JP2018174211A - 熱電変換モジュール - Google Patents

熱電変換モジュール Download PDF

Info

Publication number
JP2018174211A
JP2018174211A JP2017071063A JP2017071063A JP2018174211A JP 2018174211 A JP2018174211 A JP 2018174211A JP 2017071063 A JP2017071063 A JP 2017071063A JP 2017071063 A JP2017071063 A JP 2017071063A JP 2018174211 A JP2018174211 A JP 2018174211A
Authority
JP
Japan
Prior art keywords
layer
temperature side
conversion module
thermoelectric element
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017071063A
Other languages
English (en)
Inventor
知丈 東平
Tomotake Tohira
知丈 東平
孝広 地主
Takahiro Jinushi
孝広 地主
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017071063A priority Critical patent/JP2018174211A/ja
Publication of JP2018174211A publication Critical patent/JP2018174211A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】より熱応力緩和の効果の高い熱電変換モジュールを提供すること。【解決手段】複数のP型の熱電素子と、複数のN型の熱電素子と、複数の電極を有し、前記複数のP型の熱電素子および前記複数のN型の熱電素子と前記複数の電極とが互いに電気的に直列に接続されている熱電変換モジュールにおいて、少なくとも高温側に配置される電極の厚さが0.01〜0.2mmである熱電変換モジュールとする。本発明の熱電変換モジュールは、低温側に配置される電極の厚さが0.2mmを超え1mm以下とすることが好ましい。【選択図】図1

Description

本発明は、熱エネルギーを電気エネルギーに変換する熱電変換モジュールに関する。
熱電変換は熱エネルギーと電気エネルギーの相互作用を利用したエネルギー変換技術の一つである。熱電素子に温度差を与えると、ゼーベック効果によって起電力が生じる。一方で熱電素子に電流を流すとペルチェ効果によって、熱電素子の表裏に温度差が生じる。このようなゼーベック効果またはペルチェ効果を産業に活用するため、複数の熱電素子を電極で直列に接続した熱電変換モジュールが用いられる。ゼーベック効果の利用は、例えば工業炉の高温配管部や自動車の排気管に熱電変換モジュールを取り付け、廃熱回収および発電用途として期待されている。ペルチェ効果の利用は、熱電変換モジュールに電流を流すことにより加熱あるいは冷却する温調システム等での適用実績がある。特にゼーベック効果を利用した発電用途の場合は熱電変換モジュールの温度差が大きいほど得られる発電電力量が大きくなる。したがって、より多くの発電電力量を得るためには高温域で変換効率が高い熱電素子の適用と合わせて高温動作時の信頼性が高い熱電変換モジュールの構造が必要となる。
熱電変換モジュールの一例を図7に示す。熱電変換モジュール1はN型熱電素子11とP型熱電素子12が高温側電極21および低温側電極22に接合され、N型熱電素子11とP型熱電素子12が高温側電極21および低温側電極22を介して直列に配列された構造となっており、熱電変換モジュールの一方の面と他方の面に温度差を与えることでゼーベック効果による発電、高温側電極21および低温側電極22に電流を流すことで熱電変換モジュール1の一方の面と他方の面に温度差を形成して加熱あるいは冷却を行うことができるように構成されている。
熱電変換モジュール1は、ゼーベック効果により発電する場合には熱電変換モジュール1のN型熱電素子11およびP型熱電素子12の端面間に温度差を与えることによって発電し、ペルチェ効果により加熱または冷却する場合には熱電変換モジュール1のN型熱電素子11およびP型熱電素子12に電流を流し、N型熱電素子11およびP型熱電素子12の端面間に温度差を形成することによって加熱または冷却を行う。
したがって、ゼーベック効果を利用する熱電変換モジュールおよびペルチェ効果を利用する熱電変換モジュールのいずれも、一方の端面が高温となり、他方の端面が低温となる。このとき、高温側電極21の熱膨張は低温側電極22の熱膨張よりも大きいため、熱電素子およびその上下の電極にはせん断応力や引張応力、圧縮応力が繰り返し作用し、脆弱な熱電素子を破壊したり、熱電素子および電極間の接合面で剥離を生じることのない、繰り返し与えられる熱履歴に対する信頼性が熱電変換モジュールには求められる。このため、各種の熱応力緩和手法が提案されている(特許文献1〜3等)。
特開平11−068175号公報 特開2000−244024号公報 特開2015−177048号公報
しかしながら、特許文献1〜3等の熱電変換モジュールにおいても、繰り返し与えられる熱履歴に対する信頼性が充分ではなく、より熱応力緩和の効果の高い熱電変換モジュールが求められている。このことから本発明の熱電変換モジュールは、より熱応力緩和の効果の高い熱電変換モジュールを提供することを目的とする。
上記目的を達成する本発明の熱電変換モジュールは、複数のP型の熱電素子と、複数のN型の熱電素子と、複数の電極を有し、前記複数のP型の熱電素子および前記複数のN型の熱電素子と前記複数の電極とが互いに電気的に直列に接続されている熱電変換モジュールにおいて、少なくとも高温側に配置される電極の厚さが0.1〜0.2mmであるものとする。
本発明の熱電変換モジュールにおいては、低温側に配置される電極の厚さが0.2mmを超え1mm以下であること、または低温側に配置される電極が絶縁性材料からなる基板上に形成されていることが好ましい。
また、少なくとも高温側に配置される電極が複数の金属層を有するものとすることが好ましく、この場合に、前記複数の金属層が、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層と、実質的にNiからなる第二層から形成された二層構造となっており、前記第一層を前記P型の熱電素子および前記N型の熱電素子に接して配置されることが好ましく、前記複数の金属層が、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層と、実質的にNiからなる第二層と、実施的にCuからなる第三層から形成された三層構造となっており、前記P型の熱電素子および前記N型の熱電素子の側から第一層、第二層および第三層の順に形成されていることがより好ましい。
本発明の熱電変換モジュールは、少なくとも高温側の電極の厚さを0.1〜0.2mmとしたものであり、熱電素子に負荷される応力が小さくなるとともに、電極に可撓性が付与され電極が変形可能となり、接合界面部の破断または熱電素子の割れを防止することができ、熱応力緩和の効果の高い熱電変換モジュールとすることができる。
本発明の第1の熱電変換モジュールの断面の一部を示す模式図である。 本発明の第2の熱電変換モジュールの断面の一部を示す模式図である。 本発明の第3の熱電変換モジュールの断面の一部を示す模式図である。 本発明の第4の熱電変換モジュールの断面の一部を示す模式図である。 本発明の第4の熱電変換モジュールの別の例の断面の一部を示す模式図である。 本発明の第4の熱電変換モジュールの別の例の断面の一部を示す模式図である。 熱電変換モジュールの外観を示す斜視図である。
以下、本発明の実施の形態を図面を用いて説明する。なお、実施の形態を説明するための各図において、同一の機能を有する要素には同一の名称、符号を付して、その繰り返しの説明を省略する。
[第1の熱電変換モジュール]
図1に、本発明の第1の熱電変換モジュールの一例を示す。図1においては、上側が高温側、下側が低温側であり、N型熱電素子11とP型熱電素子12は高温側に配置される電極(高温側電極)21および低温側に配置される電極(低温側電極)22に接合されている。
本発明の第1の熱電変換モジュールにおいて、N型熱電素子11およびP型熱電素子12は従来からある熱電素子を用いることができ、Mg−Si(マグネシウム−シリコン)系、Mn−Si(マンガン−シリコン)系、スクッテルダイト系、ホイスラー合金系、ハーフホイスラー合金系、Si−Ge(シリコン−ゲルマニウム)系、酸化物系、Sn−Se(錫−セレン)系のいずれを用いてもよく、また、これらのうちから選ばれた熱電素子の組み合わせて用いることができる。これらのうち、特に、Mg−Si系とMn−Si系は原材料が豊富で安価であり、発電性能も高いので好適である。しかしながら、Mg−Si系はN型のみであり、Mn−Si系はP型のみであるため、N型熱電素子11としてMg−Si系素子、P型熱電素子12としてMn−Si系素子を用いることが特に好適である。
熱電変換モジュールの高温側(図中上側)に配置された高温側電極21は熱膨張するが、低温側(図中下側)に配置された低温側電極22は熱膨張しないため、N型熱電素子11およびP型熱電素子12と高温側電極21の接合部界面、またはN型熱電素子11およびP型熱電素子12自体に高温側電極21の熱膨張にともなう応力(熱応力)が負荷される。この応力が過大となるとN型熱電素子11およびP型熱電素子12と高温側電極21の接合部界面で破断が生じたり、脆性なN型熱電素子11およびP型熱電素子12に割れが生じることとなる。
このような接合部界面での破断または熱電素子の割れを防止するため、本発明の熱電変換モジュールにおいては少なくとも高温側電極21の厚さを0.01〜0.2mmとしたものである。すなわち、本発明の熱電変換モジュールにおいては、N型熱電素子11およびP型熱電素子12と高温側電極21の接合部界面に負荷される応力、またはN型熱電素子11およびP型熱電素子12自体に負荷される応力が、高温側電極21の厚さを薄くしたことにより小さくなるとともに、電極に可撓性が付与され電極が変形可能となり、接合界面部の破断または熱電素子の割れを防止することができる。このような可撓性を電極に付与し、接合界面または熱電素子に負荷される熱応力を緩和するため、本発明の熱電変換モジュールにおいては高温側電極21の厚さを0.2mm以下とする。その一方で、高温側電極21の厚さが薄すぎると電気抵抗が大きくなり、ゼーベック効果を利用するものについては熱電素子で発電した電気を取り出す発電効率が低下、またはペルチェ効果を利用するものについては電流量が過少となり熱電素子の加熱効率または冷却効率が低下することとなる。この観点から本発明の熱電変換モジュールにおいては高温側電極21の厚さを0.01mm以上とする。これらのことから、本発明の熱電変換モジュールの高温側電極21の厚さを0.01〜0.2mmとする。高温側電極21の厚さは、0.05〜0.2mmが好ましく、0.1〜0.2mmがより好ましい。
図1の熱電変換モジュールは、高温側電極21とともに低温側電極22についても0.01〜0.2mm厚さの電極で構成した例である。本例においては熱電変換モジュールの高温側電極21および低温側電極22の両方で熱応力を緩和できるので、熱応力緩和の効果がより高いものとなる。
なお、高温側電極21および低温側電極22は従来より用いられているCu、Ni、Ti、Mo、Au、Ag、Fe、Pd、Crの電極またはこれらを含む合金の電極を用いることができる。また、電極(高温側電極21,低温側電極22)と熱電素子(N型熱電素子11,P型熱電素子12)の接合は従来より行われている、各種ろう材、アルミニウム箔等の接合材により接合することができる。
[第2の熱電変換モジュール]
図1の熱電変換モジュールは高温側電極21および低温側電極22の両方の厚さ0.01〜0.2mmとしたものであるが、高温側電極21および低温側電極22の両方を可撓性を有する電極として構成したため熱電変換モジュール自体が可撓性を有するものとなり、熱電変換モジュールのハンドリング性が悪いものである。この点から、熱電変換モジュールのハンドリング性を考慮して構成したものが本発明の第2の熱電変換モジュールである。
本発明の第2の熱電変換モジュールの一例を図2に示す。図2の熱電変換モジュールは、高温側電極21の厚さを0.01〜0.2mmとして可撓性を付与したものとし、低温側電極22の厚さを0.2mmを超える厚さとして電極の剛性を高めたことを骨子とする。すなわち、熱応力は高温側で発生するため、高温側電極21の厚さを上記範囲として可撓性を有するものとして構成し、その一方で低温側電極21の厚さを厚くして剛性を付与し、熱電変換モジュールのハンドリング性を高めたものである。低温側電極22の厚さは0.2mmを超える厚さとすることで電極に剛性を付与できる。低温側電極22の厚さは0.4mm以上が好ましい。その一方で、低温側電極22の厚さが過剰であると、低温側熱源から熱電素子(N型熱電素子11,P型熱電素子12)の低温側端面までの距離が増加することとなり、熱電素子の冷却効率が低下する結果、発電効率が低下する懸念がある。また、熱電変換モジュールの高さが増加して狭小なスペースに配置しにくくなる、熱電変換モジュールの重量が増加する、電極のコストが増加して熱電変換モジュールのコストが増加する等の懸念も生じる。これらの観点より、低温側電極22の厚さは1mm以下とすることが好ましく、0.6mm以下とすることが好ましい。
[第3の熱電変換モジュール]
本発明の第3の熱電変換モジュールも、図1の熱電変換モジュールのハンドリング性を考慮して構成したものであり、第2の熱電変換モジュールの厚さを大きくして剛性を付与した低温側電極22に替えて、図3に示すように、絶縁性を有する基板(絶縁性基板)32上に低温側電極22を配置したものを用いた例である。絶縁性基板32は、熱伝導性に優れる窒化アルミニウム、窒化ケイ素、アルミナから選ばれる少なくとも1種を主成分とするセラミックス基板で構成することが望ましい。これらのセラミックス基板は剛性を有するため熱電変換モジュールのハンドリング性が向上する。
本発明の第3の熱電変換モジュールにおいて、低温側電極22の厚さは電気抵抗の点から0.01mm以上とすることが好ましく、0.05mm以上とすることがより好ましく、0.1mm以上とすることがさらに好ましい。また、絶縁性基板32の厚さは剛性担保の点から0.1mm以上とすることが好ましく、0.3mm以上とすることがより好ましい。なお、低温側電極22および絶縁性基板32の厚さが過大となると、低温側熱源から熱電素子(N型熱電素子11,P型熱電素子12)の低温側端面までの距離が増加することとなり、熱電素子の冷却効率が低下する結果、発電効率が低下する懸念がある。また、熱電変換モジュールの高さが増加して狭小なスペースに配置しにくくなる、熱電変換モジュールの重量が増加する、電極のコストが増加して熱電変換モジュールのコストが増加する等の懸念も生じる。これらの観点より、低温側電極22と絶縁性基板32の合計の厚さとして1mm以下とすることが好ましく、0.6mm以下とすることが好ましい。
絶縁性基板32上に配置される低温側電極22は絶縁性基板32上に鍍金、蒸着等により金属膜として形成してもよく、絶縁性基板32上に接合材を介して金属箔、金属電極等を接合して形成してもよい。
図3の熱電変換モジュールは上記のとおり、絶縁性を有する基板(絶縁性基板)32上に低温側電極22を配置した例であるが、セラミックス等の絶縁性材料の層の両端面に金属層を形成した、いわゆる金属とセラミックスの複合電極としてもよい。この場合にN型熱電素子11およびP型熱電素子12に接する金属層は電極として作用するが、電極として作用する金属層の厚さは、0.01mm以上とすることが好ましく、0.05mm以上とすることがより好ましく、0.1mm以上とすることがさらに好ましい。また、絶縁層の厚さは0.1mm以上とすることが好ましく、0.3mm以上とすることがより好ましい。一方で複合電極の厚さが過大となると上記の懸念が生じる虞があるため、複合電極の厚さとして1mm以下とすることが好ましく、0.6mm以下とすることが好ましい。
また、図3の熱電変換モジュールにおいて、絶縁性基板32は低温側電極22と同じ大きさで形成し、複数の絶縁性基板32を用いる例であるが、絶縁性基板32を一枚として構成し、一枚の絶縁性基板32上に低温側電極22を複数形成してもよい。
[第4の熱電変換モジュール]
上記の図1〜3の熱電変換モジュールにおいて、電極(高温側電極21,低温側電極22)は、単一金属により構成した例であるが、複数の金属層により構成してもよい。本発明の第4の熱電変換モジュールは電極として複数の金属層を有する電極を用いる場合の例である。例えば、上記の第1〜3の熱電変換モジュールにおいて、電極(高温側電極21,低温側電極22)と熱電素子(N型熱電素子11,P型熱電素子12)の接合は、従来より行われている、各種ろう材、アルミニウム箔等の接合材により接合することができるが、この場合接合材が必須となる。しかしながら、電極を複数の金属層で構成することにより、電極として接合材と電極を兼ね備えたものとして接合材を廃止しつつ、良好な電極と熱電素子の接合を達成することができる。
図4の熱電変換モジュールは、高温側電極21を、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層211と、実質的にNiからなる第二層212により構成した例である。ここで「実質的に」とは成分の80原子%以上を占めるものを云う。本例においては第一層211が熱電素子との接合と熱電素子内への部材拡散を抑制する層として作用し、第一層211の外側に配置される第二層212が第一層のNiの供給源として作用するとともに電極として作用する。このため、接合材と電極を兼ねたものとすることができる。なお、図4において低温側電極22は、図2の剛性を高めた電極である。
熱電素子(N型熱電素子11,P型熱電素子12)に接して配置される第一層211においてAlとNiは化合物(AlNi、AlNi、AlNi、AlNi、AlNiのうちの少なくとも1種)または合金の形態で存在し、化合物相または合金相を形成する。第一層211においては残余としてAlを含みAl相が分散してもよく、熱電素子の成分の一部を含み熱電素子の成分とAlまたはNiの化合物相あるいは合金相を含んでいてもよい。図4において第一層211は単層として表記しているが成分比の異なる相を複数層形成していてもよく、例えば、第一層211の中にAlNi、AlNi、AlNiの合計三層の複合層が形成されていてもよい。また、熱電素子(N型熱電素子11,P型熱電素子12)としてシリサイド系(Mg−Si系,Mn−Si系,Si−Ge系等)を用いる場合、第一層中に素子の成分であるSiを含有していてもよい。上記の第一層211層中のAlとNiの化合物(AlNi、AlNi、AlNi、AlNi、AlNi)は、各原子の整数比に則った規則性を有する原子配列構造をとるため、原子間同士の結合エネルギーは純金属や合金よりも強い。そのため、熱電素子(N型熱電素子11,P型熱電素子12)に接して配置される第一層211を積極的にAlとNiの化合物で形成することで熱電素子内への原子拡散を防止でき、熱電素子として機能しなくなる自体を防止する役目を果たす。また、第二層212は、第一層へのNiの供給源として作用するとともに、熱電素子により発生した電気を流す電極として機能する。
このような第一層211と第二層212からなる高温側電極21は、Al層とNi層からなる金属箔を電極として用い、この金属箔のAl層の側を熱電素子(N型熱電素子11,P型熱電素子12)に接して配置し、加圧加熱して接合することで形成することができる。熱電素子(N型熱電素子11,P型熱電素子12)としてシリサイド系(Mg−Si系,Mn−Si系,Si−Ge系等)を用いる場合は、加熱加圧接合の際の加熱温度を580〜700℃とすることで形成できる。この場合、加圧加熱接合の加熱温度までの昇温時に、金属箔のAl層に熱電素子内の成分であるSiが拡散することでSiを固溶したAlが熱電素子側に接しているAl層表面に形成されるが、Siを固溶した最表層のAlは660℃に到達する前に固液共存状態になるため、AlとSiの液相が発生し始める。AlとSiの液相が発生すると固液拡散となることで最表層以外のAl層全体が溶融していくこととなる。このようにして金属箔のAl層全体が溶融すると、金属箔のNi層との拡散が急速に進行して、第一層211として積極的にAlとNiからなる化合物相を形成することができる。この結果、熱電素子(N型熱電素子11,P型熱電素子12)と、電極を構成する第一層211との強固な接合が達成されるとともに、第一層211と第二層212の強固な接合が達成される。
上記の第一層211の厚さは、過小となると拡散防止層としての効果が乏しくなる。その一方で上記の第一層211の厚さが過大となると高温側電極21の可撓性が損なわれることとなる。これらのことから第一層211の厚さは、1〜20μmとすることが好ましい。また、第二層212の厚さは電気抵抗の観点から0.01mm以上とすることが好ましい。ただし、第一層211と第二層212の合計の厚さは、外側電極21の可撓性の観点から0.2mm以下とする。
図4の熱電変換モジュールは、高温側電極21を、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層211と、実質的にNiからなる第二層212により構成した例であるが、低温側電極22について複数の金属層を有する電極を用いてもよい。この場合、低温側電極22も高温側電極21と同じ薄型電極を用いてもよいが、厚い剛性の高い電極とすると熱電変換モジュールのハンドリング性が向上するので好ましい。
図5は低温側電極22について複数の金属層を有する電極を用いた例であり、低温側電極22についても実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層221と、実質的にNiからなる第二層222により構成した例であり、第二層222の厚さを大きくして熱電変換モジュールのハンドリング性を担保した例である。本例において、低温側電極22の第一層221の厚さは高温側電極21と同様の理由で1〜20μmとすることが好ましい。一方、低温側電極22の第二層222の厚さは、低温側電極22に剛性を付与するため0.2mmを超える厚さとすることが好ましく、0.4mm以上とすることがより好ましい。その一方で、低温側電極22の厚さが過大となると上記の懸念があるため、第一層221と第二層222の合計の厚さとして1mm以下とすることが好ましく、0.6mm以下とすることが好ましい。
なお、図4および図5の熱電変換モジュールは、複数の金属層を実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層と、実質的にNiからなる第二層の二層により形成した例であるが、第二層の外側に第三層として熱伝導率がNi(90.9W・m−1・K−1)よりも高いCu(398W・m−1・K−1)等の金属の層を形成すると、熱源からの熱を熱電素子(N型熱電素子11,P型熱電素子12)に伝えやすくなり発電効率が向上するため好ましい。この場合、複数の金属層は熱電素子の側から第一層、第二層および第三層の順に形成される。この形態は、熱電変換モジュールのハンドリング性を向上させるため低温側電極22の厚さを大きくしたものについて特に効果的である。すなわち、高温側電極21は厚さが小さいため高温側熱源からの熱を熱電素子の高温側端面に伝えやすいが、低温側電極22の厚さを大きくすると低温側熱源からの熱を熱電素子の低温側端面に伝えにくくなり、冷却効率が低下するからである。
図6はこのような熱電変換モジュールの例であり、剛性のため厚さを大きくした低温側電極22について、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層221と、実質的にNiからなる第二層222と、実質的にCuからなる第三層223より構成した例である。本例において第一層221は熱電素子との接合性を担保するとともに熱電素子の拡散防止層として機能する。また、第二層222は、第一層221のNiの供給源として作用するとともに、第三層223との応力を緩和するための層として機能する。さらに第三層223は、Niよりも電気伝導率が高いことから電極として機能するとともに、低温側熱源からの熱を熱電素子(N型熱電素子11,P型熱電素子12)の低温側端面に伝えて冷却効率を向上させる機能を有する。
本例において、第一層221の厚さは、上記と同様に1〜20μmとすることが好ましい。第二層222の厚さは、Ni供給源としての機能および応力緩和の機能の点から0.1〜0.5mmとすることが好ましい。第三層223の厚さは熱源からの熱を伝える機能および電極としての機能の点から0.01mm以上とすることが好ましく、0.05mm以上とすることがより好ましく、0.1mm以上とすることがさらに好ましい。なお、低温側電極22の厚さが過大となると低温側熱源から熱電素子(N型熱電素子11,P型熱電素子12)の低温側端面までの距離が増加することとなり、熱電素子の冷却効率が低下する結果、発電効率が低下する懸念があることから1mm以下とすることが好ましい。
なお、高温側電極21は厚さが小さいため、高温側熱源からの熱を熱電素子(N型熱電素子11,P型熱電素子12)の高温側端面に伝えやすいことから、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層211と、実質的にNiからなる第二層212の二層からなる金属層としたが、第二層212の外側に実質的にCuからなる第三層を形成するとより高温側熱源からの熱を熱電素子(N型熱電素子11,P型熱電素子12)の高温側端面に伝えやすくなる。
N型熱電素子としてMg−Si系素子、P型熱電素子としてMn−Si系素子を容易し、電極として表1に示すものを用いて、窒素ガス雰囲気中、加熱温度660℃、加圧圧力20MPaで加圧加熱して接合を行い、試料番号01〜08の熱電変換モジュール試料を作製した。作製した熱電変換モジュール試料について、接合後の界面を観察して接合状態の評価を行い、評価結果を併せて表1に記載した。なお、接合状態の良好なものについて「○」、接合不良のものについて「×」と評価して記載した。
なお、表中のCu電極はCu製の電極であり、表面にはNiめっきを施したものである。Cu電極を用いた場合は接合材としてAl箔を用いて電極と熱電素子の接合を行った。また、試料番号08および09の複数の金属層からなる高温側電極は、Al箔とNi箔からなる複合金属箔を用いAl箔の側を熱電素子側に配置して接合剤を用いず上記の接合を行って得られたものである。さらに、試料番号09の複数の金属層からなる低温側電極は、Al箔とNi箔からなる複合金属箔を用いてAl箔の側を熱電素子側に配置して銅電極上に積層し接合剤を用いず上記の接合を行って得られたものである。
また、接合状態の良好な試料について、500℃、1時間の熱処理を行い、接合した評価試料の熱電素子側面側から50μm/Sの速度で専用の治具を押し当てて、熱電素子と電極の接合部にせん断荷重を与える強度試験を行った。このとき、熱電素子で破断したものは接合状態が問題ないものとして「○」、熱電素子と電極の接合界面で破断したものは接合状態が悪いものであるため「×」として評価し、この評価結果につき表1に併せて記載した。
Figure 2018174211
試料番号01〜04は、高温側電極が可撓性を有するため、熱応力が緩和でき、加熱加圧接合後に得られる熱電変換モジュールにおいて電極と熱電素子の接合が良好に行うことができるとともに、熱処理後の界面も良好であることが確認された。これに対し、高温側電極の厚さが0.2mmを超える試料番号05の試料では電極の可撓性が損なわれ、接合後に熱電素子と電極の接合界面で容易に界面剥離することがわかったにクラックが生じてしまうことがわかった。
また、試料番号06より高温側電極の厚さが充分に薄い場合、低温側電極の厚さが厚くても接合界面の状態が問題ないことが確認された。さらに、Cu電極に替えて複数の金属層からなる複層電極を用いても接合界面の状態が問題ないことが確認された。
本発明によれば、熱電変換モジュールにおいて、熱電素子と電極間の接合部の耐熱性を確保するとともに、熱電変換モジュール稼動時に生じる熱応力を十分に緩和することができる。そのため、本発明の熱電変換モジュールは、高温の環境下において、例えば、溶鉱炉、焼却炉等の工業炉の配管や自動車の排気管などに取り付けて発電に用いることができる。
1 熱電変換モジュール
11 N型熱電素子
12 P型熱電素子
21 高温側電極
211 高温側電極の第一層
212 高温側電極の第二層
22 低温側電極
221 低温側電極の第一層
222 低温側電極の第二層
223 低温側電極の第三層
32 絶縁性基板

Claims (6)

  1. 複数のP型の熱電素子と、
    複数のN型の熱電素子と、
    複数の電極を有し、
    前記複数のP型の熱電素子および前記複数のN型の熱電素子と前記複数の電極とが互いに電気的に直列に接続されている熱電変換モジュールにおいて、
    少なくとも高温側に配置される電極の厚さが0.01〜0.2mmである熱電変換モジュール。
  2. 低温側に配置される電極の厚さが0.2mmを超え1mm以下である請求項1に記載の熱電変換モジュール。
  3. 低温側に配置される電極が絶縁性材料からなる基板上に形成されている請求項1に記載の熱電変換モジュール。
  4. 少なくとも高温側に配置される電極が複数の金属層を有する請求項1〜3のいずれかに記載の熱電変換モジュール。
  5. 前記複数の金属層が、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層と、実質的にNiからなる第二層から形成された二層構造となっており、前記第一層を前記P型の熱電素子および前記N型の熱電素子に接して配置された請求項4に記載の熱電変換モジュール。
  6. 前記複数の金属層が、実質的にAlとNiからなるとともにAlとNiからなる化合物相もしくは合金相を含む第一層と、実質的にNiからなる第二層と、実施的にCuからなる第三層から形成された三層構造となっており、前記P型の熱電素子および前記N型の熱電素子の側から第一層、第二層および第三層の順に形成されている請求項4に記載の熱電変換モジュール。
JP2017071063A 2017-03-31 2017-03-31 熱電変換モジュール Pending JP2018174211A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017071063A JP2018174211A (ja) 2017-03-31 2017-03-31 熱電変換モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017071063A JP2018174211A (ja) 2017-03-31 2017-03-31 熱電変換モジュール

Publications (1)

Publication Number Publication Date
JP2018174211A true JP2018174211A (ja) 2018-11-08

Family

ID=64108813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017071063A Pending JP2018174211A (ja) 2017-03-31 2017-03-31 熱電変換モジュール

Country Status (1)

Country Link
JP (1) JP2018174211A (ja)

Similar Documents

Publication Publication Date Title
WO2017098863A1 (ja) 熱電変換モジュールおよびその製造方法
KR101782440B1 (ko) 열전 발전 모듈
WO2006067986A1 (ja) 熱電変換モジュールとそれを用いた熱交換器および熱電発電装置
CN107427967B (zh) 用于预处理用于金属化、互连和接合的半导电热电材料的方法
KR101809496B1 (ko) 열전 발전 모듈
TW200924251A (en) Thermo-electric conversion module
WO2013076765A1 (ja) 熱電変換モジュール
JP2011249492A (ja) 熱電変換モジュール
JP2009260173A (ja) 熱電変換素子及び当該熱電変換素子を備えた熱電モジュール
JP2014183118A (ja) 接合体の製造方法及びパワーモジュール用基板の製造方法
JP5695612B2 (ja) 熱電モジュール,および熱電モジュールの製造方法
JP6404983B2 (ja) 熱電発電モジュール
JPH06342940A (ja) 熱発電器およびその製造方法
JP2018160560A (ja) 熱電変換モジュールおよびその製造方法
JP6115047B2 (ja) 熱電変換モジュールおよびその製造方法
JP6645368B2 (ja) 接合体、パワーモジュール用基板、接合体の製造方法、及び、パワーモジュール用基板の製造方法
JP2016157843A (ja) 熱電変換装置
JP6850988B2 (ja) 熱電変換モジュール
JP2018174211A (ja) 熱電変換モジュール
TW201739725A (zh) 接合體,電源模組用基板,接合體的製造方法及電源模組用基板的製造方法
JP2007273661A (ja) 半導体装置
JP2008147309A (ja) セラミックス基板およびこれを用いた半導体モジュール
JP4917375B2 (ja) パワー半導体モジュールの製造方法
WO2020100717A1 (ja) スタナイド系熱電変換素子及びスタナイド系熱電変換モジュール
EP3428980B1 (en) A thermoelectric module