JP2018179874A - レーダ信号処理器及びレーダシステム - Google Patents

レーダ信号処理器及びレーダシステム Download PDF

Info

Publication number
JP2018179874A
JP2018179874A JP2017082876A JP2017082876A JP2018179874A JP 2018179874 A JP2018179874 A JP 2018179874A JP 2017082876 A JP2017082876 A JP 2017082876A JP 2017082876 A JP2017082876 A JP 2017082876A JP 2018179874 A JP2018179874 A JP 2018179874A
Authority
JP
Japan
Prior art keywords
frequency
chirp
signal
radar
demodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017082876A
Other languages
English (en)
Other versions
JP6717254B2 (ja
Inventor
智敏 村上
Tomotoshi Murakami
智敏 村上
延正 長谷川
Nobutada Hasegawa
延正 長谷川
善行 宇田川
Yoshiyuki Udagawa
善行 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017082876A priority Critical patent/JP6717254B2/ja
Priority to PCT/JP2018/009009 priority patent/WO2018193746A1/ja
Priority to CN201880006009.XA priority patent/CN110168397B/zh
Publication of JP2018179874A publication Critical patent/JP2018179874A/ja
Priority to US16/396,977 priority patent/US10955527B2/en
Application granted granted Critical
Publication of JP6717254B2 publication Critical patent/JP6717254B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/156One or more switches are realised in the feedback circuit of the amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/267A capacitor based passive circuit, e.g. filter, being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/333A frequency modulator or demodulator being used in the amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/375Circuitry to compensate the offset being present in an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Amplifiers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

【課題】DCオフセットを性能良く低減できるようにしたレーダ信号処理器を提供する。【解決手段】レーダ信号処理器は、ターゲットに反射されたレーダ波の信号をチャープ周波数に応じて周波数変換して復調する周波数変換部18と、周波数変換部の後段に接続される可変増幅部23と、可変増幅部の出力を検出し当該検出信号に含まれる周波数帯の信号を可変増幅部の入力にフィードバックするフィードバック部24とを備えた中間周波数増幅器19を備える。中間周波数増幅器は、周波数変換部を用いてチャープ周波数により復調開始してから第1所定期間、又は/及び、復調終了してから第2所定期間を定めた規定期間において周波数変換部により周波数変換されるときに生じるDCオフセット過渡応答周波数を含む周波数帯をカットし規定期間以外の期間には周波数帯をカットしない。【選択図】図2

Description

本発明は、レーダ波の受信信号を周波数変換した信号を波形整形するレーダ信号処理器及びレーダシステムに関する。
近年、衝突防止や自動運転などの技術が数多く提案されており、レーダ技術を使用して自装置から物標までの距離を測定する技術が注目されている。例えば出願人は、自装置から物標までの距離を測定する装置として自動車用のミリ波帯レーダ装置を提案している。このレーダ装置の内部には各種電子部品が組み込まれるが、その電子部品の中には、例えば受信時にレーダ波の信号を周波数変換し、その後、波形整形するレーダ信号処理器が使用されている。
特開2008−172729号公報
レーダシステムは、例えば時間変化に伴い受信機のローカル信号の周波数を線形的に増加又は減少(漸増又は漸減と称す)することでターゲットに関する情報(例えばターゲットまでの距離とその相対速度)を検出するように構成されるものがあり、この構成の場合、周波数変換器を用いてレーダ波の反射信号を中間周波数帯(所謂IF帯)の周波数に変換して各種処理を行う。
発明者は、この周波数変換器によりダイレクトコンバージョン方式により周波数変換するときに生じるDCオフセットを問題視しており、特にチャープ開始又は終了するときにDCオフセットを大きく生じることを突き止めている。このDCオフセットは受信性能を劣化させる要因となるため好ましくない。
DCオフセット低減技術は、例えば、特許文献1に示されるように携帯電話の技術分野では開発されているものの、レーダシステムにそのまま適用することができない。レーダの技術分野の中で必要とされるIF帯は極低周波であり、この極低周波帯の信号を取得するためにハイパスフィルタを用いた場合には、ハイパスフィルタの時定数を大幅に大きく設定しなければならず実用的ではない。例えば、特許文献1等に開示されるAC結合型のハイパスフィルタの構成を用いると大面積の容量素子が必要となり、小型化、高集積化に不向きとなっている。
本開示の目的は、DCオフセットを性能良く低減できるようにしたレーダ信号処理器を提供することにある。
請求項1記載の発明は、漸増/漸減するチャープ周波数に応じたレーダ波をターゲットに送信する送信部、及び、前記ターゲットに反射されたレーダ波の信号を前記チャープ周波数に応じて周波数変換する周波数変換部、を備えたレーダシステムに構成されたレーダ信号処理器である。この請求項1記載の発明の増幅部は、可変増幅部及びフィードバック部を備えており、可変増幅部は周波数変換部の後段に接続されており周波数変換部の出力を可変増幅し、フィードバック部は、可変増幅部の出力を検出し当該検出信号に含まれる周波数帯の信号を可変増幅部の入力にフィードバックするように構成されている。
増幅部は、周波数変換部を用いてチャープ周波数により復調開始してから第1所定期間、又は/及び、当該復調終了してから第2所定期間を定めた規定期間において周波数変換部により周波数変換されるときに生じるDCオフセット過渡応答周波数を含む周波数帯をカットし規定期間以外の期間には周波数帯をカットしないように構成される。これにより、DCオフセットを性能良く低減できる。
第1実施形態におけるレーダシステムの電気的構成図 レーダ信号処理器及び制御回路の一部を示す電気的構成図(その1) チャープ周波数の変化例 チャープ開始する付近でマスク期間を設定するための制御パルスの作成方法を概略的に示すタイミングチャート チャープ終了する付近でマスク期間を設定するための制御パルスの作成方法を概略的に示すタイミングチャート チャープ開始及び終了する付近でマスク期間を設定するための制御パルスの作成方法を概略的に示すタイミングチャート 比較例について示すDCオフセットのシミュレーション結果((a)は時間変化を示すタイミングチャート、(b)は周波数成分) DCオフセットを抑圧したシミュレーション結果((a)は時間変化を示すタイミングチャート、(b)は周波数成分) 第2実施形態におけるレーダ信号処理器及び制御回路の一部を示す電気的構成図(その2) レーダ信号処理器及び制御回路の一部を示す電気的構成図(その3) レーダ信号処理器及び制御回路の一部を示す電気的構成図(その4) 第3実施形態におけるレーダ信号処理器及び制御回路の一部を示す電気的構成図 第4実施形態におけるレーダ信号処理器及び制御回路の一部を示す電気的構成図 チャープ終了後にチャープ開始するまでマスク期間を設定するための制御パルスの作成方法を概略的に示すタイミングチャート 自レーダシステムの処理を概略的に示すフローチャート チャープ開始及び終了する付近でマスク期間を設定した場合の他のレーダシステムの到来波との区別方法を概略的に示すタイミングチャート 比較例について他のレーダシステムからの到来波を検出する際のDCオフセット成分を概略的に示すタイミングチャート
以下、レーダ信号処理器及びレーダシステムの幾つかの実施形態について図面を参照しながら説明する。以下に説明する各実施形態において、同一又は類似の動作を行う構成については、同一又は類似の符号を付して必要に応じて説明を省略する。なお、下記の実施形態において同一又は類似する構成には、符号の十の位と一の位とに同一符号を付して説明を行っている。以下では、ミリ波レーダシステムに適用した形態を説明する。
(第1実施形態)
図1から図8は第1実施形態の説明図を示している。図1は全体システムの構成を概略的に示している。このミリ波レーダシステム1は、例えば車両前方にレーダ波を送信可能に搭載され、ミリ波(例えば80GHz帯:76.5GHz)帯のレーダ波を送受信する。
ミリ波レーダシステム1は、1チップ型の送受信機搭載IC2、送信アンテナ3、受信アンテナ4、制御器5、及び、基準発振回路6を備える。送受信機搭載IC2と制御器5とは1チップ化して構成しても良いし別体で構成しても良い。送受信機搭載IC2には、制御器5と、水晶発振器による基準発振回路6と、が接続されている。基準発振回路6は、ある基準周波数のリファレンスクロックCLKを生成し、送受信機搭載IC2の内部の変復調信号生成部7にこのリファレンスクロックCLKを出力する。
送受信機搭載IC2は、変復調信号生成部7、送信部8、受信部9、及び、回路制御レジスタ10を備え、半導体集積回路装置により構成される。変復調信号生成部7は、制御回路11及びPLL回路12を備える。送信部8は、ローカル信号をN逓倍するN逓倍器13、このN逓倍器13が出力する信号を移相する移相器14、及び、移相器14の出力を増幅する増幅器15、を備える。受信部9は、低雑音増幅器16、N逓倍器17、混合器となる周波数変換部18、中間周波数増幅器19、及びA/D変換器20を備える。制御器5は、回路制御レジスタ10に初期周波数f0及び終了周波数f1などの周波数指令、及び、中間周波数増幅器19の可変増幅部23の増幅度などのパラメータを書き込むことに応じて、送受信機搭載IC2の内部指令処理及び回路制御処理を行う。
制御回路11は、回路制御レジスタ10に与えられる周波数指令に応じて、例えば時間的に周波数を漸増/漸減するための指令信号(初期周波数f0→終了周波数f1)を生成しPLL回路12に出力する。ここでは変復調信号生成部7が鋸波を生成しこの鋸波に応じて変調したレーダ波の信号を生成してターゲットTにレーダ波を出力し、前述した鋸波に応じてターゲットTから反射した信号を復調する場合について例示する。
また制御回路11は、各種制御指令(例えば、チャープ制御信号TX_ON、制御パルス)を生成して中間周波数増幅器19に出力し、これにより制御回路11は中間周波数増幅器19の機能を制御する。制御回路11はチャープ復調開始/終了を示すチャープ制御信号TX_ONを生成するチャープ制御信号生成回路として用いられる。
変復調信号生成部7は、基準発振回路6のリファレンスクロックCLKを入力すると、予め定められた規格周波数帯内において所定の変復調方式により漸増/漸減して生成し、高精度のローカル信号localを出力する。このローカル信号localは、その周波数がFmod/N(Nは、後述のN逓倍器13、17による逓倍数)に調整され、送信部8、及び、受信部9に出力される。ここでは、変復調信号生成部7は、所定の変復調方式により漸増/漸減して周波数Fmod/Nのローカル信号を生成する形態を示すが、N逓倍器13、17を削除した構成を適用すれば、変復調信号生成部7が変復調周波数Fmodのローカル信号を生成しても良いし、この信号処理形態は限られるものではない。
N逓倍器13は変復調信号生成部7の出力をN逓倍する。このN逓倍後のローカル信号をローカル信号LOと称する。このため、N逓倍器13の出力ローカル信号LOの周波数は変復調周波数Fmodとなる。移相器14は、N逓倍器13の出力信号を移相し、増幅器15がこの移相器14の出力信号を増幅する。したがって送信部8の送信信号の周波数は変復調周波数Fmodとなる。
この送信部8の送信信号は送信アンテナ3を通じて外部にレーダ波として出力される。移相器14は、N逓倍器13により出力される信号の位相を変化させるために設けられる。図1には模式的に示しているが、送信アンテナ3は、例えばパッチアンテナによる平面型アンテナなどの複数のアンテナ素子により構成される。また移相器14は、例えば送信アンテナ3を構成する複数のアンテナ素子の各々に1つずつ接続されており、それぞれのアンテナ素子に対応して位相を変化させる。これによりビームフォーミング技術により送信方向を調整できる。なお移相器14は、線路切替型移相器や反射型移相器などを用いることができる。
図1に示すように、送信アンテナ3により出力されるレーダ波はターゲットTに反射し反射信号を生じる。この反射信号は受信アンテナ4に入力される。受信アンテナ4もまた例えばパッチアンテナによる平面型アンテナなどにより構成されておりレーダ波を受信する。これらの送信アンテナ3及び受信アンテナ4のアンテナ素子は、図示していないが互いに隣接するアンテナ素子との間隔が等距離となるように平行に配置されている。
受信部9は受信アンテナ4を通じて信号を受信する。低雑音増幅器16は、所定の増幅度によりこの受信信号を増幅し、この増幅信号を周波数変換部18に出力する。N逓倍器17は、PLL12の出力信号をN逓倍し周波数変換部18に出力する。周波数変換部18は、低雑音増幅器16の出力信号とN逓倍器17の出力信号とを混合し、この混合された周波数変換後の復調信号を中間周波数増幅器19に出力する。周波数変換部18は、この低雑音増幅器16の出力信号をN逓倍器17の出力ローカル信号とを混合した差動信号を中間周波数増幅器19に出力する。中間周波数増幅器19の後段には信号モニタSE1が接続されている。信号モニタSE1は、中間周波数増幅器19の出力信号に含まれるDCオフセット成分を検出可能になっている。なお本実施形態では、信号モニタSE1は、中間周波数増幅器19の出力アナログ信号を検出するように示しているが、A/D変換器20の出力デジタル信号をモニタするように接続しても良く、中間周波数増幅器19の出力を信号モニタできれば良い。
中間周波数増幅器19及び制御回路11の一部11aの構成例を図2に示している。図2に示すように、中間周波数増幅器19は、加算器22a,22b、可変増幅部23、及び、フィードバック部24、を備える増幅部として用いられる。
加算器22a、22bは、周波数変換部18の出力信号とフィードバック部24の出力信号とを加算し可変増幅部23に出力する。可変増幅部23は、加算器22a,22bの出力の差分を回路制御レジスタ10に設定された増幅度により増幅し、A/D変換器20に入力させると共にフィードバック部24に入力させる。フィードバック部24は、アンプ32、抵抗33,34、コンデンサ35,36、及び、バイパススイッチとしてのスイッチ37,38を備え、可変増幅部23の出力を検出し当該検出信号に含まれる周波数帯の信号を可変増幅部23の入力にフィードバックするように構成される。このフィードバック部24は、通常、可変増幅部23の出力信号を例えばハイパスフィルタ処理し、加算器22a,22bに出力する。
制御回路11aは、カウンタ25,26、論理ゲート27〜30、及び、セレクタ31を図示形態に組み合わせて構成され制御パルス生成回路として機能する。この制御回路11aは、リファレンスクロックCLKを入力すると共にチャープ制御信号TX_ONを入力し、これらの信号に応じてフィードバック部24のスイッチ37及び38にオン・オフ制御信号を出力する。フィードバック部24は、この制御信号を入力し、可変増幅部23の出力から加算器22a,22bにフィードバック入力させるように構成されている。
カウンタ25は、チャープ制御信号TX_ONが「H」となっている間にリファレンスクロックCLKを入力してカウントし、カウンタ26は、チャープ制御信号TX_ONをNOTゲート27を介して入力し、当該チャープ制御信号TX_ONが「L」となっている間にリファレンスクロックCLKを入力してカウントする。
ANDゲート28は、カウンタ25の出力を否定入力すると共にチャープ制御信号TX_ONを入力し、この論理積演算結果をセレクタ31に出力する。またANDゲート29は、カウンタ26の出力を否定入力すると共にチャープ制御信号TX_ONのNOTゲート27による否定出力を入力し、この論理積演算結果をセレクタ31に出力する。また、ORゲート30は、ANDゲート28及び29の出力を論理和演算しセレクタ31に出力する。セレクタ31は、制御回路11の制御信号に基づいてANDゲート28及び29並びにORゲート30の何れかの出力を選択し、フィードバック部24のスイッチ37及び38の制御信号として印加する。これにより、制御回路11aは、フィードバック部24のスイッチ37及び38をオン・オフ制御することで、フィードバック部24に係るハイパスフィルタのRC時定数を変更制御可能になっている。
中間周波数増幅器19は、可変増幅部23により増幅された信号を図1に示すA/D変換器20に出力する。A/D変換器20は、この増幅されたアナログ信号をデジタル変換し制御器5に出力する。制御器5は、例えばCPU、ROM、RAM等を有するマイクロコンピュータ(何れも図示せず)により構成され、受信部9により変換されたデジタルデータを取得する。制御器5が、受信部9から取得したデジタルデータに基づく信号処理を実行することでターゲットTに関する情報を算出する。このターゲットTは、例えば先行車両等の他車両や路上の路側物等である。このターゲットTに関する情報としては、例えば、距離や相対速度、方位等による情報である。
上記構成における特徴的な部分の作用について説明する。図3は、制御回路11がPLL12に制御指令を出力することでN逓倍器17による出力ローカル信号LOのチャープ周波数fの変化を概略的に示している。この図3に示すように、期間Trampにおいて鋸波状に周波数fを初期周波数f0から終了周波数f1に線形的に増加(漸増)させた後、周波数fを初期周波数f0に瞬時に切替えて期間Trestにて周波数を一定とし、これらの期間Trampと期間Trestにおける周波数fの変更制御内容を繰り返す。
図4は、制御回路11がセレクタ31に制御信号を出力することでセレクタ31がANDゲート28の出力を選択した場合のタイミングチャートを模式的に示している。カウンタ25は、チャープ制御信号TX_ONが「H」に変化したタイミングt1からリファレンスクロックCLKのカウントを開始する。
制御回路11が、ANDゲート28の出力をセレクタ31により選択制御すると、制御回路11aはカウンタ25のカウント値が所定の第1閾値に達するタイミングt2まで制御パルス「H」をスイッチ37及び38に出力する。これにより、期間Trampにおいてチャープ周波数fにより復調開始したタイミングt1から第1所定期間の間、制御パルス「H」を発生させることでスイッチ37及び38をオン制御できる。この第1所定期間は、期間Trampよりも短い期間となるように設定されている。
図5は、制御回路11がセレクタ31に制御信号を出力することでセレクタ31がANDゲート29の出力を選択した場合のタイミングチャートを模式的に示している。カウンタ26は、チャープ制御信号TX_ONが「H」から「L」に変化したタイミングt11からリファレンスクロックCLKのカウントを開始する。
制御回路11がANDゲート29の出力をセレクタ31により選択制御すると、制御回路11aはカウンタ26のカウント値が所定の第2閾値に達するタイミングt12まで制御パルスを出力する。これにより、期間Trampの間においてチャープ周波数fを初期周波数f0から終了周波数f1まで漸増させ、チャープ周波数fを終了周波数f1から初期周波数f0に瞬時に戻したタイミングt11から第2所定期間の間、制御パルスを発生させてスイッチ37及び38をオン制御できる。この第2所定期間は、期間Trampよりも短い期間となるように設定されている。
図6は、制御回路11がセレクタ31に制御信号を出力することでセレクタ31によりORゲート30の出力を選択した場合のタイミングチャートを模式的に示している。セレクタ31がORゲート30の出力を選択すると、ANDゲート28及び29の何れかの出力が「H」となっている間、カウンタ25又は26のカウント値が所定の第1閾値、第2閾値に達するまで制御パルスを出力する(図6のt1〜t2、t11〜t12参照)。これにより、チャープ周波数fにより復調開始したタイミングt1から第1所定期間、及び、チャープ周波数fにより復調終了したタイミングt11から第2所定期間、の間、制御パルスを発生させてスイッチ37及び38をオン制御できる。
<比較例>
図7(a)及び図7(b)は制御パルスを発生させることなくフィードバック部24によりフィードバックしたときのDCオフセットの発生状態についてシミュレーションした結果を示している。ここでは、IF帯の周波数は3MHz、10MHzを固定的に用いている。図7(a)に示すように、中間周波数増幅器19の出力には周波数変換部18の出力周波数が増加開始するタイミングからDCオフセット過渡応答成分が大きく含まれており、その後、DCオフセット過渡応答成分が徐々に少なくなる(例えば図7(a)の10.0〜20.0、20.0〜30.0等の欄参照)。このため図7(b)に中間周波数増幅器19の出力周波数分布を示すように、DCオフセット過渡応答成分の出力レベルR1が比較的大きくなる。この現象は中間周波数増幅器19の可変増幅部23の利得切替えがない場合にも同様に生じることが確認されている。このため、発明者は前述説明した構成を適用し、下記のようにシミュレーションを行っている。
<本実施形態の制御を適用した場合>
本実施形態の制御、特にチャープ開始してから第1所定期間だけスイッチ37及び38をオン制御する場合のシミュレーション結果を図8(a)に示している。この図8(a)に示すように、制御回路11aが期間Tramp中のチャープ周波数fの増加開始期間内にて制御パルス「H」を発生させることになる。すると、図2に示されるフィードバック部24のスイッチ37及び38がオンすることで抵抗33,34が短絡しRC時定数が概ね0となることから、フィードバック部24の影響に応じて可変増幅部23の出力電圧がこの期間中には概ね0にまで低下する。これにより、制御パルス「H」の発生期間中には、フィードバック部24の作用に応じてDCオフセット過渡応答成分を低下させることができる。このため図8(b)に周波数成分を示すように、ローカル信号の周波数変化に起因したDCオフセット過渡応答成分の出力レベルR2を小さくできる。
すなわち、チャープ周波数fを漸増開始することで当該チャープ周波数fにより復調開始してから第1所定期間の間、中間周波数増幅器19の出力を0に低下させることができ、IF帯の周波数信号も遮断できる。その後、図8に示すように、制御パルスがオフ(すなわち「L」)することでスイッチ37,38をオフ制御すると、通常通りIF帯の周波数を後段に伝達させることができる。ここでは、第1所定期間だけスイッチ37及び38をオン制御して出力を低下させるシミュレーション結果を示しており、チャープ周波数fにより復調開始してから第1所定期間だけ切り替えるようにしても効果が大きいことが確認されているが、復調終了してから第2所定期間においてもスイッチ37及び38をオン制御しても良い。
<本実施形態の概念的なまとめ>
以上説明したように、本実施形態によれば、中間周波数増幅器19は、周波数変換部18を用いてチャープ周波数fにより復調開始してから第1所定期間、又は/及び、当該復調終了してから第2所定期間を定めた規定期間において周波数変換部18により周波数変換されるときに生じるDCオフセット過渡応答周波数を含む周波数帯をカットし規定期間以外の期間には周波数帯をカットしないようにしている。これによりDCオフセット過渡応答成分を性能良く低下させることができる。
制御回路11は、チャープ復調開始/終了を示すチャープ制御信号TX_ONを生成するが、制御回路11aはチャープ制御信号TX_ONの変化を検出し当該検出タイミングから第1所定期間、第2所定期間を定めて制御パルスを生成してDCオフセット過渡応答成分を含む周波数帯カットしている。このため、チャープ制御信号TX_ONに同期して第1所定期間、第2所定期間を規定できる。
スイッチ37,38は、フィードバック部24のハイパスフィルタの時定数を当該規定期間以外の期間よりも小さく切替えるように接続されており、これにより、スイッチ37,38をオン・オフ制御することで必要な期間だけフィードバック部24の時定数を切り替えることができる。
このように、本実施形態によれば、レーダシステム1のダイレクトコンバージョン受信機を適用したときに、ローカル信号LOの周波数変化に起因したDCオフセット過渡応答成分を抑圧でき、当該DCオフセット過渡応答周波数を含む周波数帯をカットするときには低カットオフ周波数でDCフィードバックループを実現することができ、高利得動作させることができる。
(第2実施形態)
図9から図11は第2実施形態の追加説明図を示している。第2実施形態が第1実施形態と異なるところはフィードバック部124,224,324の構成である。以下では、第1実施形態と同様の部分については同一符号を付して説明を省略する。また、第1実施形態で説明した構成と同一又は類似する構成については、第1実施形態に付した符号に100、200、300を加算した符号を付し、異なる部分について中心に説明を行う。
フィードバック部24に係るハイパスフィルタのRC時定数を変化させるための構成として、図9から図11のフィードバック部124,224,324の構成を挙げることができる。
例えば、図9に示すフィードバック部124は、図2に示すフィードバック部24を基本構成として、抵抗33,34とそれぞれ並列に抵抗33b,34bを設けている。また抵抗33bと直列にスイッチ37を設けると共に抵抗34bと直列にスイッチ38を設け、並列抵抗33//33bの抵抗分を変更制御可能になっていると共に、抵抗34//34bによる並列抵抗33//33bの抵抗分を変更制御可能になっている。制御回路11aがスイッチ37,38をオン・オフ制御することでフィードバック部124のハイパスフィルタのRC時定数を変更する。これにより、前述実施形態の構成と同様の作用効果を得ることができる。
また図10に示すフィードバック部224は、図2に示すフィードバック部24を基本構成として、コンデンサ35と並列にコンデンサ35bを接続すると共にこのコンデンサ35bと直列にスイッチ35cを接続し、また、コンデンサ36と並列にコンデンサ36bを接続すると共にこのコンデンサ35bと直列にスイッチ36cを接続し、これらの並列コンデンサ35//35bの容量成分を変更制御可能になっていると共に、並列コンデンサ36//36bの容量成分を変更制御可能になっている。制御回路11aがスイッチ35c,36cをオン・オフ制御することでフィードバック部224のハイパスフィルタのRC時定数を変更できる。これにより、前述実施形態の構成と同様の作用効果を得ることができる。
また図11にフィードバック部324の構成を示すように、図9と図10に示された時定数の変更形態を併せ持つようにしても良い。すなわち、制御回路11aが、並列コンデンサ35//35bの並列容量成分を変更制御すると共に並列コンデンサ36//36bの並列容量成分を変更制御することで時定数を変更すると共に、並列抵抗33//33bの抵抗成分を変更制御すると共に並列抵抗34//34bの抵抗成分を変更制御することで時定数を変更しても良い。これにより、前述実施形態の構成と同様の作用効果を得ることができる。
(第3実施形態)
図12は第3実施形態の追加説明図を示している。第3実施形態が第1実施形態と異なるところは各種のセンサ39を設けたところにある。以下では、第1実施形態と同様の部分については同一符号を付して説明を省略し、以下、異なる部分について中心に説明を行う。この図12に示すように、温度センサ40やプロセスモニタ41による各種センサ39を設け、カウンタ25,26の閾値を調整するように構成しても良い。
例えば、フィードバック部24の時定数は、通常、抵抗33,34の抵抗成分とコンデンサ35,36の容量成分との積により決定される。また、送受信機搭載IC2を製造するときのプロセスの製造バラつきや動作環境温度の変化によってもこの時定数は変化する。このため、送受信機搭載IC2の内部に、抵抗33,34の抵抗成分とコンデンサ35,36の容量成分等に基づく回路特性のバラつきを検出するプロセスモニタ41を設けると良い。調整制御回路としての制御回路111aは、このプロセスモニタ41の検出結果に応じてカウンタ25,26の第1閾値、第2閾値を変更することで、制御パルスの幅を調整し、DCオフセット過渡応答成分を低下させると良い。また、送受信機搭載IC2(例えばフィードバック部24)の動作環境温度を検出する温度センサ40を設けても良い。制御回路111aは、この温度センサ40の検出結果に応じて、カウンタ25,26の第1閾値、第2閾値を変更することで、制御パルスの幅を調整し、DCオフセット過渡応答成分を低下させると良い。
すなわち、制御回路111aは、温度センサ40又はプロセスモニタ41の検出結果に応じて第1所定期間の長さを調整することができ、中間周波数増幅器19内のフィードバック部24の抵抗33,34、コンデンサ35,36の実際の素子値に合わせてDCオフセット過渡応答成分を低下させる期間を調整制御できる。
(第4実施形態)
図13及び図14は第4実施形態の追加説明図を示している。第4実施形態が第1実施形態と異なるところは、チャープ周波数fにより復調終了し初期周波数f0に戻した後に次回に復調開始する前からDCオフセット過渡応答成分に係る周波数帯をカットし始めることで、少なくとも変調開始するタイミングを含んで周波数帯をカットするところにある。
図13は図2に代えて示す構成例を示している。制御回路211aは、チャープ制御信号TX_ON及びリファレンスクロックCLKに応じて制御パルスを生成し、フィードバック部24のスイッチ37,38の制御信号を生成する。この制御回路211aは、カウンタ25,26,42,43、ANDゲート28,29,45、ORゲート30、NOTゲート27,44、及び、セレクタ31を備える。カウンタ25,26、ANDゲート28,29、NOTゲート27、及びORゲート30の接続関係は前述実施形態と同一であるため説明を省略する。
カウンタ42は、チャープ制御信号TX_ONをNOTゲート44を介して入力し、当該チャープ制御信号TX_ONが「L」となっている間にリファレンスクロックCLKを入力してカウントする。カウンタ42はそのカウント値が閾値に達すると「H」をカウンタ43に出力する。また、カウンタ43は、カウンタ42の出力が「H」となっている間にリファレンスクロックCLKを入力してカウントする。
ANDゲート45は、カウンタ43の出力を否定入力すると共にカウンタ42の出力を入力し、この論理積演算結果をセレクタ31に出力する。セレクタ31は、制御回路11の制御信号に基づいてANDゲート28、29、45及びORゲート30の何れかの出力を選択し、フィードバック部24のスイッチ37及び38の制御信号として印加する。これにより、制御回路211aは、フィードバック部24のスイッチ37及び38をオン・オフ制御することで、フィードバック部24に係るハイパスフィルタのRC時定数を変更制御可能になっている。
図14に示すように、セレクタ31がANDゲート45の出力を選択したとき、カウンタ42は、チャープ制御信号TX_ONが「L」に変化したタイミングt21からカウントし始め、カウンタ42の第3カウント値が所定の第3閾値に達すると、カウンタ43がこのタイミングt22からカウントし始める。
制御回路211aは、カウンタ43が第4カウント値をカウントし始めるタイミングt22になると、ANDゲート45の出力をセレクタ31に入力し、この入力信号に応じて制御パルスを「H」に立ち上げる。その後、カウンタ43の第4カウント値が所定の第4閾値に達すると、ANDゲート45の否定入力には「H」が入力され、このタイミングt23で制御パルスを「L」に立ち下げる。
このときカウンタ42の第3閾値及びカウンタ43の第4閾値は、制御パルスが前回のチャープ周波数fにより復調を終了したタイミングt21で初期周波数f0に戻した後に少なくとも次回のチャープ周波数fにより復調を開始するタイミングt24を含んで「H」となるように予め調整されている。このため、チャープ復調終了後のあるタイミングt22からチャープ開始した後のタイミングt23まで制御パルスを継続させることができる。チャープ周波数fが初期周波数f0から変化し始めるタイミングt24を含むように制御パルスの立上り期間が設定されているため、チャープ周波数fの変化開始タイミングにて発生するDCオフセット過渡応答に係る変動を抑制できる。
なお、第3閾値と第4閾値とをそれぞれ個別に設定することで、チャープ制御信号TX_ONの立上りタイミングからの遅延量と制御パルスのパルス幅をそれぞれ変更できるようになる。
(第5実施形態)
図15から図17は第5実施形態の追加説明図を示している。図15は自らのレーダシステムをレーダシステムAとしたときに、他のレーダーシステムBから到来する信号を検知するときの動作をフローチャートにより概略的に示しており、図16は他のレーダシステムBから到来した信号を検知した場合のタイミングチャートを概略的に示している。
まず処理の流れについて図15を参照して説明する。図15に示すように、自レーダシステムAにおいてチャープ制御し始めたときに、S1においてチャープ終了していなければS2にて通常動作するものの、チャープ終了したと判定したときには、制御回路11aはS3においてDCオフセットキャンセル用の制御パルスを生成出力する。また、制御回路11aがDCオフセットキャンセル終了時刻を検出すると、S4において信号モニタSE1によりモニタ開始させる。その後、制御器5がターゲットTを検出判定したときにDCオフセット成分を検出できる。制御器5はS5においてDCオフセット成分が予め定められた閾値より大きいか否かを判定する。
このときDCオフセットが閾値より大きければ、制御器5はS7において他のレーダシステムBを検出したと判定する。ここで制御器5は他レーダシステム判定部として用いられる。制御器5は、DCオフセットが閾値より小さければS5においてNOと判定し、S6において信号モニタSE1によりモニタを継続する。そして、S8において再度チャープ開始するまで信号モニタSE1によりモニタ継続する。そして、再度チャープ開始するとS9において信号モニタSE1によるモニタを終了する。
例えば、図2に示す制御回路11aを採用し、制御回路11aがチャープ開始時及び終了時に制御パルスを発生させてスイッチ37及び38をオン制御すると、図16に示すように、チャープ開始時及びチャープ終了時に発生するDCオフセット成分を除去できる。
すなわち、チャープ周波数fが初期周波数f0から終了周波数f1まで徐々に変化した後には、過渡的にチャープ周波数を初期周波数f0にまで戻すため、このときDCオフセット成分を大きく生じるが、図16のタイミングt31〜t32に示すように、制御パルスを発生させることで差動出力を概ね0にまで低下させることができる。例えば、他のレーダシステムBによるチャープ周波数信号がレーダシステムAの受信アンテナ4に到来するときにも当該レーダシステムBによるチャープ周波数信号が急激に変化すると、この影響により中間周波数増幅器19の差動出力にDCオフセット成分を発生させる。
このため、図16のタイミングt33〜t34に示されるように、レーダシステムBの到来波によるDCオフセット成分が増加する。制御器5は、自レーダシステムAがチャープ終了している期間Trest中に、このDCオフセット成分を信号モニタSE1により検出し、図15のS5においてDCオフセットが閾値を上回っていることを条件としてS7において他のレーダシステムBを検出したと判定する。これにより、他のレーダシステムBの存在を検出できる。
図17は制御パルスを発生させることなくDCオフセット成分を除去しないようにした場合の比較例を示している。この図17に示すように、レーダシステムAのチャープ周波数が急激に初期周波数f0に低下したタイミングt41からDCオフセット成分を発生させることになるが、この後、他のレーダシステムBによるチャープ周波数信号が急激に変化してもこのタイミングt43から同様に中間周波数増幅器19はDCオフセット成分を発生させる。
すなわち、何れの場合もDCオフセット成分を発生させることになるものの、例えばこれらのDCオフセット成分が飽和しているときには、何れのレーダシステムA、BのDCオフセット成分であるか把握できず、これらのDCオフセット成分を分離不能となる。
これに対し本実施形態を適用すると、図16のタイミングチャートに示すように、チャープ終了したタイミングt31から発生するDCオフセット成分を少なくともタイミングt32までの間に除去できる。
このため、例えばタイミングt33の時点でレーダシステムBのチャープ周波数信号による干渉波がレーダシステムAの受信アンテナ3に到来したとしても、このタイミングt33の時点からDCオフセット成分が上昇することになり、タイミングt33〜t34の検出区間において信号モニタSE1によりDCオフセット成分を検出できる。これにより、自レーダシステムAの制御器5は、他のレーダシステムBからの到来信号を干渉信号として判定でき、他のレーダシステムBの有無を判定できる。
以上説明したように、本実施形態によれば、チャープ周波数fにより復調終了した後に、チャープ周波数fと同一周波数帯の信号が入力された場合に生じるDCオフセット成分を検出することで、同一周波数帯で運用される他のレーダシステムBの有無を判定できるようになる。
(他の実施形態)
本発明は、前述した実施形態に限定されるものではなく、種々変形して実施することができ、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。例えば以下に示す変形又は拡張が可能である。
ミリ波帯のレーダシステム1に適用したが、ミリ波帯に限られない。前述実施形態では、鋸波状に周波数を漸増させる変復調方式を適用した例を挙げたが、これに限定されるものではなく、例えば、漸減させる変復調方式を適用しても良いし、周波数を例えば線形的に漸増させた後に線形的に漸減させるように変化させるFMCW変復調方式に適用することもできる。このため、変復調方式は前述実施形態に挙げた方式に限られるものではない。
フィードバック部24,124,224,324は、例えばハイパスフィルタを備える構成を示したが、これに限定されるものではなく、バンドパスフィルタにより構成しても良いし回路形態は限られるものではない。また、DCオフセット過渡応答周波数を含む周波数帯をカットする期間を、チャープ周波数fを漸増し始めるタイミングから所定期間とした例を主に説明したが、チャープ周波数fを終了周波数f1から急激に初期周波数f0に戻すタイミングから所定期間だけに絞っても良い。
チャープ制御信号TX_ONの立上りタイミングから第1所定期間、チャープ制御信号TX_ONの立下りタイミングから第2所定期間を定めた形態を示しているが、ターゲットTに反射した遅延時間を考慮したタイミングから第1所定期間、第2所定期間をそれぞれ定めた形態に適用することもできる。すなわち、周波数変換部18を用いてチャープ周波数fにより復調開始してから第1所定時間、復調終了してから第2所定時間を定めてDCオフセット過渡応答周波数を含む周波数帯をカットすることが望ましい。
前述した複数の実施形態の構成、機能を組み合わせても良い。前述実施形態の一部を、課題を解決できる限りにおいて省略した態様も実施形態と見做すことが可能である。また、特許請求の範囲に記載した文言によって特定される発明の本質を逸脱しない限度において考え得るあらゆる態様も実施形態と見做すことが可能である。
本開示は、前述した実施形態に準拠して記述したが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。
図面中、1はミリ波レーダシステム(レーダシステム)、8は送信部、11は制御回路(チャープ制御信号生成回路)、11aは制御回路(制御パルス生成回路)、18は周波数変換部、19は中間周波数増幅器(増幅部)、23は可変増幅部、24,124,224,324はフィードバック部、35c,36c,37,38はスイッチ(バイパススイッチ)、40は温度センサ、41はプロセスモニタ、を示す。

Claims (7)

  1. 漸増/漸減するチャープ周波数に応じたレーダ波をターゲットに送信する送信部(8)、及び、前記ターゲットに反射されたレーダ波の信号を前記チャープ周波数に応じて周波数変換して復調する周波数変換部(18)、を備えたレーダシステム(1)に構成され、
    前記周波数変換部の後段に接続される可変増幅部(23)と、
    前記可変増幅部の出力を検出し当該検出信号に含まれる周波数帯の信号を前記可変増幅部の入力にフィードバックするフィードバック部(24;124;224;324)と、を備える増幅部(19)を備え、
    前記増幅部は、前記周波数変換部を用いてチャープ周波数により復調開始してから第1所定期間、又は/及び、当該復調終了してから第2所定期間を定めた規定期間において、前記周波数変換部により周波数変換されるときに生じるDCオフセット過渡応答周波数を含む周波数帯をカットし前記規定期間以外の期間には前記周波数帯をカットしないように構成されるレーダ信号処理器。
  2. 前記チャープ復調開始/終了を示すチャープ制御信号を生成するチャープ制御信号生成回路(11)と、
    前記チャープ制御信号の変化を検出し当該検出タイミングから前記規定期間として定めて制御パルスを生成し前記周波数帯をカットさせる制御パルス生成回路(11a)と、
    をさらに備える請求項1記載のレーダ信号処理器。
  3. 前記フィードバック部はハイパスフィルタを含んで構成され、
    前記規定期間において前記フィードバック部のハイパスフィルタの時定数を当該規定期間以外の期間よりも小さく切替えるバイパススイッチ(37,38;35c,36c)、をさらに備える請求項1または2記載のレーダ信号処理器。
  4. 前記増幅部は、
    前記チャープ周波数により復調開始してから所定期間だけを前記規定期間とする請求項1から3の何れか一項に記載のレーダ信号処理器。
  5. 前記増幅部は、
    前記チャープ周波数により復調終了して初期周波数(f0)に戻した後、次回に復調開始する前から前記周波数帯をカットし始めることで、少なくとも次回に復調開始するタイミングを含んで前記周波数帯をカットする請求項1から3の何れか一項に記載のレーダ信号処理器。
  6. 動作環境温度を検出する温度センサ(40)又はプロセスのバラつきを検出するプロセスモニタ(41)をさらに接続して構成され、
    前記温度センサ又は前記プロセスモニタの検出結果に応じて前記規定期間の長さを調整する調整制御回路(111a)をさらに備える請求項1から5の何れか一項に記載のレーダ信号処理器。
  7. 請求項1から6の何れか一項に記載のレーダ信号処理器と、
    前記チャープ周波数により復調終了した後に、前記チャープ周波数と同一周波数帯の信号が入力された場合に生じるDCオフセット成分を検出することで、前記同一周波数帯で運用される他のレーダシステムの有無を判定する他レーダシステム判定部(5)と、
    を備えるレーダシステム。
JP2017082876A 2017-04-19 2017-04-19 レーダ信号処理器及びレーダシステム Active JP6717254B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017082876A JP6717254B2 (ja) 2017-04-19 2017-04-19 レーダ信号処理器及びレーダシステム
PCT/JP2018/009009 WO2018193746A1 (ja) 2017-04-19 2018-03-08 レーダ信号処理器及びレーダシステム
CN201880006009.XA CN110168397B (zh) 2017-04-19 2018-03-08 雷达信号处理器以及雷达系统
US16/396,977 US10955527B2 (en) 2017-04-19 2019-04-29 Radar signal processor and radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082876A JP6717254B2 (ja) 2017-04-19 2017-04-19 レーダ信号処理器及びレーダシステム

Publications (2)

Publication Number Publication Date
JP2018179874A true JP2018179874A (ja) 2018-11-15
JP6717254B2 JP6717254B2 (ja) 2020-07-01

Family

ID=63857095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082876A Active JP6717254B2 (ja) 2017-04-19 2017-04-19 レーダ信号処理器及びレーダシステム

Country Status (4)

Country Link
US (1) US10955527B2 (ja)
JP (1) JP6717254B2 (ja)
CN (1) CN110168397B (ja)
WO (1) WO2018193746A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990819A (zh) * 2023-09-27 2023-11-03 成都国营锦江机器厂 一种防撞雷达起动检测保护方法、系统及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3696563B1 (en) * 2019-02-14 2023-06-07 IMEC vzw Transmitter-receiver leakage suppression in integrated radar systems
CN111366903B (zh) * 2020-04-03 2020-11-03 河南华兴通信技术有限公司 一种雷达信道传输校准系统
CN111901009B (zh) * 2020-07-03 2022-07-26 加特兰微电子科技(上海)有限公司 无线电信号发收装置、电子器件和设备
US11709247B2 (en) * 2020-09-22 2023-07-25 Ay Dee Kay Llc Fast chirp synthesis via segmented frequency shifting
US20230216528A1 (en) * 2021-12-30 2023-07-06 Texas Instruments Incorporated Intermediate frequency amplifier with a configurable high-pass filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019244A (ja) * 1998-06-29 2000-01-21 Tech Res & Dev Inst Of Japan Def Agency 同期式リプル除去回路
JP2002236171A (ja) * 2000-12-06 2002-08-23 Omron Corp 侵入物検知方法および侵入物検知装置
JP2011237268A (ja) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp Fm−cwレーダ装置
WO2016011407A1 (en) * 2014-07-17 2016-01-21 Texas Instruments Incorporated Distributed radar signal processing in a radar system
US20160047908A1 (en) * 2014-08-13 2016-02-18 Infineon Technologies Ag Radar Signal Processor, Radar System and Method for Monitoring a Functional Safety of a Radar System

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6031421A (en) * 1998-07-22 2000-02-29 Mcewan; Thomas E. Controlled gain amplifier with variable control exponent
US6509796B2 (en) * 2000-02-15 2003-01-21 Broadcom Corporation Variable transconductance variable gain amplifier utilizing a degenerated differential pair
US6577269B2 (en) * 2000-08-16 2003-06-10 Raytheon Company Radar detection method and apparatus
JP2002257928A (ja) * 2001-03-06 2002-09-11 Murata Mfg Co Ltd レーダ
US7295154B2 (en) * 2002-01-17 2007-11-13 The Ohio State University Vehicle obstacle warning radar
US7710311B2 (en) * 2004-10-14 2010-05-04 Anritsu Corporation Short range radar small in size and low in power consumption and controlling method thereof
US7379013B2 (en) * 2005-10-05 2008-05-27 Banner Engineering Corporation Detecting objects within a near-field of a frequency modulated continuous wave (FMCW) radar system
US7791530B2 (en) * 2006-01-05 2010-09-07 Autoliv Asp, Inc. Time duplex apparatus and method for radar sensor front-ends
US7812760B2 (en) * 2006-04-20 2010-10-12 Anritsu Corporation Short-range radar and control method thereof
US7460055B2 (en) * 2006-06-02 2008-12-02 Panasonic Corporation Radar apparatus
JP2008172729A (ja) 2007-01-15 2008-07-24 Fujitsu Ltd 物理量検出装置および手ぶれ量検出装置
JP2010204003A (ja) * 2009-03-05 2010-09-16 Hitachi Kokusai Electric Inc 複合機能レーダ装置
US8223066B2 (en) * 2010-05-17 2012-07-17 Rosemount Tank Radar Ab Pulsed radar level gauge system and method with reduced start-up time
TW201425975A (zh) * 2012-12-19 2014-07-01 Wistron Neweb Corp 雷達系統及雷達系統控制方法
US20160077196A1 (en) * 2013-05-29 2016-03-17 Freescale Semiconductor, Inc. Receiver system and method for receiver testing
GB201315389D0 (en) * 2013-08-29 2013-10-16 Analog Devices Technology Closed loop control system, and an amplifier in combination with such a loop control system
CN103728593B (zh) * 2014-01-13 2015-10-21 武汉大学 一种实现地波超视距雷达同时多频发射/接收的方法
US9453906B2 (en) * 2014-07-31 2016-09-27 North Carolina State University Phase calibration circuit and method for multi-channel radar receiver
US10234542B2 (en) * 2015-09-30 2019-03-19 Texas Instruments Incorporated Measurement of transceiver performance parameters in a radar system
US10718852B2 (en) * 2015-10-23 2020-07-21 Texas Instruments Incorporated RF/mm-wave peak detector with high-dynamic range calibration
US10393861B2 (en) * 2016-04-05 2019-08-27 Mitsubishi Electric Corporation Frequency modulation circuit, FM-CW radar, and high-speed modulation radar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000019244A (ja) * 1998-06-29 2000-01-21 Tech Res & Dev Inst Of Japan Def Agency 同期式リプル除去回路
JP2002236171A (ja) * 2000-12-06 2002-08-23 Omron Corp 侵入物検知方法および侵入物検知装置
JP2011237268A (ja) * 2010-05-10 2011-11-24 Mitsubishi Electric Corp Fm−cwレーダ装置
WO2016011407A1 (en) * 2014-07-17 2016-01-21 Texas Instruments Incorporated Distributed radar signal processing in a radar system
US20160047908A1 (en) * 2014-08-13 2016-02-18 Infineon Technologies Ag Radar Signal Processor, Radar System and Method for Monitoring a Functional Safety of a Radar System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990819A (zh) * 2023-09-27 2023-11-03 成都国营锦江机器厂 一种防撞雷达起动检测保护方法、系统及装置
CN116990819B (zh) * 2023-09-27 2023-12-15 成都国营锦江机器厂 一种防撞雷达起动检测保护方法、系统及装置

Also Published As

Publication number Publication date
US10955527B2 (en) 2021-03-23
WO2018193746A1 (ja) 2018-10-25
CN110168397A (zh) 2019-08-23
US20190250246A1 (en) 2019-08-15
CN110168397B (zh) 2022-11-08
JP6717254B2 (ja) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6717254B2 (ja) レーダ信号処理器及びレーダシステム
US11747436B2 (en) Noise mitigation in radar systems
KR102270383B1 (ko) Fmcw 레이더에서의 동적 iq 미스매치 보정
US10746848B2 (en) In-vehicle radar apparatus
EP3006955A1 (en) Radar device utilizing phase shift
US7443336B2 (en) In-vehicle pulse radar device
US10158434B2 (en) Circuit, system, and method for operating and calibrating a radio frequency transceiver
US10101439B2 (en) Apparatus and method for controlling power of vehicle radar
EP3644091A1 (en) Phase coded fmcw radar
EP1464989A1 (en) Radar apparatus with power saving features
JP2003172776A (ja) レーダ装置
JP2007085999A (ja) 電波送受信器における電波干渉回避装置
EP1635192A1 (en) Radar apparatus with DC offset correction
EP3696570B1 (en) Radar transceiver
WO2008146046A1 (en) Tracking waveform selection for multifunction radar
KR101979403B1 (ko) 레이더 출력 주파수 제어 방법, 그리고 이를 구현한 레이더 시스템
EP3012661B1 (en) Mobile-body detection device
US7274922B2 (en) Circuit arrangement for generating an IQ-signal
US11874392B2 (en) Non-active chirp dithering in FMCW radar
US20240094335A1 (en) Non-active chirp dithering in fmcw radar
US11899125B2 (en) Automatic interference detection and avoidance in radar transceiver systems
KR102163699B1 (ko) 근거리에서 고속으로 기동하는 표적의 정보 추정을 위한 도약-주파수 코딩 기반 송신신호에 대한 개선된 수신 기법
JP2005315898A (ja) レーダ装置
US20190377079A1 (en) Radar apparatus
CN114967895A (zh) 电子控制装置及方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R151 Written notification of patent or utility model registration

Ref document number: 6717254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250