JP2018167223A - Filter cartridge and filter - Google Patents

Filter cartridge and filter Download PDF

Info

Publication number
JP2018167223A
JP2018167223A JP2017068447A JP2017068447A JP2018167223A JP 2018167223 A JP2018167223 A JP 2018167223A JP 2017068447 A JP2017068447 A JP 2017068447A JP 2017068447 A JP2017068447 A JP 2017068447A JP 2018167223 A JP2018167223 A JP 2018167223A
Authority
JP
Japan
Prior art keywords
groups
nonwoven fabric
filter
fabric layer
chemically bonded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017068447A
Other languages
Japanese (ja)
Other versions
JP6912244B2 (en
Inventor
西野 徹
Toru Nishino
徹 西野
拓也 本田
Takuya Honda
拓也 本田
恵 加地
Megumi Kaji
恵 加地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd, Kurashiki Textile Manufacturing Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2017068447A priority Critical patent/JP6912244B2/en
Priority to CN201880006860.2A priority patent/CN110177616B/en
Priority to PCT/JP2018/009588 priority patent/WO2018180430A1/en
Publication of JP2018167223A publication Critical patent/JP2018167223A/en
Application granted granted Critical
Publication of JP6912244B2 publication Critical patent/JP6912244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D27/00Cartridge filters of the throw-away type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • B01D29/07Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported with corrugated, folded or wound filtering sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Abstract

To provide a filter cartridge and a filter having a high efficiency of adsorbing and removing metals.SOLUTION: A filter cartridge is formed by laminating plural kinds of ground fabrics for filtration or winding them around a hollow inner cylinder. The ground fabrics for filtration are a nonwoven fabric obtained by chemically bonding metal adsorbing groups to polyolefin fibers, and includes a nonwoven fabric layer (A) 17a positioned on the downstream side and a nonwoven fabric layer (B) 17b positioned on the upstream side. The nonwoven fabric layer A is composed of polyolefin fibers chemically bonded with sulfonic acid groups as the metal adsorbing groups, The nonwoven fabric layer B is composed of polyolefin fibers chemically bonded with at least one selected as the metal adsorbing groups from amino groups, N-methyl-D-glucamine groups, iminodiacetic acid groups, iminodiethanol groups, amidoxime groups, phosphoric acid groups, carboxylic acid groups, and ethylenediamine triacetate groups.SELECTED DRAWING: Figure 3

Description

本発明は、不織布を積層又は巻き付けたフィルターカートリッジ及びフィルターに関する。   The present invention relates to a filter cartridge and a filter in which a nonwoven fabric is laminated or wound.

近年、電子工業界における半導体製造技術の進歩により、集積回路の配線ピッチの設計寸法が十数nmにまで小さくなってきている。集積回路の微細化により動作速度の向上や消費電力の低下が進む傾向にある。集積回路の製造過程において、薬液中に含まれる金属不純物は、配線の短絡や電流値の低下を引き起こし、歩留まり低下の原因になるため、薬液を高純度化する必要がある。このような金属不純物を除去する手段として、蒸留やイオン交換樹脂が用いられているが、蒸留では、コストが高く、イオン交換樹脂では、処理速度が遅いことや、溶出物による汚染という問題を有している。従来から溶液中の金属を吸着除去するためのデプス型カートリッジフィルターは知られている。特許文献1には、孔をあけた中空パイプにメルトブローン不織布を巻き付けて使用することが提案されている。本出願人の一部は、特許文献2において、イオン交換基をグラフト重合させた繊維で構成される不織布と、非グラフト重合させた繊維で構成される不織布とを積層したカートリッジフィルターを提案している。   In recent years, with the progress of semiconductor manufacturing technology in the electronic industry, the design dimensions of the wiring pitch of integrated circuits have been reduced to a few tens of nanometers. With the miniaturization of integrated circuits, the operating speed tends to increase and the power consumption decreases. In the manufacturing process of an integrated circuit, metal impurities contained in a chemical solution cause a short circuit of a wiring or a decrease in current value, resulting in a decrease in yield, so that the chemical solution needs to be highly purified. Distillation and ion exchange resins are used as means for removing such metal impurities. However, distillation is expensive, and ion exchange resins have problems such as slow processing speed and contamination by eluate. doing. Conventionally, a depth type cartridge filter for adsorbing and removing a metal in a solution is known. Patent Document 1 proposes to use a melt blown nonwoven fabric wrapped around a hollow pipe having a hole. A part of the present applicants proposed a cartridge filter in which a nonwoven fabric composed of fibers grafted with ion exchange groups and a nonwoven fabric composed of fibers grafted non-grafted in Patent Document 2 were proposed. Yes.

特表平11−504853号公報Japanese National Patent Publication No. 11-504853 特開2009−090259号公報JP 2009-090259 A

しかし、従来のフィルターは、金属の吸着除去効率が高くなく、この改善が求められている。   However, the conventional filter does not have a high metal adsorption removal efficiency, and this improvement is required.

本発明は、前記従来の問題を解決するため、金属の吸着除去効率が高いフィルターカートリッジ及びフィルターを提供する。   The present invention provides a filter cartridge and a filter having a high metal adsorption removal efficiency in order to solve the conventional problems.

本発明のフィルターカートリッジは、複数種類の濾過用基布を積層又は中空状内筒に巻き付けたフィルターカートリッジであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成されることを特徴とする。   The filter cartridge of the present invention is a filter cartridge in which a plurality of types of filtering base fabrics are laminated or wound around a hollow inner cylinder, and the filtering base fabric is a nonwoven fabric in which metal adsorption groups are chemically bonded to polyolefin fibers. The filtration base fabric includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side, and the non-woven fabric layer A is composed of polyolefin fibers chemically bonded with sulfonic acid groups as metal adsorption groups. The non-woven fabric layer B has amino groups, N-methyl-D-glucamine groups, iminodiacetic acid groups (iminodiacetic acid groups), iminodiethanol groups, amidoxime groups, phosphoric acid groups, carboxylic acid groups, and ethylenediamine as metal adsorbing groups. It is composed of a polyolefin fiber chemically bonded with at least one selected from acetic acid groups.

本発明のフィルターは、複数種類の濾過用基布を積層又は中空状内筒に巻き付けた濾過部を有するフィルターであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成されることを特徴とする。   The filter of the present invention is a filter having a filtration part in which a plurality of types of filtration base fabrics are laminated or wound around a hollow inner cylinder, and the filtration base fabric is a nonwoven fabric in which metal adsorption groups are chemically bonded to polyolefin fibers. The filtration base fabric includes a non-woven fabric layer A located on the downstream side and a non-woven fabric layer B located on the upstream side, and the non-woven fabric layer A is a polyolefin fiber chemically bonded with a sulfonic acid group as a metal adsorbing group. The nonwoven fabric layer B is composed of an amino group, N-methyl-D-glucamine group, iminodiacetic acid group (iminodiacetic acid group), iminodiethanol group, amidoxime group, phosphoric acid group, carboxylic acid group and It is characterized by comprising polyolefin fibers chemically bonded with at least one selected from ethylenediaminetriacetic acid groups.

本発明によれば、積層又は巻き付けタイプのフィルターカートリッジであって、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、前記不織布層Aは、金属吸着基としてスルホン基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成されることにより、金属の吸着除去効率が高い濾過用基布とすることができる。   According to the present invention, the filter cartridge is a laminated or wound type, and includes a nonwoven fabric layer A located on the downstream side and a nonwoven fabric layer B located on the upstream side, and the nonwoven fabric layer A includes a sulfone group as a metal adsorption group. The nonwoven fabric layer B is composed of chemically bonded polyolefin fibers, and the nonwoven fabric layer B has amino groups, N-methyl-D-glucamine groups, iminodiacetic acid groups (iminodiacetic acid groups), iminodiethanol groups, amidoxime groups, phosphoric acid as metal adsorbing groups. By comprising a polyolefin fiber in which at least one selected from a group, a carboxylic acid group and an ethylenediaminetriacetic acid group is chemically bonded, a base fabric for filtration with high metal adsorption removal efficiency can be obtained.

図1は本発明の一実施形態のフィルターカートリッジの模式的一部切り取り図である。FIG. 1 is a schematic partial cutaway view of a filter cartridge according to an embodiment of the present invention. 図2は同、デプス型カートリッジフィルターを組み込んだ処理装置の模式的説明図である。FIG. 2 is a schematic explanatory view of a processing apparatus incorporating a depth type cartridge filter. 図3は本発明の一実施例の通液試験装置の模式的説明図である。FIG. 3 is a schematic explanatory view of a liquid passing test apparatus according to an embodiment of the present invention. 図4は実施例1及び比較例1のフィルターのKに対する除去性能を示すグラフである。FIG. 4 is a graph showing the removal performance with respect to K of the filters of Example 1 and Comparative Example 1. 図5は比較例2及び3のフィルターのKに対する除去性能を示すグラフである。FIG. 5 is a graph showing the removal performance of the filters of Comparative Examples 2 and 3 with respect to K. 図6は実施例2及び比較例4のフィルターのCuに対する除去性能を示すグラフである。FIG. 6 is a graph showing the removal performance of the filters of Example 2 and Comparative Example 4 with respect to Cu. 図7は比較例5及び6のフィルターのCuに対する除去性能を示すグラフである。FIG. 7 is a graph showing the removal performance of the filters of Comparative Examples 5 and 6 with respect to Cu. 図8は実施例3及び比較例7のフィルターのNaに対する除去性能を示すグラフである。FIG. 8 is a graph showing the removal performance of the filters of Example 3 and Comparative Example 7 with respect to Na. 図9は比較例8及び9のフィルターのNaに対する除去性能を示すグラフである。FIG. 9 is a graph showing the removal performance of the filters of Comparative Examples 8 and 9 with respect to Na.

本発明は、複数種類の濾過用基布を積層又は中空状内筒に巻き付けたフィルターカートリッジであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含む。この順序に巻けば、他の種類の不織布をさらに巻き付けるのは任意である。そして、前記不織布層Aは、金属吸着基としてスルホン基を化学結合したポリオレフィン繊維で構成され、前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成される。これにより効率よく金属を除去できる。なお、異なる種類の濾過用基布を結合して1枚の濾過用基布にしたものも、複数種類の濾過用基布に含まれる。   The present invention is a filter cartridge in which a plurality of types of filtration base fabrics are laminated or wound around a hollow inner cylinder, wherein the filtration base fabric is a nonwoven fabric in which metal adsorption groups are chemically bonded to polyolefin fibers, and the filtration The base fabric includes a nonwoven fabric layer A located on the downstream side and a nonwoven fabric layer B located on the upstream side. If it winds in this order, it is arbitrary to wind other types of nonwoven fabrics further. The nonwoven fabric layer A is composed of polyolefin fibers chemically bonded with sulfone groups as metal adsorption groups, and the nonwoven fabric layer B is composed of amino groups, N-methyl-D-glucamine groups, iminodiacetic acid groups as metal adsorption groups. (Iminodiacetic acid group), iminodiethanol group, amidoxime group, phosphoric acid group, carboxylic acid group and at least one selected from ethylenediaminetriacetic acid groups are used to form polyolefin fibers. Thereby, a metal can be removed efficiently. In addition, what combined the different types of base fabric for filtration into the single base fabric for filtration is also contained in the multiple types of base fabric for filtration.

本発明においては、不織布層Bはイミノジエタノール基を化学結合したポリオレフィン繊維で構成されるのが特に好ましい。金属の除去効率が高いためである。吸着できる金属については、スルホン酸基は主にNa, Cu, Kを吸着し、イミノジエタノール基は主にCr,Al,Feを吸着する。   In the present invention, the nonwoven fabric layer B is particularly preferably composed of polyolefin fibers chemically bonded with iminodiethanol groups. This is because the metal removal efficiency is high. As for metals that can be adsorbed, sulfonic acid groups mainly adsorb Na, Cu, and K, and iminodiethanol groups mainly adsorb Cr, Al, and Fe.

不織布A及びBを構成するポリオレフィン繊維は長繊維であるのが好ましい。長繊維不織布は繊維屑が発生しにくく、フィルター性能が高いためである。中でも高い面積当たりの質量(目付け)が10〜100g/m2のメルトブロー長繊維不織布が好ましい。 The polyolefin fibers constituting the nonwoven fabrics A and B are preferably long fibers. This is because the long-fiber non-woven fabric hardly generates fiber waste and has high filter performance. Among them, a melt blown long fiber nonwoven fabric having a high mass per unit area (weight per unit area) of 10 to 100 g / m 2 is preferable.

前記不織布A及びBを構成するポリオレフィン繊維の単繊維平均直径は0.2〜10μmであるのが好ましい。前記の範囲であれば、フィルター性能が高い。加えて、表面積(比表面積)の増大ができ、グラフト重合反応の基材表面増ともなるので、グラフト率を高めることができる。   It is preferable that the single fiber average diameter of the polyolefin fiber which comprises the said nonwoven fabrics A and B is 0.2-10 micrometers. If it is the said range, filter performance is high. In addition, since the surface area (specific surface area) can be increased and the surface of the base material for the graft polymerization reaction can be increased, the graft ratio can be increased.

ポリオレフィン繊維は、ポリプロピレン、プロピレンとエチレンの共重合体、ポリエチレン、又はエチレンと炭素数4以上の他のα−オレフィンとの共重合体より選ばれる一種が好ましく、高密度ポリエチレンが特に好ましい。これらのポリマーは不活性であり、薬液に対して安定であり、グラフト重合が可能である。   The polyolefin fiber is preferably one selected from polypropylene, a copolymer of propylene and ethylene, polyethylene, or a copolymer of ethylene and another α-olefin having 4 or more carbon atoms, and high-density polyethylene is particularly preferable. These polymers are inert, stable against chemicals, and can be grafted.

前記フィルターカートリッジは、中空状内筒及び濾過用基布を含むフィルターカートリッジであって、前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、前記濾過用基布は、前記中空状内筒に巻き付けられることにより積層構造を形成しているフィルターカートリッジが好ましい。   The filter cartridge is a filter cartridge including a hollow inner cylinder and a filtering base fabric, and the filtering base fabric is a nonwoven fabric in which metal adsorption groups are chemically bonded to polyolefin fibers, and the filtering base fabric is: A filter cartridge that forms a laminated structure by being wound around the hollow inner cylinder is preferable.

本発明のフィルターは、前記フィルターカートリッジを組み込んだフィルターである。フィルターカートリッジは内筒に濾過用基布が巻き付けられ、容器に収納されている。フィルターカートリッジをフィルターの容器に組み込む際には、容器にフィルターカートリッジを収納した状態でフィルターに組み込む。なお、カートリッジ型フィルターの場合は、フィルターカートリッジのみを交換することで、フィルター機能を再生することができるが、フィルターの容器ごと交換するような、例えばカプセル型フィルターのような場合も、本発明に含むものである。カプセル型フィルターのような場合は、フィルターカートリッジに相当する部分は濾過部となる。   The filter of the present invention is a filter incorporating the filter cartridge. The filter cartridge is housed in a container around a base fabric for filtration wrapped around an inner cylinder. When the filter cartridge is incorporated into the filter container, the filter cartridge is incorporated into the filter in a state where the filter cartridge is accommodated in the container. In the case of a cartridge type filter, the filter function can be regenerated by exchanging only the filter cartridge. Is included. In the case of a capsule type filter, the part corresponding to the filter cartridge is a filtration part.

次にポリオレフィン繊維に各種官能基を化学結合させる方法を説明する。ポリオレフィン繊維に電子線、γ線等の放射線を照射した後にGMAなどの反応性モノマ−を含むエマルジョン液と接触させるか、又はポリオレフィン繊維を反応性モノマ−を含むエマルジョン液と接触させた後に電子線、γ線等の放射線を照射して、反応性モノマーをポリオレフィン繊維にグラフト重合させる。電子線を照射する場合、通常は1〜200kGy、好ましくは5〜100kGy、より好ましくは10〜50kGyの照射量が達成されればよい。雰囲気条件は、窒素雰囲気下で照射を行うことが好ましい。電子線照射装置としては市販のものが使用可能であり、例えば、エリアビーム型電子線照射装置としてEC250/15/180L(岩崎電気(株)社製)、EC300/165/800(岩崎電気(株)社製)、EPS300((株)NHVコーポレーション製)などが使用できる。   Next, a method for chemically bonding various functional groups to the polyolefin fiber will be described. After irradiating the polyolefin fiber with radiation such as electron beam or gamma ray, the polyolefin fiber is brought into contact with an emulsion liquid containing a reactive monomer such as GMA, or after contacting the polyolefin fiber with an emulsion liquid containing a reactive monomer, an electron beam. The reactive monomer is graft polymerized to the polyolefin fiber by irradiation with radiation such as γ-ray. In the case of irradiation with an electron beam, an irradiation dose of 1 to 200 kGy, preferably 5 to 100 kGy, more preferably 10 to 50 kGy may be achieved. Irradiation is preferably performed under a nitrogen atmosphere. A commercially available electron beam irradiation apparatus can be used. For example, as an area beam type electron beam irradiation apparatus, EC250 / 15 / 180L (manufactured by Iwasaki Electric Co., Ltd.), EC300 / 165/800 (Iwasaki Electric Co., Ltd.) And EPS300 (manufactured by NHV Corporation) can be used.

前記グラフト重合法としては、具体的には、例えば、液相グラフト重合法が挙げられ、不織布を、γ線や電子線などの放射線照射によって活性化した後、水、界面活性剤および反応性モノマーを含むエマルジョンに浸漬して、前記の不織布基材にグラフト重合を完了させ、次に、前記基材に形成されたグラフト鎖に、スルホン酸基、アミノ基、N−メチル−D‐グルカミン基やイミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基、エチレンジアミン三酢酸基などの機能性官能基、すなわちイオン交換基及び/又はキレート基を導入する。本発明においては、特に液相グラフト重合法に限定されず、モノマーの蒸気に基材を接触させて重合を行う気相グラフト重合法、基材をモノマー溶液に浸漬した後、モノマー溶液から取り出して気相中で反応を行わせる含浸気相グラフト重合法なども、用いることができる。代表的な機能性官能基の化学式として(化1)にスルホン酸基(SC基)、(化2)にイミノジエタノール基(IDE基)、(化3)にイミノジ酢酸基(IDA基)、(化4)にN−メチル−D‐グルカミン基(NMDG基)を示す。   Specific examples of the graft polymerization method include a liquid phase graft polymerization method. After the nonwoven fabric is activated by irradiation with radiation such as γ rays or electron beams, water, a surfactant and a reactive monomer are used. In the non-woven fabric substrate, the graft polymerization is completed, and then the graft chain formed on the substrate has sulfonic acid groups, amino groups, N-methyl-D-glucamine groups, Functional functional groups such as an iminodiacetic acid group (iminodiacetic acid group), iminodiethanol group, amidoxime group, phosphoric acid group, carboxylic acid group, and ethylenediaminetriacetic acid group, that is, ion exchange groups and / or chelate groups are introduced. In the present invention, the method is not particularly limited to the liquid phase graft polymerization method. The gas phase graft polymerization method in which the substrate is brought into contact with the vapor of the monomer to perform polymerization, the substrate is immersed in the monomer solution, and then taken out from the monomer solution. An impregnation gas phase graft polymerization method in which the reaction is performed in a gas phase can also be used. As chemical formulas of typical functional functional groups, (Chemical Formula 1) is a sulfonic acid group (SC group), (Chemical Formula 2) is an iminodiethanol group (IDE group), (Chemical Formula 3) is an iminodiacetic acid group (IDA group), ( An N-methyl-D-glucamine group (NMDG group) is shown in Chemical formula 4).

Figure 2018167223
Figure 2018167223

Figure 2018167223
Figure 2018167223

Figure 2018167223
Figure 2018167223

Figure 2018167223
Figure 2018167223

但し、(化1)〜(化4)におけるRはポリエチレン(PE)+GMA(化5)又はポリプロピレン(PP)+GMA(化6)である。   However, R in (Chemical Formula 1) to (Chemical Formula 4) is polyethylene (PE) + GMA (Chemical Formula 5) or polypropylene (PP) + GMA (Chemical Formula 6).

Figure 2018167223
Figure 2018167223

Figure 2018167223
Figure 2018167223

但し、前記(化5)〜(化6)におけるn,mは1以上の整数である。   However, n and m in the above (Chemical Formula 5) to (Chemical Formula 6) are integers of 1 or more.

本発明の前記(化1)〜(化4)の機能性官能基の特性をまとめると表1のとおりである。   Table 1 summarizes the characteristics of the functional functional groups of (Chemical Formula 1) to (Chemical Formula 4) of the present invention.

Figure 2018167223
Figure 2018167223

以下図面を用いて説明する。以下の図面において、同一符号は同一物を示す。図1は本発明の一実施形態のデプス型カートリッジフィルター内のフィルターカートリッジの模式的一部切り取り図である。このフィルターカートリッジ1は、中空状内筒(孔をあけた中空パイプ)2に濾過用基布を少なくとも2層巻き付けて使用する。下流側に位置する不織布層(A)3及び上流側に位置する不織布層(B)4が積層されている。   This will be described below with reference to the drawings. In the following drawings, the same symbols indicate the same items. FIG. 1 is a schematic partial cutaway view of a filter cartridge in a depth type cartridge filter according to an embodiment of the present invention. The filter cartridge 1 is used by winding at least two layers of a filter base fabric around a hollow inner cylinder (hollow pipe with a hole). The nonwoven fabric layer (A) 3 located on the downstream side and the nonwoven fabric layer (B) 4 located on the upstream side are laminated.

図2は同、デプス型カートリッジフィルターの模式的説明図である。このデプス型カートリッジフィルター5は、デプス型フィルターカートリッジ10にエンドキャップ9a,9bが取り付けられ、フィルターの容器6内に組み込まれ、供給口7から被処理水が供給され、フィルターカートリッジ10の外側から内側に向けて被処理水が通過し、この間に金属が除去され、処理水取り出し口8から取り出される。   FIG. 2 is a schematic explanatory view of the depth type cartridge filter. The depth type cartridge filter 5 has end caps 9 a and 9 b attached to the depth type filter cartridge 10, incorporated into the filter container 6, supplied with water to be treated from the supply port 7, and from the outside to the inside of the filter cartridge 10. To-be-treated water passes, during which the metal is removed and taken out from the treated water outlet 8.

図3は本発明の一実施例の通液試験装置の模式的説明図である。この通液試験装置11は、容器12に入れた被処理水13をフッ素樹脂(PFA)チューブ14、チューブポンプ15からカラム16を介して積層フィルター17に供給し、金属を吸着除去し、処理水19を容器18にいれる。積層フィルター17は、下流側に位置する不織布層(A)17a及び上流側に位置する不織布層(B)17bで構成されている。図3の通液試験装置は、カラム式積層タイプのフィルターであるが、巻き付け式フィルターと基本構造は同一である。したがって、巻き付け式フィルターの試験結果はカラム式積層タイプの場合と同一とみなすことができる。   FIG. 3 is a schematic explanatory view of a liquid passing test apparatus according to an embodiment of the present invention. This liquid flow test apparatus 11 supplies treated water 13 contained in a container 12 from a fluororesin (PFA) tube 14 and a tube pump 15 to a laminated filter 17 through a column 16, adsorbs and removes metal, and treats water. 19 is placed in a container 18. The multilayer filter 17 includes a nonwoven fabric layer (A) 17a located on the downstream side and a nonwoven fabric layer (B) 17b located on the upstream side. 3 is a column-type laminated filter, but the basic structure is the same as that of a wound filter. Therefore, the test result of the winding filter can be regarded as the same as that of the column-type stacked type.

以下実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。   The present invention will be specifically described below with reference to examples. In addition, this invention is not limited to the following Example.

<グラフト率>
グラフト率は、グラフト前後の不織布質量より、下式により算出した。
グラフト率(%)=100×(B−A)/A
(式中、Aはグラフト前の不織布基材質量、Bはグラフト後の不織布基材質量を表す。)
<元素分析>
微量な元素が定量可能である原子吸光分析を用いてサンプリングした試料中の金属濃度を測定した。得られた金属濃度から 下記式(数1)で金属除去率(%)を求めた。式中のBlank液は、調製した金属溶液中の金属濃度を示す。
<Graft ratio>
The graft ratio was calculated from the mass of the nonwoven fabric before and after grafting according to the following formula.
Graft rate (%) = 100 × (BA) / A
(In the formula, A represents the mass of the nonwoven fabric substrate before grafting, and B represents the mass of the nonwoven fabric substrate after grafting.)
<Elemental analysis>
The metal concentration in the sampled sample was measured using atomic absorption spectrometry, which can quantify trace elements. From the obtained metal concentration, the metal removal rate (%) was determined by the following formula (Equation 1). Blank solution in the formula indicates the metal concentration in the prepared metal solution.

(数1)
金属除去率(%)=[(Blank液中金属濃度-フィルター通液後の液中金属濃度)/Blank液中金属濃度]×100
(Equation 1)
Metal removal rate (%) = [(Blank liquid metal concentration-Metal concentration in liquid after passing through filter) / Blank liquid metal concentration] x 100

<スルホン酸基導入方法>
(電子線照射工程およびグラフト鎖導入工程)
平均繊維径が6μmの高密度ポリエチレン原料のメルトブロー不織布(目付け質量81g/m2、厚み0.38mm、繊維充填率24%)の片面に対して、電子線を窒素雰囲気下、加速電圧200kV、照射線量50kGyで照射した。次に、照射後のメルトブロー不織布を、予め調液し窒素置換(窒素バブリング)したエマルジョン状態のモノマー溶液に浸漬し、55℃に保持しながら、エマルジョングラフト重合を4時間行った。
使用したモノマー溶液は、溶液全体重量基準で、グリシジルメタクリレート(GMA)1.6質量%と界面活性剤であるTween20(ナカライテスク株式会社製)を0.2質量%含む純水エマルジョン溶液である。
グラフト率を評価したところ、GMAグラフト率は50%であった。
(スルホン酸基導入工程)
亜硫酸ナトリウムをイソプロパノール:15質量%/純水:85質量%に溶解し作製した濃度10質量%の亜硫酸ナトリウム溶液中に上記で得られたGMAグラフト重合不織布を浸漬し、80℃で9時間加熱してスルホン酸基の導入を行った。不織布を取り出し純水で洗浄、乾燥することにより、スルホン酸型不織布を得た。
濃度1Nの硫酸中に上記で得られたスルホン酸型不織布を浸漬し、80℃で2時間加熱して残エポキシ基の開環およびナトリウムイオンの水素イオンへの置換を行った。不織布を取り出し、純水で洗浄、乾燥することにより、イオン交換容量2meq/gのスルホン酸型イオン交換不織布を得た。なお、当該不織布の厚みは0.82mmであった。
<Sulfonic acid group introduction method>
(Electron beam irradiation process and graft chain introduction process)
An electron beam is irradiated with an acceleration voltage of 200 kV in a nitrogen atmosphere on one side of a melt blown nonwoven fabric (weight per unit of mass 81 g / m 2 , thickness 0.38 mm, fiber filling rate 24%) of a high-density polyethylene material having an average fiber diameter of 6 μm. Irradiation was performed at a dose of 50 kGy. Next, the melt-blown nonwoven fabric after irradiation was preliminarily prepared and immersed in a monomer solution in an emulsion state in which nitrogen substitution (nitrogen bubbling) was performed, and emulsion graft polymerization was performed for 4 hours while maintaining at 55 ° C.
The monomer solution used was a pure water emulsion solution containing 1.6% by mass of glycidyl methacrylate (GMA) and 0.2% by mass of Tween 20 (manufactured by Nacalai Tesque) as a surfactant, based on the total weight of the solution.
When the graft ratio was evaluated, the GMA graft ratio was 50%.
(Sulphonic acid group introduction step)
The GMA graft-polymerized non-woven fabric obtained above was immersed in a sodium sulfite solution having a concentration of 10% by mass prepared by dissolving sodium sulfite in isopropanol: 15% by mass / pure water: 85% by mass, and heated at 80 ° C. for 9 hours. Then, sulfonic acid groups were introduced. The nonwoven fabric was taken out, washed with pure water, and dried to obtain a sulfonic acid type nonwoven fabric.
The sulfonic acid type non-woven fabric obtained above was immersed in 1N sulfuric acid and heated at 80 ° C. for 2 hours to open the remaining epoxy groups and replace sodium ions with hydrogen ions. The nonwoven fabric was taken out, washed with pure water, and dried to obtain a sulfonic acid type ion exchange nonwoven fabric having an ion exchange capacity of 2 meq / g. The nonwoven fabric had a thickness of 0.82 mm.

<イミノジエタノール基導入工程>
(電子線照射工程およびグラフト鎖導入工程)
スルホン酸基と同様の方法により、電子線照射工程およびグラフト鎖導入工程を実施した。グラフト率を評価したところ、GMAグラフト率は50%であった。
(イミノジエタノール基導入工程)
上記で得られたGMAグラフト重合不織布を、イミノジエタノールを純水に溶解し作製した濃度20質量%のイミノジエタノール溶液中に浸漬し、80℃で4時間加熱してイミノジエタノール基の導入を行った。不織布を取り出し純水で洗浄、乾燥することにより、イオン交換容量2.0meq/gのイミノジエタノール型不織布を得た。なお、当該不織布の厚みは0.75mmであった。
<Iminodiethanol group introduction process>
(Electron beam irradiation process and graft chain introduction process)
An electron beam irradiation step and a graft chain introduction step were performed in the same manner as for the sulfonic acid group. When the graft ratio was evaluated, the GMA graft ratio was 50%.
(Iminodiethanol group introduction process)
The GMA graft-polymerized non-woven fabric obtained above was immersed in an iminodiethanol solution having a concentration of 20% by mass prepared by dissolving iminodiethanol in pure water, and heated at 80 ° C. for 4 hours to introduce iminodiethanol groups. . The nonwoven fabric was taken out, washed with pure water, and dried to obtain an iminodiethanol type nonwoven fabric having an ion exchange capacity of 2.0 meq / g. The nonwoven fabric had a thickness of 0.75 mm.

<イミノジ酢酸基導入工程>
(電子線照射工程およびグラフト鎖導入工程)
スルホン酸基と同様の方法により、電子線照射工程およびグラフト鎖導入工程を実施した。グラフト率を評価したところ、GMAグラフト率は50%であった。
(イミノジ酢酸基導入工程)
上記で得られたGMAグラフト重合不織布を、イミノジ酢酸二ナトリウム水和物をレベランLV-8:17質量%/純水:71質量%に溶解し作製した濃度12質量%のイミノジ酢酸二ナトリウム水和物溶液中に上記で得られたGMAグラフト重合不織布を浸漬し、80℃で9時間加熱してイミノジ酢酸基の導入を行った。
濃度6Nの塩酸中に上記で得られたイミノジ酢酸酸型不織布を浸漬し、ナトリウムイオンの水素イオンへの置換を行った。不織布を取り出し、純水で洗浄、乾燥することにより、イオン交換容量0.8meq/gのイミノジ酸型イオン交換不織布を得た。なお、当該不織布の厚みは0.68mmであった。
<金属除去フィルターの作製>
図3に示す積層フィルター17を使用した。すなわち、下流側に位置する不織布層(A)17a及び上流側に位置する不織布層(B)17bで構成されている。前記2種類の不織布基材を直径7mmΦにカットし、7mmΦのPFA(テトラフルオロエチレンとパーフルオロアルキルビニルエーテルとの共重合体)製カラム内に5枚ずつ合計10枚を、順番を入れ替えて積層し、2種類の官能基複合型フィルター17を作製した。
前記不織布層Aとしてスルホン酸基材(以下、SCKと記載)と、前記不織布層Bとしてイミノジエタノール基材(以下、IDECrと記載)を用いた。SCKは、カリウム(K)を吸着し、IDECrはクロム酸(以下、クロム(Cr)と記載)を吸着する。基材重量(g/枚)は下記のとおりである。
SC基材=0.0059(g/枚)
IDE基材=0.0053(g/枚)
IDA基材=0.0055(g/枚)
<Iminodiacetic acid group introduction step>
(Electron beam irradiation process and graft chain introduction process)
An electron beam irradiation step and a graft chain introduction step were performed in the same manner as for the sulfonic acid group. When the graft ratio was evaluated, the GMA graft ratio was 50%.
(Iminodiacetic acid group introduction step)
The GMA graft-polymerized nonwoven fabric obtained above was prepared by dissolving iminodiacetic acid disodium hydrate in Levelan LV-8: 17% by mass / pure water: 71% by mass. The GMA graft-polymerized nonwoven fabric obtained above was immersed in the product solution and heated at 80 ° C. for 9 hours to introduce iminodiacetic acid groups.
The iminodiacetic acid-type nonwoven fabric obtained above was immersed in hydrochloric acid having a concentration of 6N, and sodium ions were replaced with hydrogen ions. The nonwoven fabric was taken out, washed with pure water, and dried to obtain an iminodic acid type ion exchange nonwoven fabric having an ion exchange capacity of 0.8 meq / g. The nonwoven fabric had a thickness of 0.68 mm.
<Production of metal removal filter>
The multilayer filter 17 shown in FIG. 3 was used. That is, it is comprised by the nonwoven fabric layer (A) 17a located in the downstream, and the nonwoven fabric layer (B) 17b located in the upstream. Cut the two types of non-woven fabric substrates into a diameter of 7mmΦ, and stack 10 layers in total in a 7mmΦ column made of PFA (copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether). Two types of functional group composite type filters 17 were produced.
A sulfonic Sanmotozai (hereinafter, described as SC K) as nonwoven layer A and, iminodiethanol substrate as the non-woven fabric layer B (hereinafter referred to as IDE Cr) was used. SC K adsorbs potassium (K), IDE Cr is chromic acid (hereinafter, chromium (Cr) and described) to adsorb. The substrate weight (g / sheet) is as follows.
SC substrate = 0.0059 (g / sheet)
IDE base material = 0.0053 (g / sheet)
IDA base material = 0.0055 (g / sheet)

(実施例1、比較例1)
<金属溶液の調製>
ナカライテスク社製用途別特製試薬のニクロム酸カリウム標準液(1000ppm)を超純水で希釈し、1000ppbの金属溶液(Cr=1000ppb、K=2000ppb)を調製した。
<通液・サンプリング>
図3に示すようにチューブポンプを用いて、フィルターに金属溶液(ニクロム酸カリウム)を3.1mL/minで通液し、基材通過後の溶液を100mLのPFAボトルにサンプリングした。
本実施例及び比較例は、Kに対する金属除去性能を検討した。
(SCK→IDECr)と(IDECr→SCK)の官能基複合型フィルターの金属除去率を図4に示す。この結果から、KとCrが混在する溶液系でKを除去する場合は、SC単独基でKを除去するよりも、あらかじめIDE基でCrを除去し、その後にSCでKを除去する(IDECr→SCK)方が、高い除去率を示すことが分かった。
(Example 1, Comparative Example 1)
<Preparation of metal solution>
A potassium nichromate standard solution (1000 ppm), a special reagent manufactured by Nacalai Tesque, was diluted with ultrapure water to prepare a 1000 ppb metal solution (Cr = 1000 ppb, K = 2000 ppb).
<Liquid passing and sampling>
As shown in FIG. 3, using a tube pump, a metal solution (potassium dichromate) was passed through the filter at 3.1 mL / min, and the solution after passing through the substrate was sampled into a 100 mL PFA bottle.
In this example and comparative example, the metal removal performance for K was examined.
FIG. 4 shows the metal removal rate of the functional group composite filter of (SC K → IDE Cr ) and (IDE Cr → SC K ). From this result, when removing K in a solution system in which K and Cr coexist, rather than removing K with an SC alone group, Cr is removed beforehand with an IDE group, and then K is removed with SC (IDE). Cr → SC K ) was found to show a higher removal rate.

(比較例2〜3)
不織布層としてスルホン酸基材(SCK)と、不織布層としてイミノジエタノール基材(IDECr)をそれぞれ単独フィルターとした以外は実施例1と同様に実験した。この金属除去率を図5に示す。SCKはKを除去できているが、IDECrは除去できていない。また、これらの単独フィルターの金属除去率を足し合わせた官能基複合型フィルターの値(以下、理論値と記載)は、SCKと同等の値を示した。
(Comparative Examples 2-3)
Experiments were conducted in the same manner as in Example 1 except that a sulfonic acid base material (SC K ) was used as the nonwoven fabric layer and an iminodiethanol base material (IDE Cr ) was used as the nonwoven fabric layer. This metal removal rate is shown in FIG. SC K is able to remove the K but, IDE Cr not be removed. These single filter value of the combined functional group composite filter plus the metal removal rate (hereinafter, described as the theoretical value), showed comparable values and SC K.

(実施例2、比較例4)
本実施例及び比較例は、Cuに対する金属除去性能を検討した。フィルター構造は実施例1と同様とした。
<金属溶液の調製>
ナカライテスク社製用途別特製試薬のナトリウム(Na)標準液(1000ppm)と銅(Cu)標準液(1000 ppm)を超純水で希釈し、1000ppbの金属溶液(Na=1000ppb、Cu=1000ppb)を調製した。
<通液・サンプリング>
実施例1と同様の流速で金属溶液(Na、Cu)を通液し、サンプリングした。
<金属除去率の結果>
(SCNa,Cu→IDACu)と(IDACu→SCNa,Cu)の官能基複合型フィルターの金属除去率を図6に示す。この結果から、NaとCuが混在する溶液系でCuを除去する場合は、IDA及びSC単独基でCuを除去するよりも、IDAとSCを組み合わせる方が、高い除去率を示すことが分かった。また、IDAとSCの順序については、IDACu→SCNa,Cuの順序の方が、より高い除去率を示すことが分かった。
(Example 2, Comparative Example 4)
In this example and comparative example, metal removal performance for Cu was examined. The filter structure was the same as in Example 1.
<Preparation of metal solution>
A sodium (Na) standard solution (1000 ppm) and a copper (Cu) standard solution (1000 ppm), which are special reagents manufactured by Nacalai Tesque, diluted with ultrapure water, and a 1000 ppb metal solution (Na = 1000 ppb, Cu = 1000 ppb) Was prepared.
<Liquid passing and sampling>
A metal solution (Na, Cu) was passed at the same flow rate as in Example 1 and sampled.
<Results of metal removal rate>
FIG. 6 shows the metal removal rate of the functional group composite filter of (SC Na, Cu → IDA Cu ) and (IDA Cu → SC Na, Cu ). From this result, when removing Cu in a solution system in which Na and Cu are mixed, it was found that combining IDA and SC shows a higher removal rate than removing Cu with IDA and SC single groups. . In addition, regarding the order of IDA and SC, it was found that the order of IDA Cu → SC Na, Cu shows a higher removal rate.

(比較例5〜6)
(SCNa,Cu)と(IDACu)の2種類の単独フィルターの金属除去率を図7に示す。IDACuおよびSCNa,CuでCuを除去できている。また、これらの単独フィルターの金属除去率を足し合わせた官能基複合型フィルターの値(以下、理論値と記載)は、SCNa,Cu+IDACuである。
(Comparative Examples 5-6)
FIG. 7 shows the metal removal rates of two types of single filters (SC Na, Cu ) and (IDA Cu ). Cu can be removed by IDA Cu and SC Na, Cu . Further, the value of the functional group composite filter (hereinafter referred to as the theoretical value) obtained by adding the metal removal rates of these single filters is SC Na, Cu + IDA Cu .

(実施例3、比較例7)
本実施例は、Naに対する金属除去性能を検討した。
(SCNa,Cu→IDACu)と(IDACu→SCNa,Cu)の官能基複合型フィルターの金属除去率を図8に示す。この結果から、NaとCuが混在する溶液系でNaを除去する場合は、SC単独基でNaを除去するよりも、あらかじめIDA基でCuを除去し、その後にSCでNaを除去する(IDACu→SCNa,Cu)方が、理論値と比較して、高い除去率を示すことが分かった。
(Example 3, Comparative Example 7)
In this example, metal removal performance for Na was examined.
FIG. 8 shows the metal removal rate of the functional group composite filter of (SC Na, Cu → IDA Cu ) and (IDA Cu → SC Na, Cu ). From this result, when removing Na in a solution system in which Na and Cu are mixed, rather than removing Na with an SC single group, Cu is removed beforehand with an IDA group, and then Na is removed with SC (IDA). Cu → SC Na, Cu ) showed a higher removal rate than the theoretical value.

(比較例8、比較例9)
(SCNa,Cu),(IDACu)の2種類の単独フィルターの金属除去率を図9に示す。SCNa,CuはNaを除去できているが、IDACuは除去できていない。SCNa,Cuの金属除去率が途中からマイナスの値を示しているのは、Naを吸着していた官能基が、より吸着力の強いCuを吸着することにより、Naが放出されるためである。また、これらの単独フィルターの金属除去率を足し合わせた官能基複合型フィルターの値(以下、理論値と記載)は、SCNa,Cuと同等の値を示した。
(Comparative Example 8, Comparative Example 9)
FIG. 9 shows the metal removal rates of two types of single filters (SC Na, Cu ) and (IDA Cu ). SC Na and Cu can remove Na, but IDA Cu cannot. The reason why the SC Na, Cu metal removal rate shows a negative value from the middle is that Na is released by the adsorption of Cu, which has higher adsorption power, by the functional group that adsorbed Na. is there. In addition, the value of the functional group composite filter (hereinafter referred to as the theoretical value) obtained by adding the metal removal rates of these single filters was equivalent to SC Na, Cu .

以上の実施例及び比較例を考察すると、官能基複合型フィルターにおいて、基材の積層順序の影響を調査した結果、官能基の吸着対象でない金属を減少させてから、吸着対象である金属を吸着するような積層順序にすると、金属除去性能が向上することが分かった。一つの推測としては、官能基の吸着対象である金属に対して、吸着対象でない金属が少ない程、官能基と対象金属の接触確率が上がることが考えられる。   Considering the above examples and comparative examples, as a result of investigating the influence of the stacking order of the base material in the functional group composite filter, the metal that is not the target of adsorption of the functional group is reduced and then the metal that is the target of adsorption is adsorbed. It was found that the metal removal performance is improved when the stacking order is set. One presumption is that the contact probability between the functional group and the target metal increases as the number of metals that are not the target of adsorption decreases with respect to the metal that is the target of functional group adsorption.

本発明のフィルターカートリッジは、不織布を円筒状に巻き付けたデプス型カートリッジフィルターに有用である。   The filter cartridge of the present invention is useful for a depth type cartridge filter in which a nonwoven fabric is wound in a cylindrical shape.

1,10 デプス型フィルターカートリッジ
2 中空状内筒(孔をあけた中空パイプ)
3,17a 下流側に位置する不織布層(A)
4,17b 上流側に位置する不織布層(B)
5 デプス型カートリッジフィルター
6 フィルターの容器
7 供給口
8 処理水取り出し口
9a,9b エンドキャップ
11 通液試験装置
12,18 容器
13 被処理水
14 フッ素樹脂(PFA)チューブ
15 チューブポンプ
16 カラム
17 積層フィルター
19 処理水
1,10 Depth type filter cartridge 2 Hollow inner cylinder (hollow pipe with holes)
3, 17a Non-woven fabric layer located on the downstream side (A)
4, 17b Non-woven fabric layer (B) located upstream
5 Depth Type Cartridge Filter 6 Filter Container 7 Supply Port 8 Treated Water Extraction Ports 9a, 9b End Cap 11 Liquid Flow Test Equipment 12, 18 Container 13 Water to be Treated 14 Fluororesin (PFA) Tube 15 Tube Pump 16 Column 17 Multilayer Filter 19 Treated water

Claims (6)

複数種類の濾過用基布を積層又は中空状内筒に巻き付けたフィルターカートリッジであって、
前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、
前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、
前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、
前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成されることを特徴とするフィルターカートリッジ。
A filter cartridge in which a plurality of types of filter base fabrics are laminated or wound around a hollow inner cylinder,
The base fabric for filtration is a nonwoven fabric in which metal adsorption groups are chemically bonded to polyolefin fibers,
The base fabric for filtration includes a nonwoven fabric layer A located on the downstream side and a nonwoven fabric layer B located on the upstream side,
The nonwoven fabric layer A is composed of polyolefin fibers chemically bonded with sulfonic acid groups as metal adsorption groups,
The non-woven fabric layer B has amino groups, N-methyl-D-glucamine groups, iminodiacetic acid groups (iminodiacetic acid groups), iminodiethanol groups, amidoxime groups, phosphoric acid groups, carboxylic acid groups, and ethylenediaminetriacetic acid as metal adsorbing groups. A filter cartridge comprising a polyolefin fiber chemically bonded with at least one selected from a group.
前記不織布層Bは、イミノジエタノール基を化学結合したポリオレフィン繊維で構成される請求項1に記載のフィルターカートリッジ。   2. The filter cartridge according to claim 1, wherein the nonwoven fabric layer B is composed of polyolefin fibers chemically bonded to iminodiethanol groups. 前記不織布A及びBを構成するポリオレフィン繊維は長繊維である請求項1又は2に記載のフィルターカートリッジ。   The filter cartridge according to claim 1 or 2, wherein the polyolefin fibers constituting the nonwoven fabrics A and B are long fibers. 前記不織布A及びBを構成するポリオレフィン繊維の単繊維平均直径は0.2〜10μmである請求項1〜3のいずれかに記載のフィルターカートリッジ。   The filter cartridge according to any one of claims 1 to 3, wherein a single fiber average diameter of the polyolefin fibers constituting the nonwoven fabrics A and B is 0.2 to 10 µm. 請求項1〜4のいずれかに記載のフィルターカートリッジを組み込んだフィルター。   A filter incorporating the filter cartridge according to claim 1. 複数種類の濾過用基布を積層又は中空状内筒に巻き付けた濾過部を有するフィルターであって、
前記濾過用基布は、ポリオレフィン繊維に金属吸着基を化学結合した不織布であり、
前記濾過用基布は、下流側に位置する不織布層A及び上流側に位置する不織布層Bを含み、
前記不織布層Aは、金属吸着基としてスルホン酸基を化学結合したポリオレフィン繊維で構成され、
前記不織布層Bは、金属吸着基としてアミノ基、N−メチル−D‐グルカミン基、イミノ二酢酸基(イミノジ酢酸基)、イミノジエタノール基、アミドキシム基、リン酸基、カルボン酸基及びエチレンジアミン三酢酸基から選択される少なくとも一種を化学結合したポリオレフィン繊維で構成されることを特徴とするフィルター。
A filter having a filtration part in which a plurality of types of filtration base fabrics are laminated or wound around a hollow inner cylinder,
The base fabric for filtration is a nonwoven fabric in which metal adsorption groups are chemically bonded to polyolefin fibers,
The base fabric for filtration includes a nonwoven fabric layer A located on the downstream side and a nonwoven fabric layer B located on the upstream side,
The nonwoven fabric layer A is composed of polyolefin fibers chemically bonded with sulfonic acid groups as metal adsorption groups,
The non-woven fabric layer B has amino groups, N-methyl-D-glucamine groups, iminodiacetic acid groups (iminodiacetic acid groups), iminodiethanol groups, amidoxime groups, phosphoric acid groups, carboxylic acid groups, and ethylenediaminetriacetic acid as metal adsorbing groups. A filter comprising a polyolefin fiber chemically bonded with at least one selected from a group.
JP2017068447A 2017-03-30 2017-03-30 Filter cartridge and filter Active JP6912244B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017068447A JP6912244B2 (en) 2017-03-30 2017-03-30 Filter cartridge and filter
CN201880006860.2A CN110177616B (en) 2017-03-30 2018-03-12 Filter cartridge and filter
PCT/JP2018/009588 WO2018180430A1 (en) 2017-03-30 2018-03-12 Filter cartridge and filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017068447A JP6912244B2 (en) 2017-03-30 2017-03-30 Filter cartridge and filter

Publications (2)

Publication Number Publication Date
JP2018167223A true JP2018167223A (en) 2018-11-01
JP6912244B2 JP6912244B2 (en) 2021-08-04

Family

ID=63675350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017068447A Active JP6912244B2 (en) 2017-03-30 2017-03-30 Filter cartridge and filter

Country Status (3)

Country Link
JP (1) JP6912244B2 (en)
CN (1) CN110177616B (en)
WO (1) WO2018180430A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130005A1 (en) * 2018-12-20 2020-06-25 日産化学株式会社 Method for producing coating film-forming composition for lithography
JP2020104050A (en) * 2018-12-27 2020-07-09 水ing株式会社 Boron adsorption cartridge filter and boron treatment method using the same
WO2020184306A1 (en) * 2019-03-11 2020-09-17 日産化学株式会社 Production method for organic solvent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019131629A1 (en) * 2017-12-25 2019-07-04 日産化学株式会社 Metal removal agent and metal removal method for removing metal impurities in solution
IT201900012339A1 (en) 2019-07-19 2021-01-19 Consiglio Nazionale Ricerche Macroporous polymer cryogel based on N-alkyl-D-glucamine to retain and / or remove toxic contaminants
IT201900012624A1 (en) 2019-08-26 2021-02-26 Stazione Zoologica Anton Dohrn Method and kit for predicting cell death in response to biotic and / or abiotic stimuli

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317512A (en) * 1988-06-17 1989-12-22 Sumitomo Chem Co Ltd Method for cleaning air
JPH0360710A (en) * 1989-07-28 1991-03-15 Sumitomo Chem Co Ltd Filter medium for purifying air
JPH04284853A (en) * 1991-03-13 1992-10-09 Japan Atom Energy Res Inst Ion exchange filtering method and apparatus therefor
JP2003020214A (en) * 2001-07-05 2003-01-24 Santoku Kagaku Kogyo Kk Method for manufacturing purified hydrogen peroxide water
JP2003251120A (en) * 2002-02-27 2003-09-09 Ebara Corp Filter cartridge for precise filtering of fine particles/ metal impurities
JP2009090259A (en) * 2007-10-12 2009-04-30 Japan Atomic Energy Agency Cartridge filter for liquid filtration
JP2014071004A (en) * 2012-09-28 2014-04-21 Ebara Corp Water treatment method and device in nuclear power plant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349241A (en) * 2004-06-08 2005-12-22 Japan Atom Energy Res Inst Material for removing cation in water at high speed and high efficiency and secondary treatment for waste water using the material
JP2013061426A (en) * 2011-09-12 2013-04-04 Nomura Micro Sci Co Ltd Impurity removal method, impurity removal filtration member and impurity removal filtration device, for resin solution for forming photoresist film
MX2014003154A (en) * 2011-09-21 2014-04-25 Donaldson Co Inc Fine fibers made from polymer crosslinked with resinous aldehyde composition.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317512A (en) * 1988-06-17 1989-12-22 Sumitomo Chem Co Ltd Method for cleaning air
JPH0360710A (en) * 1989-07-28 1991-03-15 Sumitomo Chem Co Ltd Filter medium for purifying air
JPH04284853A (en) * 1991-03-13 1992-10-09 Japan Atom Energy Res Inst Ion exchange filtering method and apparatus therefor
JP2003020214A (en) * 2001-07-05 2003-01-24 Santoku Kagaku Kogyo Kk Method for manufacturing purified hydrogen peroxide water
JP2003251120A (en) * 2002-02-27 2003-09-09 Ebara Corp Filter cartridge for precise filtering of fine particles/ metal impurities
JP2009090259A (en) * 2007-10-12 2009-04-30 Japan Atomic Energy Agency Cartridge filter for liquid filtration
JP2014071004A (en) * 2012-09-28 2014-04-21 Ebara Corp Water treatment method and device in nuclear power plant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130005A1 (en) * 2018-12-20 2020-06-25 日産化学株式会社 Method for producing coating film-forming composition for lithography
KR20210102213A (en) 2018-12-20 2021-08-19 닛산 가가쿠 가부시키가이샤 Method for producing a coating film-forming composition for lithography
JPWO2020130005A1 (en) * 2018-12-20 2021-11-04 日産化学株式会社 Method for Producing Coating Film Forming Composition for Lithography
JP2020104050A (en) * 2018-12-27 2020-07-09 水ing株式会社 Boron adsorption cartridge filter and boron treatment method using the same
JP7094874B2 (en) 2018-12-27 2022-07-04 水ing株式会社 Boron adsorption cartridge filter and boron treatment method using it
WO2020184306A1 (en) * 2019-03-11 2020-09-17 日産化学株式会社 Production method for organic solvent
CN113574043A (en) * 2019-03-11 2021-10-29 日产化学株式会社 Method for producing organic solvent
KR20210134895A (en) 2019-03-11 2021-11-11 닛산 가가쿠 가부시키가이샤 Manufacturing method of organic solvent

Also Published As

Publication number Publication date
JP6912244B2 (en) 2021-08-04
CN110177616B (en) 2022-10-04
WO2018180430A1 (en) 2018-10-04
CN110177616A (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2018180430A1 (en) Filter cartridge and filter
KR100389575B1 (en) Gas adsorbent
JP5252653B2 (en) Method for manufacturing sintered body
KR100998521B1 (en) ?? treated membranes
JP3238495B2 (en) Purification method of trace contaminated air in clean room
KR102646311B1 (en) Ligand-Modified Filters and Methods for Reducing Metals from Liquid Compositions
KR102287709B1 (en) Ultrapure Water Manufacturing System
KR20050062548A (en) Method of removing organic impurities from water
KR20140071943A (en) Method and device for refining of purification of hydrogen peroxide
JP2013061426A (en) Impurity removal method, impurity removal filtration member and impurity removal filtration device, for resin solution for forming photoresist film
JP6670206B2 (en) Ultrapure water production equipment
JP2003251118A (en) Filter cartridge having high performance metal capturing capacity
CN1332918C (en) Method for preparing ultra high-purity alcohol compound
JP6228471B2 (en) To-be-treated water processing apparatus, pure water production apparatus and to-be-treated water processing method
US20050218068A1 (en) Filter cartridge
JP2014071004A (en) Water treatment method and device in nuclear power plant
JP2021171729A (en) Hollow fiber adsorbent, water purifier, and method for producing pure water
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2020116524A (en) Method for filtering liquid medicine containing carboxylic acid derivative
TW202039404A (en) Production method for organic solvent
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2007130540A (en) Chelate adsorbent material which can be acted in strong acidity range
JP7094874B2 (en) Boron adsorption cartridge filter and boron treatment method using it
KR102640667B1 (en) Hydrophilically surface-modified polypropylene fabrics and method of manufacturing the same
JPH07323231A (en) Metal deposited porous film and method for chemically removing dissolved oxygen in water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210708

R150 Certificate of patent or registration of utility model

Ref document number: 6912244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250