材の母材とは、互いに溶け合って固化した状態になっており、
前記外管の他方の管端部の母材と、前記蓋部材の母材とは、互いに溶け合って固化した状態になっており、
前記内管の管端部は、前記蓋部材に穿孔形成された前記熱媒体の流路をなす貫通孔に差し込まれた状態であり、水密に前記蓋部材に接合されており、
前記内管の管端部の母材と、前記蓋部材の母材とは、互いに溶け合って固化した状態になっていることを特徴とする二重管構造の地中熱交換器。
An underground heat exchanger having a double tube structure in which an inner tube is inserted into an outer tube embedded in the ground, and a heat medium is flowed into the outer tube and the inner tube,
The outer tube made of a flexible thermoplastic resin disposed in the excavation hole of the ground;
A cap member made of a thermoplastic resin that is provided at one end of the outer tube and seals the end of the tube in a water-tight manner;
A lid member made of a thermoplastic resin that is provided at the other pipe end of the outer pipe and seals the pipe end in a water-tight manner;
The inner tube made of a flexible thermoplastic resin inserted into the outer tube,
The base material of one tube end of the outer tube and the base material of the cap member are in a state of being melted and solidified with each other,
The base material of the other tube end of the outer tube and the base material of the lid member are in a state of being melted and solidified with each other,
The tube end of the inner tube is in a state inserted into a through-hole that forms a flow path of the heat medium perforated in the lid member, and is joined to the lid member in a watertight manner .
The double pipe structure underground heat exchanger , wherein the base material of the pipe end portion of the inner pipe and the base material of the lid member are melted and solidified .
請求項1に記載の二重管構造の地中熱交換器であって、
前記外管は、その管軸を鉛直方向に沿わせつつ前記掘削孔内に配され、
前記外管は、その本体としてのコルゲート管と、該コルゲート管の上端部に同軸且つ水密に接合された熱可塑性樹脂製の管状頭部と、を有し、
前記コルゲート管の母材と、前記管状頭部の母材とは、互いに溶け合って固化した状態になっており、
前記管状頭部の上端の管端部に前記蓋部材が接合されて、前記管状頭部の前記管端部が前記蓋部材によって水密に封止されており、
前記管状頭部の上端の管端部の母材と、前記蓋部材の母材とは、互いに溶け合って固化した状態になっており、
前記管状頭部は、前記地盤の表層部に位置しており、
前記管状頭部の管壁の厚さは、前記コルゲート管の管壁の厚さよりも厚いことを特徴とする二重管構造の地中熱交換器。
The underground heat exchanger having a double-pipe structure according to claim 1,
The outer pipe is arranged in the excavation hole with its pipe axis along the vertical direction,
The outer tube has a corrugated tube as a main body thereof, and a tubular head portion made of a thermoplastic resin that is coaxially and watertightly joined to an upper end portion of the corrugated tube,
The base material of the corrugated tube and the base material of the tubular head are in a state of being melted together and solidified,
The lid member is joined to the tube end of the upper end of the tubular head, and the tube end of the tubular head is sealed watertight by the lid member,
The base material of the tube end at the upper end of the tubular head and the base material of the lid member are in a state of being melted together and solidified,
The tubular head is located in a surface layer of the ground;
The double walled underground heat exchanger is characterized in that the thickness of the tube wall of the tubular head is thicker than the thickness of the tube wall of the corrugated tube.
請求項1又は2に記載の二重管構造の地中熱交換器であって、
前記外管は、その管軸を鉛直方向に沿わせつつ前記掘削孔内に配され、
前記外管の上部が埋設されている前記地盤の表層部には、前記外管の拡径変形を拘束する拘束部材が前記外管の外周面を覆って設けられていることを特徴とする二重管構造の地中熱交換器。
A ground heat exchanger having a double-pipe structure according to claim 1 or 2,
The outer pipe is arranged in the excavation hole with its pipe axis along the vertical direction,
The surface layer portion of the ground in which the upper portion of the outer pipe is buried is provided with a restraining member for restraining the diameter expansion deformation of the outer pipe so as to cover the outer peripheral surface of the outer pipe. Underground heat exchanger with heavy pipe structure.
請求項1乃至3の何れかに記載の二重管構造の地中熱交換器であって、
前記蓋部材の前記貫通孔に対して、前記外管の外方から熱可塑性樹脂製の第1管部材の管端部を差し込んだ状態で、前記蓋部材と前記第1管部材の前記管端部とは水密に接合されており、
前記蓋部材の母材と、前記第1管部材の前記管端部の母材とは、互いに溶け合って固化した状態になっており、
前記蓋部材は、前記貫通孔に加えて、前記熱媒体の流路をなす第2貫通孔を有し、
前記第2貫通孔に対して、前記外管の外方から熱可塑性樹脂製の第2管部材の管端部を差し込んだ状態で、前記蓋部材と前記第2管部材の前記管端部とは水密に接合されており、
前記蓋部材の母材と、前記第2管部材の前記管端部の母材とは、互いに溶け合って固化した状態になっており、
前記第1管部材及び前記第2管部材のうちのどちらか一方の管部材が、外部から前記熱媒体を前記外管内へ供給し、他方の管部材が、前記外管内から前記外部へと前記熱媒体を排出することを特徴とする二重管構造の地中熱交換器。
A ground heat exchanger having a double-pipe structure according to any one of claims 1 to 3,
The tube end of the lid member and the first tube member with the tube end portion of the first tube member made of thermoplastic resin inserted from the outside of the outer tube into the through hole of the lid member. The part is watertightly joined ,
The base material of the lid member and the base material of the pipe end portion of the first pipe member are in a state of being melted and solidified,
The lid member has, in addition to the through hole, a second through hole that forms a flow path of the heat medium,
With the tube end of the second tube member made of thermoplastic resin inserted from the outside of the outer tube into the second through hole, the lid member and the tube end of the second tube member Are watertightly joined
The base material of the lid member and the base material of the pipe end portion of the second pipe member are in a state of being melted together and solidified,
Either one of the first tube member and the second tube member supplies the heat medium from the outside into the outer tube, and the other tube member moves from the outer tube to the outside. A double-pipe underground heat exchanger characterized by discharging a heat medium.
請求項4に記載の二重管構造の地中熱交換器であって、
前記外管、前記キャップ部材、前記蓋部材、前記内管、前記第1管部材、及び前記第2管部材の何れも高密度ポリエチレン製であることを特徴とする二重管構造の地中熱交換器。
The underground heat exchanger having a double-pipe structure according to claim 4,
The outer pipe, the cap member, the lid member, the inner pipe, the first pipe member, and the second pipe member are all made of high-density polyethylene, and the underground heat having a double pipe structure Exchanger.
JP2011253100A 2011-11-18 2011-11-18 Double pipe structure underground heat exchanger Active JP5857664B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011253100A JP5857664B2 (en) 2011-11-18 2011-11-18 Double pipe structure underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011253100A JP5857664B2 (en) 2011-11-18 2011-11-18 Double pipe structure underground heat exchanger

Publications (2)

Publication Number Publication Date
JP2013108658A JP2013108658A (en) 2013-06-06
JP5857664B2 true JP5857664B2 (en) 2016-02-10

Family

ID=48705592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011253100A Active JP5857664B2 (en) 2011-11-18 2011-11-18 Double pipe structure underground heat exchanger

Country Status (1)

Country Link
JP (1) JP5857664B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3044078B1 (en) * 2015-11-24 2020-01-10 Brgm CLOSED HIGH TEMPERATURE AND HIGH PRESSURE GEOTHERMAL EXCHANGER FOR MAGMATIC OR METAMORPHIC FORMATION
DE102016109063A1 (en) * 2016-05-17 2017-11-23 Anton LEDWON Geothermal probe and method for adjusting the length of a geothermal probe
JP6260977B1 (en) * 2016-10-26 2018-01-17 株式会社エコ・プランナー Ground heat exchange device and method for constructing liquid storage tank for ground heat exchange device
JP6762847B2 (en) * 2016-10-31 2020-09-30 鹿島建設株式会社 How to place concrete
CN107192063A (en) * 2017-07-10 2017-09-22 陕西德龙地热开发有限公司 A kind of hot heat exchanging holes of utilization mid-deep strata interference-free rock make the System and method for of Cooling and Heat Source
CN109631622B (en) * 2018-12-17 2020-03-10 重庆华森制药股份有限公司 Water cooling circulation structure for double-effect concentration recovery unit cooler
CN113552167B (en) * 2021-07-14 2023-05-30 安徽省煤田地质局第三勘探队 System and method for testing soil thermal response of shallow sleeve heat exchanger

Also Published As

Publication number Publication date
JP2013108658A (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5857664B2 (en) Double pipe structure underground heat exchanger
JP5857663B2 (en) Manufacturing method of underground heat exchanger with double pipe structure
JP5780128B2 (en) Manufacturing method of underground heat exchanger with double pipe structure
KR100906194B1 (en) Drainage structure of tunnel, and its construction method, and sleeve socket used for the same
JP5867001B2 (en) Underground heat exchanger
WO2018167736A2 (en) Method for lining by electrofusion joints of on-shore pipelines used for conveying fluids, formed by pipes externally lined with polyurethane foam and covered or enveloped with polyethylene sheets, and joint produced by this method
JP2010014359A (en) Method and structure for burying ground heat exchanger tube
JP2014109180A (en) Foundation pile with heat exchange piping and method for burying the same
JP5659766B2 (en) Method of installing pipe member related to underground heat exchanger in ground excavation hole
CN104864176A (en) Mounting method of steel-plastic composite pipeline for gathering and transportation in oil field
JP2014020645A (en) Holding member
JP5659742B2 (en) Underground heat exchanger
JP2017040469A (en) Method for inserting underground heat exchanger
CN113833167A (en) Pipeline wall penetrating device for integration of heat insulation structure and manufacturing and construction process thereof
JP6232962B2 (en) How to build pipe members
CN203686450U (en) Socket and spigot connector used for steel strip reinforced polyethylene spiral corrugated pipe
CN106013089A (en) High-fault-tolerance and recoverable steel pile cup joint method
CN103774738B (en) The laying method of refuse landfill HDPE floral tube
JP2014020644A (en) Underground heat exchanger, and method of inserting underground heat exchanger
JP6664153B2 (en) Steel pipe sheet pile connection structure
JP3190487U (en) Rotating jig for heat exchange pile
JP2012112215A (en) Lining material and repair method of lining wall
JP4628409B2 (en) Seismic retrofitting method for existing pipe manhole connections
JP5533620B2 (en) Method of installing U-shaped pipe in ground excavation hole for underground heat exchanger
CN213574105U (en) Tunnel lining pipe sheet ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151130

R150 Certificate of patent or registration of utility model

Ref document number: 5857664

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150